Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Control Group Definition and Examples

Control Group in an Experiment

The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study. A controlled experiment is one which includes one or more control groups.

  • The experimental group experiences a treatment or change in the independent variable. In contrast, the independent variable is constant in the control group.
  • A control group is important because it allows meaningful comparison. The researcher compares the experimental group to it to assess whether or not there is a relationship between the independent and dependent variable and the magnitude of the effect.
  • There are different types of control groups. A controlled experiment has one more control group.

Control Group vs Experimental Group

The only difference between the control group and experimental group is that subjects in the experimental group receive the treatment being studied, while participants in the control group do not. Otherwise, all other variables between the two groups are the same.

Control Group vs Control Variable

A control group is not the same thing as a control variable. A control variable or controlled variable is any factor that is held constant during an experiment. Examples of common control variables include temperature, duration, and sample size. The control variables are the same for both the control and experimental groups.

Types of Control Groups

There are different types of control groups:

  • Placebo group : A placebo group receives a placebo , which is a fake treatment that resembles the treatment in every respect except for the active ingredient. Both the placebo and treatment may contain inactive ingredients that produce side effects. Without a placebo group, these effects might be attributed to the treatment.
  • Positive control group : A positive control group has conditions that guarantee a positive test result. The positive control group demonstrates an experiment is capable of producing a positive result. Positive controls help researchers identify problems with an experiment.
  • Negative control group : A negative control group consists of subjects that are not exposed to a treatment. For example, in an experiment looking at the effect of fertilizer on plant growth, the negative control group receives no fertilizer.
  • Natural control group : A natural control group usually is a set of subjects who naturally differ from the experimental group. For example, if you compare the effects of a treatment on women who have had children, the natural control group includes women who have not had children. Non-smokers are a natural control group in comparison to smokers.
  • Randomized control group : The subjects in a randomized control group are randomly selected from a larger pool of subjects. Often, subjects are randomly assigned to either the control or experimental group. Randomization reduces bias in an experiment. There are different methods of randomly assigning test subjects.

Control Group Examples

Here are some examples of different control groups in action:

Negative Control and Placebo Group

For example, consider a study of a new cancer drug. The experimental group receives the drug. The placebo group receives a placebo, which contains the same ingredients as the drug formulation, minus the active ingredient. The negative control group receives no treatment. The reason for including the negative group is because the placebo group experiences some level of placebo effect, which is a response to experiencing some form of false treatment.

Positive and Negative Controls

For example, consider an experiment looking at whether a new drug kills bacteria. The experimental group exposes bacterial cultures to the drug. If the group survives, the drug is ineffective. If the group dies, the drug is effective.

The positive control group has a culture of bacteria that carry a drug resistance gene. If the bacteria survive drug exposure (as intended), then it shows the growth medium and conditions allow bacterial growth. If the positive control group dies, it indicates a problem with the experimental conditions. A negative control group of bacteria lacking drug resistance should die. If the negative control group survives, something is wrong with the experimental conditions.

  • Bailey, R. A. (2008).  Design of Comparative Experiments . Cambridge University Press. ISBN 978-0-521-68357-9.
  • Chaplin, S. (2006). “The placebo response: an important part of treatment”.  Prescriber . 17 (5): 16–22. doi: 10.1002/psb.344
  • Hinkelmann, Klaus; Kempthorne, Oscar (2008).  Design and Analysis of Experiments, Volume I: Introduction to Experimental Design  (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
  • Pithon, M.M. (2013). “Importance of the control group in scientific research.” Dental Press J Orthod . 18 (6):13-14. doi: 10.1590/s2176-94512013000600003
  • Stigler, Stephen M. (1992). “A Historical View of Statistical Concepts in Psychology and Educational Research”. American Journal of Education . 101 (1): 60–70. doi: 10.1086/444032

Related Posts

Controlled Experiment

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

This is when a hypothesis is scientifically tested.

In a controlled experiment, an independent variable (the cause) is systematically manipulated, and the dependent variable (the effect) is measured; any extraneous variables are controlled.

The researcher can operationalize (i.e., define) the studied variables so they can be objectively measured. The quantitative data can be analyzed to see if there is a difference between the experimental and control groups.

controlled experiment cause and effect

What is the control group?

In experiments scientists compare a control group and an experimental group that are identical in all respects, except for one difference – experimental manipulation.

Unlike the experimental group, the control group is not exposed to the independent variable under investigation and so provides a baseline against which any changes in the experimental group can be compared.

Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.

Randomly allocating participants to independent variable groups means that all participants should have an equal chance of participating in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

control group experimental group

What are extraneous variables?

The researcher wants to ensure that the manipulation of the independent variable has changed the changes in the dependent variable.

Hence, all the other variables that could affect the dependent variable to change must be controlled. These other variables are called extraneous or confounding variables.

Extraneous variables should be controlled were possible, as they might be important enough to provide alternative explanations for the effects.

controlled experiment extraneous variables

In practice, it would be difficult to control all the variables in a child’s educational achievement. For example, it would be difficult to control variables that have happened in the past.

A researcher can only control the current environment of participants, such as time of day and noise levels.

controlled experiment variables

Why conduct controlled experiments?

Scientists use controlled experiments because they allow for precise control of extraneous and independent variables. This allows a cause-and-effect relationship to be established.

Controlled experiments also follow a standardized step-by-step procedure. This makes it easy for another researcher to replicate the study.

Key Terminology

Experimental group.

The group being treated or otherwise manipulated for the sake of the experiment.

Control Group

They receive no treatment and are used as a comparison group.

Ecological validity

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) – is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables that are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of participating in each condition.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

What is the control in an experiment?

In an experiment , the control is a standard or baseline group not exposed to the experimental treatment or manipulation. It serves as a comparison group to the experimental group, which does receive the treatment or manipulation.

The control group helps to account for other variables that might influence the outcome, allowing researchers to attribute differences in results more confidently to the experimental treatment.

Establishing a cause-and-effect relationship between the manipulated variable (independent variable) and the outcome (dependent variable) is critical in establishing a cause-and-effect relationship between the manipulated variable.

What is the purpose of controlling the environment when testing a hypothesis?

Controlling the environment when testing a hypothesis aims to eliminate or minimize the influence of extraneous variables. These variables other than the independent variable might affect the dependent variable, potentially confounding the results.

By controlling the environment, researchers can ensure that any observed changes in the dependent variable are likely due to the manipulation of the independent variable, not other factors.

This enhances the experiment’s validity, allowing for more accurate conclusions about cause-and-effect relationships.

It also improves the experiment’s replicability, meaning other researchers can repeat the experiment under the same conditions to verify the results.

Why are hypotheses important to controlled experiments?

Hypotheses are crucial to controlled experiments because they provide a clear focus and direction for the research. A hypothesis is a testable prediction about the relationship between variables.

It guides the design of the experiment, including what variables to manipulate (independent variables) and what outcomes to measure (dependent variables).

The experiment is then conducted to test the validity of the hypothesis. If the results align with the hypothesis, they provide evidence supporting it.

The hypothesis may be revised or rejected if the results do not align. Thus, hypotheses are central to the scientific method, driving the iterative inquiry, experimentation, and knowledge advancement process.

What is the experimental method?

The experimental method is a systematic approach in scientific research where an independent variable is manipulated to observe its effect on a dependent variable, under controlled conditions.

Print Friendly, PDF & Email

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Control Group?

Control Groups vs. Experimental Groups in Psychology Research

Doug Corrance/The Image Bank/Getty Images

Control Group vs. Experimental Group

Types of control groups.

In simple terms, the control group comprises participants who do not receive the experimental treatment. When conducting an experiment, these people are randomly assigned to this group. They also closely resemble the participants who are in the experimental group or the individuals who receive the treatment.

Experimenters utilize variables to make comparisons between an experimental group and a control group. A variable is something that researchers can manipulate, measure, and control in an experiment. The independent variable is the aspect of the experiment that the researchers manipulate (or the treatment). The dependent variable is what the researchers measure to see if the independent variable had an effect.

While they do not receive the treatment, the control group does play a vital role in the research process. Experimenters compare the experimental group to the control group to determine if the treatment had an effect.

By serving as a comparison group, researchers can isolate the independent variable and look at the impact it had.

The simplest way to determine the difference between a control group and an experimental group is to determine which group receives the treatment and which does not. To ensure that the results can then be compared accurately, the two groups should be otherwise identical.

Not exposed to the treatment (the independent variable)

Used to provide a baseline to compare results against

May receive a placebo treatment

Exposed to the treatment

Used to measure the effects of the independent variable

Identical to the control group aside from their exposure to the treatment

Why a Control Group Is Important

While the control group does not receive treatment, it does play a critical role in the experimental process. This group serves as a benchmark, allowing researchers to compare the experimental group to the control group to see what sort of impact changes to the independent variable produced.  

Because participants have been randomly assigned to either the control group or the experimental group, it can be assumed that the groups are comparable.

Any differences between the two groups are, therefore, the result of the manipulations of the independent variable. The experimenters carry out the exact same procedures with both groups with the exception of the manipulation of the independent variable in the experimental group.

There are a number of different types of control groups that might be utilized in psychology research. Some of these include:

  • Positive control groups : In this case, researchers already know that a treatment is effective but want to learn more about the impact of variations of the treatment. In this case, the control group receives the treatment that is known to work, while the experimental group receives the variation so that researchers can learn more about how it performs and compares to the control.
  • Negative control group : In this type of control group, the participants are not given a treatment. The experimental group can then be compared to the group that did not experience any change or results.
  • Placebo control group : This type of control group receives a placebo treatment that they believe will have an effect. This control group allows researchers to examine the impact of the placebo effect and how the experimental treatment compared to the placebo treatment.
  • Randomized control group : This type of control group involves using random selection to help ensure that the participants in the control group accurately reflect the demographics of the larger population.
  • Natural control group : This type of control group is naturally selected, often by situational factors. For example, researchers might compare people who have experienced trauma due to war to people who have not experienced war. The people who have not experienced war-related trauma would be the control group.

Examples of Control Groups

Control groups can be used in a variety of situations. For example, imagine a study in which researchers example how distractions during an exam influence test results. The control group would take an exam in a setting with no distractions, while the experimental groups would be exposed to different distractions. The results of the exam would then be compared to see the effects that distractions had on test scores.

Experiments that look at the effects of medications on certain conditions are also examples of how a control group can be used in research. For example, researchers looking at the effectiveness of a new antidepressant might use a control group that receives a placebo and an experimental group that receives the new medication. At the end of the study, researchers would compare measures of depression for both groups to determine what impact the new medication had.

After the experiment is complete, researchers can then look at the test results and start making comparisons between the control group and the experimental group.

Uses for Control Groups

Researchers utilize control groups to conduct research in a range of different fields. Some common uses include:

  • Psychology : Researchers utilize control groups to learn more about mental health, behaviors, and treatments.
  • Medicine : Control groups can be used to learn more about certain health conditions, assess how well medications work to treat these conditions, and assess potential side effects that may result.
  • Education : Educational researchers utilize control groups to learn more about how different curriculums, programs, or instructional methods impact student outcomes.
  • Marketing : Researchers utilize control groups to learn more about how consumers respond to advertising and marketing efforts.

Malay S, Chung KC. The choice of controls for providing validity and evidence in clinical research . Plast Reconstr Surg. 2012 Oct;130(4):959-965. doi:10.1097/PRS.0b013e318262f4c8

National Cancer Institute. Control group.

Pithon MM. Importance of the control group in scientific research . Dental Press J Orthod. 2013;18(6):13-14. doi:10.1590/s2176-94512013000600003

Karlsson P, Bergmark A. Compared with what? An analysis of control-group types in Cochrane and Campbell reviews of psychosocial treatment efficacy with substance use disorders . Addiction . 2015;110(3):420-8. doi:10.1111/add.12799

Myers A, Hansen C. Experimental Psychology . Belmont, CA: Cengage Learning; 2012.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

control vs experimental treatment

Understanding Control Groups for Research

control vs experimental treatment

Introduction

What are control groups in research, examples of control groups in research, control group vs. experimental group, types of control groups, control groups in non-experimental research.

A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other.

The experimental group receives some sort of treatment, and their results are compared against those of the control group, which is not given the treatment. This is important to determine whether there is an identifiable causal relationship between the treatment and the resulting effects.

As intuitive as this may sound, there is an entire methodology that is useful to understanding the role of the control group in experimental research and as part of a broader concept in research. This article will examine the particulars of that methodology so you can design your research more rigorously .

control vs experimental treatment

Suppose that a friend or colleague of yours has a headache. You give them some over-the-counter medicine to relieve some of the pain. Shortly after they take the medicine, the pain is gone and they feel better. In casual settings, we can assume that it must be the medicine that was the cause of their headache going away.

In scientific research, however, we don't really know if the medicine made a difference or if the headache would have gone away on its own. Maybe in the time it took for the headache to go away, they ate or drank something that might have had an effect. Perhaps they had a quick nap that helped relieve the tension from the headache. Without rigorously exploring this phenomenon , any number of confounding factors exist that can make us question the actual efficacy of any particular treatment.

Experimental research relies on observing differences between the two groups by "controlling" the independent variable , or in the case of our example above, the medicine that is given or not given depending on the group. The dependent variable in this case is the change in how the person suffering the headache feels, and the difference between taking and not taking the medicine is evidence (or lack thereof) that the treatment is effective.

The catch is that, between the control group and other groups (typically called experimental groups), it's important to ensure that all other factors are the same or at least as similar as possible. Things such as age, fitness level, and even occupation can affect the likelihood someone has a headache and whether a certain medication is effective.

Faced with this dynamic, researchers try to make sure that participants in their control group and experimental group are as similar as possible to each other, with the only difference being the treatment they receive.

Experimental research is often associated with scientists in lab coats holding beakers containing liquids with funny colors. Clinical trials that deal with medical treatments rely primarily, if not exclusively, on experimental research designs involving comparisons between control and experimental groups.

However, many studies in the social sciences also employ some sort of experimental design which calls for the use of control groups. This type of research is useful when researchers are trying to confirm or challenge an existing notion or measure the difference in effects.

Workplace efficiency research

How might a company know if an employee training program is effective? They may decide to pilot the program to a small group of their employees before they implement the training to their entire workforce.

If they adopt an experimental design, they could compare results between an experimental group of workers who participate in the training program against a control group who continues as per usual without any additional training.

control vs experimental treatment

Qualitative data analysis starts with ATLAS.ti

Turn data into rich insights with our powerful data analysis software. Get started with a free trial.

Mental health research

Music certainly has profound effects on psychology, but what kind of music would be most effective for concentration? Here, a researcher might be interested in having participants in a control group perform a series of tasks in an environment with no background music, and participants in multiple experimental groups perform those same tasks with background music of different genres. The subsequent analysis could determine how well people perform with classical music, jazz music, or no music at all in the background.

Educational research

Suppose that you want to improve reading ability among elementary school students, and there is research on a particular teaching method that is associated with facilitating reading comprehension. How do you measure the effects of that teaching method?

A study could be conducted on two groups of otherwise equally proficient students to measure the difference in test scores. The teacher delivers the same instruction to the control group as they have to previous students, but they teach the experimental group using the new technique. A reading test after a certain amount of instruction could determine the extent of effectiveness of the new teaching method.

control vs experimental treatment

As you can see from the three examples above, experimental groups are the counterbalance to control groups. A control group offers an essential point of comparison. For an experimental study to be considered credible, it must establish a baseline against which novel research is conducted.

Researchers can determine the makeup of their experimental and control groups from their literature review . Remember that the objective of a review is to establish what is known about the object of inquiry and what is not known. Where experimental groups explore the unknown aspects of scientific knowledge, a control group is a sort of simulation of what would happen if the treatment or intervention was not administered. As a result, it will benefit researchers to have a foundational knowledge of the existing research to create a credible control group against which experimental results are compared, especially in terms of remaining sensitive to relevant participant characteristics that could confound the effects of your treatment or intervention so that you can appropriately distribute participants between the experimental and control groups.

There are multiple control groups to consider depending on the study you are looking to conduct. All of them are variations of the basic control group used to establish a baseline for experimental conditions.

No-treatment control group

This kind of control group is common when trying to establish the effects of an experimental treatment against the absence of treatment. This is arguably the most straightforward approach to an experimental design as it aims to directly demonstrate how a certain change in conditions produces an effect.

Placebo control group

In this case, the control group receives some sort of treatment under the exact same procedures as those in the experimental group. The only difference in this case is that the treatment in the placebo control group has already been judged to be ineffective, except that the research participants don't know that it is ineffective.

Placebo control groups (or negative control groups) are useful for allowing researchers to account for any psychological or affective factors that might impact the outcomes. The negative control group exists to explicitly eliminate factors other than changes in the independent variable conditions as causes of the effects experienced in the experimental group.

Positive control group

Contrasted with a no-treatment control group, a positive control group employs a treatment against which the treatment in the experimental group is compared. However, unlike in a placebo group, participants in a positive control group receive treatment that is known to have an effect.

If we were to use our first example of headache medicine, a researcher could compare results between medication that is commonly known as effective against the newer medication that the researcher thinks is more effective. Positive control groups are useful for validating experimental results when compared against familiar results.

Historical control group

Rather than study participants in control group conditions, researchers may employ existing data to create historical control groups. This form of control group is useful for examining changing conditions over time, particularly when incorporating past conditions that can't be replicated in the analysis.

Qualitative research more often relies on non-experimental research such as observations and interviews to examine phenomena in their natural environments. This sort of research is more suited for inductive and exploratory inquiries, not confirmatory studies meant to test or measure a phenomenon.

That said, the broader concept of a control group is still present in observational and interview research in the form of a comparison group. Comparison groups are used in qualitative research designs to show differences between phenomena, with the exception being that there is no baseline against which data is analyzed.

Comparison groups are useful when an experimental environment cannot produce results that would be applicable to real-world conditions. Research inquiries examining the social world face challenges of having too many variables to control, making observations and interviews across comparable groups more appropriate for data collection than clinical or sterile environments.

control vs experimental treatment

Analyze data and generate rich results with ATLAS.ti

Try out a free trial of ATLAS.ti to see how you can make the most of your qualitative data.

control vs experimental treatment

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Control Group in an Experiment

By Jim Frost 3 Comments

A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.

Scientist performing an experiment that has a control group.

Imagine that a treatment group receives a vaccine and it has an infection rate of 10%. By itself, you don’t know if that’s an improvement. However, if you also have an unvaccinated control group with an infection rate of 20%, you know the vaccine improved the outcome by 10 percentage points.

By serving as a basis for comparison, the control group reveals the treatment’s effect.

Related post : Effect Sizes in Statistics

Using Control Groups in Experiments

Most experiments include a control group and at least one treatment group. In an ideal experiment, the subjects in all groups start with the same overall characteristics except that those in the treatment groups receive a treatment. When the groups are otherwise equivalent before treatment begins, you can attribute differences after the experiment to the treatments.

Randomized controlled trials (RCTs) assign subjects to the treatment and control groups randomly. This process helps ensure the groups are comparable when treatment begins. Consequently, treatment effects are the most likely cause for differences between groups at the end of the study. Statisticians consider RCTs to be the gold standard. To learn more about this process, read my post, Random Assignment in Experiments .

Observational studies either can’t use randomized groups or don’t use them because they’re too costly or problematic. In these studies, the characteristics of the control group might be different from the treatment groups at the start of the study, making it difficult to estimate the treatment effect accurately at the end. Case-Control studies are a specific type of observational study that uses a control group.

For these types of studies, analytical methods and design choices, such as regression analysis and matching, can help statistically mitigate confounding variables. Matching involves selecting participants with similar characteristics. For each participant in the treatment group, the researchers find a subject with comparable traits to include in the control group. To learn more about this type of study and matching, read my post, Observational Studies Explained .

Control groups are key way to increase the internal validity of an experiment. To learn more, read my post about internal and external validity .

Randomized versus non-randomized control groups are just several of the different types you can have. We’ll look at more kinds later!

Related posts : When to Use Regression Analysis

Example of a Control Group

Suppose we want to determine whether regular vitamin consumption affects the risk of dying. Our experiment has the following two experimental groups:

  • Control group : Does not consume vitamin supplements
  • Treatment group : Regularly consumes vitamin supplements.

In this experiment, we randomly assign subjects to the two groups. Because we use random assignment, the two groups start with similar characteristics, including healthy habits, physical attributes, medical conditions, and other factors affecting the outcome. The intentional introduction of vitamin supplements in the treatment group is the only systematic difference between the groups.

After the experiment is complete, we compare the death risk between the treatment and control groups. Because the groups started roughly equal, we can reasonably attribute differences in death risk at the end of the study to vitamin consumption. By having the control group as the basis of comparison, the effect of vitamin consumption becomes clear!

Types of Control Groups

Researchers can use different types of control groups in their experiments. Earlier, you learned about the random versus non-random kinds, but there are other variations. You can use various types depending on your research goals, constraints, and ethical issues, among other things.

Negative Control Group

The group introduces a condition that the researchers expect won’t have an effect. This group typically receives no treatment. These experiments compare the effectiveness of the experimental treatment to no treatment. For example, in a vaccine study, a negative control group does not get the vaccine.

Positive Control Group

Positive control groups typically receive a standard treatment that science has already proven effective. These groups serve as a benchmark for the performance of a conventional treatment. In this vein, experiments with positive control groups compare the effectiveness of a new treatment to a standard one.

For example, an old blood pressure medicine can be the treatment in a positive control group, while the treatment group receives the new, experimental blood pressure medicine. The researchers want to determine whether the new treatment is better than the previous treatment.

In these studies, subjects can still take the standard medication for their condition, a potentially critical ethics issue.

Placebo Control Group

Placebo control groups introduce a treatment lookalike that will not affect the outcome. Standard examples of placebos are sugar pills and saline solution injections instead of genuine medicine. The key is that the placebo looks like the actual treatment. Researchers use this approach when the recipients’ belief that they’re receiving the treatment might influence their outcomes. By using placebos, the experiment controls for these psychological benefits. The researchers want to determine whether the treatment performs better than the placebo effect.

Learn more about the Placebo Effect .

Blinded Control Groups

If the subject’s awareness of their group assignment might affect their outcomes, the researchers can use a blinded experimental design that does not tell participants their group membership. Typically, blinded control groups will receive placebos, as described above. In a double-blinded control group, both subjects and researchers don’t know group assignments.

Waitlist Control Group

When there is a waitlist to receive a new treatment, those on the waitlist can serve as a control group until they receive treatment. This type of design avoids ethical concerns about withholding a better treatment until the study finishes. This design can be a variation of a positive control group because the subjects might be using conventional medicines while on the waitlist.

Historical Control Group

When historical data for a comparison group exists, it can serve as a control group for an experiment. The group doesn’t exist in the study, but the researchers compare the treatment group to the existing data. For example, the researchers might have infection rate data for unvaccinated individuals to compare to the infection rate among the vaccinated participants in their study. This approach allows everyone in the experiment to receive the new treatment. However, differences in place, time, and other circumstances can reduce the value of these comparisons. In other words, other factors might account for the apparent effects.

Share this:

control vs experimental treatment

Reader Interactions

' src=

December 19, 2021 at 9:17 am

Thank you very much Jim for your quick and comprehensive feedback. Extremely helpful!! Regards, Arthur

' src=

December 17, 2021 at 4:46 pm

Thank you very much Jim, very interesting article.

Can I select a control group at the end of intervention/experiment? Currently I am managing a project in rural Cambodia in five villages, however I did not select any comparison/control site at the beginning. Since I know there are other villages which have not been exposed to any type of intervention, can i select them as a control site during my end-line data collection or it will not be a legitimate control? Thank you very much, Arthur

' src=

December 18, 2021 at 1:51 am

You might be able to use that approach, but it’s not ideal. The ideal is to have control groups defined at the beginning of the study. You can use the untreated villages as a type of historical control groups that I talk about in this article. Or, if they’re awaiting to receive the intervention, it might be akin to a waitlist control group.

If you go that route, you’ll need to consider whether there was some systematic reason why these villages have not received any intervention. For example, are the villages in question more remote? And, if there is a systematic reason, would that affect your outcome variable? More generally, are they systematically different? How well do the untreated villages represent your target population?

If you had selected control villages at the beginning, you’d have been better able to ensure there weren’t any systematic differences between the villages receiving interventions and those that didn’t.

If the villages that didn’t receive any interventions are systematically different, you’ll need to incorporate that into your interpretation of the results. Are they different in ways that affect the outcomes you’re measuring? Can those differences account for the difference in outcomes between the treated and untreated villages? Hopefully, you’d be able to measure those differences between untreated/treated villages.

So, yes, you can use that approach. It’s not perfect and there will potentially be more things for you to consider and factor into your conclusions. Despite these drawbacks, it’s possible that using a pseudo control group like that is better than not doing that because at least you can make comparisons to something. Otherwise, you won’t know whether the outcomes in the intervention villages represent an improvement! Just be aware of the extra considerations!

Best of luck with your research!

Comments and Questions Cancel reply

Frequently asked questions

What’s the difference between a control group and an experimental group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Frequently asked questions: Methodology

Quantitative observations involve measuring or counting something and expressing the result in numerical form, while qualitative observations involve describing something in non-numerical terms, such as its appearance, texture, or color.

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Inclusion and exclusion criteria are predominantly used in non-probability sampling . In purposive sampling and snowball sampling , restrictions apply as to who can be included in the sample .

Inclusion and exclusion criteria are typically presented and discussed in the methodology section of your thesis or dissertation .

The purpose of theory-testing mode is to find evidence in order to disprove, refine, or support a theory. As such, generalisability is not the aim of theory-testing mode.

Due to this, the priority of researchers in theory-testing mode is to eliminate alternative causes for relationships between variables . In other words, they prioritise internal validity over external validity , including ecological validity .

Convergent validity shows how much a measure of one construct aligns with other measures of the same or related constructs .

On the other hand, concurrent validity is about how a measure matches up to some known criterion or gold standard, which can be another measure.

Although both types of validity are established by calculating the association or correlation between a test score and another variable , they represent distinct validation methods.

Validity tells you how accurately a method measures what it was designed to measure. There are 4 main types of validity :

  • Construct validity : Does the test measure the construct it was designed to measure?
  • Face validity : Does the test appear to be suitable for its objectives ?
  • Content validity : Does the test cover all relevant parts of the construct it aims to measure.
  • Criterion validity : Do the results accurately measure the concrete outcome they are designed to measure?

Criterion validity evaluates how well a test measures the outcome it was designed to measure. An outcome can be, for example, the onset of a disease.

Criterion validity consists of two subtypes depending on the time at which the two measures (the criterion and your test) are obtained:

  • Concurrent validity is a validation strategy where the the scores of a test and the criterion are obtained at the same time
  • Predictive validity is a validation strategy where the criterion variables are measured after the scores of the test

Attrition refers to participants leaving a study. It always happens to some extent – for example, in randomised control trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analysing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Construct validity refers to how well a test measures the concept (or construct) it was designed to measure. Assessing construct validity is especially important when you’re researching concepts that can’t be quantified and/or are intangible, like introversion. To ensure construct validity your test should be based on known indicators of introversion ( operationalisation ).

On the other hand, content validity assesses how well the test represents all aspects of the construct. If some aspects are missing or irrelevant parts are included, the test has low content validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Construct validity has convergent and discriminant subtypes. They assist determine if a test measures the intended notion.

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.
  • Reproducing research entails reanalysing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalisations – often the goal of quantitative research . As such, a snowball sample is not representative of the target population, and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones. 

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extra-marital affairs)

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection , using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

When your population is large in size, geographically dispersed, or difficult to contact, it’s necessary to use a sampling method .

This allows you to gather information from a smaller part of the population, i.e. the sample, and make accurate statements by using statistical analysis. A few sampling methods include simple random sampling , convenience sampling , and snowball sampling .

The two main types of social desirability bias are:

  • Self-deceptive enhancement (self-deception): The tendency to see oneself in a favorable light without realizing it.
  • Impression managemen t (other-deception): The tendency to inflate one’s abilities or achievement in order to make a good impression on other people.

Response bias refers to conditions or factors that take place during the process of responding to surveys, affecting the responses. One type of response bias is social desirability bias .

Demand characteristics are aspects of experiments that may give away the research objective to participants. Social desirability bias occurs when participants automatically try to respond in ways that make them seem likeable in a study, even if it means misrepresenting how they truly feel.

Participants may use demand characteristics to infer social norms or experimenter expectancies and act in socially desirable ways, so you should try to control for demand characteristics wherever possible.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Peer review is a process of evaluating submissions to an academic journal. Utilising rigorous criteria, a panel of reviewers in the same subject area decide whether to accept each submission for publication.

For this reason, academic journals are often considered among the most credible sources you can use in a research project – provided that the journal itself is trustworthy and well regarded.

In general, the peer review process follows the following steps:

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or
  • Send it onward to the selected peer reviewer(s)
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made.
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field.

It acts as a first defence, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure.

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analysing the data.

Blinding is important to reduce bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behaviour in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardisation and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyse, detect, modify, or remove ‘dirty’ data to make your dataset ‘clean’. Data cleaning is also called data cleansing or data scrubbing.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimise or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Observer bias occurs when a researcher’s expectations, opinions, or prejudices influence what they perceive or record in a study. It usually affects studies when observers are aware of the research aims or hypotheses. This type of research bias is also called detection bias or ascertainment bias .

The observer-expectancy effect occurs when researchers influence the results of their own study through interactions with participants.

Researchers’ own beliefs and expectations about the study results may unintentionally influence participants through demand characteristics .

You can use several tactics to minimise observer bias .

  • Use masking (blinding) to hide the purpose of your study from all observers.
  • Triangulate your data with different data collection methods or sources.
  • Use multiple observers and ensure inter-rater reliability.
  • Train your observers to make sure data is consistently recorded between them.
  • Standardise your observation procedures to make sure they are structured and clear.

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviours of your research subjects in real-world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as ‘people watching’ with a purpose.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyse your data.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data are available for analysis; other times your research question may only require a cross-sectional study to answer it.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyse behaviour over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a ‘cross-section’) in the population
Follows in participants over time Provides of society at a given point

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups . Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with ‘yes’ or ‘no’ (questions that start with ‘why’ or ‘how’ are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

Social desirability bias is the tendency for interview participants to give responses that will be viewed favourably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias in research can also occur in observations if the participants know they’re being observed. They might alter their behaviour accordingly.

A focus group is a research method that brings together a small group of people to answer questions in a moderated setting. The group is chosen due to predefined demographic traits, and the questions are designed to shed light on a topic of interest. It is one of four types of interviews .

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order.
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualise your initial thoughts and hypotheses
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when:

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyse your data quickly and efficiently
  • Your research question depends on strong parity between participants, with environmental conditions held constant

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

If something is a mediating variable :

  • It’s caused by the independent variable
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control, and randomisation.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomisation , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

There are 4 main types of extraneous variables :

  • Demand characteristics : Environmental cues that encourage participants to conform to researchers’ expectations
  • Experimenter effects : Unintentional actions by researchers that influence study outcomes
  • Situational variables : Eenvironmental variables that alter participants’ behaviours
  • Participant variables : Any characteristic or aspect of a participant’s background that could affect study results

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

The term ‘ explanatory variable ‘ is sometimes preferred over ‘ independent variable ‘ because, in real-world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so ‘explanatory variables’ is a more appropriate term.

On graphs, the explanatory variable is conventionally placed on the x -axis, while the response variable is placed on the y -axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalisation : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalisation: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity, and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity: The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Attrition bias can skew your sample so that your final sample differs significantly from your original sample. Your sample is biased because some groups from your population are underrepresented.

With a biased final sample, you may not be able to generalise your findings to the original population that you sampled from, so your external validity is compromised.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment, and situation effect.

The two types of external validity are population validity (whether you can generalise to other groups of people) and ecological validity (whether you can generalise to other situations and settings).

The external validity of a study is the extent to which you can generalise your findings to different groups of people, situations, and measures.

Attrition bias is a threat to internal validity . In experiments, differential rates of attrition between treatment and control groups can skew results.

This bias can affect the relationship between your independent and dependent variables . It can make variables appear to be correlated when they are not, or vice versa.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction, and attrition .

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 × 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method .

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

In multistage sampling , you can use probability or non-probability sampling methods.

For a probability sample, you have to probability sampling at every stage. You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data are then collected from as large a percentage as possible of this random subset.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from county to city to neighbourhood) to create a sample that’s less expensive and time-consuming to collect data from.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

Advantages:

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.

Disadvantages:

  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes
  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Triangulation can help:

  • Reduce bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labour-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analysing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

An observational study could be a good fit for your research if your research question is based on things you observe. If you have ethical, logistical, or practical concerns that make an experimental design challenging, consider an observational study. Remember that in an observational study, it is critical that there be no interference or manipulation of the research subjects. Since it’s not an experiment, there are no control or treatment groups either.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analysed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analysed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualise your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analysed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

Types of editing Available at Scribbr?


This is the “proofreading” in Scribbr’s standard service. It can only be selected in combination with editing.


This is the “editing” in Scribbr’s standard service. It can only be selected in combination with proofreading.


Select the Structure Check and Clarity Check to receive a comprehensive edit equivalent to a line edit.


This kind of editing involves heavy rewriting and restructuring. Our editors cannot help with this.

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between four deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Where was science invented?
  • When did science begin?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

control group

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Verywell Mind - What Is a Control Group?
  • National Center for Biotechnology Information - PubMed Central - Control Group Design: Enhancing Rigor in Research of Mind-Body Therapies for Depression

control group , the standard to which comparisons are made in an experiment. Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group. Ideally, the control group and the experimental groups are identical in every way except that the experimental groups are subjected to treatments or interventions believed to have an effect on the outcome of interest while the control group is not. Inclusion of a control group greatly strengthens researchers’ ability to draw conclusions from a study. Indeed, only in the presence of a control group can a researcher determine whether a treatment under investigation truly has a significant effect on an experimental group, and the possibility of making an erroneous conclusion is reduced. See also scientific method .

A typical use of a control group is in an experiment in which the effect of a treatment is unknown and comparisons between the control group and the experimental group are used to measure the effect of the treatment. For instance, in a pharmaceutical study to determine the effectiveness of a new drug on the treatment of migraines , the experimental group will be administered the new drug and the control group will be administered a placebo (a drug that is inert, or assumed to have no effect). Each group is then given the same questionnaire and asked to rate the effectiveness of the drug in relieving symptoms . If the new drug is effective, the experimental group is expected to have a significantly better response to it than the control group. Another possible design is to include several experimental groups, each of which is given a different dosage of the new drug, plus one control group. In this design, the analyst will compare results from each of the experimental groups to the control group. This type of experiment allows the researcher to determine not only if the drug is effective but also the effectiveness of different dosages. In the absence of a control group, the researcher’s ability to draw conclusions about the new drug is greatly weakened, due to the placebo effect and other threats to validity. Comparisons between the experimental groups with different dosages can be made without including a control group, but there is no way to know if any of the dosages of the new drug are more or less effective than the placebo.

It is important that every aspect of the experimental environment be as alike as possible for all subjects in the experiment. If conditions are different for the experimental and control groups, it is impossible to know whether differences between groups are actually due to the difference in treatments or to the difference in environment. For example, in the new migraine drug study, it would be a poor study design to administer the questionnaire to the experimental group in a hospital setting while asking the control group to complete it at home. Such a study could lead to a misleading conclusion, because differences in responses between the experimental and control groups could have been due to the effect of the drug or could have been due to the conditions under which the data were collected. For instance, perhaps the experimental group received better instructions or was more motivated by being in the hospital setting to give accurate responses than the control group.

In non-laboratory and nonclinical experiments, such as field experiments in ecology or economics , even well-designed experiments are subject to numerous and complex variables that cannot always be managed across the control group and experimental groups. Randomization, in which individuals or groups of individuals are randomly assigned to the treatment and control groups, is an important tool to eliminate selection bias and can aid in disentangling the effects of the experimental treatment from other confounding factors. Appropriate sample sizes are also important.

A control group study can be managed in two different ways. In a single-blind study, the researcher will know whether a particular subject is in the control group, but the subject will not know. In a double-blind study , neither the subject nor the researcher will know which treatment the subject is receiving. In many cases, a double-blind study is preferable to a single-blind study, since the researcher cannot inadvertently affect the results or their interpretation by treating a control subject differently from an experimental subject.

Frequently asked questions

What is the difference between a control group and an experimental group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Control Group vs. Experimental Group: Everything You Need To Know About The Difference Between Control Group And Experimental Group

As someone who is deeply interested in the field of research, you may have heard the terms control group and experimental group thrown around a lot. If you’re not very familiar with these terms, it can be daunting to determine the role they play in research and why they are so important. In layman’s terms, a control group is a group that does not receive any experimental treatment and is used as a benchmark for the group that does receive the treatment. Meanwhile, the experimental group is a group that receives the treatment and is compared to the control group that does not receive the treatment. To put it simply, the main difference between a control group and an experimental group is whether or not they receive the experimental treatment.

Table of Contents

What Is Control Group?

control vs experimental treatment

A control group is a group in an experiment that does not receive the experimental treatment and is used as a comparison for the group that does receive the treatment. It is a critical aspect of experimental research to determine whether the treatment caused the outcome rather than another factor. The control group ensures that any observed effects can be attributed to the treatment and not a result of other variables. The quality of the control group can affect the validity of the experiment. Therefore, researchers must carefully design and select participants for the control group to ensure that it accurately represents the population and provides meaningful results. Overall, control groups are essential to gain accurate and reliable results in experimental research.

What Is Experimental Group?

control vs experimental treatment

Key Differences Between Control Group And Experimental Group

Control group vs. experimental group similarities.

The control group and experimental group are two essential components of any research study. The main similarity between these groups is that they are both used to assess the effects of a treatment or intervention. The control group is intended to provide a baseline measurement of the outcomes that are expected in the absence of the intervention. In contrast, the experimental group is exposed to the intervention or treatment and is observed for any changes or improvements in outcomes. In summary, both groups serve as comparisons for one another, and their use increases the credibility and validity of research findings.

Control Group vs. Experimental Group Pros and Cons

Control group pros & cons.

Control Group Pros & Cons

Control Group Pros

Control group cons, experimental group pros & cons.

Experimental Group Pros & Cons

Experimental Group Pros

The Experimental Group, in scientific studies and experimentation, is a group that receives the experimental treatment and is compared to a control group that does not receive the treatment. There are several advantages or pros of this group. First, the experimental group allows researchers to determine the effectiveness of a new treatment or procedure. Second, it helps in identifying side effects of the treatment on the subjects. Third, it provides clear evidence regarding the cause and effect relationships between variables. Additionally, the experimental group enables researchers to validate their findings and test the hypothesis. These benefits make the Experimental Group essential in accurately assessing the effectiveness of new treatments or procedures.

Experimental Group Cons

Comparison table: 5 key differences between control group and experimental group.

PurposeUsed as a comparison to the experimental groupReceives the intervention being tested
TreatmentReceives no intervention or a placeboReceives the treatment being tested
RandomizationRandomly selected from the population being studiedRandomly selected from the population being studied
Sample SizeLarge enough to provide statistical powerLarge enough to provide statistical power
AnalysisStatistical analysis is performed to compare outcomesStatistical analysis is performed to compare outcomes

Comparison Chart

What’s the difference between a control and an experimental group? Check out this article to learn a clear definition of each, key differences between the two groups and when you should use each one.

Comparison Video

Conclusion: what is the difference between control group and experimental group.

In conclusion, understanding the difference between a control group and an experimental group is crucial in designing and conducting reliable experiments. The control group serves as a baseline, allowing researchers to compare the effects of the experimental treatment. Without a control group, it is difficult to determine whether any observed effects are due to the treatment or to other factors. By contrast, the experimental group receives the treatment and is used to evaluate the effects of the intervention. By carefully controlling for different factors, scientists can use these groups to test hypotheses and draw meaningful conclusions about the impact of different treatments on the outcomes of interest.

Control Group vs. Experimental Group: Everything You Need To Know About The Difference Between Control Group And Experimental Group

Federation vs. Confederation: Everything You Need To Know About The Difference Between Federation And Confederation

Control Group vs. Experimental Group: Everything You Need To Know About The Difference Between Control Group And Experimental Group

Farthest vs. Furthest: Everything You Need To Know About The Difference Between Farthest And Furthest

Miralax vs. Colace: Everything You Need To Know About The Difference Between Miralax And Colace

Miralax vs. Colace: Everything You Need To Know About The Difference Between Miralax And Colace

Dulcolax vs. Miralax: Everything You Need To Know About The Difference Between Dulcolax And Miralax

Dulcolax vs. Miralax: Everything You Need To Know About The Difference Between Dulcolax And Miralax

Adh vs. Aldosterone: Everything You Need To Know About The Difference Between Adh And Aldosterone

Adh vs. Aldosterone: Everything You Need To Know About The Difference Between Adh And Aldosterone

Chromebook vs. Laptop: Everything You Need To Know About The Difference Between Chromebook And Laptop

Chromebook vs. Laptop: Everything You Need To Know About The Difference Between Chromebook And Laptop

Leave a reply cancel reply, add difference 101 to your homescreen.

What Is a Control Group?

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable 's effects on the experiment and can help rule out alternative explanations of the experimental results. Control groups can also be separated into two other types: positive or negative. Positive control groups are groups where the conditions of the experiment are set to guarantee a positive result. A positive control group can show the experiment is functioning properly as planned. Negative control groups are groups where the conditions of the experiment are set to cause a negative outcome. Control groups are not necessary for all scientific experiments. Controls are extremely useful where the experimental conditions are complex and difficult to isolate.

Example of a Negative Control Group

Negative control groups are particularly common in science fair experiments , to teach students how to identify the independent variable. A simple example of a control group can be seen in an experiment in which the researcher tests whether or not a new fertilizer has an effect on plant growth. The negative control group would be the set of plants grown without the fertilizer, but under the exact same conditions as the experimental group. The only difference between the experimental group would be whether or not the fertilizer was used.

There could be several experimental groups, differing in the concentration of fertilizer used, its method of application, etc. The null hypothesis would be that the fertilizer has no effect on plant growth. Then, if a difference is seen in the growth rate of the plants or the height of plants over time, a strong correlation between the fertilizer and growth would be established. Note the fertilizer could have a negative impact on growth rather than a positive impact. Or, for some reason, the plants might not grow at all. The negative control group helps establish that the experimental variable is the cause of atypical growth, rather than some other (possibly unforeseen) variable.

Example of a Positive Control Group

A positive control demonstrates an experiment is capable of producing a positive result. For example, let's say you are examining bacterial susceptibility to a drug. You might use a positive control to make sure the growth medium is capable of supporting any bacteria. You could culture bacteria known to carry the drug resistance marker, so they should be capable of surviving on a drug-treated medium. If these bacteria grow, you have a positive control that shows other drug-resistance bacteria should be capable of surviving the test.

The experiment could also include a negative control. You could plate bacteria known not to carry a drug resistance marker. These bacteria should be unable to grow on the drug-laced medium. If they do grow, you know there is a problem with the experiment.

  • Understanding Experimental Groups
  • The Difference Between Control Group and Experimental Group
  • List of Platinum Group Metals or PGMs
  • Scientific Hypothesis, Model, Theory, and Law
  • What Is an Experiment? Definition and Design
  • What Is a Base Metal? Definition and Examples
  • What Chemistry Is and What Chemists Do
  • What Is a Molecule?
  • Acid Dissociation Constant Definition: Ka
  • Fatty Acid Definition
  • Dissolving Sugar in Water: Chemical or Physical Change?
  • Hydroxyl Group Definition in Chemistry
  • Heavy Metals in Science
  • Is Glass a Liquid or a Solid?
  • Examples of Independent and Dependent Variables
  • Noble Metals List and Properties

VIVA DIFFERENCES

Difference Between Control And Experimental Group

Almost all experimental studies are designed to include a control group and one or more experimental groups, each serving a different purpose. In most cases, participants are randomly assigned to either a control or experimental group.

Experimental groups are usually manipulated to try and change the out come of the experiment. Control groups are usually kept as natural or unchanged to provide a normal outcome for comparison in the experiment. Read the article to learn more about the two.

Experimental Group

The experimental group, is the group of subjects or participants that receives the experimental treatment, intervention or condition being studied. In other words, it is a group of items, animals or people being tested, which have one variable or condition changed from the other groups in the experiment. The variable is usually stated in the hypothesis and is the main focus of the experiment.

Experimental group is exposed to changes in the independent variable being tested. The values of the independent variable and the impact on the dependent variable are recorded. An experiment may include multiple experimental groups at one time.

Researchers will compare the responses of the experimental group to those of a control group to see if the independent variable impacted the participants.

An experiment must have at least one control group and one experimental group; however, a single experiment can include multiple experimental groups, which are all compared against the control group.

Having multiple experimental groups enables researchers to vary different levels of an experimental variable and compare the effects of these changes to the control group and among each other.

An example of an experimental group would be if someone wanted to see if music helps people sleep longer. The experimental population could be divided into two groups. One group would track the length of time they sleep each night without music playing. The other group would track the length of time they sleep each night when listening to music. This group would be your experimental group because something has been changed in this group. Listening to music while they sleep. This group is being “experimented” on.

What you need to know about Control Group

  • Members of the experimental group are exposed to the experimental treatment, which is the variable or condition that the study aims to test. This treatment could be a drug, therapy, educational program, or any other factor under investigation.
  • To ensure fairness and minimize bias, subjects are often randomly assigned to either the experimental group or the control group. Randomization helps create comparable groups, ensuring that the results are not skewed by pre-existing differences between the participants.
  • Experimental groups can also be single-blind or double-blind. In single-blind studies, participants do not know whether they are in the experimental or control group. In double-blind studies, both participants and researchers are unaware of group assignments to reduce bias.
  • While the experimental group is exposed to the treatment, efforts are made to control or account for confounding variables—factors other than the treatment that could influence the results.
  • In clinical trials, the experimental group receives the investigational drug or treatment, while the control group may receive a placebo or the current standard of care.

Control Group

A control group is a fundamental component of experimental research design, and its primary purpose is to serve as a baseline or reference group against which the experimental group is compared. In other words, it is is a collection of factors that remain constant throughout an experiment. 

The control group allows researchers to assess the natural course or behavior of the subjects in the absence of the experimental intervention. This baseline comparison helps determine whether any observed changes in the experimental group can be attributed to the treatment or are simply a result of the normal variation or other factors.

While all experiments have an experimental group, not all experiments require a control group. Controls are extremely useful where the experimental conditions are complex and difficult to isolate. Experiments that use control groups are called controlled experiments.

Unlike the experimental group, the control group is not exposed to the independent variable under investigation. So, it provides a baseline against which any changes in the experimental group can be compared.

In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. There may be more than one treatment group, more than one control group, or both.

A simple example of a controlled experiment may be used to determine whether or not plants need to be watered to live. The control group would be plants that are not watered. The experimental group would consist of plants that receive water. A clever scientist would wonder whether too much watering might kill the plants and would set up several experimental groups, each receiving a different amount of water.

Types of control groups

Positive and negative controls are two other types of control groups:

  • Positive control groups  are control groups in which the conditions guarantee a positive result. Positive control groups are effective to show the experiment is functioning as planned.
  • Negative control groups  are control groups in which conditions produce a negative outcome. Negative control groups help identify outside influences which may be present that were not unaccounted for, such as contaminants.
  • Members of the control group do not receive the experimental treatment, intervention, or condition. Instead, they may receive a placebo (inactive treatment) or no treatment at all, depending on the study design.
  • In many experiments, subjects are randomly assigned to either the control group or the experimental group. Randomization helps ensure that the groups are comparable and that any differences between them are not due to pre-existing biases.
  • Control groups can be single-blind or double-blind. In a single-blind design, the subjects do not know whether they are in the control or experimental group. In a double-blind design, both the subjects and the researchers are unaware of group assignments, reducing the potential for bias.
  • Control groups are important in controlling or minimizing the influence of confounding variables—factors other than the treatment that could affect the study’s outcome.
  • In some cases, control groups may receive a placebo or no treatment, which is ethically acceptable when there is no known effective treatment or when withholding treatment does not harm the subjects.
  • In psychology studies, the experimental group might be exposed to a specific psychological intervention, such as cognitive-behavioral therapy, while the control group receives no treatment or an alternative treatment.
  • In psychology experiments, control groups might be exposed to a neutral condition or a placebo, while the experimental group is exposed to the variable being studied.

Control vs Experimental Group: Key Differences

AspectControl GroupExperimental Group
PurposeServes as a baseline or reference group.Receives the experimental treatment or condition.
TreatmentDoes not receive the experimental treatment.Receives the experimental treatment or condition.
RandomizationSubjects may be randomly assigned to this group.Subjects are randomly assigned to this group.
BlindingCan be single-blind or double-blind.Can be single-blind or double-blind.
Data CollectionProvides baseline data for comparison.Data collected to assess the treatment’s effects.
Psychology experimentsControl groups might be exposed to a neutral condition or a placebo.Experimental group is exposed to the variable being studied.

Control vs Experimental Group: Key Takeaways

  • Control Group : It serves as a baseline or reference group against which the experimental group is compared. It does not receive the experimental treatment or intervention.
  • Experimental Group : It is the group that receives the experimental treatment, intervention, or condition being studied.
  • Control Group : Receives no treatment or a placebo (inactive treatment) to ensure that any observed effects in the experimental group are due to the experimental treatment and not other factors.
  • Experimental Group : Receives the treatment or intervention being studied.
  • Control Group : Helps identify the natural course or behavior of the subjects without the experimental intervention.
  • Experimental Group : Allows researchers to assess the effects of the experimental treatment or condition on the subjects.
  • Control Group : Used for comparison to determine whether the experimental treatment has an effect.
  • Experimental Group : Used to measure the impact of the experimental treatment.

Randomization

  • Control Group : Subjects in the control group may be randomly assigned, but they do not receive the experimental treatment.
  • Experimental Group : Subjects are randomly assigned to ensure that the groups are comparable, with one group receiving the experimental treatment.

Outcome Measurement

  • Control Group : Provides a basis for assessing the baseline or natural outcome in the absence of the experimental treatment.
  • Experimental Group : Allows researchers to measure the treatment’s effects on the subjects.
  • Control Group : Can be single-blind or double-blind, where the subjects or researchers may not know who is in the control group.
  • Experimental Group : Can also be single-blind or double-blind, depending on the study design.

Hypothesis Testing

  • Control Group : Used to test whether the experimental group’s results significantly differ from the control group, supporting or refuting the research hypothesis.
  • Experimental Group : The focus of hypothesis testing to determine if the treatment has a statistically significant effect.

Statistical Analysis

  • Control Group : Data from the control group are used as a reference point in statistical comparisons.
  • Experimental Group : Data from the experimental group are analyzed to evaluate the treatment’s effectiveness.
  • Control Group : Ensures the internal validity of the experiment by controlling for confounding variables.
  • Experimental Group : The group of interest for studying the research question and establishing causal relationships.

Article Categories

Book categories, collections.

  • Academics & The Arts Articles
  • Math Articles
  • Statistics Articles

How Treatment Groups, Control Groups, Placebos, and Blind Experiments Are Used in Statistics

Statistics for dummies.

Book image

Sign up for the Dummies Beta Program to try Dummies' newest way to learn.

Statistical studies often involve several kinds of experiments: treatment groups, control groups, placebos, and blind and double-blind tests. An experiment is a study that imposes a treatment (or control) to the subjects (participants), controls their environment (for example, restricting their diets, giving them certain dosage levels of a drug or placebo, or asking them to stay awake for a prescribed period of time), and records the responses.

The purpose of most experiments is to pinpoint a cause-and-effect relationship between two factors (such as alcohol consumption and impaired vision; or dosage level of a drug and intensity of side effects). Here are some typical questions that experiments try to answer:

Does taking zinc help reduce the duration of a cold? Some studies show that it does.

Does the shape and position of your pillow affect how well you sleep at night? The Emory Spine Center in Atlanta says yes.

Does shoe heel height affect foot comfort? A study done at UCLA says up to one-inch heels are better than flat soles.

Treatment-group versus control-group tests

Most experiments try to determine whether some type of experimental treatment (or important factor) has a significant effect on an outcome. For example, does zinc help to reduce the length of a cold? Subjects who are chosen to participate in the experiment are typically divided into two groups: a treatment group and a control group. (More than one treatment group is possible.)

The treatment group consists of participants who receive the experimental treatment whose effect is being studied (in this case, zinc tablets).

The control group consists of participants who do not receive the experimental treatment being studied. Instead, they get a placebo (a fake treatment; for example, a sugar pill); a standard, nonexperimental treatment (such as vitamin C, in the zinc study); or no treatment at all, depending on the situation.

In the end, the responses of those in the treatment group are compared with the responses from the control group to look for differences that are statistically significant (unlikely to have occurred just by chance).

Placebo tests

A placebo is a fake treatment, such as a sugar pill. Placebos are given to the control group to account for a psychological phenomenon called the placebo effect, in which patients receiving a fake treatment still report having a response, as if it were the real treatment. For example, after taking a sugar pill a patient experiencing the placebo effect might say, “Yes, I feel better already,” or “Wow, I am starting to feel a bit dizzy.” By measuring the placebo effect in the control group, you can tease out what portion of the reports from the treatment group were due to a real physical effect and what portion were likely due to the placebo effect. (Experimenters assume that the placebo effect affects both the treatment and control groups similarly.)

Blind and double-blind tests

A blind experiment is one in which the subjects who are participating in the study are not aware of whether they’re in the treatment group or the control group. In the zinc example, the vitamin C tablets and the zinc tablets would be made to look exactly alike and patients would not be told which type of pill they were taking. A blind experiment attempts to control for bias on the part of the participants and to ensure that a placebo effect will not affect only the treatment group. (If the example study was not blind, those not taking zinc may not bother to take their pills or may believe they won’t get better because they know they’re not taking the good stuff.)

A double-blind experiment controls for potential bias on the part of both the patients and the researchers. Neither the patients nor the researchers collecting the data know which subjects received the treatment and which didn’t. So who does know what’s going on as far as who gets what treatment? Typically a third party (someone not otherwise involved in the experiment) puts together the pieces independently, and only he knows which subjects received the treatment and which did not. A double-blind study is best, because even though researchers may claim to be unbiased, they often have a special interest in the results — otherwise they wouldn’t be doing the study!

About This Article

This article is from the book:.

  • Statistics For Dummies ,

About the book author:

Deborah J. Rumsey , PhD, is an Auxiliary Professor and Statistics Education Specialist at The Ohio State University. She is the author of Statistics For Dummies, Statistics II For Dummies, Statistics Workbook For Dummies, and Probability For Dummies.

This article can be found in the category:

  • Statistics ,
  • Statistics For Dummies Cheat Sheet
  • Checking Out Statistical Confidence Interval Critical Values
  • Handling Statistical Hypothesis Tests
  • Statistically Figuring Sample Size
  • Surveying Statistical Confidence Intervals
  • View All Articles From Book

control vs experimental treatment

Extract insights from Customer & Employee Interviews. At Scale.

Experimental vs. control group explained.

Insight7

Home » Experimental vs. Control Group Explained

Group Comparison Analysis plays a pivotal role in experimental research. By examining the differences between experimental and control groups, researchers can draw meaningful conclusions about specific interventions. This process helps in determining whether observed effects are indeed attributable to the treatment or merely due to chance.

In any experiment, understanding how participants respond to different conditions is crucial. Group Comparison Analysis allows scientists to tease apart these responses, yielding insights that can inform various fields. Ultimately, this analytical approach not only enhances the validity of research findings but also supports the development of effective strategies based on empirical evidence.

The Basics of Experimental Groups

In research, understanding the distinction between experimental groups is essential for accurate findings. An experimental group consists of participants exposed to a variable being tested, while a control group serves as the baseline for comparison. This design enhances the reliability of results by isolating the effects of the independent variable. To conduct a thorough group comparison analysis, researchers need to ensure that both groups are similar in characteristics, minimizing biases.

The selection of participants plays a crucial role in the integrity of the study. Random assignment helps to ensure that individuals in both groups do not display pre-existing differences. This allows researchers to draw valid conclusions regarding the impact of the experimental treatment. Analyzing data from both groups provides insights into whether the intervention produces the expected changes. Effective comparison between these groups is foundational for advancing scientific knowledge. Understanding these basics will guide you through interpreting research outcomes with confidence.

Definition and Purpose

Understanding the experimental and control groups is essential in any Group Comparison Analysis. The experimental group receives the treatment or intervention, while the control group serves as a baseline for comparison. This structure is pivotal in determining the effectiveness of a given treatment and minimizes bias, ensuring the results are reliable.

The purpose of utilizing these groups lies in establishing a clear cause-and-effect relationship. By comparing outcomes from both groups, researchers can identify any significant differences attributable to the treatment. This comparison not only enhances the validity of findings but also influences data-driven decisions in various fields, including healthcare and marketing. Ultimately, the insight gained from this method fosters informed strategies that can lead to improved outcomes, whether in product development or user experience.

Designing an Experimental Group: Group Comparison Analysis

Designing an experimental group involves carefully planning each aspect to ensure valid results through group comparison analysis. This analysis is crucial for distinguishing the effects of a treatment or intervention from the natural variability found in any population. To effectively design your experimental group, you need to determine the characteristics that will make it comparable to the control group.

A proper comparison requires selection criteria such as age, gender, and baseline characteristics. This helps ensure that differences in outcomes arise solely from the intervention rather than from pre-existing variances. Next, consider randomization; randomly assigning participants reduces bias and enhances the study's reliability. Lastly, maintaining consistency in treatment delivery is essential. This ensures that everyone in the experimental group receives the same intervention, thus allowing for an accurate analysis of effects. By following these principles, your group comparison analysis can yield insightful and actionable outcomes.

The Role of Control Groups in Research

Control groups play a vital role in research by providing a benchmark to which experimental groups can be compared. Through group comparison analysis, researchers can discern the effects of an intervention by measuring outcomes against the control group that does not receive the treatment. This approach ensures that any observed changes in the experimental group can be more confidently attributed to the treatment rather than other external factors.

Moreover, control groups help minimize bias and variability in research outcomes. By allowing researchers to assess how participants behave under standard conditions, it becomes easier to isolate the impact of the experimental variable. Understanding these dynamics improves the reliability of results, making findings more valid and generalizable. Therefore, incorporating control groups in studies is essential for achieving accurate and trustworthy conclusions that can inform future practices or theories.

Definition and Purpose of Control Groups in Group Comparison Analysis

Control groups are essential in group comparison analysis, serving as benchmarks for experimental outcomes. These groups consist of participants who do not receive the treatment or intervention under investigation, allowing researchers to isolate the impact of specific variables. By comparing the results from the experimental group against the control group, researchers can determine the effectiveness of the intervention in a more precise manner.

The purpose of control groups is to minimize biases and ensure valid conclusions. They help in identifying whether observed changes in the experimental group are genuinely caused by the treatment or merely due to external factors. Additionally, control groups enable replication of studies, which is vital for affirming findings and fostering scientific credibility. In summary, control groups are indispensable tools in group comparison analysis, providing clarity and enhancing the reliability of research outcomes.

Examples of Control Group Usage

Control groups are essential in various fields, enabling researchers to validate their findings by providing a baseline for comparison. For instance, in a clinical trial assessing a new medication, one group receives the drug while a control group receives a placebo. This setup allows for a clearer understanding of the drug's effectiveness versus no treatment at all.

In market research, control groups allow analysts to examine consumer behavior under different conditions. A common example is testing two marketing strategies: one group receives traditional ads, while the control group is exposed to digital campaigns. Group comparison analysis reveals which method resonates better with the audience, helping to refine marketing approaches and optimize future campaigns. Through these examples, it's evident that control groups are invaluable in ensuring scientific rigor and making informed decisions across various domains.

Conclusion: The Importance of Group Comparison Analysis in Research

Group Comparison Analysis serves as a critical tool for researchers, allowing them to discern the differences between experimental and control groups. By methodically comparing these groups, researchers can assess the effectiveness of interventions or treatments. This type of analysis provides vital insights, facilitating a deeper understanding of how variables impact outcomes.

Furthermore, the importance of this analysis extends beyond mere statistical significance. It fosters evidence-based decision-making, ensuring that findings are reliable and applicable in real-world settings. Ultimately, understanding the dynamics between different groups equips researchers with the knowledge to make informed conclusions, driving advancements in various fields of study.

Turn interviews into actionable insights

On this Page

Random Sampling Definition in Research

You may also like, leading market research firms for growth.

Insight7

Top marketing research firms for your next project

Top marketing research agency for 2024 campaigns.

Unlock Insights from Interviews 10x faster

control vs experimental treatment

  • Request demo
  • Get started for free

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Sample Size proportion per control vs. experiment group

I am taking an online statistics course and I understand how to calculate the necessary sample size for a hypothesis test.

I am using an online calculator like http://www.evanmiller.org/ab-testing/sample-size.html or python like this https://stackoverflow.com/questions/15204070/is-there-a-python-scipy-function-to-determine-parameters-needed-to-obtain-a-ta

From what I understand, this gives me the minimum sample size for each group - control and treatment.

However, if I am designing a test and I have a total sample size of 30,000; how do I calculate how large the control vs. the treatment group should be.

I understand that the treatment group needs to be the minimum sample size I calculated before and I am reading that generally the 50/50 split leads to the highest statistical power, but how can I show this with a calculation. I have been googling it unsuccessfully, so even a link to the correct approach would be greatly appreciated.

This is the closest I found https://janhove.github.io/design/2015/11/02/unequal-sample-sized , but I wasn't able to extract the correct formula.

I found this helpful cross-validated answer Is a large control sample better than a balanced sample size when the treatment group is small? ; but I am still unsure how to calculate the best ratio between control and treatment group if I have a given total sample size. (or how to prove that the 50/50 split has the highest statistical power)

I also found this great answer Treatment and Control group, the sample size , but it applies to a different industry. The hypothesis test I am designing is in the industry of online user behavior psychology.

Thank you very much in advance for any hint in the right direction (even just the correct terminology I can search for).

  • hypothesis-testing
  • statistical-significance
  • sample-size

Community's user avatar

2 Answers 2

First of all, your formula for necessary sample size looks suspicious, the part of the formula StdDev*(1-StdDev) doesn't make much sense, perhaps it's supposed to be proportion*(1-proportion) for cases when you have a binomial distribution with a sample proportion of successes.

But that formula is an aside from your main question: why does a 50/50 split of samples produce the highest power?

The hypothesis you are trying to test is that the mean of the experiment group $\mu_E$ is the same mean as the mean of the control $\mu_C$. Essentially you are testing if $\mu_E - \mu_C = 0$.

Suppose that the true variance (not sample variance) of the experiment group is $\sigma^2_E$ and that you have a sample size $n_E$. Likewise the control group variance and sample size is $\sigma^2_C$ and $n_C$.

From your samples you will be examining $\bar{X_E} - \bar{X_C}$ to test the hypothesis $\mu_E - \mu_C = 0$. For an unbiased sample the variance of the sample mean $\bar{X_E}$ is expected to be around $\frac{\sigma^2_E}{n_E}$. Likewise for the control group the variance of the sample mean is $\frac{\sigma^2_C}{n_C}$.

When you subtract one variable from another the resulting variable has a variance equal to the sum of the two variances. Therefore the variance of $\bar{X_E} - \bar{X_C}$ is $\frac{\sigma^2_E}{n_E} + \frac{\sigma^2_C}{n_C}$

Since you have no apriori reason to suspect that the variance of the control or the experiment group is larger we will just assume that they are equal. Therefore we assume $\sigma^2_E=\sigma^2_C=\sigma^2$, and the variance of $\bar{X_E} - \bar{X_C}$ is now $\frac{\sigma^2}{n_E} + \frac{\sigma^2}{n_C} = \sigma^2\left(\frac{1}{n_E} + \frac{1}{n_C}\right)$

To get the most powerful test we want to minimize the variance. If you have a total number of samples $N$ and a proportion $p$ of them are in the experiment group then $n_E=Np$ and $N_C=N(1-p)$.

The variance is $\sigma^2\left(\frac{1}{Np} + \frac{1}{N(1-p)}\right)= \frac{\sigma^2}{N} \left(\frac{1}{p} + \frac{1}{(1-p)}\right)$. You can see by plotting a graph of $\left( \frac{1}{p} + \frac{1}{(1-p)}\right)$ that the minimum occurs at $p=0.5$, alternatively you can use calculus to prove this minimum more rigorously.

Hugh's user avatar

  • $\begingroup$ Thank you very much for your answer; May I confirm, that I understand it correctly: to get the most powerful test, we need to decrease the pooled Standard Error and we get the lowest possible one when we use a 50/50 split, since nE and nC are equal? $\endgroup$ –  jeangelj Commented Mar 5, 2017 at 23:21
  • $\begingroup$ If I am forced by the business requirements to have a smaller treatment group, would you recommend a power analysis or a t-test? $\endgroup$ –  jeangelj Commented Mar 5, 2017 at 23:28
  • 1 $\begingroup$ @jeangelj You're right the we need to decrease the pooled standard error to get the most powerful test. I'm not sure you got the reason why nE and nC are equal, I've added a bit more to my answer. $\endgroup$ –  Hugh Commented Mar 5, 2017 at 23:36
  • 1 $\begingroup$ @jeangeli It's quite a common problem that businesses can't afford a large treatment group. You should only need a power analysis in addition to a t-test if your treatment sample size is so small that the assumptions of the t-test are violated. I think you should post a new question specifically about this. $\endgroup$ –  Hugh Commented Mar 5, 2017 at 23:38
  • $\begingroup$ thank you very much; I greatly appreciate your time and that you elaborated further in your answer. I think I understand it now, that by using 0.5 for p, we get the lowest variance - I will plot it in python as advised. I will also post a new question as advised as well. Thank You $\endgroup$ –  jeangelj Commented Mar 5, 2017 at 23:47

This post gives the results of simulations for several combinations of sample size, effect size and proportion of the sample that is assigned to the control group: https://www.markhw.com/blog/control-size

The key takeaways are:

Minimal losses in power occur when we shrink the control size to 40% [of the sample]. A 25% to 30% range is a good compromise, as this exposes 70% of the sample to the treatment, yet still does not harm power terribly. You should not allocate less than 20% of the sample to the control condition, save for situations when you are looking for large effects (e.g., 8 point lifts) and/or using large samples (e.g., 15,000 participants).

The author also links to his code on GitHub that should allow you to run similar simulations using your expected effect size and sample size.

Nayef's user avatar

Your Answer

Sign up or log in, post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged hypothesis-testing statistical-significance sampling sample-size or ask your own question .

  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites

Hot Network Questions

  • Should I Inform My PhD Program About Not Completing My Master's Degree Due to Personal Challenges?
  • Visualizing histogram of data on unit circle?
  • python stats.spearmanr and R cor.test(method='spearman') don't return the same p-value?
  • Would weightlessness (i.e. in thrill rides, planes, skydiving, etc.) be different on a Flat Earth?
  • How do we know for sure that the dedekind axiom is logically independent of the other axioms?
  • Adding guard GND to a battery based system
  • Version of Dracula (Bram Stoker)
  • Are there any original heat shield tiles on any of the retired space shuttles that flew to space?
  • Parallel use of gerund phrases and noun phrases
  • Is it possible for a company to dilute my shares to the point they are insignificant
  • I am a fifteen-year-old from India planning to fly to Germany alone (without my parents accompanying me) to see my relatives.What documents do I need?
  • What is the default font of report documentclass?
  • Reconstructing graph given the set of second neighbors
  • How to raise a vector to powers contained in a vector, change the list into a product, and do this for all the lines of a matrix, efficiently?
  • Rate of change of surface area is acting weird
  • Aberrant Mind spell swapping
  • Is it possible to add custom Social Media accounts to contacts in the Contacts app?
  • MySQL 5.7: Is it relevant/risk to have external hosts in the mysql.Hosts column if "skip-networking" is enabled?
  • Home water pressure higher than city water pressure?
  • How should I respond to a former student from my old institution asking for a reference?
  • Explaining Arithmetic Progression
  • Passive Construction - Standard Form vs. Non-Standard Form
  • In the US, can I buy iPhone and Android phones and claim them as expense?
  • In TNG: the Pegasus, why is Geordi in the first meeting with the Admiral?

control vs experimental treatment

IMAGES

  1. Clinical Research, control versus experimental group 21790126 Vector

    control vs experimental treatment

  2. The Difference Between Control and Experimental Group

    control vs experimental treatment

  3. Control Group Vs Experimental Group In Science

    control vs experimental treatment

  4. What Is The Difference Between A Control And An Experimental Treatment

    control vs experimental treatment

  5. Exploring The Distinctions: Control Group Vs. Experimental Group

    control vs experimental treatment

  6. Control Group vs. Experimental Group: 5 Key Differences, Pros & Cons

    control vs experimental treatment

COMMENTS

  1. Control Group Vs Experimental Group In Science

    Put simply; an experimental group is a group that receives the variable, or treatment, that the researchers are testing, whereas the control group does not. These two groups should be identical in all other aspects. 2. What is the purpose of a control group in an experiment.

  2. Control Groups and Treatment Groups

    A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment.. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of comparing outcomes between different groups).

  3. The Difference Between Control and Experimental Group

    The control group and experimental group are compared against each other in an experiment. The only difference between the two groups is that the independent variable is changed in the experimental group. The independent variable is "controlled", or held constant, in the control group. A single experiment may include multiple experimental ...

  4. Control Group Definition and Examples

    There are different types of control groups. A controlled experiment has one more control group. Control Group vs Experimental Group. The only difference between the control group and experimental group is that subjects in the experimental group receive the treatment being studied, while participants in the control group do not.

  5. Treatment and control groups

    Treatment and control groups. In the design of experiments, hypotheses are applied to experimental units in a treatment group. [ 1] In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. [ 2] There may be more than one treatment group, more than one control group, or both.

  6. What Is a Controlled Experiment?

    In an experiment, the control is a standard or baseline group not exposed to the experimental treatment or manipulation.It serves as a comparison group to the experimental group, which does receive the treatment or manipulation. The control group helps to account for other variables that might influence the outcome, allowing researchers to attribute differences in results more confidently to ...

  7. Control Groups & Treatment Groups

    To test its effectiveness, you run an experiment with a treatment and two control groups. The treatment group gets the new pill. Control group 1 gets an identical-looking sugar pill (a placebo). Control group 2 gets a pill already approved to treat high blood pressure. Since the only variable that differs between the three groups is the type of ...

  8. What Is a Control Group?

    Positive control groups: In this case, researchers already know that a treatment is effective but want to learn more about the impact of variations of the treatment.In this case, the control group receives the treatment that is known to work, while the experimental group receives the variation so that researchers can learn more about how it performs and compares to the control.

  9. What Is a Controlled Experiment?

    Control groups allow you to test a comparable treatment, no treatment, or a fake treatment (e.g., a placebo to control for a placebo effect), and compare the outcome with your experimental treatment. You can assess whether it's your treatment specifically that caused the outcomes, or whether time or any other treatment might have resulted in ...

  10. What are Control Groups?

    A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other. The experimental group receives some sort of treatment, and their results are compared against those of the control group ...

  11. Control Group in an Experiment

    A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.. A control group is important because it is a benchmark that allows scientists to draw conclusions about the treatment's ...

  12. What's the difference between a control group and an experimental group?

    A true experiment (aka a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of ...

  13. Control group

    In non-laboratory and nonclinical experiments, such as field experiments in ecology or economics, even well-designed experiments are subject to numerous and complex variables that cannot always be managed across the control group and experimental groups.Randomization, in which individuals or groups of individuals are randomly assigned to the treatment and control groups, is an important tool ...

  14. What is the difference between a control group and an experimental group?

    A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of ...

  15. Control Group vs. Experimental Group: 5 Key Differences, Pros

    The control group allows the researcher to isolate and measure the effect of the experimental treatment while all other variables are unchanged. The control group provides a basis for valid inferences and claims about the effects of the experimental treatment. The control group allows for more accurate and reliable study results. Control Group Cons

  16. What Is a Control Group? Definition and Explanation

    A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results. Control groups can also be separated into two other types: positive or negative.

  17. Experimental & Control Group

    In this lesson, discover what is an experimental group, compare the difference between an experimental group and a control group, and examine two examples of experimental groups. Updated: 11/21/2023

  18. Difference Between Control And Experimental Group

    Control vs Experimental Group: Key Takeaways. Purpose. Control Group: It serves as a baseline or reference group against which the experimental group is compared.It does not receive the experimental treatment or intervention. Experimental Group: It is the group that receives the experimental treatment, intervention, or condition being studied.; Treatment

  19. How Treatment Groups, Control Groups, Placebos, and Blind ...

    The treatment group consists of participants who receive the experimental treatment whose effect is being studied (in this case, zinc tablets). The control group consists of participants who do not receive the experimental treatment being studied. Instead, they get a placebo (a fake treatment; for example, a sugar pill); a standard ...

  20. Control and Treatment Groups

    Control and Treatment Groups: A control group is used as a baseline measure. The control group is identical to all other items or subjects that you are examining with the exception that it does not receive the treatment or the experimental manipulation that the treatment group receives. For example, when examining test tubes for catalytic ...

  21. Khan Academy

    Khan Academy

  22. Experimental vs. Control Group Explained

    Group Comparison Analysis plays a pivotal role in experimental research. By examining the differences between experimental and control groups, researchers can draw meaningful conclusions about specific interventions. This process helps in determining whether observed effects are indeed attributable to the treatment or merely due to chance.

  23. Sample Size proportion per control vs. experiment group

    Suppose that the true variance (not sample variance) of the experiment group is σ2E σ E 2 and that you have a sample size nE n E. Likewise the control group variance and sample size is σ2 C σ C 2 and nC n C. From your samples you will be examining XE¯ −XC¯ X E ¯ − X C ¯ to test the hypothesis μE −μC = 0 μ E − μ C = 0.