serupa.id

seni belajar untuk hidup

Metode Penelitian Deskriptif: Pengertian, Langkah & Macam

descriptive quantitative research adalah

Daftar Isi ⇅ show

Pengertian metode penelitian deskriptif.

Metode penelitian deskriptif adalah metode yang dilakukan untuk mengetahui gambaran, keadaan, suatu hal dengan cara mendeskripsikannya sedetail mungkin berdasarkan fakta yang ada. Bukankah penelitian biasanya bersifat eksperimental, misalnya ingin mengetahui pengaruh X terhadap Z? Tidak semuanya seperti itu. Terdapat jenis penelitian semacam ini yang hanya ingin mengetahui bagaimana wujud X yang sebenar-benarnya jika diamati dengan cermat dan sistematis.

Metode penelitian deskriptif menurut Sugiyono (2018, hlm. 86) adalah suatu penelitian yang dilakukan untuk mengetahui nilai variabel mandiri, baik satu variabel atau lebih (independen) tanpa membuat perbandingan atau menghubungkan dengan variabel lain. Artinya penelitian ini hanya ingin mengetahui bagaimana keadaan variabel itu sendiri tanpa ada pengaruh atau hubungan terhadap variabel lain seperti penelitian eksperimen atau korelasi.

Mengapa ada penelitian yang semacam ini? banyak hal yang dapat dilakukan untuk menggali informasi lebih dalam dari yang tampak dan teramati melalui pengamatan saja. Misalnya, dalam mengembangkan atau menciptakan sesuatu, produk yang dihasilkan tentunya adalah suatu kesatuan. Sehingga jika kita melihatnya, maka apa yang kita lihat adalah kesatuan final tersebut. Padahal kesatuan tersebut dibuat dari berbagai unsur dan prinsip yang membangunnya.

Contohnya, dalam pengembangan metode pembelajaran, terdapat banyak unsur yang membentuknya meliputi pendekatan yang digunakan, model pembelajaran yang dipilih, media pembelajaran yang mendukungnya, hingga langkah pengaplikasiannya di kelas. Penelitian deskriptif berusaha untuk mengungkap berbagai detail yang tidak tampak tersebut agar metode pembelajaran dapat diterangkan sejelas-jelasnya dan bisa didapatkan berbagai data berharga yang dapat ditarik untuk penelitian selanjutnya atau digunakan untuk pengaplikasian terbaiknya.

Selain itu, bahkan terkadang penelitian kuantitatif pun hanya cukup disajikan deskripsinya saja. Mengapa? Karena tidak ada kepentingan untuk membandingkannya dengan misalnya, hasil survei lain. Apalagi jika survei yang dilakukan belum pernah dilakukan sebelumnya. Tidak semua penelitian kuantitatif ingin mengetahui korelasi atau hubungan antarvariabel. Bisa jadi angka statistik yang dibutuhkan hanya dari variabel itu sendiri.

Metode Penelitian Deskriptif Menurut Para Ahli

Berikut adalah beberapa pendapat lain mengenai definisi dan pengertian metode penelitian deskriptif menurut para ahli.

Menurut Arikunto (2019, hlm. 3) penelitian deskriptif adalah penelitian yang dimaksudkan untuk menyelidiki keadaan, kondisi atau hal lain-lain yang sudah disebutkan, yang hasilnya dipaparkan dalam bentuk laporan penelitian.

Menurut Narbuko (2015, hlm. 44), penelitian deskriptif adalah penelitian yang berusaha untuk menuturkan pemecahan masalah yang ada sekarang berdasarkan data-data, dengan menyajikan, menganalisis dan menginterpretasikannya.

Sukmadinata

Penelitian deskriptif adalah suatu bentuk penelitian yang ditujukan untuk mendeskripsikan fenomena-fenomena yang ada, baik fenomena alamiah maupun fenomena buatan manusia yang bisa mencakup aktivitas, karakteristik, perubahan, hubungan, kesamaan, dan perbedaan antara fenomena yang satu dengan fenomena lainnya (Sukmadinata, 2017, hlm. 72).

Koentjaraningrat

Penelitian kualitatif dengan desain deskriptif adalah penelitian yang memberi gambaran secara cermat mengenai individu atau kelompok tertentu tentang keadaan dan gejala yang terjadi (Koentjaraningrat, 1993, hlm. 89).

Langkah-langkah Penelitian Deskriptif

Secara umum, langkah-langkah penelitian deskriptif sebetulnya hampir sama dengan prosedur penelitian lainnya. Bisa jadi terdapat beberapa perbedaan apalagi jika menggunakan pisau analisis yang berbeda seperti apakah penelitian yang dilakukan berlandaskan penelitian kualitatif dan kuantitatif. Namun, secara umum, Sukardi (2014, hlm. 158- 159) menyebutkan langkah-langkah penelitian deskriptif adalah sebagai berikut.

  • Mengidentifikasi adanya permasalahan yang signifikan untuk dipecahkan melalui metode deskriptif.
  • Membatasi dan merumuskan permasalahan secara jelas.
  • Menentukan tujuan dan manfaat penelitian.
  • Melakukan studi pustaka yang berkaitan dengan permasalahan.
  • Menentukan kerangka berpikir, dan pertanyaan penelitian dan atau hipotesis penelitian.
  • Mendesain metode penelitian yang hendak digunakan termasuk dalam hal ini menentukan populasi, sampel, teknik sampling, menentukan instrumen pengumpul data, dan menganalisis data.
  • Mengumpulkan, mengorganisasi, dan menganalisis data dengan menggunakan teknik statistika yang relevan.
  • Membuat laporan penelitian.

Macam Macam Metode Penelitian Deskriptif

Membicarakan macam atau jenis penelitian deskrpitif tentunya sangatlah beragam. Penelitian ini dapat dipadukan dengan berbagai metode penelitian lainnya seperti deskriptif kualitatif, deskriptif kuantitatif, hingga deskriptif verifikatif. Berikut adalah beberapa macam penelitian deskriptif yang biasa dilakukan oleh para peneliti.

Metode Penelitian Deskriptif Kualitatif

Metode penelitian deskriptif kualitatif menurut Sugiyono (2018, hlm. 15 ) adalah metode penelitian yang berlandaskan filsafat postpositivisme yang biasa digunakan untuk meneliti kondisi objek yang alamiah, di mana peneliti berperan sebagai instrumen kunci dan melakukan melukiskan suatu keadaan secara objektif atau berdasarkan fakta-fakta yang tampak.

Selain itu metode penelitian deskriptif kualitatif menurut para ahli lain meliputi pendapat Sukmadinata (2017, hlm. 73) adalah metode yang digunakan untuk mendeskripsikan dan menggambarkan fenomena-fenomena yang ada, baik bersifat alamiah maupun rekayasa manusia, yang lebih memperhatikan mengenai karakteristik, kualitas, keterkaitan antar kegiatan.

Baca juga:  Metode Penelitian Deskriptif Kualitatif (Konsep & Contoh)

Metode Penelitian Deskriptif Kuantitatif

Pengertian metode penelitian deskriptif kuantitatif adalah penelitian yang berusaha memperlihatkan hasil dari suatu pengumpulan data kuantitatif atau statistik seperti survei dengan apa adanya, tanpa dihitung atau dilihat hubungannya dengan perlakuan atau variabel lain. Jadi survei yang dilakukan adalah primadonanya. Survei bukan dilakukan untuk membandingkannya dengan hasil survei lain agar dapat menarik kesimpulan tertentu.

Untuk memastikan kesahihannya, tentu kita harus membandingkannya dengan pengertian metode penelitian deskriptif kuantitatif menurut para ahli. Berkenaan dengan hal tersebut, menurut Bungin (2015, hlm. 48-49) penelitian deskriptif kuantitatif adalah metode yang digunakan untuk menggambarkan, menjelaskan, atau meringkaskan berbagai kondisi, situasi, fenomena, atau berbagai variabel penelitian menurut kejadian sebagaimana adanya yang dapat dipotret, diwawancara, diobservasi, serta yang dapat diungkapkan melalui bahan-bahan dokumenter.

Metode Penelitian Deskriptif Analisis (Analitik)

Metode penelitian deskriptif analitik menurut Sugiyono (2018, hlm. 3) adalah metode untuk mendapatkan data yang mendalam, suatu data yang mengandung makna dan secara signifikan dapat mempengaruhi substansi penelitian.

Artinya metode ini menyajikan secara langsung hakikat hubungan antara peneliti dengan partisipan atau objek dan subjek penelitian. Metode ini juga berusaha untuk menganalisis subjek penelitian agar didapatkan data yang mendalam.

Metode Penelitian Deskriptif Verifikatif

Sedangkan metode verifikatif menurut Sugiyono (2018, hlm. 55) adalah metode penelitian yang pada dasarnya digunakan untuk menguji teori dengan pengujian atau pembuktian hipotesis. Verifikatif berarti menguji teori dengan pengujian suatu hipotesis apakah diterima atau ditolak.

Pengujian hipotesis dilakukan dengan menggunakan perhitungan statistik yang digunakan untuk menguji apakah benar variabel tersebut sesuai dengan hipotesis yang diajukan. Pada dasarnya penelitian ini adalah pembuktian yang dilakukan melalui deskripsi data yang diperoleh penelitian sebagai verifikasi ulang.

Metode Penelitian Deskriptif Korelasional

Bukankah korelasional itu timpang dengan penelitian deskriptif yang tidak meninjau korelasinya terhadap variabel lain? Deskriptif korelasional adalah penelitian yang dimaksudkan untuk mengumpulkan informasi mengenai hubungan antarvariabel dengan apa adanya pada saat penelitian dilakukan.

Artinya, meskipun masih meneliti pertautan atau hubungannya, hubungan tersebut hanya untuk disajikan saja, tidak untuk menarik kesimpulan tertentu dari hubungan yang terjadi. Contohnya, penelitian mengumpulkan hubungan antara pengajaran dengan metode ajarnya, tanpa menghiraukan efektivitas atau pengaruh dari metode ajar terhadap pengajaran.

Menurut Sugiyono (2018, hlm. 87) penelitian deskriptif korelasional adalah metode pertautan atau metode penelitian yang berusaha menghubung-hubungkan antara satu unsur/elemen dengan unsur/elemen lainnya untuk menciptakan bentuk dan wujud baru yang berbeda dengan sebelumnya.

  • Arikunto, Suharsimi. (2019). Prosedur Penelitian Suatu Pendekatan Praktik . Jakarta: Rineka Cipta.
  • Bungin, Burhan. (2015) . Metodologi Penelitian Kuantitatif: Komunikasi, Ekonomi, dan Kebijakan Publik Serta Ilmu-ilmu Sosial lainnya . Jakarta: Kencana Prenada
  • Koentjaraningrat. (1993). Metode Penelitian Masyarakat . Jakarta: Gramedia.
  • Narbuko, Cholid & Achmadi, Abu. (2015). Metodologi Penelitian . Jakarta: PT Bumi Aksara.
  • Sugiyono. (2018). Metode Penelitian Kuantitatif, Kualitatif, dan R&D . Bandung: Alfabeta.
  • Sukardi. (2014). Metodologi penelitian pendidikan kompetensi dan praktiknya . Jakarta: Bumi Aksara.
  • Sukmadinata, Nana Syaodih. (2017). Metode Penelitian Pendidikan . Bandung : PT Remaja Rosdakarya.

Artikel Terkait

Join the conversation.

Terimakasih ilmunya

terima kasih atas ilmunya, ijin saya jadikan sumber referensi tulisan saya

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Simpan nama, email, dan situs web saya pada peramban ini untuk komentar saya berikutnya.

Beritahu saya akan tindak lanjut komentar melalui surel.

Beritahu saya akan tulisan baru melalui surel.

Leave a comment

  • Greater Jakarta

School of Information Systems

  • BINUS @Greater Jakarta
  • BINUS @Bekasi
  • BINUS @Bandung
  • BINUS @Malang
  • BINUS @Semarang
  • Business and System Innovation Challenge 2024
  • ICIMTech 2024
  • SIS Career Bootcamp
  • Summer Technology Camp 2022
  • Organizational Structure
  • Education Philosophy
  • IS Laboratory Assistants
  • Recruitment
  • Pre-Thesis & Thesis Advisor List
  • Thesis Advisor (for Lecturers)
  • Introduction
  • Vision & Mission
  • Program Objective
  • Student Outcomes
  • Prospective Career of The Graduate
  • Course Structure
  • Prerequisites
  • Quality Controlled Examination (UPM)
  • Vision & Mission
  • Vision and Mission
  • Prospective Career of the Graduates
  • Quality Controlled Courses
  • Prospective Career of The Graduates
  • Quality Controlled Examinations (UPM)
  • Program Objectives
  • Prerequisite
  • Quality controlled examinations (UPM)
  • Student Outcome
  • Prospective Career
  • Research Topics for Even 2020/2021
  • Research Roadmap
  • Student’s Thesis Topic
  • Current Research
  • Publication
  • Student Project
  • Training & Consultation
  • Application Development
  • International Thematic Camp 2021
  • INTERNATIONAL THEMATIC CAMP 2020
  • SIS VIRTUAL SUMMER CAMP 2020 FOR HIGH SCHOOL
  • International Thematic Camp 2019 – Jakarta
  • SIS Summer Camp 2019 for High School
  • International Thematic Camp 2019
  • INTERNATIONAL THEMATIC CAMP 2018
  • Summer Course 2018
  • Summer Course 2017
  • Business and System Innovation Challange 2023
  • International Design Challenge 2022
  • International Design Challenge 2021
  • International Design Challenge 2020
  • SIS Design Challenge 2019
  • SIS Design Challenge 2018
  • SIS Design Challenge 2017
  • Popular Articles
  • BINUS University
  • Lecturer Vacancy
  • SIS Virtual Background
  • Quantitative Research

descriptive quantitative research adalah

Riset atau penelitian berasal dari Bahasa inggris “ Research” re yang artinya kembali dan search artinya mencari sehingga bila di gabungkan arti kata  research sendiri ialah mencari kembali.  Quantitative research adalah jenis penelitian yang dilakukan dengan mengumpulkan data dalam bentuk numerik; dapat dilakukan dengan membandingkan sejumlah variabel atau menilai keefektifan beberapa intervensi. Tujuan dalam melakukan penelitian kuantitatif adalah untuk menentukan hubungan antara satu hal (variabel independent) dan lainnya (variabel dependen atau hasil) dalam suatu populasi. Desain penelitian kuantitatif adalah deskriptif (subjek biasanya diukur satu kali) atau eksperimental (subjek diukur sebelum dan setelah perlakuan).  

descriptive quantitative research adalah

Penelitian kuantitatif harus memiliki 2 kriteria penting, yakni kriteria eksplanatori dan prediktif. Eksplanatori berarti penelitian harus dapat menjelaskan keterkaitan dua buah atau lebih fenomena dalam bentuk hubungan, perbedaan, pengaruh maupun menjelaskan sampel penelitian terhadap populasinya. Sedangkan prediktif berarti hasil penelitian harus memiliki daya ramal tinggi yang mampu memprediksikan suatu fenomena yang akan terjadi. Berdasarkan kriteria di atas, maka kita juga dapat menarik bahwa penelitian kuantitatif harus memiliki karakter ilmu pengetahuan yang memiliki beberapa sifat-sifat di bawah ini, yaitu:  

  • Objektif Maksudnya teori-teori mengenai semesta haruslah menjelaskan apa adanya dan tidak dapat dipengaruhi oleh apa pun; sifatnya harus bebas nilai (asumsi penilaian orang lain).  
  • Fenomenalis Bukan fenomena, melainkan berasal dari bahasa Yunani yang berarti “yang terlihat”. Artinya kajian penelitian hanya berbicara mengenai sesuatu yang dapat diamati, yang dapat dirasakan, dan dapat dilihat karena adanya data.  
  • Reduksionis  

Berarti data yang ditemukan melalui penelitian harus dapat direduksi menjadi fakta-fakta yang jelas, sehingga dapat dijadikan sebagai bahan pengambilan keputusan.  

  • Naturalis  

Artinya sesuatu yang diteliti harus serupa dengan objek alam semesta yang bergerak secara mekanis dan tetap berdasarkan hukum-hukum tertentu. Hanya sesuatu yang dapat diulang berkali-kali kapan pun dan oleh siapa pun tetap memiliki hasil yang sama.   

Paling tidak ada 7 jenis-jenis penelitian kuantitatif yang dikemukakan oleh para ahli, diantaranya adalah:  

  • Penelitian Deskriptif   

Dalam penelitian kuantitatif, juga terdapat jenis penelitian deskriptif dimana mengutamakan analisa mendalam tentang data dan fakta yang ditemukan. Penelitian jenis ini dimaksudkan untuk mengangkat fakta, keadaan, variabel dan fenomena-fenomena yang terjadi saat sekarang dan menyajikan apa adanya. Metode deskripsi ini dapat digunakan untuk penelitian status, suatu objek, suatu kondisi tertentu, suatu sistem pemikiran ataupun peristiwa di masa akan datang.  

  • Penelitian Komparatif   

Jenis penelitian komporatif merupakan jenis penelitian untuk mencari jawaban secara mendasar tentang sebab-akibat dengan cara menganalisa penyebab terjadinya atau munculnya suatu fenomena tertentu.  

  • Penelitian Korelasional   

Penelitian korelasional ialah penelitian untuk melihat hubungan antara variabel atau beberapa variabel dengan variabel lain. Penelitian ini menggunakan variabel bebas untuk memprediksi dan variabel terikat untuk variabel yang di prediksi.  

Penelitian korelasional merupakan salah satu bagian dari penelitian expostfacto karena umumnya peneliti menggunakan keadaan variabel yang ada dan langsung mencari keberadaan hubungan dan tingkat hubungan variabel yang direfleksikan dalam koefisien korelasi. Penelitian jenis ini bertujuan untuk menguji hipotesis yang telah ditetapkan dengan cara mengukur sejumlah variabel dan menghitung koefisien kolerasi (r) antara variabel-variabel tersebut, sehingga dapat ditentukan variabel-variabel mana yang berkolerasi.  

  • Penelitian Survey   

Penelitian survey merupakan penelitian yang mengambil sample dari satu populasi dan menggunakan kuisioner sebagai alat pengumpul data. Jadi, yang menjadi alat untuk menggali data bisa dilakukan wawancara, observasi, data dokumen atau melalui kuesioner.  

Pada umumnya, jenis penelitian ini menggunakan kuesioner digunakan sebagai alat pengambilan data utama. Penelitian survey ini juga menganut pendekatan kuantitatif yaitu semakin banyak sampel, semakin mendeskripsikan populasi yang diteliti. Penelitian survey akan lebih baik jika dilaksanakan secara bertahap.  

  • Penelitian Ex Post Facto  

Penelitian ex post facto merupakan penelitian dimana variabel-variabel bebasnya telah terjadi perlakuan atau treatment yang dilakukan saat penelitian berlangsung. Penelitian dilakukan untuk menganalisis apa yang menjadi faktor penyebab terjadinya sesuatu.  

  • Penelitian Eksperimen   

Penelitian eksperimen merupakan penelitian yang berusaha untuk mengetahui pengaruh variabel lain dalam kondisi yang terkontrol secara ketat. Artinya kondisi dan situasi sangat dipantau dan dijaga guna kepentingan penelitian dengan rencana yang sudah dibuat sebelumnya. Penelitian eksperimen sendiri ada 4 jenis yaitu: pre experimental, true experimental, factorial dan quasi experimental.  

  • Penelitian Tindakan ( Action Research )  

Jenis penelitian terakhir adalah penelitian tindakan ( action research ) yaitu suatu bentuk penelitian refleksi-diri melalui tindakan nyata dalam situasi yang sebenarnya. Tujuan penelitian ini adalah untuk memperbaiki proses dan pemahaman tentang praktik-praktik suatu kegiatan yang hasilnya dapat diimplikasikan dalam mengatasi suatu masalah.  

Penelitian ini dilakukan dengan tindakan secara ilmiah dengan konsep penelitian ilmiah. Penelitian ini melibatkan kelompok partisipan sehingga dapat dilakukan kolaborasi. Akhirnya, hasil penelitian digunakan sebagai refleksi diri sebagai pemecahan masalah.  

Referensi :  

https://serupa.id/metode-penelitian-kuantitatif-pengertian-karakteristik-jenis/    

https://b-pikiran.cekkembali.com/metode-penelitian-kuantitatif/  

  • Bina Nusantara
  • fulltime assistant
  • greater nusantara
  • greaternusantara
  • Information System
  • information system laboratory
  • information technology
  • parttime assistant
  • school of information system
  • Sistem Informasi
  • teknik informatik
  • teknologi informasi
  • teknologi teknologi

 alt=

Last updated : September 03, 2021 00:00

descriptive quantitative research adalah

Your browser is not fully compatible with the features of our website.

helpful professor logo

18 Descriptive Research Examples

18 Descriptive Research Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

18 Descriptive Research Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

descriptive quantitative research adalah

Descriptive research involves gathering data to provide a detailed account or depiction of a phenomenon without manipulating variables or conducting experiments.

A scholarly definition is:

“Descriptive research is defined as a research approach that describes the characteristics of the population, sample or phenomenon studied. This method focuses more on the “what” rather than the “why” of the research subject.” (Matanda, 2022, p. 63)

The key feature of descriptive research is that it merely describes phenomena and does not attempt to manipulate variables nor determine cause and effect .

To determine cause and effect , a researcher would need to use an alternate methodology, such as experimental research design .

Common approaches to descriptive research include:

  • Cross-sectional research : A cross-sectional study gathers data on a population at a specific time to get descriptive data that could include categories (e.g. age or income brackets) to get a better understanding of the makeup of a population.
  • Longitudinal research : Longitudinal studies return to a population to collect data at several different points in time, allowing for description of changes in categories over time. However, as it’s descriptive, it cannot infer cause and effect (Erickson, 2017).

Methods that could be used include:

  • Surveys: For example, sending out a census survey to be completed at the exact same date and time by everyone in a population.
  • Case Study : For example, an in-depth description of a specific person or group of people to gain in-depth qualitative information that can describe a phenomenon but cannot be generalized to other cases.
  • Observational Method : For example, a researcher taking field notes in an ethnographic study. (Siedlecki, 2020)

Descriptive Research Examples

1. Understanding Autism Spectrum Disorder (Psychology): Researchers analyze various behavior patterns, cognitive skills, and social interaction abilities specific to children with Autism Spectrum Disorder to comprehensively describe the disorder’s symptom spectrum. This detailed description classifies it as descriptive research, rather than analytical or experimental, as it merely records what is observed without altering any variables or trying to establish causality.

2. Consumer Purchase Decision Process in E-commerce Marketplaces (Marketing): By documenting and describing all the factors that influence consumer decisions on online marketplaces, researchers don’t attempt to predict future behavior or establish causes—just describe observed behavior—making it descriptive research.

3. Impacts of Climate Change on Agricultural Practices (Environmental Studies): Descriptive research is seen as scientists outline how climate changes influence various agricultural practices by observing and then meticulously categorizing the impacts on crop variability, farming seasons, and pest infestations without manipulating any variables in real-time.

4. Work Environment and Employee Performance (Human Resources Management): A study of this nature, describing the correlation between various workplace elements and employee performance, falls under descriptive research as it merely narrates the observed patterns without altering any conditions or testing hypotheses.

5. Factors Influencing Student Performance (Education): Researchers describe various factors affecting students’ academic performance, such as studying techniques, parental involvement, and peer influence. The study is categorized as descriptive research because its principal aim is to depict facts as they stand without trying to infer causal relationships.

6. Technological Advances in Healthcare (Healthcare): This research describes and categorizes different technological advances (such as telemedicine, AI-enabled tools, digital collaboration) in healthcare without testing or modifying any parameters, making it an example of descriptive research.

7. Urbanization and Biodiversity Loss (Ecology): By describing the impact of rapid urban expansion on biodiversity loss, this study serves as a descriptive research example. It observes the ongoing situation without manipulating it, offering a comprehensive depiction of the existing scenario rather than investigating the cause-effect relationship.

8. Architectural Styles across Centuries (Art History): A study documenting and describing various architectural styles throughout centuries essentially represents descriptive research. It aims to narrate and categorize facts without exploring the underlying reasons or predicting future trends.

9. Media Usage Patterns among Teenagers (Sociology): When researchers document and describe the media consumption habits among teenagers, they are performing a descriptive research study. Their main intention is to observe and report the prevailing trends rather than establish causes or predict future behaviors.

10. Dietary Habits and Lifestyle Diseases (Nutrition Science): By describing the dietary patterns of different population groups and correlating them with the prevalence of lifestyle diseases, researchers perform descriptive research. They merely describe observed connections without altering any diet plans or lifestyles.

11. Shifts in Global Energy Consumption (Environmental Economics): When researchers describe the global patterns of energy consumption and how they’ve shifted over the years, they conduct descriptive research. The focus is on recording and portraying the current state without attempting to infer causes or predict the future.

12. Literacy and Employment Rates in Rural Areas (Sociology): A study aims at describing the literacy rates in rural areas and correlating it with employment levels. It falls under descriptive research because it maps the scenario without manipulating parameters or proving a hypothesis.

13. Women Representation in Tech Industry (Gender Studies): A detailed description of the presence and roles of women across various sectors of the tech industry is a typical case of descriptive research. It merely observes and records the status quo without establishing causality or making predictions.

14. Impact of Urban Green Spaces on Mental Health (Environmental Psychology): When researchers document and describe the influence of green urban spaces on residents’ mental health, they are undertaking descriptive research. They seek purely to understand the current state rather than exploring cause-effect relationships.

15. Trends in Smartphone usage among Elderly (Gerontology): Research describing how the elderly population utilizes smartphones, including popular features and challenges encountered, serves as descriptive research. Researcher’s aim is merely to capture what is happening without manipulating variables or posing predictions.

16. Shifts in Voter Preferences (Political Science): A study describing the shift in voter preferences during a particular electoral cycle is descriptive research. It simply records the preferences revealed without drawing causal inferences or suggesting future voting patterns.

17. Understanding Trust in Autonomous Vehicles (Transportation Psychology): This comprises research describing public attitudes and trust levels when it comes to autonomous vehicles. By merely depicting observed sentiments, without engineering any situations or offering predictions, it’s considered descriptive research.

18. The Impact of Social Media on Body Image (Psychology): Descriptive research to outline the experiences and perceptions of individuals relating to body image in the era of social media. Observing these elements without altering any variables qualifies it as descriptive research.

Descriptive vs Experimental Research

Descriptive research merely observes, records, and presents the actual state of affairs without manipulating any variables, while experimental research involves deliberately changing one or more variables to determine their effect on a particular outcome.

De Vaus (2001) succinctly explains that descriptive studies find out what is going on , but experimental research finds out why it’s going on /

Simple definitions are below:

  • Descriptive research is primarily about describing the characteristics or behaviors in a population, often through surveys or observational methods. It provides rich detail about a specific phenomenon but does not allow for conclusive causal statements; however, it can offer essential leads or ideas for further experimental research (Ivey, 2016).
  • Experimental research , often conducted in controlled environments, aims to establish causal relationships by manipulating one or more independent variables and observing the effects on dependent variables (Devi, 2017; Mukherjee, 2019).

Experimental designs often involve a control group and random assignment . While it can provide compelling evidence for cause and effect, its artificial setting might not perfectly mirror real-worldly conditions, potentially affecting the generalizability of its findings.

These two types of research are complementary, with descriptive studies often leading to hypotheses that are then tested experimentally (Devi, 2017; Zhao et al., 2021).

ParameterDescriptive ResearchExperimental Research
To describe and explore phenomena without influencing variables (Monsen & Van Horn, 2007).To investigate cause-and-effect relationships by manipulating variables.
Observational and non-intrusive.Manipulative and controlled.
Typically not aimed at testing a hypothesis.Generally tests a hypothesis (Mukherjee, 2019).
No variables are manipulated (Erickson, 2017).Involves manipulation of one or more variables (independent variables).
No control over variables and environment.Strict control over variables and environment.
Does not establish causal relationships.Aims to establish causal relationships.
Not focused on predicting outcomes.Often seeks to predict outcomes based on variable manipulation (Zhao et al., 2021).
Uses surveys, observations, and case studies (Ivey, 2016).Employs controlled experiments often with experimental and control groups.
Typically fewer ethical concerns due to non-interference.Potential ethical considerations due to manipulation and intervention (Devi, 2017).

Benefits and Limitations of Descriptive Research

Descriptive research offers several benefits: it allows researchers to gather a vast amount of data and present a complete picture of the situation or phenomenon under study, even within large groups or over long time periods.

It’s also flexible in terms of the variety of methods used, such as surveys, observations, and case studies, and it can be instrumental in identifying patterns or trends and generating hypotheses (Erickson, 2017).

However, it also has its limitations.

The primary drawback is that it can’t establish cause-effect relationships, as no variables are manipulated. This lack of control over variables also opens up possibilities for bias, as researchers might inadvertently influence responses during data collection (De Vaus, 2001).

Additionally, the findings of descriptive research are often not generalizable since they are heavily reliant on the chosen sample’s characteristics.

Provides a comprehensive and detailed profile of the subject or issue through rich data, offering a thorough understanding (Gresham, 2016). Cannot or external factors, potentially influencing the accuracy and reliability of the data.
Helps to identify patterns, trends, and variables for subsequent experimental or correlational research – Krishnaswamy et al. (2009) call it “fact finding” research, setting the groundwork for future experimental studies. Cannot establish causal relationships due to its observational nature, limiting the explanatory power.

See More Types of Research Design Here

De Vaus, D. A. (2001). Research Design in Social Research . SAGE Publications.

Devi, P. S. (2017). Research Methodology: A Handbook for Beginners . Notion Press.

Erickson, G. S. (2017). Descriptive research design. In  New Methods of Market Research and Analysis  (pp. 51-77). Edward Elgar Publishing.

Gresham, B. B. (2016). Concepts of Evidence-based Practice for the Physical Therapist Assistant . F.A. Davis Company.

Ivey, J. (2016). Is descriptive research worth doing?.  Pediatric nursing ,  42 (4), 189. ( Source )

Krishnaswamy, K. N., Sivakumar, A. I., & Mathirajan, M. (2009). Management Research Methodology: Integration of Principles, Methods and Techniques . Pearson Education.

Matanda, E. (2022). Research Methods and Statistics for Cross-Cutting Research: Handbook for Multidisciplinary Research . Langaa RPCIG.

Monsen, E. R., & Van Horn, L. (2007). Research: Successful Approaches . American Dietetic Association.

Mukherjee, S. P. (2019). A Guide to Research Methodology: An Overview of Research Problems, Tasks and Methods . CRC Press.

Siedlecki, S. L. (2020). Understanding descriptive research designs and methods.  Clinical Nurse Specialist ,  34 (1), 8-12. ( Source )

Zhao, P., Ross, K., Li, P., & Dennis, B. (2021). Making Sense of Social Research Methodology: A Student and Practitioner Centered Approach . SAGE Publications.

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

1 thought on “18 Descriptive Research Examples”

' src=

Very nice, educative article. I appreciate the efforts.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Survey descriptive research: Method, design, and examples

  • November 2, 2022

What is survey descriptive research?

The observational method: monitor people while they engage with a subject, the case study method: gain an in-depth understanding of a subject, survey descriptive research: easy and cost-effective, types of descriptive research design, what is the descriptive survey research design definition by authors, 1. quantitativeness and qualitatively, 2. uncontrolled variables, 3. natural environment, 4. provides a solid basis for further research, describe a group and define its characteristics, measure data trends by conducting descriptive marketing research, understand how customers perceive a brand, descriptive survey research design: how to make the best descriptive questionnaire, create descriptive surveys with surveyplanet.

Survey descriptive research is a quantitative method that focuses on describing the characteristics of a phenomenon rather than asking why it occurs. Doing this provides a better understanding of the nature of the subject at hand and creates a good foundation for further research.

Descriptive market research is one of the most commonly used ways of examining trends and changes in the market. It is easy, low-cost, and provides valuable in-depth information on a chosen subject.

This article will examine the basic principles of the descriptive survey study and show how to make the best descriptive survey questionnaire and how to conduct effective research.

It is often said to be quantitative research that focuses more on the what, how, when, and where instead of the why. But what does that actually mean?

The answer is simple. By conducting descriptive survey research, the nature of a phenomenon is focused upon without asking about what causes it.

The main goal of survey descriptive research is to shed light on the heart of the research problem and better understand it. The technique provides in-depth knowledge of what the research problem is before investigating why it exists.

Survey descriptive research and data collection methods

Descriptive research methods can differ based on data collection. We distinguish three main data collection methods: case study, observational method, and descriptive survey method.

Of these, the descriptive survey research method is most commonly used in fields such as market research, social research, psychology, politics, etc.

Sometimes also called the observational descriptive method, this is simply monitoring people while they engage with a particular subject. The aim is to examine people’s real-life behavior by maintaining a natural environment that does not change the respondents’ behavior—because they do not know they are being observed.

It is often used in fields such as market research, psychology, or social research. For example, customers can be monitored while dining at a restaurant or browsing through the products in a shop.

When doing case studies, researchers conduct thorough examinations of individuals or groups. The case study method is not used to collect general information on a particular subject. Instead, it provides an in-depth understanding of a particular subject and can give rise to interesting conclusions and new hypotheses.

The term case study can also refer to a sample group, which is a specific group of people that are examined and, afterward, findings are generalized to a larger group of people. However, this kind of generalization is rather risky because it is not always accurate.

Additionally, case studies cannot be used to determine cause and effect because of potential bias on the researcher’s part.

The survey descriptive research method consists of creating questionnaires or polls and distributing them to respondents, who then answer the questions (usually a mix of open-ended and closed-ended).

Surveys are the easiest and most cost-efficient way to gain feedback on a particular topic. They can be conducted online or offline, the size of the sample is highly flexible, and they can be distributed through many different channels.

When doing market research , use such surveys to understand the demographic of a certain market or population, better determine the target audience, keep track of the changes in the market, and learn about customer experience and satisfaction with products and services.

Several types of survey descriptive research are classified based on the approach used:

  • Descriptive surveys gather information about a certain subject.
  • Descriptive-normative surveys gather information just like a descriptive survey, after which results are compared with a norm.
  • Correlative surveys explore the relationship between two variables and conclude if it is positive, neutral, or negative.

A descriptive survey research design is a methodology used in social science and other fields to gather information and describe the characteristics, behaviors, or attitudes of a particular population or group of interest. While there may not be a single definition provided by specific authors, the concept is widely understood and defined similarly across the literature.

Here’s a general definition that captures the essence of a descriptive survey research design definition by authors:

A descriptive survey research design is a systematic and structured approach to collecting data from a sample of individuals or entities within a larger population, with the primary aim of providing a detailed and accurate description of the characteristics, behaviors, opinions, or attitudes that exist within the target group. This method involves the use of surveys, questionnaires, interviews, or observations to collect data, which is then analyzed and summarized to draw conclusions about the population of interest.

It’s important to note that descriptive survey research is often used when researchers want to gain insights into a population or phenomenon, but without manipulating variables or testing hypotheses, as is common in experimental research. Instead, it focuses on providing a comprehensive overview of the subject under investigation. Researchers often use various statistical and analytical techniques to summarize and interpret the collected data in descriptive survey research.

The characteristics and advantages of a descriptive survey questionnaire

There are numerous advantages to using a descriptive survey design. First of all, it is cheap and easy to conduct. A large sample can be surveyed and extensive data gathered quickly and inexpensively.

The data collected provides both quantitative and qualitative information , which provides a holistic understanding of the topic. Moreover, it can be used in further research on this or related topics.

Here are some of the most important advantages of conducting a survey descriptive research:

The descriptive survey research design uses both quantitative and qualitative research methods. It is used primarily to conduct quantitative research and gather data that is statistically easy to analyze. However, it can also provide qualitative data that helps describe and understand the research subject.

Descriptive research explores more than one variable. However, unlike experimental research, descriptive survey research design doesn’t allow control of variables. Instead, observational methods are used during research. Even though these variables can change and have an unexpected impact on an inquiry, they will give access to honest responses.

The descriptive research is conducted in a natural environment. This way, answers gathered from responses are more honest because the nature of the research does not influence them.

The data collected through descriptive research can be used to further explore the same or related subjects. Additionally, it can help develop the next line of research and the best method to use moving forward.

Descriptive survey example: When to use a descriptive research questionnaire?

Descriptive research design can be used for many purposes. It is mainly utilized to test a hypothesis, define the characteristics of a certain phenomenon, and examine the correlations between them.

Market research is one of the main fields in which descriptive methods are used to conduct studies. Here’s what can be done using this method:

Understanding the needs of customers and their desires is the key to a business’s success. By truly understanding these, it will be possible to offer exactly what customers need and prevent them from turning to competitors.

By using a descriptive survey, different customer characteristics—such as traits, opinions, or behavior patterns—can be determined. With this data, different customer types can be defined and profiles developed that focus on their interests and the behavior they exhibit. This information can be used to develop new products and services that will be successful.

Measuring data trends is extremely important. Explore the market and get valuable insights into how consumers’ interests change over time—as well as how the competition is performing in the marketplace.

Over time, the data gathered from a descriptive questionnaire can be subjected to statistical analysis. This will deliver valuable insights.

Another important aspect to consider is brand awareness. People need to know about your brand, and they need to have a positive opinion of it. The best way to discover their perception is to conduct a brand survey , which gives deeper insight into brand awareness, perception, identity, and customer loyalty .

When conducting survey descriptive research, there are a few basic steps that are needed for a survey to be successful:

  • Define the research goals.
  • Decide on the research method.
  • Define the sample population.
  • Design the questionnaire.
  • Write specific questions.
  • Distribute the questionnaire.
  • Analyze the data .
  • Make a survey report.

First of all, define the research goals. By setting up clear objectives, every other step can be worked through. This will result in the perfect descriptive questionnaire example and collect only valuable data.

Next, decide on the research method to use—in this case, the descriptive survey method. Then, define the sample population for (that is, the target audience). After that, think about the design itself and the questions that will be asked in the survey .

If you’re not sure where to start, we’ve got you covered. As free survey software, SurveyPlanet offers pre-made themes that are clean and eye-catching, as well as pre-made questions that will save you the trouble of making new ones.

Simply scroll through our library and choose a descriptive survey questionnaire sample that best suits your needs, though our user-friendly interface can help you create bespoke questions in a process that is easy and efficient.

With a survey in hand, it will then need to be delivered to the target audience. This is easy with our survey embedding feature, which allows for the linking of surveys on a website, via emails, or by sharing on social media.

When all the responses are gathered, it’s time to analyze them. Use SurveyPlanet to easily filter data and do cross-sectional analysis. Finally, just export the results and make a survey report.

Conducting descriptive survey research is the best way to gain a deeper knowledge of a topic of interest and develop a sound basis for further research. Sign up for a free SurveyPlanet account to start improving your business today!

Photo by Scott Graham on Unsplash

  • What is descriptive research?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Descriptive research is a common investigatory model used by researchers in various fields, including social sciences, linguistics, and academia.

Read on to understand the characteristics of descriptive research and explore its underlying techniques, processes, and procedures.

Analyze your descriptive research

Dovetail streamlines analysis to help you uncover and share actionable insights

Descriptive research is an exploratory research method. It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.

As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses . This can be reported using surveys , observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

Besides making observations and then comparing and analyzing them, descriptive studies often develop knowledge concepts and provide solutions to critical issues. It always aims to answer how the event occurred, when it occurred, where it occurred, and what the problem or phenomenon is.

  • Characteristics of descriptive research

The following are some of the characteristics of descriptive research:

Quantitativeness

Descriptive research can be quantitative as it gathers quantifiable data to statistically analyze a population sample. These numbers can show patterns, connections, and trends over time and can be discovered using surveys, polls, and experiments.

Qualitativeness

Descriptive research can also be qualitative. It gives meaning and context to the numbers supplied by quantitative descriptive research .

Researchers can use tools like interviews, focus groups, and ethnographic studies to illustrate why things are what they are and help characterize the research problem. This is because it’s more explanatory than exploratory or experimental research.

Uncontrolled variables

Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features.

Cross-sectional studies

Descriptive research is a cross-sectional study because it examines several areas of the same group. It involves obtaining data on multiple variables at the personal level during a certain period. It’s helpful when trying to understand a larger community’s habits or preferences.

Carried out in a natural environment

Descriptive studies are usually carried out in the participants’ everyday environment, which allows researchers to avoid influencing responders by collecting data in a natural setting. You can use online surveys or survey questions to collect data or observe.

Basis for further research

You can further dissect descriptive research’s outcomes and use them for different types of investigation. The outcomes also serve as a foundation for subsequent investigations and can guide future studies. For example, you can use the data obtained in descriptive research to help determine future research designs.

  • Descriptive research methods

There are three basic approaches for gathering data in descriptive research: observational, case study, and survey.

You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview .

Surveys remain the dominant research tool for descriptive research design. Researchers can conduct various investigations and collect multiple types of data (quantitative and qualitative) using surveys with diverse designs.

You can conduct surveys over the phone, online, or in person. Your survey might be a brief interview or conversation with a set of prepared questions intended to obtain quick information from the primary source.

Observation

This descriptive research method involves observing and gathering data on a population or phenomena without manipulating variables. It is employed in psychology, market research , and other social science studies to track and understand human behavior.

Observation is an essential component of descriptive research. It entails gathering data and analyzing it to see whether there is a relationship between the two variables in the study. This strategy usually allows for both qualitative and quantitative data analysis.

Case studies

A case study can outline a specific topic’s traits. The topic might be a person, group, event, or organization.

It involves using a subset of a larger group as a sample to characterize the features of that larger group.

You can generalize knowledge gained from studying a case study to benefit a broader audience.

This approach entails carefully examining a particular group, person, or event over time. You can learn something new about the study topic by using a small group to better understand the dynamics of the entire group.

  • Types of descriptive research

There are several types of descriptive study. The most well-known include cross-sectional studies, census surveys, sample surveys, case reports, and comparison studies.

Case reports and case series

In the healthcare and medical fields, a case report is used to explain a patient’s circumstances when suffering from an uncommon illness or displaying certain symptoms. Case reports and case series are both collections of related cases. They have aided the advancement of medical knowledge on countless occasions.

The normative component is an addition to the descriptive survey. In the descriptive–normative survey, you compare the study’s results to the norm.

Descriptive survey

This descriptive type of research employs surveys to collect information on various topics. This data aims to determine the degree to which certain conditions may be attained.

You can extrapolate or generalize the information you obtain from sample surveys to the larger group being researched.

Correlative survey

Correlative surveys help establish if there is a positive, negative, or neutral connection between two variables.

Performing census surveys involves gathering relevant data on several aspects of a given population. These units include individuals, families, organizations, objects, characteristics, and properties.

During descriptive research, you gather different degrees of interest over time from a specific population. Cross-sectional studies provide a glimpse of a phenomenon’s prevalence and features in a population. There are no ethical challenges with them and they are quite simple and inexpensive to carry out.

Comparative studies

These surveys compare the two subjects’ conditions or characteristics. The subjects may include research variables, organizations, plans, and people.

Comparison points, assumption of similarities, and criteria of comparison are three important variables that affect how well and accurately comparative studies are conducted.

For instance, descriptive research can help determine how many CEOs hold a bachelor’s degree and what proportion of low-income households receive government help.

  • Pros and cons

The primary advantage of descriptive research designs is that researchers can create a reliable and beneficial database for additional study. To conduct any inquiry, you need access to reliable information sources that can give you a firm understanding of a situation.

Quantitative studies are time- and resource-intensive, so knowing the hypotheses viable for testing is crucial. The basic overview of descriptive research provides helpful hints as to which variables are worth quantitatively examining. This is why it’s employed as a precursor to quantitative research designs.

Some experts view this research as untrustworthy and unscientific. However, there is no way to assess the findings because you don’t manipulate any variables statistically.

Cause-and-effect correlations also can’t be established through descriptive investigations. Additionally, observational study findings cannot be replicated, which prevents a review of the findings and their replication.

The absence of statistical and in-depth analysis and the rather superficial character of the investigative procedure are drawbacks of this research approach.

  • Descriptive research examples and applications

Several descriptive research examples are emphasized based on their types, purposes, and applications. Research questions often begin with “What is …” These studies help find solutions to practical issues in social science, physical science, and education.

Here are some examples and applications of descriptive research:

Determining consumer perception and behavior

Organizations use descriptive research designs to determine how various demographic groups react to a certain product or service.

For example, a business looking to sell to its target market should research the market’s behavior first. When researching human behavior in response to a cause or event, the researcher pays attention to the traits, actions, and responses before drawing a conclusion.

Scientific classification

Scientific descriptive research enables the classification of organisms and their traits and constituents.

Measuring data trends

A descriptive study design’s statistical capabilities allow researchers to track data trends over time. It’s frequently used to determine the study target’s current circumstances and underlying patterns.

Conduct comparison

Organizations can use a descriptive research approach to learn how various demographics react to a certain product or service. For example, you can study how the target market responds to a competitor’s product and use that information to infer their behavior.

  • Bottom line

A descriptive research design is suitable for exploring certain topics and serving as a prelude to larger quantitative investigations. It provides a comprehensive understanding of the “what” of the group or thing you’re investigating.

This research type acts as the cornerstone of other research methodologies . It is distinctive because it can use quantitative and qualitative research approaches at the same time.

What is descriptive research design?

Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

How does descriptive research compare to qualitative research?

Despite certain parallels, descriptive research concentrates on describing phenomena, while qualitative research aims to understand people better.

How do you analyze descriptive research data?

Data analysis involves using various methodologies, enabling the researcher to evaluate and provide results regarding validity and reliability.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

descriptive quantitative research adalah

Quant Analysis 101: Descriptive Statistics

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Kerryn Warren (PhD) | October 2023

If you’re new to quantitative data analysis , one of the first terms you’re likely to hear being thrown around is descriptive statistics. In this post, we’ll unpack the basics of descriptive statistics, using straightforward language and loads of examples . So grab a cup of coffee and let’s crunch some numbers!

Overview: Descriptive Statistics

What are descriptive statistics.

  • Descriptive vs inferential statistics
  • Why the descriptives matter
  • The “ Big 7 ” descriptive statistics
  • Key takeaways

At the simplest level, descriptive statistics summarise and describe relatively basic but essential features of a quantitative dataset – for example, a set of survey responses. They provide a snapshot of the characteristics of your dataset and allow you to better understand, roughly, how the data are “shaped” (more on this later). For example, a descriptive statistic could include the proportion of males and females within a sample or the percentages of different age groups within a population.

Another common descriptive statistic is the humble average (which in statistics-talk is called the mean ). For example, if you undertook a survey and asked people to rate their satisfaction with a particular product on a scale of 1 to 10, you could then calculate the average rating. This is a very basic statistic, but as you can see, it gives you some idea of how this data point is shaped .

Descriptive statistics summarise and describe relatively basic but essential features of a quantitative dataset, including its “shape”

What about inferential statistics?

Now, you may have also heard the term inferential statistics being thrown around, and you’re probably wondering how that’s different from descriptive statistics. Simply put, descriptive statistics describe and summarise the sample itself , while inferential statistics use the data from a sample to make inferences or predictions about a population .

Put another way, descriptive statistics help you understand your dataset , while inferential statistics help you make broader statements about the population , based on what you observe within the sample. If you’re keen to learn more, we cover inferential stats in another post , or you can check out the explainer video below.

Why do descriptive statistics matter?

While descriptive statistics are relatively simple from a mathematical perspective, they play a very important role in any research project . All too often, students skim over the descriptives and run ahead to the seemingly more exciting inferential statistics, but this can be a costly mistake.

The reason for this is that descriptive statistics help you, as the researcher, comprehend the key characteristics of your sample without getting lost in vast amounts of raw data. In doing so, they provide a foundation for your quantitative analysis . Additionally, they enable you to quickly identify potential issues within your dataset – for example, suspicious outliers, missing responses and so on. Just as importantly, descriptive statistics inform the decision-making process when it comes to choosing which inferential statistics you’ll run, as each inferential test has specific requirements regarding the shape of the data.

Long story short, it’s essential that you take the time to dig into your descriptive statistics before looking at more “advanced” inferentials. It’s also worth noting that, depending on your research aims and questions, descriptive stats may be all that you need in any case . So, don’t discount the descriptives! 

Free Webinar: Research Methodology 101

The “Big 7” descriptive statistics

With the what and why out of the way, let’s take a look at the most common descriptive statistics. Beyond the counts, proportions and percentages we mentioned earlier, we have what we call the “Big 7” descriptives. These can be divided into two categories – measures of central tendency and measures of dispersion.

Measures of central tendency

True to the name, measures of central tendency describe the centre or “middle section” of a dataset. In other words, they provide some indication of what a “typical” data point looks like within a given dataset. The three most common measures are:

The mean , which is the mathematical average of a set of numbers – in other words, the sum of all numbers divided by the count of all numbers. 
The median , which is the middlemost number in a set of numbers, when those numbers are ordered from lowest to highest.
The mode , which is the most frequently occurring number in a set of numbers (in any order). Naturally, a dataset can have one mode, no mode (no number occurs more than once) or multiple modes.

To make this a little more tangible, let’s look at a sample dataset, along with the corresponding mean, median and mode. This dataset reflects the service ratings (on a scale of 1 – 10) from 15 customers.

Example set of descriptive stats

As you can see, the mean of 5.8 is the average rating across all 15 customers. Meanwhile, 6 is the median . In other words, if you were to list all the responses in order from low to high, Customer 8 would be in the middle (with their service rating being 6). Lastly, the number 5 is the most frequent rating (appearing 3 times), making it the mode.

Together, these three descriptive statistics give us a quick overview of how these customers feel about the service levels at this business. In other words, most customers feel rather lukewarm and there’s certainly room for improvement. From a more statistical perspective, this also means that the data tend to cluster around the 5-6 mark , since the mean and the median are fairly close to each other.

To take this a step further, let’s look at the frequency distribution of the responses . In other words, let’s count how many times each rating was received, and then plot these counts onto a bar chart.

Example frequency distribution of descriptive stats

As you can see, the responses tend to cluster toward the centre of the chart , creating something of a bell-shaped curve. In statistical terms, this is called a normal distribution .

As you delve into quantitative data analysis, you’ll find that normal distributions are very common , but they’re certainly not the only type of distribution. In some cases, the data can lean toward the left or the right of the chart (i.e., toward the low end or high end). This lean is reflected by a measure called skewness , and it’s important to pay attention to this when you’re analysing your data, as this will have an impact on what types of inferential statistics you can use on your dataset.

Example of skewness

Measures of dispersion

While the measures of central tendency provide insight into how “centred” the dataset is, it’s also important to understand how dispersed that dataset is . In other words, to what extent the data cluster toward the centre – specifically, the mean. In some cases, the majority of the data points will sit very close to the centre, while in other cases, they’ll be scattered all over the place. Enter the measures of dispersion, of which there are three:

Range , which measures the difference between the largest and smallest number in the dataset. In other words, it indicates how spread out the dataset really is.

Variance , which measures how much each number in a dataset varies from the mean (average). More technically, it calculates the average of the squared differences between each number and the mean. A higher variance indicates that the data points are more spread out , while a lower variance suggests that the data points are closer to the mean.

Standard deviation , which is the square root of the variance . It serves the same purposes as the variance, but is a bit easier to interpret as it presents a figure that is in the same unit as the original data . You’ll typically present this statistic alongside the means when describing the data in your research.

Again, let’s look at our sample dataset to make this all a little more tangible.

descriptive quantitative research adalah

As you can see, the range of 8 reflects the difference between the highest rating (10) and the lowest rating (2). The standard deviation of 2.18 tells us that on average, results within the dataset are 2.18 away from the mean (of 5.8), reflecting a relatively dispersed set of data .

For the sake of comparison, let’s look at another much more tightly grouped (less dispersed) dataset.

Example of skewed data

As you can see, all the ratings lay between 5 and 8 in this dataset, resulting in a much smaller range, variance and standard deviation . You might also notice that the data are clustered toward the right side of the graph – in other words, the data are skewed. If we calculate the skewness for this dataset, we get a result of -0.12, confirming this right lean.

In summary, range, variance and standard deviation all provide an indication of how dispersed the data are . These measures are important because they help you interpret the measures of central tendency within context . In other words, if your measures of dispersion are all fairly high numbers, you need to interpret your measures of central tendency with some caution , as the results are not particularly centred. Conversely, if the data are all tightly grouped around the mean (i.e., low dispersion), the mean becomes a much more “meaningful” statistic).

Key Takeaways

We’ve covered quite a bit of ground in this post. Here are the key takeaways:

  • Descriptive statistics, although relatively simple, are a critically important part of any quantitative data analysis.
  • Measures of central tendency include the mean (average), median and mode.
  • Skewness indicates whether a dataset leans to one side or another
  • Measures of dispersion include the range, variance and standard deviation

If you’d like hands-on help with your descriptive statistics (or any other aspect of your research project), check out our private coaching service , where we hold your hand through each step of the research journey. 

Literature Review Course

Psst… there’s more!

This post is an extract from our bestselling short course, Methodology Bootcamp . If you want to work smart, you don't want to miss this .

ed

Good day. May I ask about where I would be able to find the statistics cheat sheet?

Khan

Right above you comment 🙂

Laarbik Patience

Good job. you saved me

Lou

Brilliant and well explained. So much information explained clearly!

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Descriptive Research

Try Qualtrics for free

Descriptive research: what it is and how to use it.

8 min read Understanding the who, what and where of a situation or target group is an essential part of effective research and making informed business decisions.

For example you might want to understand what percentage of CEOs have a bachelor’s degree or higher. Or you might want to understand what percentage of low income families receive government support – or what kind of support they receive.

Descriptive research is what will be used in these types of studies.

In this guide we’ll look through the main issues relating to descriptive research to give you a better understanding of what it is, and how and why you can use it.

Free eBook: 2024 global market research trends report

What is descriptive research?

Descriptive research is a research method used to try and determine the characteristics of a population or particular phenomenon.

Using descriptive research you can identify patterns in the characteristics of a group to essentially establish everything you need to understand apart from why something has happened.

Market researchers use descriptive research for a range of commercial purposes to guide key decisions.

For example you could use descriptive research to understand fashion trends in a given city when planning your clothing collection for the year. Using descriptive research you can conduct in depth analysis on the demographic makeup of your target area and use the data analysis to establish buying patterns.

Conducting descriptive research wouldn’t, however, tell you why shoppers are buying a particular type of fashion item.

Descriptive research design

Descriptive research design uses a range of both qualitative research and quantitative data (although quantitative research is the primary research method) to gather information to make accurate predictions about a particular problem or hypothesis.

As a survey method, descriptive research designs will help researchers identify characteristics in their target market or particular population.

These characteristics in the population sample can be identified, observed and measured to guide decisions.

Descriptive research characteristics

While there are a number of descriptive research methods you can deploy for data collection, descriptive research does have a number of predictable characteristics.

Here are a few of the things to consider:

Measure data trends with statistical outcomes

Descriptive research is often popular for survey research because it generates answers in a statistical form, which makes it easy for researchers to carry out a simple statistical analysis to interpret what the data is saying.

Descriptive research design is ideal for further research

Because the data collection for descriptive research produces statistical outcomes, it can also be used as secondary data for another research study.

Plus, the data collected from descriptive research can be subjected to other types of data analysis .

Uncontrolled variables

A key component of the descriptive research method is that it uses random variables that are not controlled by the researchers. This is because descriptive research aims to understand the natural behavior of the research subject.

It’s carried out in a natural environment

Descriptive research is often carried out in a natural environment. This is because researchers aim to gather data in a natural setting to avoid swaying respondents.

Data can be gathered using survey questions or online surveys.

For example, if you want to understand the fashion trends we mentioned earlier, you would set up a study in which a researcher observes people in the respondent’s natural environment to understand their habits and preferences.

Descriptive research allows for cross sectional study

Because of the nature of descriptive research design and the randomness of the sample group being observed, descriptive research is ideal for cross sectional studies – essentially the demographics of the group can vary widely and your aim is to gain insights from within the group.

This can be highly beneficial when you’re looking to understand the behaviors or preferences of a wider population.

Descriptive research advantages

There are many advantages to using descriptive research, some of them include:

Cost effectiveness

Because the elements needed for descriptive research design are not specific or highly targeted (and occur within the respondent’s natural environment) this type of study is relatively cheap to carry out.

Multiple types of data can be collected

A big advantage of this research type, is that you can use it to collect both quantitative and qualitative data. This means you can use the stats gathered to easily identify underlying patterns in your respondents’ behavior.

Descriptive research disadvantages

Potential reliability issues.

When conducting descriptive research it’s important that the initial survey questions are properly formulated.

If not, it could make the answers unreliable and risk the credibility of your study.

Potential limitations

As we’ve mentioned, descriptive research design is ideal for understanding the what, who or where of a situation or phenomenon.

However, it can’t help you understand the cause or effect of the behavior. This means you’ll need to conduct further research to get a more complete picture of a situation.

Descriptive research methods

Because descriptive research methods include a range of quantitative and qualitative research, there are several research methods you can use.

Use case studies

Case studies in descriptive research involve conducting in-depth and detailed studies in which researchers get a specific person or case to answer questions.

Case studies shouldn’t be used to generate results, rather it should be used to build or establish hypothesis that you can expand into further market research .

For example you could gather detailed data about a specific business phenomenon, and then use this deeper understanding of that specific case.

Use observational methods

This type of study uses qualitative observations to understand human behavior within a particular group.

By understanding how the different demographics respond within your sample you can identify patterns and trends.

As an observational method, descriptive research will not tell you the cause of any particular behaviors, but that could be established with further research.

Use survey research

Surveys are one of the most cost effective ways to gather descriptive data.

An online survey or questionnaire can be used in descriptive studies to gather quantitative information about a particular problem.

Survey research is ideal if you’re using descriptive research as your primary research.

Descriptive research examples

Descriptive research is used for a number of commercial purposes or when organizations need to understand the behaviors or opinions of a population.

One of the biggest examples of descriptive research that is used in every democratic country, is during elections.

Using descriptive research, researchers will use surveys to understand who voters are more likely to choose out of the parties or candidates available.

Using the data provided, researchers can analyze the data to understand what the election result will be.

In a commercial setting, retailers often use descriptive research to figure out trends in shopping and buying decisions.

By gathering information on the habits of shoppers, retailers can get a better understanding of the purchases being made.

Another example that is widely used around the world, is the national census that takes place to understand the population.

The research will provide a more accurate picture of a population’s demographic makeup and help to understand changes over time in areas like population age, health and education level.

Where Qualtrics helps with descriptive research

Whatever type of research you want to carry out, there’s a survey type that will work.

Qualtrics can help you determine the appropriate method and ensure you design a study that will deliver the insights you need.

Our experts can help you with your market research needs , ensuring you get the most out of Qualtrics market research software to design, launch and analyze your data to guide better, more accurate decisions for your organization.

Related resources

Market intelligence 10 min read, marketing insights 11 min read, ethnographic research 11 min read, qualitative vs quantitative research 13 min read, qualitative research questions 11 min read, qualitative research design 12 min read, primary vs secondary research 14 min read, request demo.

Ready to learn more about Qualtrics?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Descriptive Statistics | Definitions, Types, Examples

Published on July 9, 2020 by Pritha Bhandari . Revised on June 21, 2023.

Descriptive statistics summarize and organize characteristics of a data set. A data set is a collection of responses or observations from a sample or entire population.

In quantitative research , after collecting data, the first step of statistical analysis is to describe characteristics of the responses, such as the average of one variable (e.g., age), or the relation between two variables (e.g., age and creativity).

The next step is inferential statistics , which help you decide whether your data confirms or refutes your hypothesis and whether it is generalizable to a larger population.

Table of contents

Types of descriptive statistics, frequency distribution, measures of central tendency, measures of variability, univariate descriptive statistics, bivariate descriptive statistics, other interesting articles, frequently asked questions about descriptive statistics.

There are 3 main types of descriptive statistics:

  • The distribution concerns the frequency of each value.
  • The central tendency concerns the averages of the values.
  • The variability or dispersion concerns how spread out the values are.

Types of descriptive statistics

You can apply these to assess only one variable at a time, in univariate analysis, or to compare two or more, in bivariate and multivariate analysis.

  • Go to a library
  • Watch a movie at a theater
  • Visit a national park

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A data set is made up of a distribution of values, or scores. In tables or graphs, you can summarize the frequency of every possible value of a variable in numbers or percentages. This is called a frequency distribution .

  • Simple frequency distribution table
  • Grouped frequency distribution table
Gender Number
Male 182
Female 235
Other 27

From this table, you can see that more women than men or people with another gender identity took part in the study. In a grouped frequency distribution, you can group numerical response values and add up the number of responses for each group. You can also convert each of these numbers to percentages.

Library visits in the past year Percent
0–4 6%
5–8 20%
9–12 42%
13–16 24%
17+ 8%

Measures of central tendency estimate the center, or average, of a data set. The mean, median and mode are 3 ways of finding the average.

Here we will demonstrate how to calculate the mean, median, and mode using the first 6 responses of our survey.

The mean , or M , is the most commonly used method for finding the average.

To find the mean, simply add up all response values and divide the sum by the total number of responses. The total number of responses or observations is called N .

Mean number of library visits
Data set 15, 3, 12, 0, 24, 3
Sum of all values 15 + 3 + 12 + 0 + 24 + 3 = 57
Total number of responses = 6
Mean Divide the sum of values by to find : 57/6 =

The median is the value that’s exactly in the middle of a data set.

To find the median, order each response value from the smallest to the biggest. Then , the median is the number in the middle. If there are two numbers in the middle, find their mean.

Median number of library visits
Ordered data set 0, 3, 3, 12, 15, 24
Middle numbers 3, 12
Median Find the mean of the two middle numbers: (3 + 12)/2 =

The mode is the simply the most popular or most frequent response value. A data set can have no mode, one mode, or more than one mode.

To find the mode, order your data set from lowest to highest and find the response that occurs most frequently.

Mode number of library visits
Ordered data set 0, 3, 3, 12, 15, 24
Mode Find the most frequently occurring response:

Measures of variability give you a sense of how spread out the response values are. The range, standard deviation and variance each reflect different aspects of spread.

The range gives you an idea of how far apart the most extreme response scores are. To find the range , simply subtract the lowest value from the highest value.

Standard deviation

The standard deviation ( s or SD ) is the average amount of variability in your dataset. It tells you, on average, how far each score lies from the mean. The larger the standard deviation, the more variable the data set is.

There are six steps for finding the standard deviation:

  • List each score and find their mean.
  • Subtract the mean from each score to get the deviation from the mean.
  • Square each of these deviations.
  • Add up all of the squared deviations.
  • Divide the sum of the squared deviations by N – 1.
  • Find the square root of the number you found.
Raw data Deviation from mean Squared deviation
15 15 – 9.5 = 5.5 30.25
3 3 – 9.5 = -6.5 42.25
12 12 – 9.5 = 2.5 6.25
0 0 – 9.5 = -9.5 90.25
24 24 – 9.5 = 14.5 210.25
3 3 – 9.5 = -6.5 42.25
= 9.5 Sum = 0 Sum of squares = 421.5

Step 5: 421.5/5 = 84.3

Step 6: √84.3 = 9.18

The variance is the average of squared deviations from the mean. Variance reflects the degree of spread in the data set. The more spread the data, the larger the variance is in relation to the mean.

To find the variance, simply square the standard deviation. The symbol for variance is s 2 .

Prevent plagiarism. Run a free check.

Univariate descriptive statistics focus on only one variable at a time. It’s important to examine data from each variable separately using multiple measures of distribution, central tendency and spread. Programs like SPSS and Excel can be used to easily calculate these.

Visits to the library
6
Mean 9.5
Median 7.5
Mode 3
Standard deviation 9.18
Variance 84.3
Range 24

If you were to only consider the mean as a measure of central tendency, your impression of the “middle” of the data set can be skewed by outliers, unlike the median or mode.

Likewise, while the range is sensitive to outliers , you should also consider the standard deviation and variance to get easily comparable measures of spread.

If you’ve collected data on more than one variable, you can use bivariate or multivariate descriptive statistics to explore whether there are relationships between them.

In bivariate analysis, you simultaneously study the frequency and variability of two variables to see if they vary together. You can also compare the central tendency of the two variables before performing further statistical tests .

Multivariate analysis is the same as bivariate analysis but with more than two variables.

Contingency table

In a contingency table, each cell represents the intersection of two variables. Usually, an independent variable (e.g., gender) appears along the vertical axis and a dependent one appears along the horizontal axis (e.g., activities). You read “across” the table to see how the independent and dependent variables relate to each other.

Number of visits to the library in the past year
Group 0–4 5–8 9–12 13–16 17+
Children 32 68 37 23 22
Adults 36 48 43 83 25

Interpreting a contingency table is easier when the raw data is converted to percentages. Percentages make each row comparable to the other by making it seem as if each group had only 100 observations or participants. When creating a percentage-based contingency table, you add the N for each independent variable on the end.

Visits to the library in the past year (Percentages)
Group 0–4 5–8 9–12 13–16 17+
Children 18% 37% 20% 13% 12% 182
Adults 15% 20% 18% 35% 11% 235

From this table, it is more clear that similar proportions of children and adults go to the library over 17 times a year. Additionally, children most commonly went to the library between 5 and 8 times, while for adults, this number was between 13 and 16.

Scatter plots

A scatter plot is a chart that shows you the relationship between two or three variables . It’s a visual representation of the strength of a relationship.

In a scatter plot, you plot one variable along the x-axis and another one along the y-axis. Each data point is represented by a point in the chart.

From your scatter plot, you see that as the number of movies seen at movie theaters increases, the number of visits to the library decreases. Based on your visual assessment of a possible linear relationship, you perform further tests of correlation and regression.

Descriptive statistics: Scatter plot

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Statistical power
  • Pearson correlation
  • Degrees of freedom
  • Statistical significance

Methodology

  • Cluster sampling
  • Stratified sampling
  • Focus group
  • Systematic review
  • Ethnography
  • Double-Barreled Question

Research bias

  • Implicit bias
  • Publication bias
  • Cognitive bias
  • Placebo effect
  • Pygmalion effect
  • Hindsight bias
  • Overconfidence bias

Descriptive statistics summarize the characteristics of a data set. Inferential statistics allow you to test a hypothesis or assess whether your data is generalizable to the broader population.

The 3 main types of descriptive statistics concern the frequency distribution, central tendency, and variability of a dataset.

  • Distribution refers to the frequencies of different responses.
  • Measures of central tendency give you the average for each response.
  • Measures of variability show you the spread or dispersion of your dataset.
  • Univariate statistics summarize only one variable  at a time.
  • Bivariate statistics compare two variables .
  • Multivariate statistics compare more than two variables .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 21). Descriptive Statistics | Definitions, Types, Examples. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/statistics/descriptive-statistics/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, central tendency | understanding the mean, median & mode, variability | calculating range, iqr, variance, standard deviation, inferential statistics | an easy introduction & examples, what is your plagiarism score.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.38(37); 2023 Sep 18
  • PMC10506897

Logo of jkms

Conducting and Writing Quantitative and Qualitative Research

Edward barroga.

1 Department of Medical Education, Showa University School of Medicine, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

Atsuko Furuta

Makiko arima, shizuma tsuchiya, chikako kawahara, yusuke takamiya.

Comprehensive knowledge of quantitative and qualitative research systematizes scholarly research and enhances the quality of research output. Scientific researchers must be familiar with them and skilled to conduct their investigation within the frames of their chosen research type. When conducting quantitative research, scientific researchers should describe an existing theory, generate a hypothesis from the theory, test their hypothesis in novel research, and re-evaluate the theory. Thereafter, they should take a deductive approach in writing the testing of the established theory based on experiments. When conducting qualitative research, scientific researchers raise a question, answer the question by performing a novel study, and propose a new theory to clarify and interpret the obtained results. After which, they should take an inductive approach to writing the formulation of concepts based on collected data. When scientific researchers combine the whole spectrum of inductive and deductive research approaches using both quantitative and qualitative research methodologies, they apply mixed-method research. Familiarity and proficiency with these research aspects facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is jkms-38-e291-abf001.jpg

INTRODUCTION

Novel research studies are conceptualized by scientific researchers first by asking excellent research questions and developing hypotheses, then answering these questions by testing their hypotheses in ethical research. 1 , 2 , 3 Before they conduct novel research studies, scientific researchers must possess considerable knowledge of both quantitative and qualitative research. 2

In quantitative research, researchers describe existing theories, generate and test a hypothesis in novel research, and re-evaluate existing theories deductively based on their experimental results. 1 , 4 , 5 In qualitative research, scientific researchers raise and answer research questions by performing a novel study, then propose new theories by clarifying their results inductively. 1 , 6

RATIONALE OF THIS ARTICLE

When researchers have a limited knowledge of both research types and how to conduct them, this can result in substandard investigation. Researchers must be familiar with both types of research and skilled to conduct their investigations within the frames of their chosen type of research. Thus, meticulous care is needed when planning quantitative and qualitative research studies to avoid unethical research and poor outcomes.

Understanding the methodological and writing assumptions 7 , 8 underpinning quantitative and qualitative research, especially by non-Anglophone researchers, is essential for their successful conduct. Scientific researchers, especially in the academe, face pressure to publish in international journals 9 where English is the language of scientific communication. 10 , 11 In particular, non-Anglophone researchers face challenges related to linguistic, stylistic, and discourse differences. 11 , 12 Knowing the assumptions of the different types of research will help clarify research questions and methodologies, easing the challenge and help.

SEARCH FOR RELEVANT ARTICLES

To identify articles relevant to this topic, we adhered to the search strategy recommended by Gasparyan et al. 7 We searched through PubMed, Scopus, Directory of Open Access Journals, and Google Scholar databases using the following keywords: quantitative research, qualitative research, mixed-method research, deductive reasoning, inductive reasoning, study design, descriptive research, correlational research, experimental research, causal-comparative research, quasi-experimental research, historical research, ethnographic research, meta-analysis, narrative research, grounded theory, phenomenology, case study, and field research.

AIMS OF THIS ARTICLE

This article aims to provide a comparative appraisal of qualitative and quantitative research for scientific researchers. At present, there is still a need to define the scope of qualitative research, especially its essential elements. 13 Consensus on the critical appraisal tools to assess the methodological quality of qualitative research remains lacking. 14 Framing and testing research questions can be challenging in qualitative research. 2 In the healthcare system, it is essential that research questions address increasingly complex situations. Therefore, research has to be driven by the kinds of questions asked and the corresponding methodologies to answer these questions. 15 The mixed-method approach also needs to be clarified as this would appear to arise from different philosophical underpinnings. 16

This article also aims to discuss how particular types of research should be conducted and how they should be written in adherence to international standards. In the US, Europe, and other countries, responsible research and innovation was conceptualized and promoted with six key action points: engagement, gender equality, science education, open access, ethics and governance. 17 , 18 International ethics standards in research 19 as well as academic integrity during doctoral trainings are now integral to the research process. 20

POTENTIAL BENEFITS FROM THIS ARTICLE

This article would be beneficial for researchers in further enhancing their understanding of the theoretical, methodological, and writing aspects of qualitative and quantitative research, and their combination.

Moreover, this article reviews the basic features of both research types and overviews the rationale for their conduct. It imparts information on the most common forms of quantitative and qualitative research, and how they are carried out. These aspects would be helpful for selecting the optimal methodology to use for research based on the researcher’s objectives and topic.

This article also provides information on the strengths and weaknesses of quantitative and qualitative research. Such information would help researchers appreciate the roles and applications of both research types and how to gain from each or their combination. As different research questions require different types of research and analyses, this article is anticipated to assist researchers better recognize the questions answered by quantitative and qualitative research.

Finally, this article would help researchers to have a balanced perspective of qualitative and quantitative research without considering one as superior to the other.

TYPES OF RESEARCH

Research can be classified into two general types, quantitative and qualitative. 21 Both types of research entail writing a research question and developing a hypothesis. 22 Quantitative research involves a deductive approach to prove or disprove the hypothesis that was developed, whereas qualitative research involves an inductive approach to create a hypothesis. 23 , 24 , 25 , 26

In quantitative research, the hypothesis is stated before testing. In qualitative research, the hypothesis is developed through inductive reasoning based on the data collected. 27 , 28 For types of data and their analysis, qualitative research usually includes data in the form of words instead of numbers more commonly used in quantitative research. 29

Quantitative research usually includes descriptive, correlational, causal-comparative / quasi-experimental, and experimental research. 21 On the other hand, qualitative research usually encompasses historical, ethnographic, meta-analysis, narrative, grounded theory, phenomenology, case study, and field research. 23 , 25 , 28 , 30 A summary of the features, writing approach, and examples of published articles for each type of qualitative and quantitative research is shown in Table 1 . 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43

ResearchTypeMethodology featureResearch writing pointersExample of published article
QuantitativeDescriptive researchDescribes status of identified variable to provide systematic information about phenomenonExplain how a situation, sample, or variable was examined or observed as it occurred without investigator interferenceÖstlund AS, Kristofferzon ML, Häggström E, Wadensten B. Primary care nurses’ performance in motivational interviewing: a quantitative descriptive study. 2015;16(1):89.
Correlational researchDetermines and interprets extent of relationship between two or more variables using statistical dataDescribe the establishment of reliability and validity, converging evidence, relationships, and predictions based on statistical dataDíaz-García O, Herranz Aguayo I, Fernández de Castro P, Ramos JL. Lifestyles of Spanish elders from supervened SARS-CoV-2 variant onwards: A correlational research on life satisfaction and social-relational praxes. 2022;13:948745.
Causal-comparative/Quasi-experimental researchEstablishes cause-effect relationships among variablesWrite about comparisons of the identified control groups exposed to the treatment variable with unexposed groups : Sharma MK, Adhikari R. Effect of school water, sanitation, and hygiene on health status among basic level students in Nepal. Environ Health Insights 2022;16:11786302221095030.
Uses non-randomly assigned groups where it is not logically feasible to conduct a randomized controlled trialProvide clear descriptions of the causes determined after making data analyses and conclusions, and known and unknown variables that could potentially affect the outcome
[The study applies a causal-comparative research design]
: Tuna F, Tunçer B, Can HB, Süt N, Tuna H. Immediate effect of Kinesio taping® on deep cervical flexor endurance: a non-controlled, quasi-experimental pre-post quantitative study. 2022;40(6):528-35.
Experimental researchEstablishes cause-effect relationship among group of variables making up a study using scientific methodDescribe how an independent variable was manipulated to determine its effects on dependent variablesHyun C, Kim K, Lee S, Lee HH, Lee J. Quantitative evaluation of the consciousness level of patients in a vegetative state using virtual reality and an eye-tracking system: a single-case experimental design study. 2022;32(10):2628-45.
Explain the random assignments of subjects to experimental treatments
QualitativeHistorical researchDescribes past events, problems, issues, and factsWrite the research based on historical reportsSilva Lima R, Silva MA, de Andrade LS, Mello MA, Goncalves MF. Construction of professional identity in nursing students: qualitative research from the historical-cultural perspective. 2020;28:e3284.
Ethnographic researchDevelops in-depth analytical descriptions of current systems, processes, and phenomena or understandings of shared beliefs and practices of groups or cultureCompose a detailed report of the interpreted dataGammeltoft TM, Huyền Diệu BT, Kim Dung VT, Đức Anh V, Minh Hiếu L, Thị Ái N. Existential vulnerability: an ethnographic study of everyday lives with diabetes in Vietnam. 2022;29(3):271-88.
Meta-analysisAccumulates experimental and correlational results across independent studies using statistical methodSpecify the topic, follow reporting guidelines, describe the inclusion criteria, identify key variables, explain the systematic search of databases, and detail the data extractionOeljeklaus L, Schmid HL, Kornfeld Z, Hornberg C, Norra C, Zerbe S, et al. Therapeutic landscapes and psychiatric care facilities: a qualitative meta-analysis. 2022;19(3):1490.
Narrative researchStudies an individual and gathers data by collecting stories for constructing a narrative about the individual’s experiences and their meaningsWrite an in-depth narration of events or situations focused on the participantsAnderson H, Stocker R, Russell S, Robinson L, Hanratty B, Robinson L, et al. Identity construction in the very old: a qualitative narrative study. 2022;17(12):e0279098.
Grounded theoryEngages in inductive ground-up or bottom-up process of generating theory from dataWrite the research as a theory and a theoretical model.Amini R, Shahboulaghi FM, Tabrizi KN, Forouzan AS. Social participation among Iranian community-dwelling older adults: a grounded theory study. 2022;11(6):2311-9.
Describe data analysis procedure about theoretical coding for developing hypotheses based on what the participants say
PhenomenologyAttempts to understand subjects’ perspectivesWrite the research report by contextualizing and reporting the subjects’ experiencesGreen G, Sharon C, Gendler Y. The communication challenges and strength of nurses’ intensive corona care during the two first pandemic waves: a qualitative descriptive phenomenology study. 2022;10(5):837.
Case studyAnalyzes collected data by detailed identification of themes and development of narratives written as in-depth study of lessons from caseWrite the report as an in-depth study of possible lessons learned from the caseHorton A, Nugus P, Fortin MC, Landsberg D, Cantarovich M, Sandal S. Health system barriers and facilitators to living donor kidney transplantation: a qualitative case study in British Columbia. 2022;10(2):E348-56.
Field researchDirectly investigates and extensively observes social phenomenon in natural environment without implantation of controls or experimental conditionsDescribe the phenomenon under the natural environment over timeBuus N, Moensted M. Collectively learning to talk about personal concerns in a peer-led youth program: a field study of a community of practice. 2022;30(6):e4425-32.

QUANTITATIVE RESEARCH

Deductive approach.

The deductive approach is used to prove or disprove the hypothesis in quantitative research. 21 , 25 Using this approach, researchers 1) make observations about an unclear or new phenomenon, 2) investigate the current theory surrounding the phenomenon, and 3) hypothesize an explanation for the observations. Afterwards, researchers will 4) predict outcomes based on the hypotheses, 5) formulate a plan to test the prediction, and 6) collect and process the data (or revise the hypothesis if the original hypothesis was false). Finally, researchers will then 7) verify the results, 8) make the final conclusions, and 9) present and disseminate their findings ( Fig. 1A ).

An external file that holds a picture, illustration, etc.
Object name is jkms-38-e291-g001.jpg

Types of quantitative research

The common types of quantitative research include (a) descriptive, (b) correlational, c) experimental research, and (d) causal-comparative/quasi-experimental. 21

Descriptive research is conducted and written by describing the status of an identified variable to provide systematic information about a phenomenon. A hypothesis is developed and tested after data collection, analysis, and synthesis. This type of research attempts to factually present comparisons and interpretations of findings based on analyses of the characteristics, progression, or relationships of a certain phenomenon by manipulating the employed variables or controlling the involved conditions. 44 Here, the researcher examines, observes, and describes a situation, sample, or variable as it occurs without investigator interference. 31 , 45 To be meaningful, the systematic collection of information requires careful selection of study units by precise measurement of individual variables 21 often expressed as ranges, means, frequencies, and/or percentages. 31 , 45 Descriptive statistical analysis using ANOVA, Student’s t -test, or the Pearson coefficient method has been used to analyze descriptive research data. 46

Correlational research is performed by determining and interpreting the extent of a relationship between two or more variables using statistical data. This involves recognizing data trends and patterns without necessarily proving their causes. The researcher studies only the data, relationships, and distributions of variables in a natural setting, but does not manipulate them. 21 , 45 Afterwards, the researcher establishes reliability and validity, provides converging evidence, describes relationship, and makes predictions. 47

Experimental research is usually referred to as true experimentation. The researcher establishes the cause-effect relationship among a group of variables making up a study using the scientific method or process. This type of research attempts to identify the causal relationships between variables through experiments by arbitrarily controlling the conditions or manipulating the variables used. 44 The scientific manuscript would include an explanation of how the independent variable was manipulated to determine its effects on the dependent variables. The write-up would also describe the random assignments of subjects to experimental treatments. 21

Causal-comparative/quasi-experimental research closely resembles true experimentation but is conducted by establishing the cause-effect relationships among variables. It may also be conducted to establish the cause or consequences of differences that already exist between, or among groups of individuals. 48 This type of research compares outcomes between the intervention groups in which participants are not randomized to their respective interventions because of ethics- or feasibility-related reasons. 49 As in true experiments, the researcher identifies and measures the effects of the independent variable on the dependent variable. However, unlike true experiments, the researchers do not manipulate the independent variable.

In quasi-experimental research, naturally formed or pre-existing groups that are not randomly assigned are used, particularly when an ethical, randomized controlled trial is not feasible or logical. 50 The researcher identifies control groups as those which have been exposed to the treatment variable, and then compares these with the unexposed groups. The causes are determined and described after data analysis, after which conclusions are made. The known and unknown variables that could still affect the outcome are also included. 7

QUALITATIVE RESEARCH

Inductive approach.

Qualitative research involves an inductive approach to develop a hypothesis. 21 , 25 Using this approach, researchers answer research questions and develop new theories, but they do not test hypotheses or previous theories. The researcher seldom examines the effectiveness of an intervention, but rather explores the perceptions, actions, and feelings of participants using interviews, content analysis, observations, or focus groups. 25 , 45 , 51

Distinctive features of qualitative research

Qualitative research seeks to elucidate about the lives of people, including their lived experiences, behaviors, attitudes, beliefs, personality characteristics, emotions, and feelings. 27 , 30 It also explores societal, organizational, and cultural issues. 30 This type of research provides a good story mimicking an adventure which results in a “thick” description that puts readers in the research setting. 52

The qualitative research questions are open-ended, evolving, and non-directional. 26 The research design is usually flexible and iterative, commonly employing purposive sampling. The sample size depends on theoretical saturation, and data is collected using in-depth interviews, focus groups, and observations. 27

In various instances, excellent qualitative research may offer insights that quantitative research cannot. Moreover, qualitative research approaches can describe the ‘lived experience’ perspectives of patients, practitioners, and the public. 53 Interestingly, recent developments have looked into the use of technology in shaping qualitative research protocol development, data collection, and analysis phases. 54

Qualitative research employs various techniques, including conversational and discourse analysis, biographies, interviews, case-studies, oral history, surveys, documentary and archival research, audiovisual analysis, and participant observations. 26

Conducting qualitative research

To conduct qualitative research, investigators 1) identify a general research question, 2) choose the main methods, sites, and subjects, and 3) determine methods of data documentation access to subjects. Researchers also 4) decide on the various aspects for collecting data (e.g., questions, behaviors to observe, issues to look for in documents, how much (number of questions, interviews, or observations), 5) clarify researchers’ roles, and 6) evaluate the study’s ethical implications in terms of confidentiality and sensitivity. Afterwards, researchers 7) collect data until saturation, 8) interpret data by identifying concepts and theories, and 9) revise the research question if necessary and form hypotheses. In the final stages of the research, investigators 10) collect and verify data to address revisions, 11) complete the conceptual and theoretical framework to finalize their findings, and 12) present and disseminate findings ( Fig. 1B ).

Types of qualitative research

The different types of qualitative research include (a) historical research, (b) ethnographic research, (c) meta-analysis, (d) narrative research, (e) grounded theory, (f) phenomenology, (g) case study, and (h) field research. 23 , 25 , 28 , 30

Historical research is conducted by describing past events, problems, issues, and facts. The researcher gathers data from written or oral descriptions of past events and attempts to recreate the past without interpreting the events and their influence on the present. 6 Data is collected using documents, interviews, and surveys. 55 The researcher analyzes these data by describing the development of events and writes the research based on historical reports. 2

Ethnographic research is performed by observing everyday life details as they naturally unfold. 2 It can also be conducted by developing in-depth analytical descriptions of current systems, processes, and phenomena or by understanding the shared beliefs and practices of a particular group or culture. 21 The researcher collects extensive narrative non-numerical data based on many variables over an extended period, in a natural setting within a specific context. To do this, the researcher uses interviews, observations, and active participation. These data are analyzed by describing and interpreting them and developing themes. A detailed report of the interpreted data is then provided. 2 The researcher immerses himself/herself into the study population and describes the actions, behaviors, and events from the perspective of someone involved in the population. 23 As examples of its application, ethnographic research has helped to understand a cultural model of family and community nursing during the coronavirus disease 2019 outbreak. 56 It has also been used to observe the organization of people’s environment in relation to cardiovascular disease management in order to clarify people’s real expectations during follow-up consultations, possibly contributing to the development of innovative solutions in care practices. 57

Meta-analysis is carried out by accumulating experimental and correlational results across independent studies using a statistical method. 21 The report is written by specifying the topic and meta-analysis type. In the write-up, reporting guidelines are followed, which include description of inclusion criteria and key variables, explanation of the systematic search of databases, and details of data extraction. Meta-analysis offers in-depth data gathering and analysis to achieve deeper inner reflection and phenomenon examination. 58

Narrative research is performed by collecting stories for constructing a narrative about an individual’s experiences and the meanings attributed to them by the individual. 9 It aims to hear the voice of individuals through their account or experiences. 17 The researcher usually conducts interviews and analyzes data by storytelling, content review, and theme development. The report is written as an in-depth narration of events or situations focused on the participants. 2 , 59 Narrative research weaves together sequential events from one or two individuals to create a “thick” description of a cohesive story or narrative. 23 It facilitates understanding of individuals’ lives based on their own actions and interpretations. 60

Grounded theory is conducted by engaging in an inductive ground-up or bottom-up strategy of generating a theory from data. 24 The researcher incorporates deductive reasoning when using constant comparisons. Patterns are detected in observations and then a working hypothesis is created which directs the progression of inquiry. The researcher collects data using interviews and questionnaires. These data are analyzed by coding the data, categorizing themes, and describing implications. The research is written as a theory and theoretical models. 2 In the write-up, the researcher describes the data analysis procedure (i.e., theoretical coding used) for developing hypotheses based on what the participants say. 61 As an example, a qualitative approach has been used to understand the process of skill development of a nurse preceptor in clinical teaching. 62 A researcher can also develop a theory using the grounded theory approach to explain the phenomena of interest by observing a population. 23

Phenomenology is carried out by attempting to understand the subjects’ perspectives. This approach is pertinent in social work research where empathy and perspective are keys to success. 21 Phenomenology studies an individual’s lived experience in the world. 63 The researcher collects data by interviews, observations, and surveys. 16 These data are analyzed by describing experiences, examining meanings, and developing themes. The researcher writes the report by contextualizing and reporting the subjects’ experience. This research approach describes and explains an event or phenomenon from the perspective of those who have experienced it. 23 Phenomenology understands the participants’ experiences as conditioned by their worldviews. 52 It is suitable for a deeper understanding of non-measurable aspects related to the meanings and senses attributed by individuals’ lived experiences. 60

Case study is conducted by collecting data through interviews, observations, document content examination, and physical inspections. The researcher analyzes the data through a detailed identification of themes and the development of narratives. The report is written as an in-depth study of possible lessons learned from the case. 2

Field research is performed using a group of methodologies for undertaking qualitative inquiries. The researcher goes directly to the social phenomenon being studied and observes it extensively. In the write-up, the researcher describes the phenomenon under the natural environment over time with no implantation of controls or experimental conditions. 45

DIFFERENCES BETWEEN QUANTITATIVE AND QUALITATIVE RESEARCH

Scientific researchers must be aware of the differences between quantitative and qualitative research in terms of their working mechanisms to better understand their specific applications. This knowledge will be of significant benefit to researchers, especially during the planning process, to ensure that the appropriate type of research is undertaken to fulfill the research aims.

In terms of quantitative research data evaluation, four well-established criteria are used: internal validity, external validity, reliability, and objectivity. 23 The respective correlating concepts in qualitative research data evaluation are credibility, transferability, dependability, and confirmability. 30 Regarding write-up, quantitative research papers are usually shorter than their qualitative counterparts, which allows the latter to pursue a deeper understanding and thus producing the so-called “thick” description. 29

Interestingly, a major characteristic of qualitative research is that the research process is reversible and the research methods can be modified. This is in contrast to quantitative research in which hypothesis setting and testing take place unidirectionally. This means that in qualitative research, the research topic and question may change during literature analysis, and that the theoretical and analytical methods could be altered during data collection. 44

Quantitative research focuses on natural, quantitative, and objective phenomena, whereas qualitative research focuses on social, qualitative, and subjective phenomena. 26 Quantitative research answers the questions “what?” and “when?,” whereas qualitative research answers the questions “why?,” “how?,” and “how come?.” 64

Perhaps the most important distinction between quantitative and qualitative research lies in the nature of the data being investigated and analyzed. Quantitative research focuses on statistical, numerical, and quantitative aspects of phenomena, and employ the same data collection and analysis, whereas qualitative research focuses on the humanistic, descriptive, and qualitative aspects of phenomena. 26 , 28

Structured versus unstructured processes

The aims and types of inquiries determine the difference between quantitative and qualitative research. In quantitative research, statistical data and a structured process are usually employed by the researcher. Quantitative research usually suggests quantities (i.e., numbers). 65 On the other hand, researchers typically use opinions, reasons, verbal statements, and an unstructured process in qualitative research. 63 Qualitative research is more related to quality or kind. 65

In quantitative research, the researcher employs a structured process for collecting quantifiable data. Often, a close-ended questionnaire is used wherein the response categories for each question are designed in which values can be assigned and analyzed quantitatively using a common scale. 66 Quantitative research data is processed consecutively from data management, then data analysis, and finally to data interpretation. Data should be free from errors and missing values. In data management, variables are defined and coded. In data analysis, statistics (e.g., descriptive, inferential) as well as central tendency (i.e., mean, median, mode), spread (standard deviation), and parameter estimation (confidence intervals) measures are used. 67

In qualitative research, the researcher uses an unstructured process for collecting data. These non-statistical data may be in the form of statements, stories, or long explanations. Various responses according to respondents may not be easily quantified using a common scale. 66

Composing a qualitative research paper resembles writing a quantitative research paper. Both papers consist of a title, an abstract, an introduction, objectives, methods, findings, and discussion. However, a qualitative research paper is less regimented than a quantitative research paper. 27

Quantitative research as a deductive hypothesis-testing design

Quantitative research can be considered as a hypothesis-testing design as it involves quantification, statistics, and explanations. It flows from theory to data (i.e., deductive), focuses on objective data, and applies theories to address problems. 45 , 68 It collects numerical or statistical data; answers questions such as how many, how often, how much; uses questionnaires, structured interview schedules, or surveys 55 as data collection tools; analyzes quantitative data in terms of percentages, frequencies, statistical comparisons, graphs, and tables showing statistical values; and reports the final findings in the form of statistical information. 66 It uses variable-based models from individual cases and findings are stated in quantified sentences derived by deductive reasoning. 24

In quantitative research, a phenomenon is investigated in terms of the relationship between an independent variable and a dependent variable which are numerically measurable. The research objective is to statistically test whether the hypothesized relationship is true. 68 Here, the researcher studies what others have performed, examines current theories of the phenomenon being investigated, and then tests hypotheses that emerge from those theories. 4

Quantitative hypothesis-testing research has certain limitations. These limitations include (a) problems with selection of meaningful independent and dependent variables, (b) the inability to reflect subjective experiences as variables since variables are usually defined numerically, and (c) the need to state a hypothesis before the investigation starts. 61

Qualitative research as an inductive hypothesis-generating design

Qualitative research can be considered as a hypothesis-generating design since it involves understanding and descriptions in terms of context. It flows from data to theory (i.e., inductive), focuses on observation, and examines what happens in specific situations with the aim of developing new theories based on the situation. 45 , 68 This type of research (a) collects qualitative data (e.g., ideas, statements, reasons, characteristics, qualities), (b) answers questions such as what, why, and how, (c) uses interviews, observations, or focused-group discussions as data collection tools, (d) analyzes data by discovering patterns of changes, causal relationships, or themes in the data; and (e) reports the final findings as descriptive information. 61 Qualitative research favors case-based models from individual characteristics, and findings are stated using context-dependent existential sentences that are justifiable by inductive reasoning. 24

In qualitative research, texts and interviews are analyzed and interpreted to discover meaningful patterns characteristic of a particular phenomenon. 61 Here, the researcher starts with a set of observations and then moves from particular experiences to a more general set of propositions about those experiences. 4

Qualitative hypothesis-generating research involves collecting interview data from study participants regarding a phenomenon of interest, and then using what they say to develop hypotheses. It involves the process of questioning more than obtaining measurements; it generates hypotheses using theoretical coding. 61 When using large interview teams, the key to promoting high-level qualitative research and cohesion in large team methods and successful research outcomes is the balance between autonomy and collaboration. 69

Qualitative data may also include observed behavior, participant observation, media accounts, and cultural artifacts. 61 Focus group interviews are usually conducted, audiotaped or videotaped, and transcribed. Afterwards, the transcript is analyzed by several researchers.

Qualitative research also involves scientific narratives and the analysis and interpretation of textual or numerical data (or both), mostly from conversations and discussions. Such approach uncovers meaningful patterns that describe a particular phenomenon. 2 Thus, qualitative research requires skills in grasping and contextualizing data, as well as communicating data analysis and results in a scientific manner. The reflective process of the inquiry underscores the strengths of a qualitative research approach. 2

Combination of quantitative and qualitative research

When both quantitative and qualitative research methods are used in the same research, mixed-method research is applied. 25 This combination provides a complete view of the research problem and achieves triangulation to corroborate findings, complementarity to clarify results, expansion to extend the study’s breadth, and explanation to elucidate unexpected results. 29

Moreover, quantitative and qualitative findings are integrated to address the weakness of both research methods 29 , 66 and to have a more comprehensive understanding of the phenomenon spectrum. 66

For data analysis in mixed-method research, real non-quantitized qualitative data and quantitative data must both be analyzed. 70 The data obtained from quantitative analysis can be further expanded and deepened by qualitative analysis. 23

In terms of assessment criteria, Hammersley 71 opined that qualitative and quantitative findings should be judged using the same standards of validity and value-relevance. Both approaches can be mutually supportive. 52

Quantitative and qualitative research must be carefully studied and conducted by scientific researchers to avoid unethical research and inadequate outcomes. Quantitative research involves a deductive process wherein a research question is answered with a hypothesis that describes the relationship between independent and dependent variables, and the testing of the hypothesis. This investigation can be aptly termed as hypothesis-testing research involving the analysis of hypothesis-driven experimental studies resulting in a test of significance. Qualitative research involves an inductive process wherein a research question is explored to generate a hypothesis, which then leads to the development of a theory. This investigation can be aptly termed as hypothesis-generating research. When the whole spectrum of inductive and deductive research approaches is combined using both quantitative and qualitative research methodologies, mixed-method research is applied, and this can facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Data curation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Formal analysis: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C.
  • Investigation: Barroga E, Matanguihan GJ, Takamiya Y, Izumi M.
  • Methodology: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Project administration: Barroga E, Matanguihan GJ.
  • Resources: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Supervision: Barroga E.
  • Validation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
  • Visualization: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.

Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

descriptive quantitative research adalah

  • Leigh A. Wilson 2 , 3  

5237 Accesses

4 Citations

Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. High-quality quantitative research is characterized by the attention given to the methods and the reliability of the tools used to collect the data. The ability to critique research in a systematic way is an essential component of a health professional’s role in order to deliver high quality, evidence-based healthcare. This chapter is intended to provide a simple overview of the way new researchers and health practitioners can understand and employ quantitative methods. The chapter offers practical, realistic guidance in a learner-friendly way and uses a logical sequence to understand the process of hypothesis development, study design, data collection and handling, and finally data analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

descriptive quantitative research adalah

Writing Quantitative Research Studies

descriptive quantitative research adalah

Qualitative Research Methods

Babbie ER. The practice of social research. 14th ed. Belmont: Wadsworth Cengage; 2016.

Google Scholar  

Descartes. Cited in Halverston, W. (1976). In: A concise introduction to philosophy, 3rd ed. New York: Random House; 1637.

Doll R, Hill AB. The mortality of doctors in relation to their smoking habits. BMJ. 1954;328(7455):1529–33. https://doi.org/10.1136/bmj.328.7455.1529 .

Article   Google Scholar  

Liamputtong P. Research methods in health: foundations for evidence-based practice. 3rd ed. Melbourne: Oxford University Press; 2017.

McNabb DE. Research methods in public administration and nonprofit management: quantitative and qualitative approaches. 2nd ed. New York: Armonk; 2007.

Merriam-Webster. Dictionary. http://www.merriam-webster.com . Accessed 20th December 2017.

Olesen Larsen P, von Ins M. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics. 2010;84(3):575–603.

Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25. https://doi.org/10.1097/PRS.0b013e3181de24bc .

Petrie A, Sabin C. Medical statistics at a glance. 2nd ed. London: Blackwell Publishing; 2005.

Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. New Jersey: Pearson Publishing; 2009.

Sheehan J. Aspects of research methodology. Nurse Educ Today. 1986;6:193–203.

Wilson LA, Black DA. Health, science research and research methods. Sydney: McGraw Hill; 2013.

Download references

Author information

Authors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Leigh A. Wilson

Faculty of Health Science, Discipline of Behavioural and Social Sciences in Health, University of Sydney, Lidcombe, NSW, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Leigh A. Wilson .

Editor information

Editors and affiliations.

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Wilson, L.A. (2019). Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_54

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_54

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Privacy Policy

Research Method

Home » Descriptive Analytics – Methods, Tools and Examples

Descriptive Analytics – Methods, Tools and Examples

Table of Contents

Descriptive Analytics

Descriptive Analytics

Definition:

Descriptive analytics focused on describing or summarizing raw data and making it interpretable. This type of analytics provides insight into what has happened in the past. It involves the analysis of historical data to identify patterns, trends, and insights. Descriptive analytics often uses visualization tools to represent the data in a way that is easy to interpret.

Descriptive Analytics in Research

Descriptive analytics plays a crucial role in research, helping investigators understand and describe the data collected in their studies. Here’s how descriptive analytics is typically used in a research setting:

  • Descriptive Statistics: In research, descriptive analytics often takes the form of descriptive statistics . This includes calculating measures of central tendency (like mean, median, and mode), measures of dispersion (like range, variance, and standard deviation), and measures of frequency (like count, percent, and frequency). These calculations help researchers summarize and understand their data.
  • Visualizing Data: Descriptive analytics also involves creating visual representations of data to better understand and communicate research findings . This might involve creating bar graphs, line graphs, pie charts, scatter plots, box plots, and other visualizations.
  • Exploratory Data Analysis: Before conducting any formal statistical tests, researchers often conduct an exploratory data analysis, which is a form of descriptive analytics. This might involve looking at distributions of variables, checking for outliers, and exploring relationships between variables.
  • Initial Findings: Descriptive analytics are often reported in the results section of a research study to provide readers with an overview of the data. For example, a researcher might report average scores, demographic breakdowns, or the percentage of participants who endorsed each response on a survey.
  • Establishing Patterns and Relationships: Descriptive analytics helps in identifying patterns, trends, or relationships in the data, which can guide subsequent analysis or future research. For instance, researchers might look at the correlation between variables as a part of descriptive analytics.

Descriptive Analytics Techniques

Descriptive analytics involves a variety of techniques to summarize, interpret, and visualize historical data. Some commonly used techniques include:

Statistical Analysis

This includes basic statistical methods like mean, median, mode (central tendency), standard deviation, variance (dispersion), correlation, and regression (relationships between variables).

Data Aggregation

It is the process of compiling and summarizing data to obtain a general perspective. It can involve methods like sum, count, average, min, max, etc., often applied to a group of data.

Data Mining

This involves analyzing large volumes of data to discover patterns, trends, and insights. Techniques used in data mining can include clustering (grouping similar data), classification (assigning data into categories), association rules (finding relationships between variables), and anomaly detection (identifying outliers).

Data Visualization

This involves presenting data in a graphical or pictorial format to provide clear and easy understanding of the data patterns, trends, and insights. Common data visualization methods include bar charts, line graphs, pie charts, scatter plots, histograms, and more complex forms like heat maps and interactive dashboards.

This involves organizing data into informational summaries to monitor how different areas of a business are performing. Reports can be generated manually or automatically and can be presented in tables, graphs, or dashboards.

Cross-tabulation (or Pivot Tables)

It involves displaying the relationship between two or more variables in a tabular form. It can provide a deeper understanding of the data by allowing comparisons and revealing patterns and correlations that may not be readily apparent in raw data.

Descriptive Modeling

Some techniques use complex algorithms to interpret data. Examples include decision tree analysis, which provides a graphical representation of decision-making situations, and neural networks, which are used to identify correlations and patterns in large data sets.

Descriptive Analytics Tools

Some common Descriptive Analytics Tools are as follows:

Excel: Microsoft Excel is a widely used tool that can be used for simple descriptive analytics. It has powerful statistical and data visualization capabilities. Pivot tables are a particularly useful feature for summarizing and analyzing large data sets.

Tableau: Tableau is a data visualization tool that is used to represent data in a graphical or pictorial format. It can handle large data sets and allows for real-time data analysis.

Power BI: Power BI, another product from Microsoft, is a business analytics tool that provides interactive visualizations with self-service business intelligence capabilities.

QlikView: QlikView is a data visualization and discovery tool. It allows users to analyze data and use this data to support decision-making.

SAS: SAS is a software suite that can mine, alter, manage and retrieve data from a variety of sources and perform statistical analysis on it.

SPSS: SPSS (Statistical Package for the Social Sciences) is a software package used for statistical analysis. It’s widely used in social sciences research but also in other industries.

Google Analytics: For web data, Google Analytics is a popular tool. It allows businesses to analyze in-depth detail about the visitors on their website, providing valuable insights that can help shape the success strategy of a business.

R and Python: Both are programming languages that have robust capabilities for statistical analysis and data visualization. With packages like pandas, matplotlib, seaborn in Python and ggplot2, dplyr in R, these languages are powerful tools for descriptive analytics.

Looker: Looker is a modern data platform that can take data from any database and let you start exploring and visualizing.

When to use Descriptive Analytics

Descriptive analytics forms the base of the data analysis workflow and is typically the first step in understanding your business or organization’s data. Here are some situations when you might use descriptive analytics:

Understanding Past Behavior: Descriptive analytics is essential for understanding what has happened in the past. If you need to understand past sales trends, customer behavior, or operational performance, descriptive analytics is the tool you’d use.

Reporting Key Metrics: Descriptive analytics is used to establish and report key performance indicators (KPIs). It can help in tracking and presenting these KPIs in dashboards or regular reports.

Identifying Patterns and Trends: If you need to identify patterns or trends in your data, descriptive analytics can provide these insights. This might include identifying seasonality in sales data, understanding peak operational times, or spotting trends in customer behavior.

Informing Business Decisions: The insights provided by descriptive analytics can inform business strategy and decision-making. By understanding what has happened in the past, you can make more informed decisions about what steps to take in the future.

Benchmarking Performance: Descriptive analytics can be used to compare current performance against historical data. This can be used for benchmarking and setting performance goals.

Auditing and Regulatory Compliance: In sectors where compliance and auditing are essential, descriptive analytics can provide the necessary data and trends over specific periods.

Initial Data Exploration: When you first acquire a dataset, descriptive analytics is useful to understand the structure of the data, the relationships between variables, and any apparent anomalies or outliers.

Examples of Descriptive Analytics

Examples of Descriptive Analytics are as follows:

Retail Industry: A retail company might use descriptive analytics to analyze sales data from the past year. They could break down sales by month to identify any seasonality trends. For example, they might find that sales increase in November and December due to holiday shopping. They could also break down sales by product to identify which items are the most popular. This analysis could inform their purchasing and stocking decisions for the next year. Additionally, data on customer demographics could be analyzed to understand who their primary customers are, guiding their marketing strategies.

Healthcare Industry: In healthcare, descriptive analytics could be used to analyze patient data over time. For instance, a hospital might analyze data on patient admissions to identify trends in admission rates. They might find that admissions for certain conditions are higher at certain times of the year. This could help them allocate resources more effectively. Also, analyzing patient outcomes data can help identify the most effective treatments or highlight areas where improvement is needed.

Finance Industry: A financial firm might use descriptive analytics to analyze historical market data. They could look at trends in stock prices, trading volume, or economic indicators to inform their investment decisions. For example, analyzing the price-earnings ratios of stocks in a certain sector over time could reveal patterns that suggest whether the sector is currently overvalued or undervalued. Similarly, credit card companies can analyze transaction data to detect any unusual patterns, which could be signs of fraud.

Advantages of Descriptive Analytics

Descriptive analytics plays a vital role in the world of data analysis, providing numerous advantages:

  • Understanding the Past: Descriptive analytics provides an understanding of what has happened in the past, offering valuable context for future decision-making.
  • Data Summarization: Descriptive analytics is used to simplify and summarize complex datasets, which can make the information more understandable and accessible.
  • Identifying Patterns and Trends: With descriptive analytics, organizations can identify patterns, trends, and correlations in their data, which can provide valuable insights.
  • Inform Decision-Making: The insights generated through descriptive analytics can inform strategic decisions and help organizations to react more quickly to events or changes in behavior.
  • Basis for Further Analysis: Descriptive analytics lays the groundwork for further analytical activities. It’s the first necessary step before moving on to more advanced forms of analytics like predictive analytics (forecasting future events) or prescriptive analytics (advising on possible outcomes).
  • Performance Evaluation: It allows organizations to evaluate their performance by comparing current results with past results, enabling them to see where improvements have been made and where further improvements can be targeted.
  • Enhanced Reporting and Dashboards: Through the use of visualization techniques, descriptive analytics can improve the quality of reports and dashboards, making the data more understandable and easier to interpret for stakeholders at all levels of the organization.
  • Immediate Value: Unlike some other types of analytics, descriptive analytics can provide immediate insights, as it doesn’t require complex models or deep analytical capabilities to provide value.

Disadvantages of Descriptive Analytics

While descriptive analytics offers numerous benefits, it also has certain limitations or disadvantages. Here are a few to consider:

  • Limited to Past Data: Descriptive analytics primarily deals with historical data and provides insights about past events. It does not predict future events or trends and can’t help you understand possible future outcomes on its own.
  • Lack of Deep Insights: While descriptive analytics helps in identifying what happened, it does not answer why it happened. For deeper insights, you would need to use diagnostic analytics, which analyzes data to understand the root cause of a particular outcome.
  • Can Be Misleading: If not properly executed, descriptive analytics can sometimes lead to incorrect conclusions. For example, correlation does not imply causation, but descriptive analytics might tempt one to make such an inference.
  • Data Quality Issues: The accuracy and usefulness of descriptive analytics are heavily reliant on the quality of the underlying data. If the data is incomplete, incorrect, or biased, the results of the descriptive analytics will be too.
  • Over-reliance on Descriptive Analytics: Businesses may rely too much on descriptive analytics and not enough on predictive and prescriptive analytics. While understanding past and present data is important, it’s equally vital to forecast future trends and make data-driven decisions based on those predictions.
  • Doesn’t Provide Actionable Insights: Descriptive analytics is used to interpret historical data and identify patterns and trends, but it doesn’t provide recommendations or courses of action. For that, prescriptive analytics is needed.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Big Data Analytics

Big Data Analytics -Types, Tools and Methods

Social Network Analysis

Social Network Analysis – Types, Tools and...

Prescriptive Analytics

Prescriptive Analytics – Techniques, Tools and...

Diagnostic Analytics

Diagnostic Analytics – Methods, Tools and...

Sentiment Analysis

Sentiment Analysis – Tools, Techniques and...

Emerging Research Methods

Emerging Research Methods – Types and Examples

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

descriptive quantitative research adalah

Home Market Research Research Tools and Apps

Descriptive Analysis: What It Is + Best Research Tips

Descriptive analysis summarize the attributes of a data set. It uses frequency, central tendency, dispersion, & position measurements.

Leading statistical analysis usually begins with a descriptive analysis. It is also known as descriptive analytics or descriptive statistics. It helps you think about how to utilize your data, help you identify exceptions and mistakes, and see how variables are related, putting you in a position to lead future statistical research.

Keeping raw data in a format that makes it easy to understand and analyze, i.e., rearranging, sorting, and changing data so that it can tell you something useful about the data it contains.

Descriptive analysis is one of the most crucial phases of statistical data analysis. It provides you with a conclusion about the distribution of your data and aids in detecting errors and outliers. It lets you spot patterns between variables, preparing you for future statistical analysis.

In this blog, we will discuss descriptive analysis and the best tips for researchers.

What is Descriptive Analysis?

Descriptive analysis is a sort of data research that aids in describing, demonstrating, or helpfully summarizing data points so those patterns may develop that satisfy all of the conditions of the data.

It is the technique of identifying patterns and links by utilizing recent and historical data. Because it identifies patterns and associations without going any further, it is frequently referred to as the most basic data analysis .

When describing change over time, this analysis is beneficial. It utilizes patterns as a jumping-off point for further research to inform decision-making. When done systematically, they are not tricky or tiresome.

Data aggregation and mining are two methods used in descriptive analysis to generate historical data. Information is gathered and sorted in data aggregation to simplify large datasets. Data mining is the next analytical stage, which entails searching the data for patterns and significance. Data analytics and data analysis are closely related processes that involve extracting insights from data to make informed decisions.

Types of Descriptive Analysis

A variety of empirical methodologies support practical descriptive analyses. The most popular descriptive work tools are simple statistics representing core trends and variations (such as means, medians, and modes), which may be highly useful for explaining data.

It is the responsibility of the descriptive researcher to condense the body of data into a form that the audience will find helpful. This data reduction does not mean a situation or phenomenon should be equally weighted in all its components.

Instead, it concentrates on the most critical aspects of the phenomenon as it is and, more generally, the context of real-world practice in which a research study is to be read. The four types of descriptive analysis methods are:

01. Measurements of Frequency

Understanding how often a particular event or reaction is likely to occur is crucial for descriptive analysis. The main goal of frequency measurements is to provide something like a count or a percentage.

02. Measures of Central Tendency

Finding the central (or average) tendency or response is crucial in descriptive analysis. Three standards—mean, median, and mode—are used to calculate central tendency.

03. Measures of Dispersion

At times, understanding how data is distributed throughout a range is crucial. This kind of distribution may be measured using dispersion metrics like range or standard deviation.

04. Measures of Position

Finding a value’s or response’s location concerning other matters is another aspect of descriptive analysis. In this area of knowledge, metrics like quartiles and percentiles are beneficial.

How to Conduct a Descriptive Analysis?

Descriptive analysis is an important phase in data exploration that involves summarizing and describing the primary properties of a dataset. It provides vital insights into the data’s frequency distribution, central tendency, dispersion, and identifying position. It assists researchers and analysts in better understanding their data.

Conducting a descriptive analysis entails several critical phases, which we will discuss below.

Step 1: Data Collection

Before conducting any analysis, you must first collect relevant data. This process involves identifying data sources, selecting appropriate data-collecting methods, and verifying that the data acquired accurately represents the population or topic of interest.

You can collect data through surveys, experiments, observations, existing databases, or other data collection methods .

Step 2: Data Preparation

Data preparation is crucial for ensuring the dataset is clean, consistent, and ready for analysis. This step covers the following tasks:

  • Data Cleaning: Handle missing values, exceptions, and errors in the dataset. Input missing values or develop appropriate statistical techniques for dealing with them.
  • Data Transformation: Convert data into an appropriate format. Examples of this are changing data types, encoding categorical variables, or scaling numerical variables.
  • Data Reduction: For large datasets, try reducing their size by sampling or aggregation to make the analysis more manageable.

Step 3: Apply Methods

In this step, you will analyze and describe the data using a variety of methodologies and procedures. The following are some common descriptive analysis methods:

  • Frequency Distribution Analysis: Create frequency tables or bar charts to show the number or proportion of occurrences for each category for categorical variables.
  • Measures of Central Tendency: Calculate numerical variables’ mean, median, and mode to determine the center or usual value.
  • Measures of Dispersion: Calculate the range, variance, and standard deviation to examine the dispersion or variability of the data.
  • Measures of Position: Identify the position of a single value or its response to others.

Identify which variables are important to your descriptive analysis and research questions. Various methods are used for numerical and categorical variables, so it is essential to distinguish between them.

  • After the data set has been analyzed, researchers may interpret the findings in light of the goals. The analysis was successful if the conclusions were what was anticipated. Otherwise, they must search for weaknesses in their strategy and repeat these processes to get better outcomes.

Step 4: Summary Statistics and Visualization

Descriptive statistics refers to a set of methods for summarizing and describing the main characteristics of a dataset. Summarize the data through statistics and visualization. This step involves the following tasks:

  • Summary Statistics: Summarize your findings clearly and concisely.
  • Data Visualization: Use various charts and plots to visualize the data. Create histograms, box plots, scatter plots, or line charts for numerical data. Use bar charts, pie charts, or stacked bar charts for categorical data.

Best Research Tips to Complete Descriptive Analysis

Moreover, what researchers can do to complete descriptive analysis are:

  • They must specify the purpose of the in-depth analysis , the goals, the direction they will take, the things they must overlook, and the format in which the data must be provided.
  • They must gather data after identifying the goals. This is a critical phase since collecting incorrect data might lead them far from their objective.
  • Cleaning up the data is the next stage. When working with massive data sets, data cleansing may become challenging. The working data set’s noise or irrelevant information might skew the findings. Researchers should clean the data following the specifications for reliable results.
  • Different descriptive techniques are used once the data has been cleaned. In the form of in-depth descriptive summaries, the descriptive analysis highlights the fundamental characteristics of the data.
  • When you’re presenting your analysis to non-technical stakeholders and teams, it might be challenging to communicate the findings. Data visualization helps to complete this task efficiently. To give the results, researchers might use a variety of data visualization approaches, such as charts, pie charts, graphs, and others.

Descriptive analysis is a crucial research approach, regardless of whether the researcher wants to discover causal relationships between variables, explain population patterns, or develop new metrics for basic phenomena. When used correctly, it may significantly contribute to various descriptive and causal research investigations.

Looking at the correct data and evaluating it is pretty valuable for researchers and marketers. You may gather research data and execute complex analysis within the tool with an established research platform like QuestionPro, which enables you to get the insights that matter.

Using QuestionPro, you can quickly reach important decisions while better understanding your customers and other research objects. Utilize the enterprise-grade research suite’s capabilities right now!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Interactive forms

Interactive Forms: Key Features, Benefits, Uses + Design Tips

Sep 4, 2024

closed-loop management

Closed-Loop Management: The Key to Customer Centricity

Sep 3, 2024

Net Trust Score

Net Trust Score: Tool for Measuring Trust in Organization

Sep 2, 2024

descriptive quantitative research adalah

Why You Should Attend XDAY 2024

Aug 30, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Databank Solution
  • Credit Risk Solution
  • Valuation Analytics Solution
  • ESG Sustainability Solution
  • Quantitative Finance Solution
  • Regulatory Technology Solution
  • Product Introduction
  • Service Provide Method
  • Learning Video

Quantitative Data Analysis Guide: Methods, Examples & Uses

descriptive quantitative research adalah

This guide will introduce the types of data analysis used in quantitative research, then discuss relevant examples and applications in the finance industry.

Table of Contents

An Overview of Quantitative Data Analysis

What is quantitative data analysis and what is it for .

Quantitative data analysis is the process of interpreting meaning and extracting insights from numerical data , which involves mathematical calculations and statistical reviews to uncover patterns, trends, and relationships between variables.

Beyond academic and statistical research, this approach is particularly useful in the finance industry. Financial data, such as stock prices, interest rates, and economic indicators, can all be quantified with statistics and metrics to offer crucial insights for informed investment decisions. To illustrate this, here are some examples of what quantitative data is usually used for:

  • Measuring Differences between Groups: For instance, analyzing historical stock prices of different companies or asset classes can reveal which companies consistently outperform the market average.
  • Assessing Relationships between Variables: An investor could analyze the relationship between a company’s price-to-earnings ratio (P/E ratio) and relevant factors, like industry performance, inflation rates, interests, etc, allowing them to predict future stock price growth.
  • Testing Hypotheses: For example, an investor might hypothesize that companies with strong ESG (Environment, Social, and Governance) practices outperform those without. By categorizing these companies into two groups (strong ESG vs. weak ESG practices), they can compare the average return on investment (ROI) between the groups while assessing relevant factors to find evidence for the hypothesis. 

Ultimately, quantitative data analysis helps investors navigate the complex financial landscape and pursue profitable opportunities.

Quantitative Data Analysis VS. Qualitative Data Analysis

Although quantitative data analysis is a powerful tool, it cannot be used to provide context for your research, so this is where qualitative analysis comes in. Qualitative analysis is another common research method that focuses on collecting and analyzing non-numerical data , like text, images, or audio recordings to gain a deeper understanding of experiences, opinions, and motivations. Here’s a table summarizing its key differences between quantitative data analysis:

Types of Data UsedNumerical data: numbers, percentages, etc.Non-numerical data: text, images, audio, narratives, etc
Perspective More objective and less prone to biasMore subjective as it may be influenced by the researcher’s interpretation
Data CollectionClosed-ended questions, surveys, pollsOpen-ended questions, interviews, observations
Data AnalysisStatistical methods, numbers, graphs, chartsCategorization, thematic analysis, verbal communication
Focus and and
Best Use CaseMeasuring trends, comparing groups, testing hypothesesUnderstanding user experience, exploring consumer motivations, uncovering new ideas

Due to their characteristics, quantitative analysis allows you to measure and compare large datasets; while qualitative analysis helps you understand the context behind the data. In some cases, researchers might even use both methods together for a more comprehensive understanding, but we’ll mainly focus on quantitative analysis for this article.

The 2 Main Quantitative Data Analysis Methods

Once you have your data collected, you have to use descriptive statistics or inferential statistics analysis to draw summaries and conclusions from your raw numbers. 

As its name suggests, the purpose of descriptive statistics is to describe your sample . It provides the groundwork for understanding your data by focusing on the details and characteristics of the specific group you’ve collected data from. 

On the other hand, inferential statistics act as bridges that connect your sample data to the broader population you’re truly interested in, helping you to draw conclusions in your research. Moreover, choosing the right inferential technique for your specific data and research questions is dependent on the initial insights from descriptive statistics, so both of these methods usually go hand-in-hand.

Descriptive Statistics Analysis

With sophisticated descriptive statistics, you can detect potential errors in your data by highlighting inconsistencies and outliers that might otherwise go unnoticed. Additionally, the characteristics revealed by descriptive statistics will help determine which inferential techniques are suitable for further analysis.

Measures in Descriptive Statistics

One of the key statistical tests used for descriptive statistics is central tendency . It consists of mean, median, and mode, telling you where most of your data points cluster:

  • Mean: It refers to the “average” and is calculated by adding all the values in your data set and dividing by the number of values.
  • Median: The middle value when your data is arranged in ascending or descending order. If you have an odd number of data points, the median is the exact middle value; with even numbers, it’s the average of the two middle values. 
  • Mode: This refers to the most frequently occurring value in your data set, indicating the most common response or observation. Some data can have multiple modes (bimodal) or no mode at all.

Another statistic to test in descriptive analysis is the measures of dispersion , which involves range and standard deviation, revealing how spread out your data is relative to the central tendency measures:

  • Range: It refers to the difference between the highest and lowest values in your data set. 
  • Standard Deviation (SD): This tells you how the data is distributed within the range, revealing how much, on average, each data point deviates from the mean. Lower standard deviations indicate data points clustered closer to the mean, while higher standard deviations suggest a wider spread.

The shape of the distribution will then be measured through skewness. 

  • Skewness: A statistic that indicates whether your data leans to one side (positive or negative) or is symmetrical (normal distribution). A positive skew suggests more data points concentrated on the lower end, while a negative skew indicates more data points on the higher end.

While the core measures mentioned above are fundamental, there are additional descriptive statistics used in specific contexts, including percentiles and interquartile range.

  • Percentiles: This divides your data into 100 equal parts, revealing what percentage of data falls below a specific value. The 25th percentile (Q1) is the first quartile, the 50th percentile (Q2) is the median, and the 75th percentile (Q3) is the third quartile. Knowing these quartiles can help visualize the spread of your data.
  • Interquartile Range (IQR): This measures the difference between Q3 and Q1, representing the middle 50% of your data.

Example of Descriptive Quantitative Data Analysis 

Let’s illustrate these concepts with a real-world example. Imagine a financial advisor analyzing a client’s portfolio. They have data on the client’s various holdings, including stock prices over the past year. With descriptive statistics they can obtain the following information:

  • Central Tendency: The mean price for each stock reveals its average price over the year. The median price can further highlight if there were any significant price spikes or dips that skewed the mean.
  • Measures of Dispersion: The standard deviation for each stock indicates its price volatility. A high standard deviation suggests the stock’s price fluctuated considerably, while a low standard deviation implies a more stable price history. This helps the advisor assess each stock’s risk profile.
  • Shape of the Distribution: If data allows, analyzing skewness can be informative. A positive skew for a stock might suggest more frequent price drops, while a negative skew might indicate more frequent price increases.

By calculating these descriptive statistics, the advisor gains a quick understanding of the client’s portfolio performance and risk distribution. For instance, they could use correlation analysis to see if certain stock prices tend to move together, helping them identify expansion opportunities within the portfolio.

While descriptive statistics provide a foundational understanding, they should be followed by inferential analysis to uncover deeper insights that are crucial for making investment decisions.

Inferential Statistics Analysis

Inferential statistics analysis is particularly useful for hypothesis testing , as you can formulate predictions about group differences or potential relationships between variables , then use statistical tests to see if your sample data supports those hypotheses.

However, the power of inferential statistics hinges on one crucial factor: sample representativeness . If your sample doesn’t accurately reflect the population, your predictions won’t be very reliable. 

Statistical Tests for Inferential Statistics

Here are some of the commonly used tests for inferential statistics in commerce and finance, which can also be integrated to most analysis software:

  • T-Tests: This compares the means, standard deviation, or skewness of two groups to assess if they’re statistically different, helping you determine if the observed difference is just a quirk within the sample or a significant reflection of the population.
  • ANOVA (Analysis of Variance): While T-Tests handle comparisons between two groups, ANOVA focuses on comparisons across multiple groups, allowing you to identify potential variations and trends within the population.
  • Correlation Analysis: This technique tests the relationship between two variables, assessing if one variable increases or decreases with the other. However, it’s important to note that just because two financial variables are correlated and move together, doesn’t necessarily mean one directly influences the other.
  • Regression Analysis: Building on correlation, regression analysis goes a step further to verify the cause-and-effect relationships between the tested variables, allowing you to investigate if one variable actually influences the other.
  • Cross-Tabulation: This breaks down the relationship between two categorical variables by displaying the frequency counts in a table format, helping you to understand how different groups within your data set might behave. The data in cross-tabulation can be mutually exclusive or have several connections with each other. 
  • Trend Analysis: This examines how a variable in quantitative data changes over time, revealing upward or downward trends, as well as seasonal fluctuations. This can help you forecast future trends, and also lets you assess the effectiveness of the interventions in your marketing or investment strategy.
  • MaxDiff Analysis: This is also known as the “best-worst” method. It evaluates customer preferences by asking respondents to choose the most and least preferred options from a set of products or services, allowing stakeholders to optimize product development or marketing strategies.
  • Conjoint Analysis: Similar to MaxDiff, conjoint analysis gauges customer preferences, but it goes a step further by allowing researchers to see how changes in different product features (price, size, brand) influence overall preference.
  • TURF Analysis (Total Unduplicated Reach and Frequency Analysis): This assesses a marketing campaign’s reach and frequency of exposure in different channels, helping businesses identify the most efficient channels to reach target audiences.
  • Gap Analysis: This compares current performance metrics against established goals or benchmarks, using numerical data to represent the factors involved. This helps identify areas where performance falls short of expectations, serving as a springboard for developing strategies to bridge the gap and achieve those desired outcomes.
  • SWOT Analysis (Strengths, Weaknesses, Opportunities, and Threats): This uses ratings or rankings to represent an organization’s internal strengths and weaknesses, along with external opportunities and threats. Based on this analysis, organizations can create strategic plans to capitalize on opportunities while minimizing risks.
  • Text Analysis: This is an advanced method that uses specialized software to categorize and quantify themes, sentiment (positive, negative, neutral), and topics within textual data, allowing companies to obtain structured quantitative data from surveys, social media posts, or customer reviews.

Example of Inferential Quantitative Data Analysis

If you’re a financial analyst studying the historical performance of a particular stock, here are some predictions you can make with inferential statistics:

  • The Differences between Groups: You can conduct T-Tests to compare the average returns of stocks in the technology sector with those in the healthcare sector. It can help assess if the observed difference in returns between these two sectors is simply due to random chance or if it’s statistically significant due to a significant difference in their performance.
  • The Relationships between Variables: If you’re curious about the connection between a company’s price-to-earnings ratio (P/E ratios) and its future stock price movements, conducting correlation analysis can let you measure the strength and direction of this relationship. Is there a negative correlation, suggesting that higher P/E ratios might be associated with lower future stock prices? Or is there no significant correlation at all?

Understanding these inferential analysis techniques can help you uncover potential relationships and group differences that might not be readily apparent from descriptive statistics alone. Nonetheless, it’s important to remember that each technique has its own set of assumptions and limitations . Some methods are designed for parametric data with a normal distribution, while others are suitable for non-parametric data. 

Guide to Conduct Data Analysis in Quantitative Research

Now that we have discussed the types of data analysis techniques used in quantitative research, here’s a quick guide to help you choose the right method and grasp the essential steps of quantitative data analysis.

How to Choose the Right Quantitative Analysis Method?

Choosing between all these quantitative analysis methods may seem like a complicated task, but if you consider the 2 following factors, you can definitely choose the right technique:

Factor 1: Data Type

The data used in quantitative analysis can be categorized into two types, discrete data and continuous data, based on how they’re measured. They can also be further differentiated by their measurement scale. The four main types of measurement scales include: nominal, ordinal, interval or ratio. Understanding the distinctions between them is essential for choosing the appropriate statistical methods to interpret the results of your quantitative data analysis accurately.

Discrete data , which is also known as attribute data, represents whole numbers that can be easily counted and separated into distinct categories. It is often visualized using bar charts or pie charts, making it easy to see the frequency of each value. In the financial world, examples of discrete quantitative data include:

  • The number of shares owned by an investor in a particular company
  • The number of customer transactions processed by a bank per day
  • Bond ratings (AAA, BBB, etc.) that represent discrete categories indicating the creditworthiness of a bond issuer
  • The number of customers with different account types (checking, savings, investment) as seen in the pie chart below:

Pie chart illustrating the distribution customers with different account types (checking, savings, investment, salary)

Discrete data usually use nominal or ordinal measurement scales, which can be then quantified to calculate their mode or median. Here are some examples:

  • Nominal: This scale categorizes data into distinct groups with no inherent order. For instance, data on bank account types can be considered nominal data as it classifies customers in distinct categories which are independent of each other, either checking, savings, or investment accounts. and no inherent order or ranking implied by these account types.
  • Ordinal: Ordinal data establishes a rank or order among categories. For example, investment risk ratings (low, medium, high) are ordered based on their perceived risk of loss, making it a type or ordinal data.

Conversely, continuous data can take on any value and fluctuate over time. It is usually visualized using line graphs, effectively showcasing how the values can change within a specific time frame. Examples of continuous data in the financial industry include:

  • Interest rates set by central banks or offered by banks on loans and deposits
  • Currency exchange rates which also fluctuate constantly throughout the day
  • Daily trading volume of a particular stock on a specific day
  • Stock prices that fluctuate throughout the day, as seen in the line graph below:

Line chart illustrating the fluctuating stock prices

Source: Freepik

The measurement scale for continuous data is usually interval or ratio . Here is breakdown of their differences:

  • Interval: This builds upon ordinal data by having consistent intervals between each unit, and its zero point doesn’t represent a complete absence of the variable. Let’s use credit score as an example. While the scale ranges from 300 to 850, the interval between each score rating is consistent (50 points), and a score of zero wouldn’t indicate an absence of credit history, but rather no credit score available. 
  • Ratio: This scale has all the same characteristics of interval data but also has a true zero point, indicating a complete absence of the variable. Interest rates expressed as percentages are a classic example of ratio data. A 0% interest rate signifies the complete absence of any interest charged or earned, making it a true zero point.

Factor 2: Research Question

You also need to make sure that the analysis method aligns with your specific research questions. If you merely want to focus on understanding the characteristics of your data set, descriptive statistics might be all you need; if you need to analyze the connection between variables, then you have to include inferential statistics as well.

How to Analyze Quantitative Data 

Step 1: data collection  .

Depending on your research question, you might choose to conduct surveys or interviews. Distributing online or paper surveys can reach a broad audience, while interviews allow for deeper exploration of specific topics. You can also choose to source existing datasets from government agencies or industry reports.

Step 2: Data Cleaning

Raw data might contain errors, inconsistencies, or missing values, so data cleaning has to be done meticulously to ensure accuracy and consistency. This might involve removing duplicates, correcting typos, and handling missing information.

Furthermore, you should also identify the nature of your variables and assign them appropriate measurement scales , it could be nominal, ordinal, interval or ratio. This is important because it determines the types of descriptive statistics and analysis methods you can employ later. Once you categorize your data based on these measurement scales, you can arrange the data of each category in a proper order and organize it in a format that is convenient for you.

Step 3: Data Analysis

Based on the measurement scales of your variables, calculate relevant descriptive statistics to summarize your data. This might include measures of central tendency (mean, median, mode) and dispersion (range, standard deviation, variance). With these statistics, you can identify the pattern within your raw data. 

Then, these patterns can be analyzed further with inferential methods to test out the hypotheses you have developed. You may choose any of the statistical tests mentioned above, as long as they are compatible with the characteristics of your data.

Step 4. Data Interpretation and Communication 

Now that you have the results from your statistical analysis, you may draw conclusions based on the findings and incorporate them into your business strategies. Additionally, you should also transform your findings into clear and shareable information to facilitate discussion among stakeholders. Visualization techniques like tables, charts, or graphs can make complex data more digestible so that you can communicate your findings efficiently. 

Useful Quantitative Data Analysis Tools and Software 

We’ve compiled some commonly used quantitative data analysis tools and software. Choosing the right one depends on your experience level, project needs, and budget. Here’s a brief comparison: 

EasiestBeginners & basic analysisOne-time purchase with Microsoft Office Suite
EasySocial scientists & researchersPaid commercial license
EasyStudents & researchersPaid commercial license or student discounts
ModerateBusinesses & advanced researchPaid commercial license
ModerateResearchers & statisticiansPaid commercial license
Moderate (Coding optional)Programmers & data scientistsFree & Open-Source
Steep (Coding required)Experienced users & programmersFree & Open-Source
Steep (Coding required)Scientists & engineersPaid commercial license
Steep (Coding required)Scientists & engineersPaid commercial license

Quantitative Data in Finance and Investment

So how does this all affect the finance industry? Quantitative finance (or quant finance) has become a growing trend, with the quant fund market valued at $16,008.69 billion in 2023. This value is expected to increase at the compound annual growth rate of 10.09% and reach $31,365.94 billion by 2031, signifying its expanding role in the industry.

What is Quant Finance?

Quant finance is the process of using massive financial data and mathematical models to identify market behavior, financial trends, movements, and economic indicators, so that they can predict future trends.These calculated probabilities can be leveraged to find potential investment opportunities and maximize returns while minimizing risks.

Common Quantitative Investment Strategies

There are several common quantitative strategies, each offering unique approaches to help stakeholders navigate the market:

1. Statistical Arbitrage

This strategy aims for high returns with low volatility. It employs sophisticated algorithms to identify minuscule price discrepancies across the market, then capitalize on them at lightning speed, often generating short-term profits. However, its reliance on market efficiency makes it vulnerable to sudden market shifts, posing a risk of disrupting the calculations.

2. Factor Investing 

This strategy identifies and invests in assets based on factors like value, momentum, or quality. By analyzing these factors in quantitative databases , investors can construct portfolios designed to outperform the broader market. Overall, this method offers diversification and potentially higher returns than passive investing, but its success relies on the historical validity of these factors, which can evolve over time.

3. Risk Parity

This approach prioritizes portfolio balance above all else. Instead of allocating assets based on their market value, risk parity distributes them based on their risk contribution to achieve a desired level of overall portfolio risk, regardless of individual asset volatility. Although it is efficient in managing risks while potentially offering positive returns, it is important to note that this strategy’s complex calculations can be sensitive to unexpected market events.

4. Machine Learning & Artificial Intelligence (AI)

Quant analysts are beginning to incorporate these cutting-edge technologies into their strategies. Machine learning algorithms can act as data sifters, identifying complex patterns within massive datasets; whereas AI goes a step further, leveraging these insights to make investment decisions, essentially mimicking human-like decision-making with added adaptability. Despite the hefty development and implementation costs, its superior risk-adjusted returns and uncovering hidden patterns make this strategy a valuable asset.

Pros and Cons of Quantitative Data Analysis

Advantages of quantitative data analysis, minimum bias for reliable results.

Quantitative data analysis relies on objective, numerical data. This minimizes bias and human error, allowing stakeholders to make investment decisions without emotional intuitions that can cloud judgment. In turn, this offers reliable and consistent results for investment strategies.

Precise Calculations for Data-Driven Decisions

Quantitative analysis generates precise numerical results through statistical methods. This allows accurate comparisons between investment options and even predictions of future market behavior, helping investors make informed decisions about where to allocate their capital while managing potential risks.

Generalizability for Broader Insights 

By analyzing large datasets and identifying patterns, stakeholders can generalize the findings from quantitative analysis into broader populations, applying them to a wider range of investments for better portfolio construction and risk management

Efficiency for Extensive Research

Quantitative research is more suited to analyze large datasets efficiently, letting companies save valuable time and resources. The softwares used for quantitative analysis can automate the process of sifting through extensive financial data, facilitating quicker decision-making in the fast-paced financial environment.

Disadvantages of Quantitative Data Analysis

Limited scope .

By focusing on numerical data, quantitative analysis may provide a limited scope, as it can’t capture qualitative context such as emotions, motivations, or cultural factors. Although quantitative analysis provides a strong starting point, neglecting qualitative factors can lead to incomplete insights in the financial industry, impacting areas like customer relationship management and targeted marketing strategies.

Oversimplification 

Breaking down complex phenomena into numerical data could cause analysts to overlook the richness of the data, leading to the issue of oversimplification. Stakeholders who fail to understand the complexity of economic factors or market trends could face flawed investment decisions and missed opportunities.

Reliable Quantitative Data Solution 

In conclusion, quantitative data analysis offers a deeper insight into market trends and patterns, empowering you to make well-informed financial decisions. However, collecting comprehensive data and analyzing them can be a complex task that may divert resources from core investment activity. 

As a reliable provider, TEJ understands these concerns. Our TEJ Quantitative Investment Database offers high-quality financial and economic data for rigorous quantitative analysis. This data captures the true market conditions at specific points in time, enabling accurate backtesting of investment strategies.

Furthermore, TEJ offers diverse data sets that go beyond basic stock prices, encompassing various financial metrics, company risk attributes, and even broker trading information, all designed to empower your analysis and strategy development. Save resources and unlock the full potential of quantitative finance with TEJ’s data solutions today!

descriptive quantitative research adalah

Subscribe to newsletter

  • Data Analysis 107
  • Market Research 48
  • TQuant Lab 25
  • Solution&DataSets
  • Privacy Policy Statement
  • Personal Data Policy
  • Copyright Information
  • Website licensing terms
  • Information Security Policy 

descriptive quantitative research adalah

  • 11th Floor, No. 57, DongXing Road, Taipei 11070, Taiwan(R.O.C.)
  • +886-2-8768-1088
  • +886-2-8768-1336
  • [email protected]

IMAGES

  1. Types of Descriptive Research: Methods and Examples

    descriptive quantitative research adalah

  2. Types of Quantitative Research

    descriptive quantitative research adalah

  3. Types of Descriptive Research: Methods and Examples

    descriptive quantitative research adalah

  4. FREE 9+ Quantitative Research Samples & Templates in MS Word

    descriptive quantitative research adalah

  5. Accounting Nest

    descriptive quantitative research adalah

  6. Descriptive Research

    descriptive quantitative research adalah

VIDEO

  1. Descriptive Quantitative Data Analysis (Part 2) (Urdu/Hindi)

  2. Descriptive Quantitative Data Analysis Part 4 (Urdu/Hindi)

  3. Descriptive Quantitative Data Analysis Part 6 in Urdu/Hindi

  4. Descriptive Analytics For Univariate Quantitative Data by Dr. A

  5. Quantitative Descriptive

  6. Descriptive Quantitative Data Analysis Part 7 in Urdu/Hindi

COMMENTS

  1. Metode Penelitian Deskriptif: Pengertian, Langkah & Macam

    Penelitian deskriptif adalah suatu bentuk penelitian yang ditujukan untuk mendeskripsikan fenomena-fenomena yang ada, baik fenomena alamiah maupun fenomena buatan manusia yang bisa mencakup aktivitas, karakteristik, perubahan, hubungan, kesamaan, dan perbedaan antara fenomena yang satu dengan fenomena lainnya (Sukmadinata, 2017, hlm. 72).

  2. Descriptive Research

    Descriptive research methods. Descriptive research is usually defined as a type of quantitative research, though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable.. Surveys. Survey research allows you to gather large volumes of data that can be analyzed for frequencies, averages ...

  3. Quantitative Research

    Quantitative Research. Riset atau penelitian berasal dari Bahasa inggris "Research" re yang artinya kembali dan search artinya mencari sehingga bila di gabungkan arti kata research sendiri ialah mencari kembali. Quantitative research adalah jenis penelitian yang dilakukan dengan mengumpulkan data dalam bentuk numerik; dapat dilakukan dengan ...

  4. PDF Chapter III Research Method

    Research design is used to analyze and identify the subject of this study. In order to make the research going in the right way, a research design is needed. The design of this research is descriptive quantitative method because the data is presented in numerical and descriptive form. According to Sugiyono (2012: 13)

  5. Descriptive Research: Characteristics, Methods + Examples

    Descriptive research is a research method describing the characteristics of the population or phenomenon studied. This descriptive methodology focuses more on the "what" of the research subject than the "why" of the research subject. The method primarily focuses on describing the nature of a demographic segment without focusing on ...

  6. Descriptive Research Design

    As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies. Design your study: Plan the details of your study, including the sampling strategy, data collection methods, and data analysis plan.

  7. Descriptive and Analytical Research: What's the Difference?

    Descriptive research classifies, describes, compares, and measures data. Meanwhile, analytical research focuses on cause and effect. For example, take numbers on the changing trade deficits between the United States and the rest of the world in 2015-2018. This is descriptive research.

  8. 18 Descriptive Research Examples

    Benefits of Descriptive Research: Limitations of Descriptive Research: Rich Data: Provides a comprehensive and detailed profile of the subject or issue through rich data, offering a thorough understanding (Gresham, 2016). Lack of Control: Cannot control variables or external factors, potentially influencing the accuracy and reliability of the data. Basis for Further Research: Helps to identify ...

  9. Survey Descriptive Research: Design & Examples

    The descriptive survey research design uses both quantitative and qualitative research methods. It is used primarily to conduct quantitative research and gather data that is statistically easy to analyze. However, it can also provide qualitative data that helps describe and understand the research subject. 2.

  10. What is descriptive research?

    As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses. This can be reported using surveys, observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

  11. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  12. What Is Descriptive Statistics: Full Explainer With Examples

    Descriptive statistics, although relatively simple, are a critically important part of any quantitative data analysis. Measures of central tendency include the mean (average), median and mode. Skewness indicates whether a dataset leans to one side or another. Measures of dispersion include the range, variance and standard deviation.

  13. Descriptive research: What it is and how to use it

    Descriptive research design. Descriptive research design uses a range of both qualitative research and quantitative data (although quantitative research is the primary research method) to gather information to make accurate predictions about a particular problem or hypothesis. As a survey method, descriptive research designs will help ...

  14. Descriptive Statistics

    Descriptive statistics summarize and organize characteristics of a data set. A data set is a collection of responses or observations from a sample or entire population. In quantitative research, after collecting data, the first step of statistical analysis is to describe characteristics of the responses, ...

  15. Survey Research: Definition, Types & Methods

    Descriptive research is the most common and conclusive form of survey research due to its quantitative nature. Unlike exploratory research methods, descriptive research utilizes pre-planned, structured surveys with closed-ended questions. It's also deductive, meaning that the survey structure and questions are determined beforehand based on existing theories or areas of inquiry.

  16. Quantitative Descriptive Analysis

    The research combined quantitative descriptive analysis (QDA) trained panel (n = 10) and consumer acceptance testing (n = 106) to better identify the sensory characteristics that were particularly ...

  17. Conducting and Writing Quantitative and Qualitative Research

    INTRODUCTION. Novel research studies are conceptualized by scientific researchers first by asking excellent research questions and developing hypotheses, then answering these questions by testing their hypotheses in ethical research.1,2,3 Before they conduct novel research studies, scientific researchers must possess considerable knowledge of both quantitative and qualitative research.2

  18. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  19. Descriptive Analytics

    Descriptive Analytics. Definition: Descriptive analytics focused on describing or summarizing raw data and making it interpretable. This type of analytics provides insight into what has happened in the past. It involves the analysis of historical data to identify patterns, trends, and insights. Descriptive analytics often uses visualization ...

  20. Descriptive Analysis: What It Is + Best Research Tips

    Descriptive analysis is a sort of data research that aids in describing, demonstrating, or helpfully summarizing data points so those patterns may develop that satisfy all of the conditions of the data. It is the technique of identifying patterns and links by utilizing recent and historical data. Because it identifies patterns and associations ...

  21. Quantitative Data Analysis Guide: Methods, Examples & Uses

    An Overview of Quantitative Data Analysis What is Quantitative Data Analysis and What is It For? Quantitative data analysis is the process of interpreting meaning and extracting insights from numerical data, which involves mathematical calculations and statistical reviews to uncover patterns, trends, and relationships between variables.. Beyond academic and statistical research, this approach ...

  22. PDF CHAPTER III METHOD OF THE RESEARCH A. Research Design

    A. Research Design The design of this research is descriptive quantitative research. Descriptive research is also called as survey research that collected numerical data to answer question about the correct status of the subject of the study. According to Gay (2012, p. 183) stated that descriptive research is a survey research.

  23. PDF CHAPTER III RESEARCH METHOD

    To support qualitative research, the use of hedging in skripsi-s was depicted comprehensively in statistical display. This study is followed by discursive analysis derived from discourse analysis above in form of narrow scope of survey. Quantitative analysis in survey design by showing descriptive analysis

  24. Quantitative Descriptive Analysis

    Developed by Tragon Corporation in 1974, Quantitative Descriptive Analysis (QDA) is a behavioral sensory evaluation approach that uses descriptive panels to measure a product's sensory characteristics. Panel members use their senses to identify perceived similarities and differences in products, and articulate those perceptions in their own words.