an essay about the effects of global warming

45,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

an essay about the effects of global warming

Verification Code

An OTP has been sent to your registered mobile no. Please verify

an essay about the effects of global warming

Thanks for your comment !

Our team will review it before it's shown to our readers.

an essay about the effects of global warming

Essay on Global Warming

dulingo

  • Updated on  
  • Apr 27, 2024

an essay about the effects of global warming

Being able to write an essay is an integral part of mastering any language. Essays form an integral part of many academic and scholastic exams like the SAT, and UPSC amongst many others. It is a crucial evaluative part of English proficiency tests as well like IELTS, TOEFL, etc. Major essays are meant to emphasize public issues of concern that can have significant consequences on the world. To understand the concept of Global Warming and its causes and effects, we must first examine the many factors that influence the planet’s temperature and what this implies for the world’s future. Here’s an unbiased look at the essay on Global Warming and other essential related topics.

Short Essay on Global Warming and Climate Change?

Since the industrial and scientific revolutions, Earth’s resources have been gradually depleted. Furthermore, the start of the world’s population’s exponential expansion is particularly hard on the environment. Simply put, as the population’s need for consumption grows, so does the use of natural resources , as well as the waste generated by that consumption.

Climate change has been one of the most significant long-term consequences of this. Climate change is more than just the rise or fall of global temperatures; it also affects rain cycles, wind patterns, cyclone frequencies, sea levels, and other factors. It has an impact on all major life groupings on the planet.

Also Read: Essay on Yoga Day

Also Read: Speech on Yoga Day

What is Global Warming?

Global warming is the unusually rapid increase in Earth’s average surface temperature over the past century, primarily due to the greenhouse gases released by people burning fossil fuels . The greenhouse gases consist of methane, nitrous oxide, ozone, carbon dioxide, water vapour, and chlorofluorocarbons. The weather prediction has been becoming more complex with every passing year, with seasons more indistinguishable, and the general temperatures hotter.

The number of hurricanes, cyclones, droughts, floods, etc., has risen steadily since the onset of the 21st century. The supervillain behind all these changes is Global Warming. The name is quite self-explanatory; it means the rise in the temperature of the Earth.

Also Read: What is a Natural Disaster?

What are the Causes of Global Warming?

According to recent studies, many scientists believe the following are the primary four causes of global warming:

  • Deforestation 
  • Greenhouse emissions
  • Carbon emissions per capita

Extreme global warming is causing natural disasters , which can be seen all around us. One of the causes of global warming is the extreme release of greenhouse gases that become trapped on the earth’s surface, causing the temperature to rise. Similarly, volcanoes contribute to global warming by spewing excessive CO2 into the atmosphere.

The increase in population is one of the major causes of Global Warming. This increase in population also leads to increased air pollution . Automobiles emit a lot of CO2, which remains in the atmosphere. This increase in population is also causing deforestation, which contributes to global warming.

The earth’s surface emits energy into the atmosphere in the form of heat, keeping the balance with the incoming energy. Global warming depletes the ozone layer, bringing about the end of the world. There is a clear indication that increased global warming will result in the extinction of all life on Earth’s surface.

Also Read: Land, Soil, Water, Natural Vegetation, and Wildlife Resources

Solutions for Global Warming

Of course, industries and multinational conglomerates emit more carbon than the average citizen. Nonetheless, activism and community effort are the only viable ways to slow the worsening effects of global warming. Furthermore, at the state or government level, world leaders must develop concrete plans and step-by-step programmes to ensure that no further harm is done to the environment in general.

Although we are almost too late to slow the rate of global warming, finding the right solution is critical. Everyone, from individuals to governments, must work together to find a solution to Global Warming. Some of the factors to consider are pollution control, population growth, and the use of natural resources.

One very important contribution you can make is to reduce your use of plastic. Plastic is the primary cause of global warming, and recycling it takes years. Another factor to consider is deforestation, which will aid in the control of global warming. More tree planting should be encouraged to green the environment. Certain rules should also govern industrialization. Building industries in green zones that affect plants and species should be prohibited.

Also Read: Essay on Pollution

Effects of Global Warming

Global warming is a real problem that many people want to disprove to gain political advantage. However, as global citizens, we must ensure that only the truth is presented in the media.

This decade has seen a significant impact from global warming. The two most common phenomena observed are glacier retreat and arctic shrinkage. Glaciers are rapidly melting. These are clear manifestations of climate change.

Another significant effect of global warming is the rise in sea level. Flooding is occurring in low-lying areas as a result of sea-level rise. Many countries have experienced extreme weather conditions. Every year, we have unusually heavy rain, extreme heat and cold, wildfires, and other natural disasters.

Similarly, as global warming continues, marine life is being severely impacted. This is causing the extinction of marine species as well as other problems. Furthermore, changes are expected in coral reefs, which will face extinction in the coming years. These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming.

Also Read: Concept of Sustainable Development

Sample Essays on Global Warming

Here are some sample essays on Global Warming:

Essay on Global Warming Paragraph in 100 – 150 words

Global Warming is caused by the increase of carbon dioxide levels in the earth’s atmosphere and is a result of human activities that have been causing harm to our environment for the past few centuries now. Global Warming is something that can’t be ignored and steps have to be taken to tackle the situation globally. The average temperature is constantly rising by 1.5 degrees Celsius over the last few years.

The best method to prevent future damage to the earth, cutting down more forests should be banned and Afforestation should be encouraged. Start by planting trees near your homes and offices, participate in events, and teach the importance of planting trees. It is impossible to undo the damage but it is possible to stop further harm.

Also Read: Social Forestry

Essay on Global Warming in 250 Words

Over a long period, it is observed that the temperature of the earth is increasing. This affected wildlife, animals, humans, and every living organism on earth. Glaciers have been melting, and many countries have started water shortages, flooding, and erosion and all this is because of global warming. 

No one can be blamed for global warming except for humans. Human activities such as gases released from power plants, transportation, and deforestation have increased gases such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere.                                              The main question is how can we control the current situation and build a better world for future generations. It starts with little steps by every individual. 

Start using cloth bags made from sustainable materials for all shopping purposes, instead of using high-watt lights use energy-efficient bulbs, switch off the electricity, don’t waste water, abolish deforestation and encourage planting more trees. Shift the use of energy from petroleum or other fossil fuels to wind and solar energy. Instead of throwing out the old clothes donate them to someone so that it is recycled. 

Donate old books, don’t waste paper.  Above all, spread awareness about global warming. Every little thing a person does towards saving the earth will contribute in big or small amounts. We must learn that 1% effort is better than no effort. Pledge to take care of Mother Nature and speak up about global warming.

Also Read: Types of Water Pollution

Essay on Global Warming in 500 Words

Global warming isn’t a prediction, it is happening! A person denying it or unaware of it is in the most simple terms complicit. Do we have another planet to live on? Unfortunately, we have been bestowed with this one planet only that can sustain life yet over the years we have turned a blind eye to the plight it is in. Global warming is not an abstract concept but a global phenomenon occurring ever so slowly even at this moment. Global Warming is a phenomenon that is occurring every minute resulting in a gradual increase in the Earth’s overall climate. Brought about by greenhouse gases that trap the solar radiation in the atmosphere, global warming can change the entire map of the earth, displacing areas, flooding many countries, and destroying multiple lifeforms. Extreme weather is a direct consequence of global warming but it is not an exhaustive consequence. There are virtually limitless effects of global warming which are all harmful to life on earth. The sea level is increasing by 0.12 inches per year worldwide. This is happening because of the melting of polar ice caps because of global warming. This has increased the frequency of floods in many lowland areas and has caused damage to coral reefs. The Arctic is one of the worst-hit areas affected by global warming. Air quality has been adversely affected and the acidity of the seawater has also increased causing severe damage to marine life forms. Severe natural disasters are brought about by global warming which has had dire effects on life and property. As long as mankind produces greenhouse gases, global warming will continue to accelerate. The consequences are felt at a much smaller scale which will increase to become drastic shortly. The power to save the day lies in the hands of humans, the need is to seize the day. Energy consumption should be reduced on an individual basis. Fuel-efficient cars and other electronics should be encouraged to reduce the wastage of energy sources. This will also improve air quality and reduce the concentration of greenhouse gases in the atmosphere. Global warming is an evil that can only be defeated when fought together. It is better late than never. If we all take steps today, we will have a much brighter future tomorrow. Global warming is the bane of our existence and various policies have come up worldwide to fight it but that is not enough. The actual difference is made when we work at an individual level to fight it. Understanding its import now is crucial before it becomes an irrevocable mistake. Exterminating global warming is of utmost importance and each one of us is as responsible for it as the next.  

Also Read: Essay on Library: 100, 200 and 250 Words

Essay on Global Warming UPSC

Always hear about global warming everywhere, but do we know what it is? The evil of the worst form, global warming is a phenomenon that can affect life more fatally. Global warming refers to the increase in the earth’s temperature as a result of various human activities. The planet is gradually getting hotter and threatening the existence of lifeforms on it. Despite being relentlessly studied and researched, global warming for the majority of the population remains an abstract concept of science. It is this concept that over the years has culminated in making global warming a stark reality and not a concept covered in books. Global warming is not caused by one sole reason that can be curbed. Multifarious factors cause global warming most of which are a part of an individual’s daily existence. Burning of fuels for cooking, in vehicles, and for other conventional uses, a large amount of greenhouse gases like carbon dioxide, and methane amongst many others is produced which accelerates global warming. Rampant deforestation also results in global warming as lesser green cover results in an increased presence of carbon dioxide in the atmosphere which is a greenhouse gas.  Finding a solution to global warming is of immediate importance. Global warming is a phenomenon that has to be fought unitedly. Planting more trees can be the first step that can be taken toward warding off the severe consequences of global warming. Increasing the green cover will result in regulating the carbon cycle. There should be a shift from using nonrenewable energy to renewable energy such as wind or solar energy which causes less pollution and thereby hinder the acceleration of global warming. Reducing energy needs at an individual level and not wasting energy in any form is the most important step to be taken against global warming. The warning bells are tolling to awaken us from the deep slumber of complacency we have slipped into. Humans can fight against nature and it is high time we acknowledged that. With all our scientific progress and technological inventions, fighting off the negative effects of global warming is implausible. We have to remember that we do not inherit the earth from our ancestors but borrow it from our future generations and the responsibility lies on our shoulders to bequeath them a healthy planet for life to exist. 

Also Read: Essay on Disaster Management

Climate Change and Global Warming Essay

Global Warming and Climate Change are two sides of the same coin. Both are interrelated with each other and are two issues of major concern worldwide. Greenhouse gases released such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere cause Global Warming which leads to climate change. Black holes have started to form in the ozone layer that protects the earth from harmful ultraviolet rays. 

Human activities have created climate change and global warming. Industrial waste and fumes are the major contributors to global warming. 

Another factor affecting is the burning of fossil fuels, deforestation and also one of the reasons for climate change.  Global warming has resulted in shrinking mountain glaciers in Antarctica, Greenland, and the Arctic and causing climate change. Switching from the use of fossil fuels to energy sources like wind and solar. 

When buying any electronic appliance buy the best quality with energy savings stars. Don’t waste water and encourage rainwater harvesting in your community. 

Also Read: Essay on Air Pollution

Tips to Write an Essay

Writing an effective essay needs skills that few people possess and even fewer know how to implement. While writing an essay can be an assiduous task that can be unnerving at times, some key pointers can be inculcated to draft a successful essay. These involve focusing on the structure of the essay, planning it out well, and emphasizing crucial details.

Mentioned below are some pointers that can help you write better structure and more thoughtful essays that will get across to your readers:

  • Prepare an outline for the essay to ensure continuity and relevance and no break in the structure of the essay
  • Decide on a thesis statement that will form the basis of your essay. It will be the point of your essay and help readers understand your contention
  • Follow the structure of an introduction, a detailed body followed by a conclusion so that the readers can comprehend the essay in a particular manner without any dissonance.
  • Make your beginning catchy and include solutions in your conclusion to make the essay insightful and lucrative to read
  • Reread before putting it out and add your flair to the essay to make it more personal and thereby unique and intriguing for readers  

Also Read: I Love My India Essay: 100 and 500+ Words in English for School Students

Ans. Both natural and man-made factors contribute to global warming. The natural one also contains methane gas, volcanic eruptions, and greenhouse gases. Deforestation, mining, livestock raising, burning fossil fuels, and other man-made causes are next.

Ans. The government and the general public can work together to stop global warming. Trees must be planted more often, and deforestation must be prohibited. Auto usage needs to be curbed, and recycling needs to be promoted.

Ans. Switching to renewable energy sources , adopting sustainable farming, transportation, and energy methods, and conserving water and other natural resources.

Relevant Blogs

For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Digvijay Singh

Having 2+ years of experience in educational content writing, withholding a Bachelor's in Physical Education and Sports Science and a strong interest in writing educational content for students enrolled in domestic and foreign study abroad programmes. I believe in offering a distinct viewpoint to the table, to help students deal with the complexities of both domestic and foreign educational systems. Through engaging storytelling and insightful analysis, I aim to inspire my readers to embark on their educational journeys, whether abroad or at home, and to make the most of every learning opportunity that comes their way.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

This was really a good essay on global warming… There has been used many unic words..and I really liked it!!!Seriously I had been looking for a essay about Global warming just like this…

Thank you for the comment!

I want to learn how to write essay writing so I joined this page.This page is very useful for everyone.

Hi, we are glad that we could help you to write essays. We have a beginner’s guide to write essays ( https://leverageedu.com/blog/essay-writing/ ) and we think this might help you.

It is not good , to have global warming in our earth .So we all have to afforestation program on all the world.

thank you so much

Very educative , helpful and it is really going to strength my English knowledge to structure my essay in future

Thank you for the comment, please follow our newsletter to get more insights on studying abroad and exams!

Global warming is the increase in 𝓽𝓱𝓮 ᴀᴠᴇʀᴀɢᴇ ᴛᴇᴍᴘᴇʀᴀᴛᴜʀᴇs ᴏғ ᴇᴀʀᴛʜ🌎 ᴀᴛᴍᴏsᴘʜᴇʀᴇ

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

an essay about the effects of global warming

Resend OTP in

an essay about the effects of global warming

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

an essay about the effects of global warming

How would you describe this article ?

Please rate this article

We would like to hear more.

Silhouette of a person walking through a spray of water at sunset with cars and buildings in the background.

Soaring temperatures in New York, July 2010. Photo by Eric Thayer/Reuters

The melting brain

It’s not just the planet and not just our health – the impact of a warming climate extends deep into our cortical fissures.

by Clayton Page Aldern   + BIO

In February 1884, the English art critic and polymath John Ruskin took the lectern at the London Institution for a pair of lectures on the weather. ‘The Storm-Cloud of the Nineteenth Century’ was his invective against a particular ‘wind of darkness’ and ‘plague-cloud’ that, in his estimate, had begun to envelope Victorian cities only in recent years. He had been taking careful meteorological measurements, he told a sceptical audience. He railed against the ‘bitterness and malice’ of the new weather in question; and, perhaps more importantly, about how it mirrored a certain societal ‘moral gloom’. You could read in us what you could read in the weather, he suggested.

A painting of a landscape with a blue sea, mountains on the left, and dramatic, swirling clouds in the sky.

July Thundercloud in the Val d’Aosta (1858) by John Ruskin. Courtesy Wikipedia

It was easy that February, and perhaps easy today, to disregard any alleged winds of darkness as the ravings of a madman. Clouds are clouds: even if Ruskin’s existed – which was a question of some contemporaneous debate – it would be untoward to imagine they bore any relationship with the human psyche. As Brian Dillon observed of the cloud lectures in The Paris Review in 2019, it can be hard to tell where Ruskin’s ‘bad weather ends and his own ragged, doleful mood begins.’ In 1886, Ruskin suffered a mental breakdown while giving a talk in Oxford. By the end of his life at the turn of the century, he was widely considered insane. His ramblings on meteorology and the human spirit aren’t exactly treated with the same gravitas as his books on J M W Turner.

And yet, for Ruskin, the clouds weren’t just clouds: they were juiced up by a ‘dense manufacturing mist’, as he’d noted in a diary entry. The plague-clouds embodied the miasma of the Industrial Revolution; the moral gloom was specifically that which arose from the rapid societal and environmental changes that were afoot. Ruskin’s era had seen relentless transformation of pastoral landscapes into industrial hubs. Everything smelled like sulphur and suffering. Soot-filled air, chemical and human waste, the clamour of machinery – these were more than just physical nuisances. They were assaults on the senses, shaping moods and behaviour in ways that were not yet fully understood.

A dark, moody painting of an industrial landscape with smokestacks and rooftops, under a cloudy sky with hints of light in the distance.

Mining Area (1852-1905) by Constantin Meunier. Courtesy Wikipedia

Ruskin believed that the relentless pace of industrialisation, with its cacophony of tools and sprawling factories and environmental destruction, undermined psychological wellbeing: that the mind, much like the body, required a healthy social and physical environment to thrive. This was actually a somewhat new idea. (Isaac Ray, a founder of the American Psychiatric Association, wouldn’t define the idea of ‘mental hygiene’, the precursor to mental health, until 1893.) Instability in the environment, for Ruskin, begot instability in the mind. One reflected the other.

M ore than a century later, as we grapple with a new suite of breakneck environmental changes, the plague-clouds are again darkly literal. Global average surface temperatures have risen by about 1.1°C (2°F) since the pre-industrial era, with most of this warming occurring in the past 40 years. Ice is melting; seas are steadily rising; storms are – well, you know this story. And yet, most frequently, it is still a story of the world out there: the world outside of us. The narrative of climate change is one of meteorological extremes, economic upheaval and biodiversity losses. But perhaps it is worth taking a maybe-mad Ruskin seriously. What of our internal clouds? As the climate crisis warps weather and acidifies oceans and shatters temperature records with frightening regularity, one is tempted to ask if our minds are changing in kind.

Here are some of the most concerning answers in the affirmative. Immigration judges are less likely to rule in favour of asylum seekers on hotter days. On such days, students behave as if they’ve lost a quarter-year of education, relative to temperate days. Warmer school years correspond to lower rates of learning. Temperature predicts the incidence of online hate speech. Domestic violence spikes with warmer weather. Suicide , too.

In baseball, pitchers are more likely to hit batters with their pitches on hot days

But you already know what this feels like. Perhaps you’re more ornery in the heat. Maybe you feel a little slow in the head. It’s harder to focus and easier to act impulsively. Tomes of cognitive neuroscience and behavioural economics research back you up, and it’s not all as dire as domestic violence. Drivers honk their horns more frequently (and lean on them longer) at higher temperatures. Heat predicts more aggressive penalties in sport. In baseball, pitchers are more likely to hit batters with their pitches on hot days – and the outdoor temperature is an even stronger predictor of their tendency to retaliate in this manner if they’ve witnessed an opposing pitcher do the same thing.

In other words: it would appear the plague-clouds are within us, too. They illustrate the interconnectedness of our inner and outer worlds. They betray a certain flimsiness of human agency, painting our decision-making in strokes of environmental influence far bolder than our intuition suggests. And they throw the climate crisis into fresh, stark relief: because, yes, as the climate changes, so do we.

T he London Institution closed in 1912. These days, when you want to inveigh against adverse environmental-mind interactions, you publish a paper in The Lancet . And so that is what 24 mostly British, mostly clinical neurologists did in May 2024, arguing that the ‘incidence, prevalence, and severity of many nervous system conditions’ can be affected by global warming. For these researchers, led by Sanjay Sisodiya, professor of neurology at University College London in the UK, the climate story is indeed one of internal clouds.

In their survey of 332 scientific studies, Sisodiya and his colleagues show that climatic influence extends far beyond behaviour and deep into cortical fissures. Aspects of migraine, stroke, seizure and multiple sclerosis all appear to be temperature dependent. In Taiwan, report the authors, the risk of schizophrenia hospitalisation increases with widening daytime temperature ranges. In California , too, ‘hospital visits for any mental health disorder, self-harm, intentional injury of another person, or homicide’ rise with broader daily temperature swings. In Switzerland , hospitalisations for psychiatric disorders increase with temperature, with the risk particularly pronounced for those with developmental disorders and schizophrenia.

Outside the hospital, climate change is extending the habitable range of disease vectors like ticks, mosquitoes and bats, causing scientists to forecast an increased incidence of vector-borne and zoonotic brain maladies like yellow fever, Zika and cerebral malaria. Outside the healthcare system writ large, a changing environment bears on sensory systems and perception, degrading both sensory information and the biological tools we use to process it. Outside the realm of the even remotely reasonable, warming freshwater brings with it an increased frequency of cyanobacterial blooms, the likes of which release neurotoxins that increase the risk of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease).

Experiencing natural disasters in utero greatly increases children’s risk of anxiety, depression and ADHD

Indeed, recent studies suggest that climate change may be exacerbating the already substantial burden of neurodegenerative diseases like Parkinson’s and Alzheimer’s. In countries with warmer-than-average climates, more intense warming has been linked to a greater increase in Parkinson’s cases and, as Sisodiya et al note, the highest forecasted rates of increase in dementia prevalence are ‘expected to be in countries experiencing the largest effects of climate change’. Similarly, short-term exposure to high temperatures appears to drive up emergency department visits for Alzheimer’s patients. The air we breathe likely plays a complementary role: in Mexico City, for example, where residents are exposed to high levels of fine particulate matter and ozone from a young age, autopsies have revealed progressive Alzheimer’s pathology in 99 per cent of those under the age of 30.

The risks aren’t limited to those alive today. In 2022, for example, an epidemiological study revealed that heat exposure during early pregnancy is associated with a significantly increased risk of children developing schizophrenia, anorexia and other neuropsychiatric conditions. High temperatures during gestation have long been known to delay neurodevelopment in rats. Other scientists have shown that experiencing natural disasters in utero greatly increases children’s risk of anxiety, depression, attention-deficit/hyperactivity disorder and conduct disorders later in life. Such effects cast the intergenerational responsibilities of the Anthropocene in harsh new light – not least because, as Sisodiya and colleagues write, there is a tremendous ‘global disparity between regions most affected by climate change (both now and in the future) and regions in which the majority of studies are undertaken.’ We don’t know what we don’t know.

What we do know is that the brain is emerging, in study after study, as one of climate change’s most vulnerable landscapes.

It is a useful reorientation. Return to the horn-honking and the baseball pitchers for a moment. A focus on the brain sheds some potential mechanistic light on the case studies and allows us to avoid phrases like ‘wind of darkness’. Higher temperatures, for example, appear to shift functional brain networks – the coordinated behaviour of various regions – toward randomised activity. In extreme heat, scientists have taken note of an overworked dorsolateral prefrontal cortex (dlPFC), the evolutionarily new brain region that the neuroendocrinologist Robert M Sapolsky at Stanford University in the US calls ‘the definitive rational decider in the frontal cortex’. The dlPFC limits the degree to which people make impulsive decisions; disrupted dlPFC activity tends to imply a relatively heightened influence of limbic structures (like the emotionally attuned amygdala) on behaviour. More heat, less rational decision-making.

When extreme heat reaches into your mind and tips your scales toward violence, it is constraining your choices

The physicality of environmental influence on the brain is more widespread than the dlPFC – and spans multiple spatial scales. Heat stress in zebrafish, for example, down-regulates the expression of proteins relevant to synapse construction and neurotransmitter release. In mice, heat also triggers inflammation in the hippocampus, a brain region necessary for memory formation and storage. While neuroinflammation often plays an initially protective role, chronic activation of immune cells – like microglia and astrocytes – can turn poisonous, since pro-inflammatory molecules can damage brain cells in the long run. In people, hyperthermia is associated with decreased blood flow to this region. Psychologists’ observations of waning cognition and waxing aggression at higher temperatures makes a world of sense in the context of such findings.

The nascent field of environmental neuroscience seeks to ‘understand the qualitative and quantitative relationships between the external environment, neurobiology, psychology and behaviour’. Searching for a more specific neologism – since that particular phrase also encompasses environmental exposures like noise, urban development, lighting and crime – we might refer to our budding, integrative field as climatological neuroepidemiology. Or, I don’t know, maybe we need something snappier for TikTok. Neuroclimatology? Ecological neurodynamics?

I tend to prefer: the weight of nature.

The weight forces our hands, as in the case of the behavioural effects highlighted above. When extreme heat reaches into your mind and tips your scales toward violence, it is constraining your choices. By definition, impulsive decisions are rooted in comparatively less reflection than considered decisions: to the extent that a changing climate influences our reactions and decision-making, we should understand it as compromising our perceived free will. The weight of nature is heavy. It displaces us.

It is also a heavy psychological burden to carry. You are likely familiar with the notion of climate anxiety . The phrase, which tends to refer to a near-pathological state of worry and fear of impending environmental destruction, has never sat particularly well with me. Anxiety, as defined by the Diagnostic and Statistical Manual , is usually couched in terms of ‘excessive’ worry. I’m not convinced there’s anything excessive about seeing the climatic writing on the wall and feeling a sense of doom. Perhaps we ought to consider the climate-anxious as having more developed brains than the rest of the litter – that the Cassandras are the only sane ones left.

I ’m not exactly joking. Neuroscience has begun to study the brains in question, and not for nothing. The midcingulate cortex, a central hub in the brain’s threat-detection circuitry, may hold some clues to the condition’s biological basis: in one 2024 study , for example, researchers at Northern Michigan University in the US found that people who reported higher levels of anxiety about climate change showed distinct patterns of brain structure and function in this region, relative to those with lower levels of climate anxiety – and irrespective of base levels of anxiety writ large. In particular, the climate-anxious brain appears to play host to a smaller midcingulate (in terms of grey matter), but one that’s functionally more connected to other key hubs in the brain’s salience network, a system understood to constantly scan the environment for emotionally relevant information. In the salience network, the midcingulate cortex works hand in hand with limbic structures like the amygdala and insula to prepare the body to respond appropriately to this type of information. In people with climate anxiety, this network may be especially attuned to signals of climate-related threats.

Rather than indicating a deficiency, then, a diminutive midcingulate might reflect a more efficient, finely honed threat-detection system. The brain is well known to prune redundant connections over time, preserving only the most useful neural pathways. Selective sculpting, suggest the Michigan researchers, may allow the climate-anxious brain to process worrisome information more effectively, facilitating rapid communication between the midcingulate and other regions involved in threat anticipation and response. In other words, they write, the climate-anxious midcingulate might be characterised by ‘more efficient wiring’.

This neural sensitivity to potential dangers could be both a blessing and a curse. On one hand, it may attune some people to the very real perils of the future. The midcingulate is critical for anticipating future threats, and meta-analyses have found the region to be consistently activated when people contemplate unpredictable negative outcomes. Given the looming spectre of climate catastrophe, a hair-trigger threat-detection system could be an adaptive asset.

Climate anxiety is not just a sociocultural phenomenon. It has a theoretically identifiable neural correlate

On the other hand, argue the researchers:

[T]he complexity, uncertainty, as well as temporal and geographical distance of the climate crisis, in addition to its global nature, may lead individuals to deprioritising the risks associated with climate change, or becoming overwhelmed and disengaged – a state sometimes referred to as ‘eco-paralysis’.

An overactive midcingulate has been implicated in clinical anxiety disorders, and the new findings suggest that climate anxiety shares some of the same neural underpinnings. (It’s important to recall that climate anxiety seems to be distinct from generalised anxiety, though, as the brain differences observed in the Michigan study couldn’t be explained by overall anxiety levels.)

Ultimately, while speculative, these findings suggest that climate anxiety is not merely a sociocultural phenomenon, but one with theoretically identifiable neural correlates. They provide a potential biological framework for understanding why some people may be more psychologically impacted by climate change than others. And they raise intriguing questions about whether the brains of the climate anxious are particularly well-suited for confronting the existential threat of a warming world – or whether they are vulnerable to becoming overwhelmed by it. In all cases, though, they illustrate that world reaching inward.

T here is perhaps a flipside to be realised here. A changing climate is seeping into our very neurobiology. What might it mean to orient our neurobiology toward climate change?

Such is the premise of a 2023 article in Nature Climate Change by the neuroscientist Kimberly Doell at the University of Vienna in Austria and her colleagues, who argue that the field is well positioned to inform our understanding of climate-adaptation responses and pro-environmental decision-making. In the decades since Ruskin shook his fists at the sky, environmental neuroscience has begun to probe the reciprocal dance between organisms and their ecological niches. We know now that the textures of modern environments – green spaces, urban sprawl, socioeconomic strata – all leave their mark on the brain. Climate change is no different.

Accordingly, argue Doell et al, scientists and advocates alike can integrate findings from neuroscience to improve communications strategies aimed at spurring climate action. They want to turn the tables, taking advantage of insights from neurobiology and cognitive neuroscience to more effectively design climate solutions – both within ourselves and for society as a whole.

The Anthropocene’s fever dream is already warping our wetware

We have models for this type of approach. Poverty research, for instance, has long implicated socioeconomic conditions with subpar health. In more recent years, neuroscience has reverse-engineered the pathways by which poverty’s various insults – understimulation, toxic exposures, chronic stress – can erode neural architecture and derail cognitive development. Brain science alone won’t solve poverty, yet even a limited understanding of these mechanisms has spurred research in programmes like Head Start, a family-based preschool curriculum that has been shown to boost selective attention (as evident in electrophysiological recordings) and cognitive test scores. While the hydra of structural inequity is not easily slain, neuroscientists have managed to shine some light on poverty’s neural correlates, flag its reversible harms, and design precision remedies accordingly. This same potential, argue Doell and her colleagues, extends to the neuroscience of climate change.

To realise this potential, though, we need to further understand how the Anthropocene’s fever dream is already warping our wetware. Social and behavioural science have begun cataloguing the psychological fallout of a planet in flux, but a neural taxonomy of climate change awaits. The field’s methodological and conceptual arsenal is primed for the challenge, but honing it will demand alliances with climate science, medicine, psychology, political science and beyond.

Some are trying. For example, the Kavli Foundation in Los Angeles, US, recognising a need for answers, last year put out a call for scientists to investigate how neural systems are responding to ecological upheaval. With a trial $5 million, the foundation aims to illuminate how habitat loss, light pollution and other environmental insults may be influencing the molecular, cellular and circuit-level machinery of brains, human and otherwise. The central question is: in a biosphere where change is the only constant, are neural systems plastic enough to keep pace, or will they be left struggling to adapt?

The first wave of researchers to take up Kavli’s challenge are studying a diverse array of creatures, each uniquely positioned to reveal insights about the brain’s resilience in the face of planetary disruption. Wolfgang Stein at Illinois State University in the US and Steffen Harzsch at University of Greifswald in Germany, for example, focus on crustaceans, seeking to understand how their neural thermal regulators cope with rising temperatures in shallow and deep waters. Another group has targeted the brains of cephalopods, whose RNA-editing prowess may be key to their ability to tolerate plummeting oxygen levels in their increasingly suffocating aquatic habitats. A third Kavli cohort, led by Florence Kermen at University of Copenhagen in Denmark, is subjecting zebrafish to extreme temperatures, scouring their neurons and glial cells for the molecular signatures that allow them to thrive – even as their watery world heats up.

These initial investments have sparked federal curiosity. In December 2023, the US National Science Foundation joined forces with Kavli, inviting researchers to submit research proposals that seek to probe the ‘modulatory, homeostatic, adaptive, and/or evolutionary mechanisms that impact neurophysiology in response to anthropogenic environmental influence’. We may not be in arms-race territory yet, but at least there’s a suggestion that we’re beginning to walk in the right direction.

T he brain, that spongy command centre perched atop our spinal cord, has always been a black box. As the climate crisis tightens its grip, and the ecological ground beneath our feet grows ever more unsteady, the imperative to pry it open and peer inside grows more urgent by the day. Already, we’ve begun to glimpse the outlines of a new neural cartography, sketched in broad strokes by the likes of Sisodiya and his colleagues. We know now that the brain is less a static lump of self-regulating tissue than it is a dynamic, living landscape, its hills and valleys shaped by the contours of our environment. Just as the Greenland ice sheet groans and buckles under the heat of a changing climate, so too do our synapses wither and our neurons wink out as the mercury rises. Just as rising seas swallow coastlines, and forests succumb to drought and flame, the anatomical borders of our brains are redrawn by each new onslaught of environmental insult.

But the dialogue between brain and biosphere is not a one-way street. The choices we make, the behaviours we pursue, the ways in which we navigate a world in crisis – all of these decisions are reflected back onto the environment, for good or for ill. So, I offer: in seeking to understand how a changing climate moulds the contours of our minds, we must also reckon with how the architecture of our thoughts might be renovated in service of sustainability.

Bit by bit, synapse by synapse, we can chart a course through the gathering plague-cloud

The cartographers of the Anthropocene mind have their work cut out for them. But in the hands of neuroscience – with its shimmering brain scans and humming electrodes, its gene-editing precision and algorithmic might – there is something approaching a starting point. By tracing the pathways of environmental impact to their neural roots, and by following the cascading consequences of our mental processes back out into the world, we might yet begin to parse the tangled web that binds the fates of mind and planet.

This much is clear: as the gears of the climate crisis grind on, our brains will be swept along for the ride. The question is whether we’ll be mere passengers, or whether we’ll seize the controls and steer towards something resembling a liveable future. The weight of nature – the immensity of the crisis we face – is daunting. But it need not be paralysing. Bit by bit, synapse by synapse, we can chart a course through the gathering plague-clouds. It was Ruskin, at a slightly more legible moment in his life, who offered: ‘To banish imperfection is to destroy expression, to check exertion, to paralyse vitality.’ Even if we somehow could, we ought not banish the alleged imperfections of environmental influence on the mind. Instead, we ought to read in them an intimate, vital relationship between self and world.

In this, climatological neuroepidemiology – young and untested though it may be – is poised to play an outsized role. In gazing into the black box of the climate-altered mind, in illuminating the neural circuitry of our planetary predicament, the field offers something precious: a flicker of agency in a world that often feels as if it’s spinning out of control. It whispers that the levers of change are within reach, lodged in the squishy confines of our crania, waiting to be grasped. And it suggests that, even as the weight of nature presses down upon us, we might yet find a way to press back.

Black-and-white photo of a man in a suit and hat grabbing another man by his collar in front of a bar with bottles.

Political philosophy

C L R James and America

The brilliant Trinidadian thinker is remembered as an admirer of the US but he also warned of its dark political future

Harvey Neptune

A suburban street with mountains in the background, featuring a girl on a bike, parked cars, and old furniture on the sidewalk in front of a house.

Progress and modernity

The great wealth wave

The tide has turned – evidence shows ordinary citizens in the Western world are now richer and more equal than ever before

Daniel Waldenström

A brick house with a tiled roof, surrounded by a well-maintained garden with bushes and colourful flowers.

Falling for suburbia

Modernists and historians alike loathed the millions of new houses built in interwar Britain. But their owners loved them

Michael Gilson

Close-up of a person’s hand using a smartphone in a dimly lit room with blurred lights in the background. The phone screen shows the text ‘How can I help you today?’ and a text input field.

Computing and artificial intelligence

Mere imitation

Generative AI has lately set off public euphoria: the machines have learned to think! But just how intelligent is AI?

A black-and-white photo of a person riding a horse in, with a close-up of another horse in the foreground under bright sunlight.

Anthropology

Your body is an archive

If human knowledge can disappear so easily, why have so many cultural practices survived without written records?

Helena Miton

Person in a wheelchair with a laptop, wearing a monitoring cap, and a doctor in a lab coat standing nearby in a clinical setting.

Illness and disease

Empowering patient research

For far too long, medicine has ignored the valuable insights that patients have into their own diseases. It is time to listen

Charlotte Blease & Joanne Hunt

Essay on Global Warming – Causes and Solutions

500+ words essay on global warming.

Global Warming is a term almost everyone is familiar with. But, its meaning is still not clear to most of us. So, Global warming refers to the gradual rise in the overall temperature of the atmosphere of the Earth. There are various activities taking place which have been increasing the temperature gradually. Global warming is melting our ice glaciers rapidly. This is extremely harmful to the earth as well as humans. It is quite challenging to control global warming; however, it is not unmanageable. The first step in solving any problem is identifying the cause of the problem. Therefore, we need to first understand the causes of global warming that will help us proceed further in solving it. In this essay on Global Warming, we will see the causes and solutions of Global Warming.

essay on global warming

Causes of Global Warming

Global warming has become a grave problem which needs undivided attention. It is not happening because of a single cause but several causes. These causes are both natural as well as manmade. The natural causes include the release of greenhouses gases which are not able to escape from earth, causing the temperature to increase.

Get English Important Questions here

Further, volcanic eruptions are also responsible for global warming. That is to say, these eruptions release tons of carbon dioxide which contributes to global warming. Similarly, methane is also one big issue responsible for global warming.

an essay about the effects of global warming

So, when one of the biggest sources of absorption of carbon dioxide will only disappear, there will be nothing left to regulate the gas. Thus, it will result in global warming. Steps must be taken immediately to stop global warming and make the earth better again.

Get the huge list of more than 500 Essay Topics and Ideas

Global Warming Solutions

As stated earlier, it might be challenging but it is not entirely impossible. Global warming can be stopped when combined efforts are put in. For that, individuals and governments, both have to take steps towards achieving it. We must begin with the reduction of greenhouse gas.

Furthermore, they need to monitor the consumption of gasoline. Switch to a hybrid car and reduce the release of carbon dioxide. Moreover, citizens can choose public transport or carpool together. Subsequently, recycling must also be encouraged.

Read Global Warming Speech here

For instance, when you go shopping, carry your own cloth bag. Another step you can take is to limit the use of electricity which will prevent the release of carbon dioxide. On the government’s part, they must regulate industrial waste and ban them from emitting harmful gases in the air. Deforestation must be stopped immediately and planting of trees must be encouraged.

In short, all of us must realize the fact that our earth is not well. It needs to treatment and we can help it heal. The present generation must take up the responsibility of stopping global warming in order to prevent the suffering of future generations. Therefore, every little step, no matter how small carries a lot of weight and is quite significant in stopping global warming.

हिंदी में ग्लोबल वार्मिंग पर निबंध यहाँ पढ़ें

FAQs on Global Warming

Q.1 List the causes of Global Warming.

A.1 There are various causes of global warming both natural and manmade. The natural one includes a greenhouse gas, volcanic eruption, methane gas and more. Next up, manmade causes are deforestation, mining, cattle rearing, fossil fuel burning and more.

Q.2 How can one stop Global Warming?

A.2 Global warming can be stopped by a joint effort by the individuals and the government. Deforestation must be banned and trees should be planted more. The use of automobiles must be limited and recycling must be encouraged.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

an essay about the effects of global warming

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. 

A farmer and his daughter standing in front of thier honey barn

Heatwaves put bees at risk

Eleven-year-old Markela is a fifth generation beekeeper, but climate change is making it so that she may not be able to carry on the family tradition. Wildfires, heatwaves, and droughts that are increasing in intensity and frequency due to the climate crisis, put bees and the ecosystems at risk.

Two women in Chile plant a tree

Healing Chile’s Huapi Island

On Chile’s Huapi Island, native forests have become fragmented, making the soils poorer and drier and leaving the population vulnerable to the effects of climate change. Now, thanks to the restoration efforts of Indigenous Peoples, native trees are making a comeback.

Workers installing a solar power tower

Early warning systems are saving lives in Central Asia

As Central Asia grapples with the increasing frequency and severity of climate-induced hazards, the importance of robust early warning systems cannot be overstated. However, countries need both technical knowledge and resources to effectively implement these systems on a large scale. Japan has been a reliable ally for countries, helping advance early warning systems and increase resilience in the region.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Climatic variation since the last glaciation
  • The greenhouse effect
  • Radiative forcing
  • Water vapour
  • Carbon dioxide
  • Surface-level ozone and other compounds
  • Nitrous oxides and fluorinated gases
  • Land-use change
  • Stratospheric ozone depletion
  • Volcanic aerosols
  • Variations in solar output
  • Variations in Earth’s orbit
  • Water vapour feedback
  • Cloud feedbacks
  • Ice albedo feedback
  • Carbon cycle feedbacks
  • Modern observations
  • Prehistorical climate records
  • Theoretical climate models

Patterns of warming

Precipitation patterns, regional predictions.

  • Ice melt and sea level rise
  • Ocean circulation changes
  • Tropical cyclones
  • Environmental consequences of global warming
  • Socioeconomic consequences of global warming

Grinnell Glacier shrinkage

  • How does global warming work?
  • Where does global warming occur in the atmosphere?
  • Why is global warming a social problem?
  • Where does global warming affect polar bears?

Global warming illustration

Potential effects of global warming

Our editors will review what you’ve submitted and determine whether to revise the article.

  • U.S. Department of Transportation - Global Warming: A Science Overview
  • NOAA Climate.gov - Climate Change: Global Temperature
  • Natural Resources Defense Council - Global Warming 101
  • American Institute of Physics - The discovery of global warming
  • LiveScience - Causes of Global Warming
  • global warming - Children's Encyclopedia (Ages 8-11)
  • global warming - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

The path of future climate change will depend on what courses of action are taken by society—in particular the emission of greenhouse gases from the burning of fossil fuels . A range of alternative emission scenarios has been proposed by the IPCC since the Fifth Assessment Report (AR5), which was published in 2014, to examine potential future climate changes. The scenarios depend on various assumptions concerning future rates of human population growth, economic development , energy demand, technological advancement , climate mitigation, and other factors.

Simulations of future climate change

Recent news.

The differences between the various simulations arise from disparities between the various climate models used and from assumptions made by each emission scenario. These projections are conservative in that they do not take into account potential positive carbon cycle feedbacks ( see above Feedback mechanisms and climate sensitivity ). In the IPCC’s AR5 and AR6 reports, lower-end emissions scenarios, specifically scenarios that assume immediate reductions in greenhouse gas emissions, have a reasonable chance of holding additional global surface warming by 2100 to less than 2.0 °C (3.6 °F)—a level considered by many scientists to be the threshold above which pervasive and extreme climatic effects will occur.

an essay about the effects of global warming

The greatest increase in near-surface air temperature since the 1990s is occurring over the polar region of the Northern Hemisphere largely because of the melting of sea ice and the associated reduction in surface albedo . Greater warming is predicted over land areas than over the ocean . Largely due to the delayed warming of the oceans and their greater specific heat , the Northern Hemisphere—with less than 40 percent of its surface area covered by water—is expected to warm faster than the Southern Hemisphere. Some of the regional variation in predicted warming is expected to arise from changes to wind patterns and ocean currents in response to surface warming. For example, the warming of the region of the North Atlantic Ocean just south of Greenland is expected to be slight. This anomaly is projected to arise from a weakening of warm northward ocean currents combined with a shift in the jet stream that will bring colder polar air masses to the region.

Netherlands: Delta Works flood-control project

The climate changes associated with global warming are also projected to lead to changes in precipitation patterns across the globe. Increased precipitation is predicted in the polar and subpolar regions, whereas decreased precipitation is projected for the middle latitudes of both hemispheres as a result of the expected poleward shift in the jet streams . Whereas precipitation near the Equator is predicted to increase, it is thought that rainfall in the subtropics will decrease. Both phenomena are associated with a forecasted strengthening of the tropical Hadley cell pattern of atmospheric circulation .

Changes in precipitation patterns are expected to increase the chances of both drought and flood conditions in many areas. Decreased summer precipitation in North America , Europe , and Africa , combined with greater rates of evaporation due to warming surface temperatures, is projected to lead to decreased soil moisture and drought in many regions. Furthermore, since anthropogenic climate change will likely lead to a more vigorous hydrologic cycle with greater rates of both evaporation and precipitation, there will be a greater probability for intense precipitation and flooding in many regions.

Regional predictions of future climate change remain limited by uncertainties in how the precise patterns of atmospheric winds and ocean currents will vary with increased surface warming. For example, some uncertainty remains in how the frequency and magnitude of El Niño /Southern Oscillation ( ENSO ) events will adjust to climate change. Since ENSO is one of the most prominent sources of interannual variations in regional patterns of precipitation and temperature, any uncertainty in how it will change implies a corresponding uncertainty in certain regional patterns of climate change. For example, increased El Niño activity would likely lead to more winter precipitation in some regions, such as the desert southwest of the United States . This might offset the drought predicted for those regions, but at the same time it might lead to less precipitation in other regions. Rising winter precipitation in the desert southwest of the United States might exacerbate drought conditions in locations as far away as South Africa .

an essay about the effects of global warming

Lisa Hupp/USFWS

Arctic Match Live Now!

For a limited time, all gifts are being matched to stop Big Oil from blocking a new once-in-a-lifetime opportunity to protect the Arctic.

Are the Effects of Global Warming Really that Bad?

Short answer: Yes. Even a seemingly slight average temperature rise is enough to cause a dramatic transformation of our planet.

An aerial view of a neighborhood of homes sitting in floodwaters

The Missouri River encroaches on homes in Sioux City, Iowa, during a 2011 flood

Stocktrek Images/Media Bakery

  • Share this page block

Five and a half degrees Fahrenheit. It may not sound like much—perhaps the difference between wearing a sweater and not wearing one on an early-spring day. But for the world in which we live—which climate experts project will be at least 5.7 degrees Fahrenheit warmer by 2100 , relative to pre-industrial levels (1850–1900), should global emissions continue on their current path—this small rise will have grave consequences. These impacts are already becoming apparent for every ecosystem and living thing, including us.

Human influences are the number one cause of global warming , especially the carbon pollution we cause by burning fossil fuels and the pollution capture we prevent by destroying forests. The carbon dioxide, methane, soot, and other pollutants we release into the atmosphere act like a blanket, trapping the sun's heat and causing the planet to warm. Evidence shows that the 2010s were hotter than any other decade on record —and every decade since the 1960s has averaged hotter than the previous one. This warming is altering the earth's climate system, including its land, atmosphere, oceans, and ice, in far-reaching ways.

More frequent and severe weather

Higher temperatures are worsening many types of disasters, including storms, heat waves, floods, and droughts. A warmer climate creates an atmosphere that can collect, retain, and unleash more water, changing weather patterns in such a way that wet areas become wetter and dry areas drier.

According to the National Oceanic and Atmospheric Administration, in 2021, there were 20 weather and climate disaster events in the United States—including severe storms, floods, drought, and wildfires—that individually caused at least $1 billion in losses . “Disasters in 2021 had a staggering total price tag of $145 billion—and that’s an underestimate because it excludes health damages,” says Vijay Limaye , senior scientist at NRDC. “These climate and weather disasters endanger people across the country throughout the entire year. In fact, more than 4 in 10 Americans live in a county that was struck by climate-related disasters in 2021.”

The increasing number of droughts, intense storms, and floods we're seeing as our warming atmosphere holds—and then dumps—more moisture poses risks to public health and safety too. Prolonged dry spells mean more than just scorched lawns. Drought conditions jeopardize access to clean drinking water, fuel out-of-control wildfires, and result in dust storms, extreme heat events, and flash flooding in the States. Elsewhere around the world, lack of water is a leading cause of death and serious disease and is contributing to crop failure. At the opposite end of the spectrum, heavier rains cause streams, rivers, and lakes to overflow, which damages life and property, contaminates drinking water, creates hazardous-material spills, and promotes mold infestation and unhealthy air. A warmer, wetter world is also a boon for foodborne and waterborne illnesses and disease-carrying insects, such as mosquitoes, fleas, and ticks.

Higher death rates

Today's scientists point to climate change as the biggest global health threat of the 21st century. It's a threat that impacts all of us—especially children, the elderly, low-income communities, and minorities—and in a variety of direct and indirect ways. As temperatures spike, so does the incidence of illness, emergency room visits, and death.

"There are more hot days in places where people aren't used to it," Limaye says. "They don't have air-conditioning or can't afford it. One or two days isn't a big deal. But four days straight where temperatures don't go down, even at night, leads to severe health consequences." In the United States, hundreds of heat-related deaths occur each year due to direct impacts and the indirect effects of heat-exacerbated, life-threatening illnesses, such as heat exhaustion, heatstroke, and cardiovascular and kidney diseases. Indeed, extreme heat kills more Americans each year, on average, than hurricanes, tornadoes, floods, and lightning combined.

Dirtier air

Rising temperatures also worsen air pollution by increasing ground-level ozone smog, which is created when pollution from cars, factories, and other sources react to sunlight and heat. Ground-level ozone is the main component of smog, and the hotter things get, the more of it we have. Dirtier air is linked to higher hospital admission rates and higher death rates for asthmatics. It worsens the health of people suffering from cardiac or pulmonary disease. And warmer temperatures also significantly increase airborne pollen , which is bad news for those who suffer from hay fever and other allergies.

Higher wildlife extinction rates

As humans, we face a host of challenges, but we're certainly not the only ones catching heat. As land and sea undergo rapid changes, the animals that inhabit them are doomed to disappear if they don't adapt quickly enough. Some will make it, and some won't. According to the Intergovernmental Panel on Climate Change's Sixth Assessment Report , the risk of species extinction increases steeply with rises in global temperature —with invertebrates (specifically pollinators) and flowering plants being some of the most vulnerable. Moreover, a 2015 study showed that vertebrate species (animals with backbones, like fish, birds, mammals , amphibians, and reptiles) are also disappearing more than 100 times faster than the natural rate of extinction, due to human-driven climate change, pollution, and deforestation.

More acidic oceans

The earth's marine ecosystems are under pressure as a result of climate change. Oceans are becoming more acidic, due in large part to their absorption of some of our excess emissions. As this acidification accelerates, it poses a serious threat to underwater life, particularly creatures with calcium carbonate shells or skeletons, including mollusks, crabs, and corals. This can have a huge impact on shellfisheries . In total, the U.S. shellfish industry could lose more than $400 million annually by 2100 due to impacts of ocean acidification.

Higher sea levels

The polar regions are particularly vulnerable to a warming atmosphere. Average temperatures in the Arctic are rising twice as fast as they are elsewhere on earth, and the world's ice sheets are melting fast. This not only has grave consequences for the region's people, wildlife, and plants; its most serious impact may be on rising sea levels. By 2100, it's estimated our oceans will be 1.6 to 6.6 feet higher, threatening coastal systems and low-lying areas, encompassing entire island nations and the world’s largest cities, including Los Angeles, Miami, and New York City, as well as Mumbai, India; Rio de Janeiro; and Sydney, Australia.

But this isn’t the end of the story

There’s no question: Unchecked climate change promises a frightening future, and it's too late to fully turn back the clock. We've already taken care of that by pumping a century's worth of pollution into the atmosphere. “Even if we stopped all carbon dioxide emissions tomorrow, we'd still see some dangerous effects,” Limaye says. That, of course, is the bad news.

But there's also good news. By aggressively reducing our global emissions now, “we can avoid a lot of the severe consequences that climate change would otherwise bring,” says Limaye. While change must happen at the highest levels of government and business, your voice matters too: to your friends, to your families, and to your community leaders. Together, we can envision a safer, healthier, more equitable future—and build toward it. You can join with millions of people around the world fighting climate change and even work to reduce fossil fuels in your own life .

This story was originally published on March 15, 2016, and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A blurry image of a line of people wading through floodwaters from Tropical Storm Harvey in Beaumont Place, Houston, Texas, 2017

1.5 Degrees of Global Warming—Are We There Yet?

A woman holds a lantern that is connected by a wire to a small solar panel held by a man to her left.

What Are the Solutions to Climate Change?

An aerial view of floodwaters overtaking a cluster of buildings

What Are the Effects of Climate Change?

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

What Is Climate Change?

Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

Changes observed in Earth’s climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere, raising Earth’s average surface temperature. Natural processes, which have been overwhelmed by human activities, can also contribute to climate change, including internal variability (e.g., cyclical ocean patterns like El Niño, La Niña and the Pacific Decadal Oscillation) and external forcings (e.g., volcanic activity, changes in the Sun’s energy output , variations in Earth’s orbit ).

Scientists use observations from the ground, air, and space, along with computer models , to monitor and study past, present, and future climate change. Climate data records provide evidence of climate change key indicators, such as global land and ocean temperature increases; rising sea levels; ice loss at Earth’s poles and in mountain glaciers; frequency and severity changes in extreme weather such as hurricanes, heatwaves, wildfires, droughts, floods, and precipitation; and cloud and vegetation cover changes.

“Climate change” and “global warming” are often used interchangeably but have distinct meanings. Similarly, the terms "weather" and "climate" are sometimes confused, though they refer to events with broadly different spatial- and timescales.

What Is Global Warming?

Global warming is the long-term heating of Earth’s surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere. This term is not interchangeable with the term "climate change."

Since the pre-industrial period, human activities are estimated to have increased Earth’s global average temperature by about 1 degree Celsius (1.8 degrees Fahrenheit), a number that is currently increasing by more than 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. The current warming trend is unequivocally the result of human activity since the 1950s and is proceeding at an unprecedented rate over millennia.

Weather vs. Climate

“If you don’t like the weather in New England, just wait a few minutes.” - Mark Twain

Weather refers to atmospheric conditions that occur locally over short periods of time—from minutes to hours or days. Familiar examples include rain, snow, clouds, winds, floods, or thunderstorms.

Climate, on the other hand, refers to the long-term (usually at least 30 years) regional or even global average of temperature, humidity, and rainfall patterns over seasons, years, or decades.

Find Out More: A Guide to NASA’s Global Climate Change Website

This website provides a high-level overview of some of the known causes, effects and indications of global climate change:

Evidence. Brief descriptions of some of the key scientific observations that our planet is undergoing abrupt climate change.

Causes. A concise discussion of the primary climate change causes on our planet.

Effects. A look at some of the likely future effects of climate change, including U.S. regional effects.

Vital Signs. Graphs and animated time series showing real-time climate change data, including atmospheric carbon dioxide, global temperature, sea ice extent, and ice sheet volume.

Earth Minute. This fun video series explains various Earth science topics, including some climate change topics.

Other NASA Resources

Goddard Scientific Visualization Studio. An extensive collection of animated climate change and Earth science visualizations.

Sea Level Change Portal. NASA's portal for an in-depth look at the science behind sea level change.

NASA’s Earth Observatory. Satellite imagery, feature articles and scientific information about our home planet, with a focus on Earth’s climate and environmental change.

Header image is of Apusiaajik Glacier, and was taken near Kulusuk, Greenland, on Aug. 26, 2018, during NASA's Oceans Melting Greenland (OMG) field operations. Learn more here . Credit: NASA/JPL-Caltech

ENCYCLOPEDIC ENTRY

Global warming.

The causes, effects, and complexities of global warming are important to understand so that we can fight for the health of our planet.

Earth Science, Climatology

Tennessee Power Plant

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Photograph by Emory Kristof/ National Geographic

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Global warming is the long-term warming of the planet’s overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels . As the human population has increased, so has the volume of fossil fuels burned. Fossil fuels include coal, oil, and natural gas, and burning them causes what is known as the “greenhouse effect” in Earth’s atmosphere.

The greenhouse effect is when the sun’s rays penetrate the atmosphere, but when that heat is reflected off the surface cannot escape back into space. Gases produced by the burning of fossil fuels prevent the heat from leaving the atmosphere. These greenhouse gasses are carbon dioxide , chlorofluorocarbons, water vapor , methane , and nitrous oxide . The excess heat in the atmosphere has caused the average global temperature to rise overtime, otherwise known as global warming.

Global warming has presented another issue called climate change. Sometimes these phrases are used interchangeably, however, they are different. Climate change refers to changes in weather patterns and growing seasons around the world. It also refers to sea level rise caused by the expansion of warmer seas and melting ice sheets and glaciers . Global warming causes climate change, which poses a serious threat to life on Earth in the forms of widespread flooding and extreme weather. Scientists continue to study global warming and its impact on Earth.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

February 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Education home
  • About NOAA Education
  • NOAA in your backyard: Alaska
  • NOAA in your backyard: Caribbean
  • NOAA in your backyard: Central
  • NOAA in your backyard: Great Lakes
  • NOAA in your backyard: Gulf of Mexico
  • NOAA in your backyard: Mid-Atlantic
  • NOAA in your backyard: Northeast
  • NOAA in your backyard: Northwest
  • NOAA in your backyard: Pacific Islands
  • NOAA in your backyard: Southeast
  • NOAA in your backyard: Southwest
  • Educational mailing lists
  • Jan-Mar 2024
  • Oct-Dec 2023
  • Jul-Sep 2023
  • Apr-Jun 2023
  • NOAA Sea to Sky: Education resource database
  • Ocean acidification
  • Ocean currents
  • Ocean floor features
  • Ocean pollution and marine debris
  • El Niño and La Niña
  • Space weather
  • Weather observations
  • Weather systems & patterns
  • Carbon cycle
  • Changing seasons

Climate change impacts

  • Climate data monitoring
  • Aquatic food webs
  • Coral reef ecosystems
  • Fisheries and seafood
  • Life in an estuary
  • Marine mammals
  • Sea turtles
  • Great Lakes ecoregion
  • Water cycle
  • Watersheds, flooding, and pollution
  • Data resources for educators
  • Education at home
  • Elementary resources
  • Hands-on science activities
  • Special topics
  • Conference resources
  • About the education resource collections
  • Conservation Service Corp Act Direct Hiring Authority
  • Finding a career at NOAA
  • Educator opportunities
  • Grants & networks
  • News and stories

Keep exploring

Find even more resources on climate change impacts in our searchable resource database.

CLEAN Collection offsite link

Sanctuaries resource collection: Climate change

Though we often think about human-induced climate change as something that will happen in the future, it is an ongoing process. Ecosystems and communities in the United States and around the world are being impacted today. 

A collage of typical climate and weather-related events: floods, heatwaves, drought, hurricanes, wildfires and loss of glacial ice.

A collage of typical climate and weather-related events: floods, heatwaves, drought, hurricanes, wildfires and loss of glacial ice. (Image credit: NOAA)

Global temperatures rose about 1.98°F offsite link (1.1°C) from 1901 to 2020, but climate change refers to more than an increase in temperature. It also includes sea level rise, changes in weather patterns like drought and flooding, and much more. Things that we depend upon and value — water, energy, transportation, wildlife, agriculture, ecosystems, and human health — are experiencing the effects of a changing climate.

A complex issue

The impacts of climate change on different sectors of society are interrelated. Drought can harm food production and human health. Flooding can lead to disease spread and damages to ecosystems and infrastructure. Human health issues can increase mortality, impact food availability, and limit worker productivity. Climate change impacts are seen throughout every aspect of the world we live in. However, climate change impacts are uneven across the country and the world — even within a single community, climate change impacts can differ between neighborhoods or individuals. Long-standing socioeconomic inequities can make underserved groups, who often have the highest exposure to hazards and the fewest resources to respond, more vulnerable. 

The projections of a climate change-impacted future are not inevitable. Many of the problems and solutions offsite link are known to us now, and ongoing research continues to provide new ones. Experts believe there is still time to avoid the most negative of outcomes by limiting warming offsite link  and reducing emissions to zero as quickly as possible. Reducing our emissions of greenhouse gases will require investment in new technology and infrastructure, which will spur job growth. Additionally, lowering emissions will lessen harmful impacts to human health, saving countless lives and billions of dollars in health-related expenses.

NOAA's Mauna Loa observatory is a premier research facility that has continuously monitored and collected atmospheric data since the 1950s. This photo, taken in 2019, shows the observatory on its perch at 11,000 feet elevation on Hawaii's tallest mountain, which enables sampling of "background" air that is free of local pollution.

Levels of the two most important anthropogenic greenhouse gases, carbon dioxide and methane, continued their unrelenting rise in 2020 despite the economic slowdown caused by the coronavirus pandemic response.

Our changing climate

We see climate change affecting our planet from pole to pole. NOAA monitors global climate data and here are some of the changes NOAA has recorded. You can explore more at the Global Climate Dashboard .

  • Global temperatures rose about 1.8°F (1°C) from 1901 to 2020.
  • Sea level rise has accelerated from 1.7 mm/year throughout most of the twentieth century to 3.2 mm/year since 1993.
  • Glaciers are shrinking: average thickness of 30 well-studied glaciers has decreased more than 60 feet since 1980.
  • The area covered by sea ice in the Arctic at the end of summer has shrunk by about 40% since 1979.
  • The amount of carbon dioxide in the atmosphere has risen by 25% since 1958, and by about 40% since the Industrial Revolution.
  • Snow is melting earlier compared to long-term averages.

Changes to water resources can have a big impact on our world and our lives.

Flooding is an increasing issue as our climate is changing. Compared to the beginning of the 20th century, there are both stronger and more frequent abnormally heavy precipitation events across most of the United States.

Conversely, drought is also becoming more common , particularly in the western United States. Humans are using more water, especially for agriculture. Much like we sweat more when it is hot out, higher air temperatures cause plants to lose, or transpire , more water, meaning farmers must give them more water. Both highlight the need for more water in places where supplies are dwindling.

Snowpack is an important source of fresh water for many people. As the snow melts, fresh water becomes available for use, especially in regions like the western United States where there is not much precipitation in warmer months. But as temperatures warm, there is less snow overall and snow begins to melt earlier in the year, meaning snowpack may not be a reliable source of water for the entire warm and dry seasons. 

A topographic map of Redlands Mesa on a table with several students' hands visible. One student indicates an area with a marker. The wind direction has been drawn on the map with an arrow, and students appear to be using toy fire trucks and cotton batting that resembles smoke in a planning exercise.

The Redlands Mesa area outside Hotchkiss, Colorado, is particularly at risk to wildfires, but with funding from NOAA’s Environmental Literacy Program, local high school students are taking action to tackle their community’s vulnerability to this hazard.

Our food supply depends on climate and weather conditions. Although farmers and researchers may be able to adapt some agricultural techniques and technologies or develop new ones, some changes will be difficult to manage. Increased temperatures, drought and water stress, diseases, and weather extremes create challenges for the farmers and ranchers who put food on our tables.

Human farm workers can suffer from heat-related health issues , like exhaustion, heatstroke, and heart attacks. Rising temperatures and heat stress can also harm livestock. 

Human health

Climate change is already impacting human health . Changes in weather and climate patterns can put lives at risk. Heat is one of the most deadly weather phenomena. As ocean temperatures rise, hurricanes are getting stronger and wetter , which can cause  direct and indirect deaths . Dry conditions lead to more wildfires, which bring many health risks . Higher incidences of flooding can lead to the spread of waterborne diseases, injuries, and chemical hazards. As geographic ranges of mosquitoes and ticks expand, they can carry diseases to new locations.

The most vulnerable groups, including children, the elderly, people with preexisting health conditions, outdoor workers, people of color, and people with low income are at an even higher risk because of the compounding factors from climate change. But public health groups can work with local communities to help people understand and build resilience to climate change health impacts.

An infographic showing climate-related health risks to communities of color, older adults, children, and low income communities. For full details, visit the Fourth National Climate Assessment, linked in the caption.

The environment

Climate change will continue to have a significant impact on ecosystems and organisms, though they are not impacted equally. The Arctic is one of the ecosystems most vulnerable to the effects of climate change, as it is warming at least twice the rate of the global average and melting land ice sheets offsite link and glaciers offsite link contribute dramatically to sea level rise around the globe.

Some living things are able to respond to climate change; some plants are blooming earlier and some species may expand their geographic range. But these changes are happening too fast for many other plants and animals as increasing temperatures and changing precipitation patterns stress ecosystems. Some invasive or nuisance species, like lionfish and ticks , may thrive in even more places because of climate change. 

Changes are also occurring in the ocean. The ocean absorbs about 30% of the carbon dioxide that is released into the atmosphere from the burning of fossil fuels. As a result, the water is becoming more acidic , affecting marine life. Sea levels are rising due to thermal expansion, in addition to melting ice sheets and glaciers, putting coastal areas at greater risk of erosion and storm surge.

The compounding effects of climate change are leading to many changes in ecosystems. Coral reefs are vulnerable to many effects of climate change: warming waters can lead to coral bleaching, stronger hurricanes can destroy reefs, and sea level rise can cause corals to be smothered by sediment. Coral reef ecosystems are home to thousands of species, which rely on healthy coral reefs to survive.

Malgorzata Gasienica-Bednarz, a high school student, talks about acid rain using the Science on a Sphere six-foot-diameter globe at the Museum of Science and Industry in November 2019.

Infrastructure

Physical infrastructure includes bridges, roads, ports, electrical grids, broadband internet, and other parts of our transportation and communication systems. It is often designed to be in use for years or decades, and many communities have infrastructure that was designed without future climate in mind. But even newer infrastructures can be vulnerable to climate change. 

Extreme weather events that bring heavy rains, floods, wind, snow, or temperature changes can stress existing structures and facilities. Increased temperatures require more indoor cooling, which can put stress on an energy grid. Sudden heavy rainfall can lead to flooding that shuts down highways and major business areas. 

Nearly 40% of the United States population lives in coastal counties, meaning millions of people will be impacted by sea level rise. Coastal infrastructure , such as roads, bridges, water supplies, and much more, is at risk. Sea level rise can also lead to coastal erosion and high-tide flooding . Some communities are projected to possibly end up at or below sea level by 2100 and will face decisions around managed retreat and climate adaptation. 

Many communities are not yet prepared to face climate-related threats. Even within a community, some groups are more vulnerable to these threats than others. Going forward, it is important for communities to invest in resilient infrastructure that will be able to withstand future climate risks. Researchers are studying current and future impacts of climate change on communities and can offer recommendations on best practices. Resilience education is vitally important for city planners, emergency managers, educators, communicators, and all other community members to prepare for climate change.

Flood zones will be easier to predict.

EDUCATION CONNECTION

Teaching about climate change can be a daunting challenge, but it is a critical field for students to learn about, as it affects many parts of society. The Essential Principles of Climate Literacy , developed by NOAA and other federal partners, are standards that create a framework for teaching climate. The Toolbox for Teaching Climate & Energy explores a learning process to help students engage in climate action in their own communities or on a global scale. For more educator support, NOAA offers professional development opportunities (including the Planet Stewards Program ) about climate and other topics.

What are the effects of global warming?

The effects of global warming will be far-reaching and often devastating, scientists have warned.

A woman looks at wildfires tearing through a forest in the region of Chefchaouen in northern Morocco on Aug. 15, 2021. One of the effects of global warming will be more heat waves in some areas, a risk factor for wildfires.

  • Temperature extremes
  • Extreme weather

Sea levels and ocean acidification

Plants and animals, social effects.

  • Further reading

Additional resources

Bibliography.

The effects of global warming can be seen and felt across the planet. Global warming , the gradual heating of Earth's surface, oceans and atmosphere, is caused by human activity, primarily the burning of fossil fuels that pump carbon dioxide (CO2), methane and other greenhouse gases into the atmosphere.

Already, the consequences of global warming are measurable and visible.

"We can observe this happening in real time in many places," Josef Werne, a professor of geology and environmental science at the University of Pittsburgh, told Live Science. "Ice is melting in both polar ice caps and mountain glaciers. Lakes around the world, including Lake Superior, are warming rapidly — in some cases faster than the surrounding environment. Animals are changing migration patterns and plants are changing the dates of activity," such as trees budding their leaves earlier in the spring and dropping them later in the fall.

Here is an in-depth look at the ongoing effects of global warming.

Global warming increases average temperatures and temperature extremes

A graph of 2022 year-to-date anomalies compared to the ten warmest years on record

One of the most immediate and obvious consequences of global warming is the increase in temperatures around the world. The average global temperature has increased by about 1.4 degrees Fahrenheit (0.8 degrees Celsius) over the past 100 years, according to the National Oceanic and Atmospheric Administration (NOAA).

Since record keeping began in 1895, the hottest year on record worldwide was 2016, according to NOAA and NASA data . That year Earth's surface temperature was 1.78 degrees F (0.99 degrees C) warmer than the average across the entire 20th century. Before 2016, 2015 was the warmest year on record, globally. And before 2015? Yep, 2014. In fact, all 10 of the warmest years on record have occurred since 2005, which tied with 2013 as the 10th-warmest year on record, according to NOAA’s Global Climate Report 2021 . Rounding out the top 6 hottest years on record across the globe are (in order of hottest to not as hot): 2020, 2019, 2015, 2017 and 2021.

For the contiguous United States and Alaska, 2016 was the second-warmest year on record and the 20th consecutive year that the annual average surface temperature exceeded the 122-year average since record keeping began, according to NOAA . Shattered heat records in the U.S. are increasingly becoming the norm: June 2021, for example, saw the warmest temperatures on record for that month for 15.2%of the contiguous U.S. That's the largest extent of record warm temperatures ever recorded in the country, according to the National Centers for Environmental Information .

Global warming increases extreme weather events

Hurricane Ian, a Category 4 storm, reaches Florida, Sept. 26, 2022, as seen from the International Space Station.

As global average temperatures warm, weather patterns are changing. An immediate consequence of global warming is extreme weather. 

These extremes come in a lot of different flavors. Paradoxically, one effect of climate change can be colder-than-normal winters in some areas.

Changes in climate can cause the polar jet stream — the boundary between the cold North Pole air and the warm equatorial air — to migrate south, bringing with it cold, Arctic air. This is why some states can have a sudden cold snap or colder-than-normal winter, even during the long-term trend of global warming, Werne explained.

Werne received his doctorate in Geological Sciences at Northwestern University in 2000 with an emphasis in Biogeochemistry. He was a postdoctoral research scientist at the Royal Netherlands Institute for Sea Research from 2000 to 2002 and on the faculty of the Large Lakes Observatory and Department of Chemistry and Biochemistry (assistant/associate professor) at the University of Minnesota Duluth, before joining the department in 2012. Werne spent a year in Perth, Australia, as a visiting senior fellow at the Institute for Advanced Studies of the University of Western Australia, as well as a visiting scientist in the Western Australia Organic and Isotope Geochemistry Centre at Curtin University.

"Climate is, by definition, the long-term average of weather, over many years. One cold (or warm) year or season has little to do with overall climate. It is when those cold (or warm) years become more and more regular that we start to recognize it as a change in climate rather than simply an anomalous year of weather," he said. Global warming is also changing other extreme weather. According to the Geophysical Fluid Dynamics Laboratory of NOAA , hurricanes are likely to become more intense, on average, in a warming world. Most computer models suggest that hurricane frequency will stay about the same (or even decrease), but those storms that do form will have the capacity to drop more rain due to the fact that warmer air holds more moisture.

"And even if they become less frequent globally, hurricanes could still become more frequent in some particular areas," said atmospheric scientist Adam Sobel, author of " Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future " (HarperWave, 2014). "Additionally, scientists are confident that hurricanes will become more intense due to climate change." This is because hurricanes get their energy from the temperature difference between the warm tropical ocean and the cold upper atmosphere. Global warming increases that temperature difference. "Since the most damage by far comes from the most intense hurricanes — such as typhoon Haiyan in the Philippines in 2013 — this means that hurricanes could become overall more destructive," said Sobel, a Columbia University professor in the departments of Earth and Environmental Sciences, and Applied Physics and Applied Mathematics. (Hurricanes are called typhoons in the western North Pacific, and they're called cyclones in the South Pacific and Indian oceans.) What's more, hurricanes of the future will be hitting shorelines that are already prone to flooding due to the sea-level rise caused by climate change. This means that any given storm will likely cause more damage than it would have in a world without global warming.

Lightning strikes light up the sky in Montevideo, Uruguay on Feb. 20, 2022.

Lightning is another weather feature that is being affected by global warming. According to a 2014 study , a 50% increase in the number of lightning strikes within the United States is expected by 2100 if global temperatures continue to rise. The researchers of the study found a 12% increase in lightning activity for every 1.8 degree F (1 degree C) of warming in the atmosphere. NOAA established the U.S. Climate Extremes Index (CEI) in 1996 to track extreme weather events. The number of extreme weather events that are among the most unusual in the historical record, according to the CEI, has been rising over the last four decades. Scientists project that extreme weather events, such as heat waves, droughts , blizzards and rainstorms will continue to occur more often and with greater intensity due to global warming, according to Climate Central . Climate models forecast that global warming will cause climate patterns worldwide to experience significant changes. These changes will likely include major shifts in wind patterns, annual precipitation and seasonal temperatures variations. These impacts vary by location and geography. For example, according to the U.S. Environmental Protection Agency (EPA) , the eastern United States has been trending wetter over time, while the West – and particularly the Southwest – have become increasingly dry. Because high levels of greenhouse gases are likely to remain in the atmosphere for many years, these changes are expected to last for several decades or longer, according to the EPA.

Global warming melts ice

In this aerial view, icebergs and meltwater are seen in front of the retreating Russell Glacier on Sept. 8, 2021 near Kangerlussuaq, Greenland.

One of the primary manifestations of climate change so far is melt. North America, Europe and Asia have all seen a trend toward less snow cover between 1960 and 2015, according to 2016 research published in the journal Current Climate Change Reports. According to the National Snow and Ice Data Center, there is now 10% less permafrost , or permanently frozen ground, in the Northern Hemisphere than there was in the early 1900s. The thawing of permafrost can cause landslides and other sudden land collapses . It can also release long-buried microbes, as in a 2016 case when a cache of buried reindeer carcasses thawed and caused an outbreak of anthrax . One of the most dramatic effects of global warming is the reduction in Arctic sea ice. Sea ice hit record-low extents in both the fall and winter of 2015 and 2016, meaning that at the time when the ice is supposed to be at its peak, it was lagging. The melt means there is less thick sea ice that persists for multiple years. That means less heat is reflected back into the atmosphere by the shiny surface of the ice and more is absorbed by the comparatively darker ocean, creating a feedback loop that causes even more melt, according to NASA's Operation IceBridge . Glacial retreat, too, is an obvious effect of global warming. Only 25 glaciers bigger than 25 acres are now found in Montana's Glacier National Park, where about 150 glaciers were once found, according to the U.S. Geological Survey. A similar trend is seen in glacial areas worldwide. According to a 2016 study in the journal Nature Geoscience, there is a 99% likelihood that this rapid retreat is due to human-caused climate change. Some glaciers retreated up to 15 times as much as they would have without global warming, those researchers found.

view of major bleaching on the coral reefs of the Society Islands on May 9, 2019 in Moorea, French Polynesia

In general, as ice melts, sea levels rise. According to a 2021 report by the World Meteorological Organization , the pace of sea level rise doubled from 0.08 inches (2.1 millimeters) per year between 1993 and 2002 to 0.17 inches (4.4 mm) per year between 2013 and 2021. 

Melting polar ice in the Arctic and Antarctic regions, coupled with melting ice sheets and glaciers across Greenland, North America, South America, Europe and Asia, are expected to raise sea levels significantly. Global sea levels have risen about 8 inches since 1870, according to the EPA, and the rate of increase is expected to accelerate in the coming years. If current trends continue, many coastal areas, where roughly half of the Earth's human population lives, will be inundated.

Researchers project that by 2100, average sea levels will be 2.3 feet (.7 meters) higher in New York City, 2.9 feet (0.88 m) higher at Hampton Roads, Virginia, and 3.5 feet (1.06 m) higher at Galveston, Texas, the EPA reports. According to an IPCC report , if greenhouse gas emissions remain unchecked, global sea levels could rise by as much as 3 feet (0.9 meters) by 2100. That estimate is an increase from the estimated 0.9 to 2.7 feet (0.3 to 0.8 meters) that was predicted in the 2007 IPCC report for future sea-level rise.

Sea level isn't the only thing changing for the oceans due to global warming. As levels of CO2 increase, the oceans absorb some of that gas, which increases the acidity of seawater. Werne explains it this way: "When you dissolved CO2 in water, you get carbonic acid. This is the same exact thing that happens in cans of soda. When you pop the top on a can of Dr Pepper, the pH is 2 — quite acidic."  

Since the Industrial Revolution began in the early 1700s, the acidity of the oceans has increased about 25 percent, according to the EPA. "This is a problem in the oceans, in large part, because many marine organisms make shells out of calcium carbonate (think corals, oysters), and their shells dissolve in acid solution," said Werne. "So as we add more and more CO2 to the ocean, it gets more and more acidic, dissolving more and more shells of sea creatures. It goes without saying that this is not good for their health."

If current ocean acidification trends continue, coral reefs are expected to become increasingly rare in areas where they are now common, including most U.S. waters, the EPA reports. In 2016 and 2017, portions of the Great Barrier Reef in Australia were hit with bleaching , a phenomenon in which coral eject their symbiotic algae. Bleaching is a sign of stress from too-warm waters, unbalanced pH or pollution ; coral can recover from bleaching, but back-to-back episodes make recovery less likely.

Caribou running through shallow water, Arctic National Wildlife Refuge, Alaska, USA

The effects of global warming on Earth's ecosystems are expected to be significant and widespread. Many species of plants and animals are already moving their range northward or to higher altitudes as a result of warming temperatures, according to a report from the National Academy of Sciences.

"They are not just moving north, they are moving from the equator toward the poles. They are quite simply following the range of comfortable temperatures, which is migrating to the poles as the global average temperature warms," Werne said. Ultimately, he said, this becomes a problem when the rate of climate change velocity (how fast a region changes put into a spatial term) is faster than the rate that many organisms can migrate. Because of this, many animals may not be able to compete in the new climate regime and may go extinct.

Additionally, migratory birds and insects are now arriving in their summer feeding and nesting grounds several days or weeks earlier than they did in the 20th century, according to the EPA.

Warmer temperatures will also expand the range of many disease-causing pathogens that were once confined to tropical and subtropical areas, killing off plant and animal species that formerly were protected from disease.

In addition, animals that live in the polar regions are facing an existential threat. In the Arctic, the decline in sea ice and changes in ice melt threaten particularly ice-dependent species, such as narwhals ( Monodon monoceros ), polar bears ( Ursus maritimus ) and walruses ( Odobenus rosmarus ), the World Wildlife Fund (WWF) noted. Animals in the Antarctic also face serious challenges — in Oct. 2022 the U.S. Fish and Wildlife Service declared emperor penguins (Aptenodytes forsteri) as endangered due to the threat of climate change. 

A 2020 study published in the journal Proceedings of the National Academy of Sciences suggested that 1 in every 3 species of plant and animal are at risk of extinction by 2070 due to climate change.

A farmer inspects a field cracked due to drought on August 26, 2022 in Neijiang, Sichuan Province of China

As dramatic as the effects of climate change are expected to be on the natural world, the projected changes to human society may be even more devastating.

Agricultural systems will likely be dealt a crippling blow. Though growing seasons in some areas will expand, the combined impacts of drought, severe weather, lack of accumulated snowmelt, greater number and diversity of pests, lower groundwater tables and a loss of arable land could cause severe crop failures and livestock shortages worldwide.

North Carolina State University also notes that carbon dioxide is affecting plant growth. Though CO2 can increase the growth of plants, the plants may become less nutritious.

This loss of food security may, in turn, create havoc in international food markets and could spark famines, food riots, political instability and civil unrest worldwide, according to a number of analyses from sources as diverse as the U.S Department of Defense, the Center for American Progress and the Woodrow Wilson International Center for Scholars.

In addition to less nutritious food, the effect of global warming on human health is also expected to be serious. The American Medical Association has reported an increase in mosquito-borne diseases like malaria and dengue fever, as well as a rise in cases of chronic conditions like asthma, most likely as a direct result of global warming. The 2016 outbreak of Zika virus , a mosquito-borne illness, highlighted the dangers of climate change. The disease causes devastating birth defects in fetuses when pregnant women are infected, and climate change could make higher-latitude areas habitable for the mosquitoes that spread the disease, experts said. Longer, hotter summers could also lead to the spread of tick-borne illnesses .

Further reading on the impacts of global warming

Many governments and agencies keep up-to-date information on climate change research and statistics online. The most comprehensive and in-depth global reports are produced by the Intergovernmental Panel on Climate Change (IPCC), which released its Sixth Assessment Report on the science of climate change in 2021.

— 8 ominous climate milestones reached in 2021

— Ignoring climate change will lead to 'untold suffering,' scientist panel warns

— Earth's lower atmosphere is expanding due to climate change

For a historical look at the effects of climate change on Earth (and how modern warming compares), read Peter Brannen's " The Ends of the Earth: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth’s Past Mass Extinctions " (Ecco, 2017).

For more on the potential impacts of climate change in urban environments, the freely available book chapter Climate Change and its Impacts in the book " Climate Change Resilience in the Urban Environment " (IOP Publishing, 2017) covers the challenges that lay ahead for human populations.

Finally, for a psychological deep-dive on why all of this bad news is hard to take in, try " Don't Even Think About It: Why Our Brains Are Wired to Ignore Climate Change " (Bloomsbury USA, 2015) by climate activist and communicator George Marshall.

  • This NASA page includes a series of visualizations that illustrate how some of Earth's key climate indicators —  sea ice, sea level, global temperature and carbon dioxide — are changing over time.
  • This NOAA sea-level rise learning module includes educational videos, background for teachers, learning objectives and more.
  • ClimateBrief has gathered 10 of the best climate change videos on YouTube. 
  • EPA: Climate Change: Basic Information  
  • NASA: Global Climate Change
  • NOAA: Climate News and Data

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

 alt=

Climate change may allow the Earth’s oldest, tiniest creatures to dominate — and that's seriously bad news

Earth is wobbling and days are getting longer — and humans are to blame

What was the first animal on Earth?

Most Popular

  • 2 Elon Musk said he's 'definitely going to be dead' before humans go to Mars — and you probably will be too
  • 3 Scientists make breasts in a dish to study lactation
  • 4 3 shipwrecks from 'forgotten battle' of World War II discovered off remote Alaskan island
  • 5 Space photo of the week: James Webb telescope catches baby stars roaring to life

an essay about the effects of global warming

NASA Logo

What Is Climate Change?

an essay about the effects of global warming

Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

Changes observed in Earth’s climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere, raising Earth’s average surface temperature. Natural processes, which have been overwhelmed by human activities, can also contribute to climate change, including internal variability (e.g., cyclical ocean patterns like El Niño, La Niña and the Pacific Decadal Oscillation) and external forcings (e.g., volcanic activity, changes in the Sun’s energy output , variations in Earth’s orbit ).

Scientists use observations from the ground, air, and space, along with computer models , to monitor and study past, present, and future climate change. Climate data records provide evidence of climate change key indicators, such as global land and ocean temperature increases; rising sea levels; ice loss at Earth’s poles and in mountain glaciers; frequency and severity changes in extreme weather such as hurricanes, heatwaves, wildfires, droughts, floods, and precipitation; and cloud and vegetation cover changes.

“Climate change” and “global warming” are often used interchangeably but have distinct meanings. Similarly, the terms "weather" and "climate" are sometimes confused, though they refer to events with broadly different spatial- and timescales.

What Is Global Warming?

global_warming_2022

Global warming is the long-term heating of Earth’s surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere. This term is not interchangeable with the term "climate change."

Since the pre-industrial period, human activities are estimated to have increased Earth’s global average temperature by about 1 degree Celsius (1.8 degrees Fahrenheit), a number that is currently increasing by more than 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. The current warming trend is unequivocally the result of human activity since the 1950s and is proceeding at an unprecedented rate over millennia.

Weather vs. Climate

“if you don’t like the weather in new england, just wait a few minutes.” - mark twain.

Weather refers to atmospheric conditions that occur locally over short periods of time—from minutes to hours or days. Familiar examples include rain, snow, clouds, winds, floods, or thunderstorms.

Climate, on the other hand, refers to the long-term (usually at least 30 years) regional or even global average of temperature, humidity, and rainfall patterns over seasons, years, or decades.

Find Out More: A Guide to NASA’s Global Climate Change Website

This website provides a high-level overview of some of the known causes, effects and indications of global climate change:

Evidence. Brief descriptions of some of the key scientific observations that our planet is undergoing abrupt climate change.

Causes. A concise discussion of the primary climate change causes on our planet.

Effects. A look at some of the likely future effects of climate change, including U.S. regional effects.

Vital Signs. Graphs and animated time series showing real-time climate change data, including atmospheric carbon dioxide, global temperature, sea ice extent, and ice sheet volume.

Earth Minute. This fun video series explains various Earth science topics, including some climate change topics.

Other NASA Resources

Goddard Scientific Visualization Studio. An extensive collection of animated climate change and Earth science visualizations.

Sea Level Change Portal. NASA's portal for an in-depth look at the science behind sea level change.

NASA’s Earth Observatory. Satellite imagery, feature articles and scientific information about our home planet, with a focus on Earth’s climate and environmental change.

Header image is of Apusiaajik Glacier, and was taken near Kulusuk, Greenland, on Aug. 26, 2018, during NASA's Oceans Melting Greenland (OMG) field operations. Learn more here . Credit: NASA/JPL-Caltech

Discover More Topics From NASA

Explore Earth Science

an essay about the effects of global warming

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

an essay about the effects of global warming

What evidence exists that Earth is warming and that humans are the main cause?

We know the world is warming because people have been recording daily high and low temperatures at thousands of weather stations worldwide, over land and ocean, for many decades and, in some locations, for more than a century. When different teams of climate scientists in different agencies (e.g., NOAA and NASA) and in other countries (e.g., the U.K.’s Hadley Centre) average these data together, they all find essentially the same result: Earth’s average surface temperature has risen by about 1.8°F (1.0°C) since 1880. 

Bar graph of global temperature anomalies with an overlay of a line graph of atmospheric carbon dioxide from 1850-2023

( bar chart ) Yearly temperature compared to the twentieth-century average from 1850–2023. Red bars mean warmer-than-average years; blue bars mean colder-than-average years. (line graph) Atmospheric carbon dioxide amounts: 1850-1958 from IAC , 1959-2023 from NOAA Global Monitoring Lab . NOAA Climate.gov graph, adapted from original by Dr. Howard Diamond (NOAA ARL).

In addition to our surface station data, we have many different lines of evidence that Earth is warming ( learn more ). Birds are migrating earlier, and their migration patterns are changing.  Lobsters  and  other marine species  are moving north. Plants are blooming earlier in the spring. Mountain glaciers are melting worldwide, and snow cover is declining in the Northern Hemisphere (Learn more  here  and  here ). Greenland’s ice sheet—which holds about 8 percent of Earth’s fresh water—is melting at an accelerating rate ( learn more ). Mean global sea level is rising ( learn more ). Arctic sea ice is declining rapidly in both thickness and extent ( learn more ).

Aerial photo of glacier front with a graph overlay of Greenland ice mass over time

The Greenland Ice Sheet lost mass again in 2020, but not as much as it did 2019. Adapted from the 2020 Arctic Report Card, this graph tracks Greenland mass loss measured by NASA's GRACE satellite missions since 2002. The background photo shows a glacier calving front in western Greenland, captured from an airplane during a NASA Operation IceBridge field campaign. Full story.

We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth’s natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures. Since 1800, the amount of carbon dioxide in the atmosphere  has increased  from about 280 parts per million to 410 ppm in 2019. We know from both its rapid increase and its isotopic “fingerprint” that the source of this new carbon dioxide is fossil fuels, and not natural sources like forest fires, volcanoes, or outgassing from the ocean.

DIgital image of a painting of a fire burning in a coal pile in a small village

Philip James de Loutherbourg's 1801 painting, Coalbrookdale by Night , came to symbolize the start of the Industrial Revolution, when humans began to harness the power of fossil fuels—and to contribute significantly to Earth's atmospheric greenhouse gas composition. Image from Wikipedia .

Finally, no other known climate influences have changed enough to account for the observed warming trend. Taken together, these and other lines of evidence point squarely to human activities as the cause of recent global warming.

USGCRP (2017). Climate Science Special Report: Fourth National Climate Assessment, Volume 1 [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, doi:  10.7930/J0J964J6 .

National Fish, Wildlife, and Plants Climate Adaptation Partnership (2012):  National Fish, Wildlife, and Plants Climate Adaptation Strategy . Association of Fish and Wildlife Agencies, Council on Environmental Quality, Great Lakes Indian Fish and Wildlife Commission, National Oceanic and Atmospheric Administration, and U.S. Fish and Wildlife Service. Washington, D.C. DOI: 10.3996/082012-FWSReport-1

IPCC (2019). Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

NASA JPL: "Consensus: 97% of climate scientists agree."  Global Climate Change . A website at NASA's Jet Propulsion Laboratory (climate.nasa.gov/scientific-consensus). (Accessed July 2013.)

We value your feedback

Help us improve our content

  • ENVIRONMENT

What is global warming, explained

The planet is heating up—and fast.

Glaciers are melting , sea levels are rising, cloud forests are dying , and wildlife is scrambling to keep pace. It has become clear that humans have caused most of the past century's warming by releasing heat-trapping gases as we power our modern lives. Called greenhouse gases, their levels are higher now than at any time in the last 800,000 years .

We often call the result global warming, but it is causing a set of changes to the Earth's climate, or long-term weather patterns, that varies from place to place. While many people think of global warming and climate change as synonyms , scientists use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems—in part because some areas actually get cooler in the short term.

Climate change encompasses not only rising average temperatures but also extreme weather events , shifting wildlife populations and habitats, rising seas , and a range of other impacts. All of those changes are emerging as humans continue to add heat-trapping greenhouse gases to the atmosphere, changing the rhythms of climate that all living things have come to rely on.

What will we do—what can we do—to slow this human-caused warming? How will we cope with the changes we've already set into motion? While we struggle to figure it all out, the fate of the Earth as we know it—coasts, forests, farms, and snow-capped mountains—hangs in the balance.

a melting iceberg

Understanding the greenhouse effect

The "greenhouse effect" is the warming that happens when certain gases in Earth's atmosphere trap heat . These gases let in light but keep heat from escaping, like the glass walls of a greenhouse, hence the name.

Sunlight shines onto the Earth's surface, where the energy is absorbed and then radiate back into the atmosphere as heat. In the atmosphere, greenhouse gas molecules trap some of the heat, and the rest escapes into space. The more greenhouse gases concentrate in the atmosphere, the more heat gets locked up in the molecules.

Scientists have known about the greenhouse effect since 1824, when Joseph Fourier calculated that the Earth would be much colder if it had no atmosphere. This natural greenhouse effect is what keeps the Earth's climate livable. Without it, the Earth's surface would be an average of about 60 degrees Fahrenheit (33 degrees Celsius) cooler.

a polar bear on ice

A polar bear stands sentinel on Rudolf Island in Russia’s Franz Josef Land archipelago, where the perennial ice is melting.

In 1895, the Swedish chemist Svante Arrhenius discovered that humans could enhance the greenhouse effect by making carbon dioxide , a greenhouse gas. He kicked off 100 years of climate research that has given us a sophisticated understanding of global warming.

Levels of greenhouse gases have gone up and down over the Earth's history, but they had been fairly constant for the past few thousand years. Global average temperatures had also stayed fairly constant over that time— until the past 150 years . Through the burning of fossil fuels and other activities that have emitted large amounts of greenhouse gases, particularly over the past few decades, humans are now enhancing the greenhouse effect and warming Earth significantly, and in ways that promise many effects , scientists warn.

Aren't temperature changes natural?

Human activity isn't the only factor that affects Earth's climate. Volcanic eruptions and variations in solar radiation from sunspots, solar wind, and the Earth's position relative to the sun also play a role. So do large-scale weather patterns such as El Niño .

You May Also Like

an essay about the effects of global warming

How global warming is disrupting life on Earth

an essay about the effects of global warming

These breathtaking natural wonders no longer exist

an essay about the effects of global warming

What if aliens exist—but they're just hiding from us? The Dark Forest theory, explained

But climate models that scientists use to monitor Earth’s temperatures take those factors into account. Changes in solar radiation levels as well as minute particles suspended in the atmosphere from volcanic eruptions , for example, have contributed only about two percent to the recent warming effect. The balance comes from greenhouse gases and other human-caused factors, such as land use change .

The short timescale of this recent warming is singular as well. Volcanic eruptions , for example, emit particles that temporarily cool the Earth's surface. But their effect lasts just a few years. Events like El Niño also work on fairly short and predictable cycles. On the other hand, the types of global temperature fluctuations that have contributed to ice ages occur on a cycle of hundreds of thousands of years.

For thousands of years now, emissions of greenhouse gases to the atmosphere have been balanced out by greenhouse gases that are naturally absorbed. As a result, greenhouse gas concentrations and temperatures have been fairly stable, which has allowed human civilization to flourish within a consistent climate.

the Greenland Ice Sheet

Greenland is covered with a vast amount of ice—but the ice is melting four times faster than thought, suggesting that Greenland may be approaching a dangerous tipping point, with implications for global sea-level rise.

Now, humans have increased the amount of carbon dioxide in the atmosphere by more than a third since the Industrial Revolution. Changes that have historically taken thousands of years are now happening over the course of decades .

Why does this matter?

The rapid rise in greenhouse gases is a problem because it’s changing the climate faster than some living things can adapt to. Also, a new and more unpredictable climate poses unique challenges to all life.

Historically, Earth's climate has regularly shifted between temperatures like those we see today and temperatures cold enough to cover much of North America and Europe with ice. The difference between average global temperatures today and during those ice ages is only about 9 degrees Fahrenheit (5 degrees Celsius), and the swings have tended to happen slowly, over hundreds of thousands of years.

But with concentrations of greenhouse gases rising, Earth's remaining ice sheets such as Greenland and Antarctica are starting to melt too . That extra water could raise sea levels significantly, and quickly. By 2050, sea levels are predicted to rise between one and 2.3 feet as glaciers melt.

As the mercury rises, the climate can change in unexpected ways. In addition to sea levels rising, weather can become more extreme . This means more intense major storms, more rain followed by longer and drier droughts—a challenge for growing crops—changes in the ranges in which plants and animals can live, and loss of water supplies that have historically come from glaciers.

Related Topics

  • ENVIRONMENT AND CONSERVATION
  • CLIMATE CHANGE

an essay about the effects of global warming

The Gulf of Maine is warming fast. What does that mean for lobsters—and everything else?

an essay about the effects of global warming

What is the ozone layer, and why does it matter?

an essay about the effects of global warming

Why deforestation matters—and what we can do to stop it

an essay about the effects of global warming

8 places to visit if you love ‘Star Wars’

an essay about the effects of global warming

There's a frozen labyrinth atop Mount Rainier. What secrets does it hold?

  • Best of the World
  • Interactive Graphic
  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Out of Eden Walk
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Newsroom Post

Climate change: a threat to human wellbeing and health of the planet. taking action now can secure our future.

BERLIN, Feb 28 – Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world, despite efforts to reduce the risks. People and ecosystems least able to cope are being hardest hit, said scientists in the latest Intergovernmental Panel on Climate Change (IPCC) report, released today.

“This report is a dire warning about the consequences of inaction,” said Hoesung Lee, Chair of the IPCC. “It shows that climate change is a grave and mounting threat to our wellbeing and a healthy planet. Our actions today will shape how people adapt and nature responds to increasing climate risks.”

The world faces unavoidable multiple climate hazards over the next two decades with global warming of 1.5°C (2.7°F). Even temporarily exceeding this warming level will result in additional severe impacts, some of which will be irreversible. Risks for society will increase, including to infrastructure and low-lying coastal settlements.

The Summary for Policymakers of the IPCC Working Group II report,  Climate Change 2022: Impacts, Adaptation and Vulnerability was approved on Sunday, February 27 2022, by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on February 14.

Urgent action required to deal with increasing risks

Increased heatwaves, droughts and floods are already exceeding plants’ and animals’ tolerance thresholds, driving mass mortalities in species such as trees and corals. These weather extremes are occurring simultaneously, causing cascading impacts that are increasingly difficult to manage. They have exposed millions of people to acute food and water insecurity, especially in Africa, Asia, Central and South America, on Small Islands and in the Arctic.

To avoid mounting loss of life, biodiversity and infrastructure, ambitious, accelerated action is required to adapt to climate change, at the same time as making rapid, deep cuts in greenhouse gas emissions. So far, progress on adaptation is uneven and there are increasing gaps between action taken and what is needed to deal with the increasing risks, the new report finds. These gaps are largest among lower-income populations. 

The Working Group II report is the second instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed this year.

“This report recognizes the interdependence of climate, biodiversity and people and integrates natural, social and economic sciences more strongly than earlier IPCC assessments,” said Hoesung Lee. “It emphasizes the urgency of immediate and more ambitious action to address climate risks. Half measures are no longer an option.”

Safeguarding and strengthening nature is key to securing a liveable future

There are options to adapt to a changing climate. This report provides new insights into nature’s potential not only to reduce climate risks but also to improve people’s lives.

“Healthy ecosystems are more resilient to climate change and provide life-critical services such as food and clean water”, said IPCC Working Group II Co-Chair Hans-Otto Pörtner. “By restoring degraded ecosystems and effectively and equitably conserving 30 to 50 per cent of Earth’s land, freshwater and ocean habitats, society can benefit from nature’s capacity to absorb and store carbon, and we can accelerate progress towards sustainable development, but adequate finance and political support are essential.”

Scientists point out that climate change interacts with global trends such as unsustainable use of natural resources, growing urbanization, social inequalities, losses and damages from extreme events and a pandemic, jeopardizing future development.

“Our assessment clearly shows that tackling all these different challenges involves everyone – governments, the private sector, civil society – working together to prioritize risk reduction, as well as equity and justice, in decision-making and investment,” said IPCC Working Group II Co-Chair Debra Roberts.

“In this way, different interests, values and world views can be reconciled. By bringing together scientific and technological know-how as well as Indigenous and local knowledge, solutions will be more effective. Failure to achieve climate resilient and sustainable development will result in a sub-optimal future for people and nature.”

Cities: Hotspots of impacts and risks, but also a crucial part of the solution

This report provides a detailed assessment of climate change impacts, risks and adaptation in cities, where more than half the world’s population lives. People’s health, lives and livelihoods, as well as property and critical infrastructure, including energy and transportation systems, are being increasingly adversely affected by hazards from heatwaves, storms, drought and flooding as well as slow-onset changes, including sea level rise.

“Together, growing urbanization and climate change create complex risks, especially for those cities that already experience poorly planned urban growth, high levels of poverty and unemployment, and a lack of basic services,” Debra Roberts said.

“But cities also provide opportunities for climate action – green buildings, reliable supplies of clean water and renewable energy, and sustainable transport systems that connect urban and rural areas can all lead to a more inclusive, fairer society.”

There is increasing evidence of adaptation that has caused unintended consequences, for example destroying nature, putting peoples’ lives at risk or increasing greenhouse gas emissions. This can be avoided by involving everyone in planning, attention to equity and justice, and drawing on Indigenous and local knowledge.

A narrowing window for action

Climate change is a global challenge that requires local solutions and that’s why the Working Group II contribution to the IPCC’s Sixth Assessment Report (AR6) provides extensive regional information to enable Climate Resilient Development.

The report clearly states Climate Resilient Development is already challenging at current warming levels. It will become more limited if global warming exceeds 1.5°C (2.7°F). In some regions it will be impossible if global warming exceeds 2°C (3.6°F). This key finding underlines the urgency for climate action, focusing on equity and justice. Adequate funding, technology transfer, political commitment and partnership lead to more effective climate change adaptation and emissions reductions.

“The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss a brief and rapidly closing window to secure a liveable future,” said Hans-Otto Pörtner.

For more information, please contact:

IPCC Press Office, Email: [email protected]   IPCC Working Group II:  Sina Löschke,  Komila Nabiyeva: [email protected]

Notes for Editors

Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group II report examines the impacts of climate change on nature and people around the globe. It explores future impacts at different levels of warming and the resulting risks and offers options to strengthen nature’s and society’s resilience to ongoing climate change, to fight hunger, poverty, and inequality and keep Earth a place worth living on – for current as well as for future generations. 

Working Group II introduces several new components in its latest report: One is a special section on climate change impacts, risks and options to act for cities and settlements by the sea, tropical forests, mountains, biodiversity hotspots, dryland and deserts, the Mediterranean as well as the polar regions. Another is an atlas that will present data and findings on observed and projected climate change impacts and risks from global to regional scales, thus offering even more insights for decision makers.

The Summary for Policymakers of the Working Group II contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg2/

Note : Originally scheduled for release in September 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is the second time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group II in numbers

270 authors from 67 countries

  • 47 – coordinating authors
  • 184 – lead authors
  • 39 – review editors
  • 675 – contributing authors

Over 34,000 cited references

A total of 62,418 expert and government review comments

(First Order Draft 16,348; Second Order Draft 40,293; Final Government Distribution: 5,777)

More information about the Sixth Assessment Report can be found  here .

Additional media resources

Assets available after the embargo is lifted on Media Essentials website .

Press conference recording, collection of sound bites from WGII authors, link to presentation slides, B-roll of approval session, link to launch Trello board including press release and video trailer in UN languages, a social media pack.

The website includes  outreach materials  such as videos about the IPCC and video recordings from  outreach events  conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our  YouTube  channel. Credit for artwork

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups:  Working Group I , dealing with the physical science basis of climate change;  Working Group II , dealing with impacts, adaptation and vulnerability; and  Working Group III , dealing with the mitigation of climate change. It also has a  Task Force on National Greenhouse Gas Inventories  that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty  was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems  was launched in August 2019, and the  Special Report on the Ocean and Cryosphere in a Changing Climate  was released in September 2019.

In May 2019 the IPCC released the  2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

In August 2021 the IPCC released the Working Group I contribution to the AR6, Climate Change 2021, the Physical Science Basis

The Working Group III contribution to the AR6 is scheduled for early April 2022.

The Synthesis Report of the Sixth Assessment Report will be completed in the second half of 2022.

For more information go to  www.ipcc.ch

Related Content

Remarks by the ipcc chair during the press conference to present the working group ii contribution to the sixth assessment report.

Monday, 28 February 2022 Distinguished representatives of the media, WMO Secretary-General Petteri, UNEP Executive Director Andersen, We have just heard …

February 2022

Fifty-fifth session of the ipcc (ipcc-55) and twelfth session of working group ii (wgii-12), february 14, 2022, working group report, ar6 climate change 2022: impacts, adaptation and vulnerability.

  • Biology Article
  • Essay on Global Warming

Essay On Global Warming

Essay on global warming is an important topic for students to understand. The essay brings to light the plight of the environment and the repercussion of anthropogenic activities. Continue reading to discover tips and tricks for writing an engaging and interesting essay on global warming.

Essay On Global Warming in 300 Words

Global warming is a phenomenon where the earth’s average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural “blanket”, which prevents the heat from escaping back into the atmosphere. This effect is called the greenhouse effect.

Contrary to popular belief, greenhouse gases are not inherently bad. In fact, the greenhouse effect is quite important for life on earth. Without this effect, the sun’s radiation would be reflected back into the atmosphere, freezing the surface and making life impossible. However, when greenhouse gases in excess amounts get trapped, serious repercussions begin to appear. The polar ice caps begin to melt, leading to a rise in sea levels. Furthermore, the greenhouse effect is accelerated when polar ice caps and sea ice melts. This is due to the fact the ice reflects 50% to 70% of the sun’s rays back into space, but without ice, the solar radiation gets absorbed. Seawater reflects only 6% of the sun’s radiation back into space. What’s more frightening is the fact that the poles contain large amounts of carbon dioxide trapped within the ice. If this ice melts, it will significantly contribute to global warming. 

A related scenario when this phenomenon goes out of control is the runaway-greenhouse effect. This scenario is essentially similar to an apocalypse, but it is all too real. Though this has never happened in the earth’s entire history, it is speculated to have occurred on Venus. Millions of years ago, Venus was thought to have an atmosphere similar to that of the earth. But due to the runaway greenhouse effect, surface temperatures around the planet began rising. 

If this occurs on the earth, the runaway greenhouse effect will lead to many unpleasant scenarios – temperatures will rise hot enough for oceans to evaporate. Once the oceans evaporate, the rocks will start to sublimate under heat. In order to prevent such a scenario, proper measures have to be taken to stop climate change.

More to Read: Learn How Greenhouse Effect works

Tips To Writing the Perfect Essay

Consider adopting the following strategies when writing an essay. These are proven methods of securing more marks in an exam or assignment.

  • Begin the essay with an introductory paragraph detailing the history or origin of the given topic.
  • Try to reduce the use of jargons. Use sparingly if the topic requires it.
  • Ensure that the content is presented in bulleted points wherever appropriate.
  • Insert and highlight factual data, such as dates, names and places.
  • Remember to break up the content into smaller paragraphs. 100-120 words per paragraph should suffice.
  • Always conclude the essay with a closing paragraph.

Explore more essays on biology or other related fields at BYJU’S.

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

an essay about the effects of global warming

Very helpful Byju’s

this app is very useful

Sample essay on global warming

Very nice and helpful⭐️

Amazing essay

This essay is very helpful to every student Thank you Byjus! 😊😊😊

This one is so helpful and easy to understand. Thank you, Byju’s!

an essay about the effects of global warming

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Home

  • University News
  • Faculty & Research
  • Health & Medicine
  • Science & Technology
  • Social Sciences
  • Humanities & Arts
  • Students & Alumni
  • Arts & Culture
  • Sports & Athletics
  • The Professions
  • International
  • New England Guide

The Magazine

  • Current Issue
  • Past Issues

Class Notes & Obituaries

  • Browse Class Notes
  • Browse Obituaries

Collections

  • Commencement
  • The Context

Harvard Squared

  • Harvard in the Headlines

Support Harvard Magazine

  • Why We Need Your Support
  • How We Are Funded
  • Ways to Support the Magazine
  • Special Gifts
  • Behind the Scenes

Classifieds

  • Vacation Rentals & Travel
  • Real Estate
  • Products & Services
  • Harvard Authors’ Bookshelf
  • Education & Enrichment Resource
  • Ad Prices & Information
  • Place An Ad

Follow Harvard Magazine:

Right Now | Rough Reckoning

Climate Change’s Crippling Costs

September-October 2024

 An illustration of a burning Earth breaking a rising red line graph, symbolizing the impact of climate change.

Illustration by Eva Vázquez

Adrien Bilal Website

Economists, including the late research professor of economics Martin Weitzman and William Nordhaus of Yale, began in the 1990s to consider the potential economic effects of climate change. By their rough estimates and a large body of subsequent work, each 1-degree Celsius rise in world temperature would reduce world gross domestic product (GDP) by 1 to 3 percent.

But for assistant professor of economics Adrien Bilal and his collaborator, Diego Kanzig of Northwestern University, these estimates were at odds with the dire warnings from climate scientists who predict that climate change will “profoundly affect our lives and livelihoods,” Bilal explains. “We were puzzled by that disconnect.”

Economic Impact Estimates

Estimating the economic damages of climate change is critical; it allows policymakers to prepare for shifts in the economy and to make informed choices about efforts to reduce carbon emissions, Bilal says. “If climate damages are low, standard cost-benefit analysis will conclude that expensive decarbonization policies are not worthwhile,” he says. Yet if climate damages are high, such analysis will recommend bigger efforts to reduce carbon, he adds. Modeling the economic impact of climate change can also guide decisions about the resources society might invest to adapt to these changes, with greater investment in sea walls or air conditioning, for example.

Bilal and Kanzig take a fundamentally different approach to modeling the economic impacts of global climate change than their predecessors. They argue in a recent working paper that the economic damages of climate change are likely six times worse than previously estimated. A 1-degree Celsius rise in global temperature, they say, would lead to a 12 percent decline in world GDP.

What accounts for this dramatic difference? Bilal explains that most previous analyses were based soley on local temperature changes and the corresponding impact on local GDP. “If it’s a little hotter in Germany than in France this year, how does Germany’s GDP change?” he offers, as an example. But climate change involves a planet-wide rise in temperatures, which also generates more dramatic weather patterns than regional temperature fluctuations do. Global temperature increases warm the oceans, affecting evaporation, precipitation, and wind speeds. These conditions have led to more extreme and disruptive weather patterns, such as tropical storms and heat waves, Bilal says, “which are more costly to the economy.”

To model these effects, the researchers created a data set featuring 173 countries during the last 120 years, including land and ocean surface air temperature as well as economic data for each of the countries. They also examined the impact of temporary “temperature shocks” that affected the planet as whole: events such as the El Niño weather pattern, which traps warmer air in tropical areas of the Pacific Ocean, and volcanic eruptions. “When the volcano erupts, it blows sulfur dioxide into the atmosphere that blocks incoming sunlight,” Bilal says, cooling the Earth for up to two years. The economists then analyzed how the ensuing temperature shocks corresponded to income changes.

Bilal says he was surprised by how much more global temperature rise damaged GDP around the world, in contrast with local temperature shifts. “The effects are more uniformly detrimental,” he says. “It’s bad for almost everyone.” And when the researchers added in the possibility of a moderate 2 degrees of warming before the end of the century, this led to a decline in future GDP of between 30 and 50 percent by 2100, relative to the predicted baseline, Bilal says.

Projected Climate-Caused GDP Decline

In the U.S. alone, current GDP is roughly $25 trillion; with a modest growth rate and no climate change, this could grow to about $112 trillion by 2100, Bilal explains. A 50 percent decline in 2100 GDP relative to baseline means a loss of $56 trillion each year, which exceeds the current GDP. Such declines would leave individuals with “a 31 percent drop in purchasing power relative to a world without climate change,” Bilal adds. Such losses are “comparable to living in the 1929 Great Depression, forever ,” he says. When converted into a dollar figure representing the damage incurred by each additional ton of carbon emissions, known as the social cost of carbon, this analysis settled on slightly more than $1,000 per ton—very different from the frequently cited figure of around $150 per ton. Because their findings are so dramatically different from those produced by traditional models, Bilal says he and his colleague spent many months confirming their results before releasing their research.

Once this working paper is published, Bilal hopes to consider the “critical” question of adaptation, or how human investments and actions in the face of climate change might improve the scenario described here. He notes that this current research does factor in historical adaptation, and their results were very stable. “That’s not very good news for the adaptation hypothesis because historically, it doesn’t seem that we’re adapting very much,” he says. And such measures are costly; Venice’s MOSE barrier system to protect the city from devastating floods cost roughly $8 billion and has had mixed success.

Still, “there are many channels through which societies can adapt,” including in-place measures such as air conditioning and coastal defense, or migratory strategies such as relocation to less-exposed places, and investment shifts that favor safer locations.

“However, how much adaptation will offset losses from climate change overall,” Bilal says, “is still an open question.”

You might also like

Illustration of John Harvard in the foreground with a green bar graph background

Harvard’s Financial Outlook

What to expect after a tumultuous year

an essay about the effects of global warming

Nuclear Treaties and the Russo-Ukrainian Conflict

Mitigating nuclear risks in modern warfare

John Manning

President Garber, Provost Manning

Harvard’s senior leadership settled.

Most popular

A young girl with pink headphones uses a tablet for an educational reading game at a classroom desk.

A Right Way to Read?

The science, art, and politics of teaching an essential skill

An illustration of a graduate in a cap and gown shouting into a megaphone labeled with a "U," facing a man shouting into a megaphone with an American flag design. The background is bright yellow.

Academic Freedom and Free Speech

Robert Post explains how they differ—and why it matters, especially now

Construction site of the commercial Enterprise Research Campus in Allston

Crimson Construction

Post-pandemic campus building resumes on a massive scale.

House - Email

More to explore

 An illustration of a burning Earth breaking a rising red line graph, symbolizing the impact of climate change.

What is the Economic Impact of Climate Change on Global GDP?

The impact on global GDP is likely six times greater than previously estimated. 

Beau McCall, at left, wearing Button Jacket: Born in Philly, Made in Harlem, circa 1988, and his partner, Souleo, wearing Button Jacket: Stacked Sleeves, circa early 1990s-2021

Art Made Out of Buttons

Works by Harlem-based artist Beau McCall at Brockton's Fuller Craft Museum

Susan Farbstein smiles while standing outside in front of a building with columns and surrounding greenery, wearing a light blue blouse.

John Harvard's Journal

Susan Farbstein on Human Rights Law

Human rights lawyer on law’s ability to promote justice—and shape public understanding

How Close Are the Planet’s Climate Tipping Points?

Earth’s warming could trigger sweeping changes in the natural world that would be hard, if not impossible, to reverse.

By Raymond Zhong and Mira Rojanasakul

Right now, every moment of every day, we humans are reconfiguring Earth’s climate bit by bit. Hotter summers and wetter storms. Higher seas and fiercer wildfires. The steady, upward turn of the dial on a host of threats to our homes, our societies and the environment around us.

We might also be changing the climate in an even bigger way.

For the past two decades, scientists have been raising alarms about great systems in the natural world that warming, caused by carbon emissions, might be pushing toward collapse. These systems are so vast that they can stay somewhat in balance even as temperatures rise. But only to a point.

Once we warm the planet beyond certain levels, this balance might be lost, scientists say. The effects would be sweeping and hard to reverse. Not like the turning of a dial, but the flipping of a switch. One that wouldn’t be easily flipped back.

Mass Death of Coral Reefs

Tipping point possible

Degrees of warming

When corals go ghostly white, they aren’t necessarily dead, and their reefs aren’t necessarily gone forever. Too much heat in the water causes the corals to expel the symbiotic algae living inside their tissues. If conditions improve, they can survive this bleaching. In time, the reefs can bounce back. As the world gets warmer, though, occasional bleaching is becoming regular bleaching. Mild bleaching is becoming severe bleaching.

Scientists’ latest predictions are grim. Even if humanity moves swiftly to rein in global warming, 70 percent to 90 percent of today’s reef-building corals could die in the coming decades. If we don’t, the toll could be 99 percent or more. A reef can look healthy right up until its corals start bleaching and dying. Eventually, it is a graveyard.

This doesn’t necessarily mean reef-building corals will go extinct. Hardier ones might endure in pockets. But the vibrant ecosystems these creatures support will be unrecognizable. There is no bouncing back anytime soon, not in the places corals live today, not at any scale.

When it might happen: It could already be underway.

Abrupt Thawing of Permafrost

In the ground beneath the world’s cold places , the accumulated remains of long-dead plants and animals contain a lot of carbon, roughly twice the amount that’s currently in the atmosphere. As heat, wildfires and rains thaw and destabilize the frozen ground, microbes get to work, converting this carbon into carbon dioxide and methane. These greenhouse gasses worsen the heat and the fire and the rain, which intensifies the thawing.

Like many of these vast, self-propelling shifts in our climate, permafrost thaw is complicated to predict. Large areas have already come unfrozen, in Western Canada, in Alaska, in Siberia. But how quickly the rest of it might defrost, how much that would add to global warming, how much of the carbon might stay trapped down there because the thawing causes new vegetation to sprout up on top of it — all of that is tricky to pin down.

“Because these things are very uncertain, there’s a bias toward not talking about it or dismissing the possibility, even,” said Tapio Schneider, a climate scientist at the California Institute of Technology. “That, I think, is a mistake,” he said. “It’s still important to explore the risks, even if the probability of occurrence in the near future is relatively small.”

When it might happen: The timing will vary place to place. The effects on global warming could accumulate over a century or more.

Collapse of Greenland Ice

The colossal ice sheets that blanket Earth’s poles aren’t melting the way an ice cube melts. Because of their sheer bigness and geometric complexity, a host of factors shapes how quickly the ice sheds its bulk and adds to the rising oceans. Among these factors, scientists are particularly concerned about ones that could start feeding on themselves, causing the melting to accelerate in a way that would be very hard to stop.

In Greenland, the issue is elevation. As the surface of the ice loses height, more of it sits at a balmier altitude, exposed to warmer air. That makes it melt even faster.

Scientists know, from geological evidence, that large parts of Greenland have been ice-free before. They also know that the consequences of another great melt could reverberate worldwide, affecting ocean currents and rainfall down into the tropics and beyond.

When it might happen: Irreversible melting could begin this century and unfold over hundreds, even thousands, of years.

Breakup of West Antarctic Ice

At the other end of the world from Greenland, the ice of western Antarctica is threatened less by warm air than by warm water.

Many West Antarctic glaciers flow out to sea, which means their undersides are exposed to constant bathing by ocean currents. As the water warms, these floating ice shelves melt and weaken from below, particularly where they sit on the seafloor. Like a dancer holding a difficult pose, the shelf starts to lose its footing. With less floating ice to hold it back, more ice from the continent’s interior would slide into the ocean. Eventually, the ice at the water’s edge might fail to support its own weight and crack into pieces.

The West Antarctic ice sheet has probably collapsed before, in Earth’s deep past. How close today’s ice is to suffering the same fate is something scientists are still trying to figure out.

“If you think about the future of the world’s coastlines, 50 percent of the story is going to be the melt of Antarctica,” said David Holland, a New York University scientist who studies polar regions. And yet, he said, when it comes to understanding how the continent’s ice might break apart, “we are at Day Zero.”

When it might happen: As in Greenland, the ice sheet could begin to recede irreversibly in this century.

Sudden Shift in the West African Monsoon

Around 15,000 years ago, the Sahara started turning green. It began when small shifts in Earth’s orbit caused North Africa to be sunnier each summer. This warmed the land, causing the winds to shift and draw in more moist air from over the Atlantic. The moisture fell as monsoon rain, which fed grasses and filled lakes, some as large as the Caspian Sea. Animals flourished: elephants, giraffes, ancestral cattle. So did humans, as engravings and rock paintings from the era attest. Only about 5,000 years ago did the region transform back into the harsh desert we know today.

Scientists now understand that the Sahara has flipped several times over the ages between arid and humid, between barren and temperate. They are less sure about how, and whether, the West African monsoon might shift or intensify in response to today’s warming. (Despite its name, the region’s monsoon unleashes rain over parts of East Africa as well.)

Whatever happens will matter hugely to an area of the world where many people’s nutrition and livelihoods depend on the skies.

When it might happen: Hard to predict.

Loss of Amazon Rainforest

Besides being home to hundreds of Indigenous communities, millions of animal and plant species and 400 billion trees; besides containing untold numbers of other living things that have yet to be discovered, named and described; and besides storing an abundance of carbon that might otherwise be warming the planet, the Amazon rainforest plays another big role. It is a living, churning, breathing engine of weather.

The combined exhalations of all those trees give rise to clouds fat with moisture. When this moisture falls, it helps keep the region lush and forested.

Now, though, ranchers and farmers are clearing the trees, and global warming is worsening wildfires and droughts. Scientists worry that once too much more of the forest is gone, this rain machine could break down, causing the rest of the forest to wither and degrade into grassy savanna.

By 2050, as much as half of today’s Amazon forest could be at risk of undergoing this kind of degradation, researchers recently estimated.

When it might happen: Will depend on how rapidly people clear, or protect, the remaining forest.

Shutdown of Atlantic Currents

Sweeping across the Atlantic Ocean, from the western coasts of Africa, round through the Caribbean and up toward Europe before heading down again, a colossal loop of seawater sets temperatures and rainfall for a big part of the globe. Saltier, denser water sinks to the ocean depths while fresher, lighter water rises, keeping this conveyor belt turning.

Now, though, Greenland’s melting ice is upsetting this balance by infusing the North Atlantic with immense new flows of freshwater. Scientists fear that if the motor slows too much, it could stall, upending weather patterns for billions of people in Europe and the tropics.

Scientists have already seen signs of a slowdown in these currents, which go by an unwieldy name: the Atlantic Meridional Overturning Circulation, or AMOC. The hard part is predicting when a slowdown might become a shutdown. At the moment, our data and records are just too limited, said Niklas Boers, a climate scientist at the Technical University of Munich and the Potsdam Institute for Climate Impact Research.

Already, though, we know enough to be sure about one thing, Dr. Boers said. “With every gram of additional CO2 in the atmosphere, we are increasing the likelihood of tipping events,” he said. “The longer we wait” to slash emissions, he said, “the farther we go into dangerous territory.”

When it might happen: Very hard to predict.

Read More on Earth’s Tipping Points

an essay about the effects of global warming

Heat Raises Fears of ‘Demise’ for Great Barrier Reef Within a Generation

A new study found that temperatures in the Coral Sea have reached their highest levels in at least four centuries.

By Catrin Einhorn

an essay about the effects of global warming

A Collapse of the Amazon Could Be Coming ‘Faster Than We Thought’

A new study weighed a range of threats and variables in an effort to map out where the rainforest is most vulnerable.

By Manuela Andreoni

an essay about the effects of global warming

In the Atlantic Ocean, Subtle Shifts Hint at Dramatic Dangers

A warming atmosphere is causing a branch of the ocean’s powerful Gulf Stream to weaken, some scientists fear.

By Moises Velasquez-Manoff and Jeremy White

an essay about the effects of global warming

How Much Ice Is Greenland Losing? Researchers Found an Answer.

The island is shedding 20 percent more than previously estimated, a study found, potentially threatening ocean currents that help to regulate global temperatures.

By Delger Erdenesanaa

an essay about the effects of global warming

Rapid Antarctic Melting Looks Certain, Even if Emissions Goals Are Met

It may be too late to halt the decline of the West Antarctic ice shelves, a study found, but climate action could still forestall the gravest sea level rise.

By Raymond Zhong

Methodology

The range of warming levels at which each tipping point might potentially be triggered is from David I. Armstrong McKay et al., Science .

The shaded areas on the maps show the present-day extent of relevant areas for each natural system. They don’t necessarily indicate precisely where large-scale changes could occur if a tipping point is reached.

  • Share full article

Advertisement

Global Warming Solution Essay

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 13 August 2024

Reducing climate change impacts from the global food system through diet shifts

  • Yanxian Li   ORCID: orcid.org/0000-0002-1947-7541 1 ,
  • Pan He   ORCID: orcid.org/0000-0003-1088-6290 2 , 3 ,
  • Yuli Shan   ORCID: orcid.org/0000-0002-5215-8657 4 ,
  • Ye Hang   ORCID: orcid.org/0000-0002-1368-905X 4 ,
  • Shuai Shao   ORCID: orcid.org/0000-0002-9525-6310 6 ,
  • Franco Ruzzenenti 1 &
  • Klaus Hubacek   ORCID: orcid.org/0000-0003-2561-6090 1  

Nature Climate Change ( 2024 ) Cite this article

5553 Accesses

197 Altmetric

Metrics details

  • Climate-change impacts
  • Climate-change mitigation

How much and what we eat and where it is produced can create huge differences in GHG emissions. On the basis of detailed household-expenditure data, we evaluate the unequal distribution of dietary emissions from 140 food products in 139 countries or areas and further model changes in emissions of global diet shifts. Within countries, consumer groups with higher expenditures generally cause more dietary emissions due to higher red meat and dairy intake. Such inequality is more pronounced in low-income countries. The present global annual dietary emissions would fall by 17% with the worldwide adoption of the EAT-Lancet planetary health diet, primarily attributed to shifts from red meat to legumes and nuts as principal protein sources. More than half (56.9%) of the global population, which is presently overconsuming, would save 32.4% of global emissions through diet shifts, offsetting the 15.4% increase in global emissions from presently underconsuming populations moving towards healthier diets.

Similar content being viewed by others

an essay about the effects of global warming

Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population

an essay about the effects of global warming

The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection

an essay about the effects of global warming

Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions

Food choices impact both our health and the environment 1 , 2 . The food system is responsible for about one-third of global anthropogenic GHG emissions 3 , 4 and climate goals become unattainable without efforts to reduce food-related emissions 5 , 6 . However, not everyone contributes the same way to food-related emissions because of disparities in lifestyle, food preferences and affordability within and across countries 7 , 8 , 9 . High levels of food consumption (especially animal-based diets), one of the leading causes of obesity and non-communicable diseases 10 , 11 , lead to substantial emissions 9 , 12 . Simultaneously, >800 million people still suffer from hunger and almost 3.1 billion people cannot afford a healthy diet 13 . Ending hunger and malnutrition while feeding the growing population by extending food production will further exacerbate climate change 14 , 15 . Given the notable increase in emissions driven by food consumption despite efficiency gains 16 , changing consumer lifestyles and choices are needed to mitigate climate change 17 .

Research shows that widespread shifts towards healthier diets, aligned with the sustainable development goals (SDGs) of the United Nations 18 , offer solutions to this complex problem by eradicating hunger (SDG 2), ensuring health (SDG 3) and mitigating emissions (SDG 13) 19 , 20 , 21 , 22 . Numerous dietary options have been proposed as guidelines for diet shifts 1 , 23 , 24 . The planetary health diet 12 , proposed by the EAT-Lancet Commission, stands out as a prominent option. It aims to improve health while limiting the impacts of the food system within planetary boundaries by providing reference intake levels for different food categories 9 , 25 . It is flexibly compatible with diversities and preferences of regional and local diets 12 . Previous research has estimated changes in country-specific environmental impacts, including GHG emissions 26 , 27 , 28 and water consumption 25 , resulting from adopting the planetary health diet. However, there is limited evidence on how different population groups will contribute differently in this process 7 .

Food consumption and associated emissions differ as a result of disparities in consumer choices guided by social and cultural preferences, wealth and income 29 . Quantifying food-related emissions along the entire supply chain for different products and population groups provides information for emission mitigation through changing consumer choices 17 . With the improved availability of household consumption data, recent studies have revealed inequality in energy consumption 30 , 31 and carbon emissions 17 , 32 , 33 , 34 . Although there are several studies on income- or expenditure-specific food-related emissions within individual countries based on survey-based data 35 , 36 , 37 , 38 , previous studies have not assessed global food-related emissions with a detailed breakdown into specific products and population groups. Furthermore, reducing the overconsumption of wealthy or otherwise overconsuming groups can increase the availability of resources for reducing hunger and malnutrition 7 . However, it remains unclear how emissions from different population groups would change in response to global diet shifts.

To fill these gaps, this study evaluates GHG emissions (CO 2 , CH 4 and N 2 O) throughout the global food supply chains (including agricultural land use and land-use change, agricultural production and beyond-farm processes) 16 induced by diets, termed ‘dietary emissions’, in 2019 and the potential emission changes of global diet shifts. Food loss and waste during household consumption 25 , 39 , 40 have been subtracted from the national food supply to obtain dietary intake. We quantify dietary emissions of 140 products 16 (classified into 13 food categories 12 ) on the basis of the global consumption-based emissions inventory of detailed food products 16 . By linking detailed food intake amounts to the food consumption patterns of 201 global expenditure groups (grouped according to the per capita total expenditure of each group) from the household-expenditure dataset 41 based on the World Bank Global Consumption Database (WBGCD) 42 , we analyse the unequal distribution of dietary emissions in 139 countries or areas, covering 95% of the global population. Despite limitations, the total expenditure of consumers, which effectively reflects patterns in household income, consumption and asset accumulation, is a useful approximation to represent levels of income and wealth 31 , 43 . Additionally, we build a scenario of shifting from diets in 2019 to the global planetary health diet to estimate emission changes ( Methods ). This study investigates differences in dietary emissions among regions, countries and population groups, identifying areas where efforts are needed to mitigate emissions during the global transition towards a healthier and more planet-friendly diet.

Present dietary emissions across countries

In this study, dietary emissions account for emissions along the entire global food production supply chains, which are allocated to final consumers of diets. We use the term ‘GHG footprints’ to specifically refer to the dietary emissions of an individual over 1 year 17 , 34 . The total dietary emissions and country-average per capita GHG footprints show different distributions across countries in 2019 (Fig. 1a ; for detailed food categories see Supplementary Figs. 1 – 9 ). The present total global dietary emissions reach 11.4 GtCO 2 e (95% confidence interval 8.2–14.7 Gt) (details of uncertainty ranges in Supplementary Tables 1 and 2 ). China (contributing 13.5% of emissions) and India (8.9%), the world’s most populous countries (Supplementary Table 3 ), are the largest contributors to global dietary emissions. Alongside Indonesia, Brazil, the United States, the Democratic Republic of Congo, Pakistan, Russia, Japan and Mexico, the top ten contributors represent 57.3% of global dietary emissions but with very unequal per capita emissions within and between countries. We find the highest country-average per capita footprints in Bolivia, with 6.1 tCO 2 e, followed by Luxembourg, Slovakia, Mongolia, the Netherlands and Namibia, with >5.0 tCO 2 e (Supplementary Discussion 2.1 ). Haiti (0.36 tCO 2 e) and Yemen (0.38 tCO 2 e) have the lowest country-average footprints, followed by Burundi, Ghana and Togo. Insufficient food intake of residents due to limited food affordability 44 , 45 is the root cause of low footprints in these low- and lower-middle-income countries 46 .

figure 1

a , Total and per capita dietary emissions for 139 countries/areas. b , Regional dietary emissions from different food categories and populations. The bar chart (left primary axis) shows the regional emission amounts and the line chart (right secondary axis) shows the number of regional populations. Columns are ordered by the descending per capita GDP of regions (Supplementary Tables 5 and 6 ). USA, United States; AUS, Australia; WE, Western Europe; CAN, Canada; JPN, Japan; RUS, Russia; ROEA, Rest of East Asia; EE, East Europe; CHN, China; ROO, Rest of Oceania; NENA, Near East and North Africa; BRA, Brazil; ROLAC, Rest of Latin America and the Caribbean; ROSEA, Rest of Southeast Asia; IDN, Indonesia; IND, India; ROSA, Rest of South Asia; and SSA, Sub-Saharan Africa. Details for the division and scope of regions are shown in Supplementary Fig. 10 and Supplementary Tables 7 and 8 . Country classification by income levels is based on the World Bank 46 . Credit: World Countries basemap, Esri ( https://hub.arcgis.com/datasets/esri::world-countries/about ).

Source data

While animal-based (52%) and plant-based (48%) products contribute nearly equally to global dietary emissions 4 , 16 , the latter accounts for 87% of calories in global diets (Supplementary Table 4 ). The three main sources of emissions, namely red meat (beef, lamb and pork) (5% of calories), grains (51%) and dairy products (5%), contribute to 29%, 21% and 19% of global emissions, respectively. The substantial emissions from red meat and dairy products are attributed to their considerably higher emissions per unit of calories compared to other categories (Supplementary Table 4 ).

To highlight emission differences at a regional level, we further group the country-level results into 18 regions according to geographical locations and development levels (Fig. 1b and Supplementary Fig. 10 ). In most regions, animal-based products contribute fewer calories (less than a quarter) (Supplementary Data 21 ) but yield more emissions than plant-based products, especially in Australia (84% from animal-based products), the United States (71%) and the region Rest of East Asia (71%) where residents excessively consume both red meat and dairy products. However, the consumption of plant-based products in Indonesia (83% of total calories), Rest of Southeast Asia (92%) and Sub-Saharan Africa (77%) accounts for the most emissions, at 92%, 73% and 64%, respectively. Southeast Asia including Indonesia has a high-emission proportion from grains (42%) due to the prevalent meals dominated by rice. The typical food basket in Sub-Saharan Africa is broadly made up of grains, tubers, legumes and nuts 25 , 47 , representing over half of the regional emissions.

Unequal distribution of dietary emissions within countries

We find substantial differences in per capita GHG footprints within countries and regions. To clearly present the distribution of footprints within each country and region, individuals are sorted in ascending order of their total expenditure levels and then sequentially allocated to ten expenditure deciles with equal population size (Supplementary Fig. 11 and Fig. 2a ). As expenditures increase, individuals tend to have higher levels of footprints, with the largest increase attributed to red meat and dairy products. Richer populations usually have higher per capita footprints related to animal-based products than the poorer in most regions (Fig. 2b ). However, there are differences in per capita footprints within expenditure deciles. For example, even in high-income countries such as Australia and Japan, the dietary intake of red meat for some people in the poorest deciles falls below the recommended levels (Supplementary Data 15 ). Rest of East Asia is one exception, with the poorest decile having high footprints due to a substantial intake of red meat, as seen in Mongolia where beef and mutton are the most common dish 48 .

figure 2

a , GHG footprints from all types of food categories. The size of the bubble refers to the average total expenditure represented by the decile. b , GHG footprints from different food categories. The colours of bubbles in a and b indicate expenditure deciles ranging from the poorest in blue to the wealthiest in red and are comparable only within each region.

Footprints related to plant-based products in specific regions show a different trend from animal-based products as expenditures increase. The middle expenditure groups are responsible for the highest footprints associated with grains in Sub-Saharan Africa and Southeast Asia and the highest footprints of tubers, vegetables and fruits (mainly starchy tropical fruits 49 ) in the Rest of Oceania. These locally produced, high-carbohydrate products are traditional staple foods. In poor countries, agricultural policy primarily targets improving the productivity of staple food, with little investment in the market and facilities for nutrient-rich products 50 , 51 . Consequently, the need for dietary diversity for middle- and low-income people is not adequately addressed 50 , leading to increased consumption of these lower-cost products. However, wealthier consumers can afford more expensive products, such as red meat, reducing their reliance on these staple products.

We use the GHG footprint Gini (GF-Gini) coefficient, calculated on the basis of data from 201 expenditure groups, to measure the dietary emission inequality within a country (Fig. 3 ), with 0 indicating perfect equality and 1 indicating perfect inequality. The inequality of dietary emissions tends to decline with the increase of the per capita GDP of a country, especially for animal-based products. We find the highest inequality of dietary emissions of food products generally in low-income countries, most of which are located in Sub-Saharan Africa. In Sub-Saharan Africa, the highest spending 10% of the population contributes 40% of the regional emissions from red meat, 39% from poultry and 35% from dairy products. In contrast, high-income countries generally have relatively low inequality with high levels of emissions despite country-to-country variations. The GF-Gini coefficients for all types of products of most Western European countries are <0.20 (Supplementary Tables 9 and 10 ), which is lower than for other high-income countries such as the United States, Australia, Canada and Japan.

figure 3

a – j , The x axis represents the country-average per capita GDP, and the y axis represents the national GF-Gini coefficients of all types of ( a ) and different ( b – j ) food categories. b , Beef, lamb and pork. c , Dairy products. d , Poultry, eggs and fish. e , Grains. f , Tubers and starchy vegetables. g , Vegetables and fruits. h , Legumes and nuts. i , Added fats. j , All sugars. Logarithmic regression (red solid line) and locally weighted regression analysis (blue dotted line) are used to determine the relationship between the national GF-Gini coefficient (dependent variable) and the country-average per capita GDP (independent variable). The coefficients of determination ( R 2 ) and the exact P values from the two-sided Student’s t -test for the logarithmic regression are indicated in each subgraph. The error bands (grey shaded areas) represent 95% confidence intervals around the fitted logarithmic regression lines. Blue, orange and green dots represent all types of products, animal-based products and plant-based products, respectively.

Dietary emission shares across consumer groups

There are notable differences in dietary emission shares associated with food categories across expenditure deciles between regions (Fig. 4 ). In high-income countries, expenditure groups have relatively similar patterns of dietary emissions, with large shares of red meat and dairy products contributing the largest amount of emissions. Even poor consumer groups in high-income countries tend to be more likely to be able to afford animal-based products as a result of relatively lower prices for dairy products, eggs, white meat and processed red meat. This contrasts with the high prices of animal-based products due to supply constraints in most low- and lower-middle-income countries 52 , 53 . Except in high-income countries, starchy staple foods (including grains and tubers), with low prices but high-carbohydrate content 44 , 54 , constitute a large proportion of dietary emissions because of the high level of consumption, especially in Southeast Asia and Sub-Saharan Africa. As individuals’ expenditures increase in these countries, emission shares from starchy staple foods in total emissions decrease substantially. These changes demonstrate that as the affordability of food increases, populations tend to adopt instead more diverse diets composed of fewer starchy staple foods and more meat, dairy products, vegetables and fruits. This trend generally aligns with Bennett’s Law 25 , 55 , 56 . For example, research shows that with rapid economic growth, China’s urban or high-income groups increase their intake of non-starchy foods to fulfil their requirements of dietary diversity 35 , while poorer groups, often engaging in strenuous physical jobs, predominantly consume inexpensive starchy staple foods. One exception is Rest of Oceania, where poorer groups have higher percentages of emissions from not only tubers but also vegetables and fruits. Owing to relatively low expenditure on food, poor populations in this island region usually choose locally cultivated tubers and fruits (such as cassava, taro and bananas) 57 , 58 with high intensities of land-use emissions 59 .

figure 4

The numbers at the bottom of each bar represent the expenditure levels of regional expenditure deciles, ranging from the poorest (1) to the wealthiest (10). Food categories are shown in the colour legend. a , United States. b , Australia. c , Western Europe. d , Canada. e , Japan. f , Russia. g , Rest of East Asia. h , Eastern Europe. i , China. j , Rest of Oceania. k , NENA. l , Brazil. m , ROLAC. n , Rest of Southeast Asia. o , Indonesia. p , India. q , Rest of South Asia. r , Sub-Saharan Africa.

Emission changes from adopting the planetary health diet

To estimate the emission changes from a global diet shift, we build a hypothetical scenario by assuming that everyone in all countries adopts the planetary health diet ( Methods ). Results indicate that the global dietary emissions would decrease by 17% (1.94 (1.51–2.39) GtCO 2 e) compared with the 2019 level (details of the uncertainty ranges can be found in Supplementary Tables 11 and 12 ). The presently overconsuming groups (56.9% of the global population) would save 32.4% of global emissions through diet shifts, more than offsetting the 15.4% increase in global emissions from the presently underconsuming groups (43.1% of the global population) as a result of adopting healthier diets (Supplementary Table 13 ). National dietary emissions in 100 countries would decline by 2.88 GtCO 2 e, whereas the other 39 countries (mainly low- and lower-middle-income countries 46 in Sub-Saharan Africa and South Asia) would have an increase in emissions by 938 MtCO 2 e (Fig. 5a ; for detailed food categories see Supplementary Figs. 12 – 20 ).

figure 5

a , Volume changes and percentage changes of national emissions for 139 countries/areas. b , Regional emission changes from different food categories. Abbreviations of 18 regions and the source of the base map are listed in Fig. 1 caption.

Countries would be affected differently regarding emission changes by adopting the planetary health diet, reflected in the percentage change in national emissions (Fig. 5a ). Uzbekistan (−74%), Australia (−70%), Qatar (−67%), Turkey (−65%) and Tajikistan (−64%) would see the largest percentage decrease. In comparison, most of the countries with an estimated considerable percentage increase are located in Sub-Saharan Africa and the Middle East, with the largest percentage increase from Iraq (+155%). Notably, with the increase in per capita GDP, the percentage change in overall dietary emissions of countries shows a shift from a positive to a negative trend, primarily led by changes in animal-based emissions (Supplementary Fig. 21 ).

Global emission reduction would be dominantly driven by red meat and grains (Fig. 5b ). The reduction in meat, eggs and fish would lead to 2.04 GtCO 2 e of emission reduction, of which 94% is driven by the decrease in red meat. China (22%), the United States (15%) and Brazil (14%) would be the largest contributors to emission reduction associated with a decrease in red meat consumption. A decline in grains would result in 914 MtCO 2 e of emission reduction, of which 56% would happen in Asia. A further 240 and 89 MtCO 2 e reduction in emissions would come from reduced sugars and tubers, respectively. However, increased proteins (legumes and nuts and dairy products), added fats and vegetables and fruits would partly offset the above-reduced emissions by 41%. Intake of legumes and nuts would increase in all regions, leading to a further 757 MtCO 2 e of emissions, whereas most of the emission increase related to added fats (largely vegetable oils) (279 Mt) and dairy products (143 Mt) would take place in Sub-Saharan Africa, China and other Asian countries. Global dietary emissions associated with vegetables and fruits would increase by 163 Mt, despite declines in China and Rest of Oceania.

The decline in per capita GHG footprints would be achieved primarily in wealthy consumer groups in high- and upper-middle-income countries, while increased footprints would occur mainly in poor groups in most countries (Fig. 6a ). Results show that the shifts of chief protein sources from animal-based to plant-based proteins according to the planetary health diet 12 would contribute the most to changes in footprints globally (Fig. 6b ). For example, in Australia, Brazil, Canada and the United States where diets are dominated by red meat and dairy products, the top and upper-middle expenditure groups would have notable reductions in footprints. However, most populations in South and Southeast Asia and Sub-Saharan Africa would have a considerable increase in footprints because of the present low levels of red meat intake. Meanwhile, the present intake of plant-based proteins in all countries is below the recommended level 25 . Footprints related to legumes and nuts would increase for most expenditure groups in all regions to meet nutrient demands. This increase is particularly substantial in Rest of Oceania, Brazil, Indonesia and Sub-Saharan Africa, where most of the consumed legumes and nuts are domestically produced with high land-use emission intensities 59 , 60 , assuming the present production and trade patterns remain unchanged.

figure 6

a , Changes in GHG footprints from all types of food categories. The size of the bubble refers to the average total expenditure represented by the decile. b , Changes in GHG footprints from different food categories. The colours of bubbles in a and b indicate expenditure deciles ranging from the poorest in blue to the wealthiest in red and are comparable only within each region.

Discussion and conclusions

This study uncovers the extent of inequality of dietary emissions within countries based on detailed expenditure data 17 , 34 and underlines the dependence of dietary emissions on expenditure and income levels. Emissions aggregated at expenditure deciles may lose some fine-grained information from the 201 expenditure groups. For example, people from the lowest expenditure groups in affluent countries may experience malnutrition or even hunger, which is not adequately captured at a decile level. Nevertheless, the GF-Gini coefficient calculated from 201 groups provides an accurate reflection of emission inequality. Results show that affluent countries consume high-emission diets but show relatively lower levels of inequality, whereas many poor countries tend to have diets with lower emissions but higher levels of inequality.

The objective of the diet shift scenario is to assess the potential implications of emission mitigation of the food system resulting from changing consumer choices. Widespread diet shifts offer dual benefits by moving 43.1% of the global population out of underconsumption and mitigating 17% of global dietary emissions. The simulated changes in the volume of global emissions under the planetary health diet approximate the findings by ref. 26 (Supplementary Discussion 1 ). However, worldwide diet shifts require tailored policies targeted at regions, countries, expenditure groups and products instead of ‘one-size-fits-all’ policies.

We find that, compared to plant-based products, animal-based products, particularly red meat and dairy products, exhibit greater potential for reducing both emission volumes and emission disparities among different expenditure groups. Priorities lie in reducing the overconsumption of specific emission-intensive products in affluent countries (particularly the high-expenditure groups), such as beef in Australia and the United States, to achieve health 9 , 12 and climate benefits 25 , 26 , 28 . Incentives, such as implementing subsidies or taxation on environmental externalities through food or carbon pricing 61 , ecolabelling 62 and expanding the availability of less emission-intensive products (for instance, menu design for diverse vegetarian foods 63 ), can encourage consumers to make dietary changes. Moreover, a well-designed (primarily urban) food environment can reshape residents’ dietary patterns 35 and the parallel development of urban planning and infrastructure can alleviate the time and financial burdens of shifts to healthier diets 64 . However, in countries such as Mongolia, where diets heavily rely on red meat and dairy products because of their traditional nomadic lifestyle and limited accessibility of diverse foods, especially in rural areas 48 , diet shifts may not be feasible but there is a need to improve national nutritional education 48 .

Low-income countries face more severe challenges in reaching healthier diets. On the one hand, diet shifts require increased food consumption in these countries. For example, in Sub-Saharan Africa, the planetary health diet requires a 3.4-fold increase in dairy consumption for the entire population and a 69-fold increase for the poorest decile (Supplementary Fig. 22 ). However, Sub-Saharan Africa and South and Southeast Asia, which have experienced stagnating agriculture production efficiency for decades 8 , cannot produce domestically nor afford to import the food required for diet shifts 65 . It is crucial to enhance the production efficiency of feed and food crops through various measures such as crop and soil management techniques 8 , 66 and the introduction of high-yielding crop varieties and hybrids 67 , 68 . Moreover, increasing the proportions of nutrient-rich products in food imports 65 and reducing restrictive trade policies which tend to raise food prices 25 , 69 help to address this challenge. On the other hand, poor populations often opt for lower-cost, calorie-dense but less nutritionally beneficial foods. High cost and low affordability remain the largest barriers for these individuals to select healthier diets 44 , 54 , 70 , 71 . Others 44 found that >1.58 billion low-income populations worldwide cannot afford the cost of the planetary health diet. Therefore, policy efforts (for instance, pricing interventions 72 , technical assistance to reduce food production costs 73 and so on) should focus on making food more affordable and accessible, especially for lower expenditure groups 37 , 74 . However, studies indicate that lower food prices may decrease the income of agricultural households 75 , 76 , widen wealth gaps between individuals employed in food- and non-food sectors, especially in low-income agrarian countries and exacerbate rural poverty 1 , 77 . In this sense, policies aimed at promoting diet shifts should be deliberately and cautiously designed with vulnerable groups in mind to reduce inequality 37 , 61 .

Lastly, altered food demand due to diet shifts can induce notable structural adjustments within the global agri-food system. Although this study does not assess the feasibility of countries supplying sufficient food if the planetary health diet was adopted, results indicate that the composition of global food production would change considerably to adapt to the substantial changes in demand 8 , 25 , 77 . The diet shifts would necessitate the global supply (in calorie content) of red meat decrease by 81%, all sugars by 72%, tubers by 76% and grains by 50%, while that of legumes and nuts increase by 438%, added fats by 62% and vegetables and fruits by 28% (Supplementary Data 16 ). Research 77 , 78 confirms that changed food demand could cause fluctuating prices of agricultural products and land in global markets, triggering spillover effects between different food categories or to other non-food sectors (for example, stimulating biofuel production) and partly offsetting the benefits of diet shifts. Therefore, policy-making should focus on alleviating these effects. Incentives such as increased subsidies or tax breaks can generate new economic opportunities and motivations for industries that need to scale up production to meet the heightened demand for products (for example, plant-based proteins). By contrast, for emission-intensive food industries that need to downsize, measures such as gradual crop substitution 25 , 79 could be adopted to optimize production and reduce the costs of production transformations while safeguarding the interests of producers.

In this study, we first assess the GHG emissions from diets comprising 140 products 16 (Supplementary Table 14 ) in 139 countries or areas (we collectively use the term ‘country’ because most of them are individual countries) (Supplementary Data 1 ) in 2019 based on the global consumption-based emission inventory of detailed food products from ref. 16 . The inventory 16 provides data (in mass units) of GHG emissions (including CO 2 , CH 4 and N 2 O) generated during supply chain processes, including agricultural land use and land-use change (LULUC), agricultural activities and beyond-farm processes (excluding emissions from household and end of life) 4 . All emissions are allocated to final consumers of food products. The year 2019 (the latest year before the COVID-19 pandemic) is selected as a baseline year, which can reflect the level of present dietary intake without the interference of the pandemic 80 , 81 . Subsequently, dietary emissions from different expenditure groups are quantified by matching diets with the household-expenditure dataset 42 to reflect the differences and potential inequality of dietary emissions. Finally, to measure the magnitude of the emission impact of the global diet shift, we model the transition from diets in 2019 to the widespread adoption of the planetary health diet. The research framework of this study is shown in Supplementary Fig. 23 .

The following data sources are mainly used in this study. The consumption-based food emissions inventory 16 is based on data derived from the FAOSTAT 82 , comprising national emission accounts of supply chain processes and data on food trade and production. Data on food loss and waste throughout the global supply chain and at the household level as well as food supply data, all used for linking emissions with diets, are obtained from FAOSTAT 83 and previous research 25 , 39 . The household-expenditure data 41 are built on the basis of the WBGCD 42 and further refined and supplemented by consumer expenditure surveys from high-income countries 17 , 41 to bridge the dietary emissions with different expenditure groups. Detailed data sources used for calculation are provided in Supplementary Table 15 . Data processing, assumptions and uncertainties for all calculations are also given.

Dietary energy intake and emissions

Accounting of food consumption and supply chain emissions.

The estimation of the present dietary emissions and the emission changes for adopting the EAT-Lancet planetary health diet 12 is based on the accounting framework designed by ref. 16 . They assess global GHG emissions induced by the consumption of food products in 181 countries based on the physical trade flow approach 84 , 85 . Consumption-based GHG emissions along global supply chains, including local production and international trade, are calculated as follows 16 , 84 :

where E i,r refers to the consumption-based GHG emission of product i in country r . G i / P i represents the vector of direct emission intensity of product i from entire food supply chain processes, of which G i denotes total emissions generated from entire supply chain process of product i , P i is the production vector of product i . \({(I-{A}^{i})}^{-1}\) is the trade structure of product i , of which A i is the matrix of export shares and I is the identity matrix with the same dimension as matrix A i . DMI i refers to the vector of direct material input of product i and DMC i,r is the vector of domestic material consumption of product i in country r with values set to zero for other countries. The DMI of a country is defined as the total inputs of products and the DMC is defined as the amount of products consumed domestically. DMI equals DMC plus exports of products (or production plus imports). F i refers to the vector of total (or consumption-based) emission intensity of product i from food supply chain processes, that is, total emissions induced by per unit of domestic consumption of product i . All variables in equation ( 1 ) are in units of mass (metric tonnes).

Feed products are excluded from diets because emissions from feed crops have been allocated to livestock products that consume feed during production 16 . Food loss and waste (FLW) along supply chains and households are subtracted to quantify the net intake amount of food products from the household stage.

Dietary calorie conversions

We use the annual per capita food supply (FS) quantity of 140 food products from the supply utilization accounts of FAOSTAT 83 and population from the United Nations 86 to calculate the total supply amount of product i in country r (FS i,r , in the unit of mass):

where \({{\rm{FS}}}_{{\rm{per}}}^{i}\) denotes the per capita supply of product i per year and p r refers to the population in country r .

To be consistently matched with the DMC , the FS values should be limited within the coverage of the DMC and values that exceed this range are removed. At the same time, to aggregate food products into food categories and compare their nutritional contents with the reference level from the planetary health diet, we convert the quantity of food consumption or supply into calorie content using product-specific nutritive factors (calories per unit weight of product) 87 , 88 from FAO (Supplementary Table 14 ).

Subtracting food loss and waste at the household level

The food supply derived from FAOSTAT datasets does not exclude FLW that happens during household consumption 25 . FLW before dietary intake can be divided into two parts: the FLW during supply chain processes (including agricultural production, postharvest handling and storage, processing and packaging and distribution) as well as the FLW during the food preparation and supply for household consumption 39 , 40 . The food supply value provided by FAOSTAT only excludes FLW during supply chain processes. Therefore, we exclude household FLW using the method by ref. 25 to calculate the annual dietary intake for each product as follows:

where DI i,r and \({{\rm{DI}}}_{{\rm{per}}}^{i,r}\) refer to the national and per capita caloric intake amount of product i in country r each year, respectively. \({{\rm{FS}}}_{{\rm{energy}}}^{i,r}\) and \({{\rm{FS}}}_{{\rm{energy}\_per}}^{i,r}\) are the national and per capita supply quantity (in calorie content) of product i annually, respectively. Parameter \({f}_{{\rm{FLW}}}^{\;i,r}\) is the FLW factor in the household consumption stage 39 of food product i in country r . Others 39 provide regional FLW factors, expressed as the weight percentage of food that is lost or wasted at different stages of food production and consumption, for different food categories. As a result, household food waste is subtracted from the FS to obtain the dietary intake amount of each product. Detailed household FLW factors are shown in Supplementary Table 16 .

Quantifying dietary GHG emissions

Our equation ( 1 ) can be transformed into the following equation to calculate the total emission intensity of food calorie consumption:

where \({F}_{{\rm{energy}}}^{\,i,r}\) represents total emissions per unit of calorie content of product i in country r , \({{\rm{DMC}}}_{{\rm{energy}}}^{i,r}\) refers to total calorie content of product i consumed domestically in country r . Then, emissions from the dietary intake (without FLW) of product i in country r ( \({E}_{{\rm{intake}}}^{\,i,r}\) ) are calculated as follows:

Classification of food categories

The EAT-Lancet Commission report provides coverage of different food categories in the planetary health diet and their recommended caloric intake levels at 2,500 kcal for adults each day 12 (Supplementary Table 17 ). In this study, we classify 140 products into 13 aggregated food categories according to the planetary health diet 12 , including grains, tubers or starchy vegetables, vegetables, fruits, dairy products, red meat (beef, lamb and pork), chicken and other poultry, eggs, fish, legumes, nuts, added fats (both unsaturated and saturated oils) and all sugars. On the basis of the data availability of the FAOSTAT 4 , 82 , the food products in this study include both primary and processed products (primary and secondary food processing) which can be classified into specific food categories 16 . Ultraprocessed products that combine ingredients from several food categories, such as ice creams made from both dairy and sugar, are not considered. Detailed coverages of each food category and their mapping relationship with specific products are shown in Supplementary Table 18 .

Matching diets with the household-expenditure dataset

We explore the dietary emissions from consumers with different expenditure levels (defined as expenditure groups) using the household-expenditure dataset 41 for the year 2011. The dataset, containing 116 countries and almost 90% of the global population (Supplementary Table 19 ), is primarily based on the household survey microdata from the WBGCD 42 , supplemented by consumer expenditure surveys of national statistical offices from high-income countries such as the United States and European countries 17 , 41 . For every country in the dataset, 201 expenditure groups (grouped according to the per capita total expenditure of each group) and the corresponding population share are listed. The annual per capita expenditure of people in different expenditure groups ranges from <US$50 to ~US$1 million per year (expressed in 2011 Purchasing Power Parities, PPP) 31 , 34 . For each expenditure group, the expenditure for 33 different sectors of goods and services (including 11 food items) and the corresponding expenditure share in national consumption of each sector are provided 31 , 34 , 41 . For some affluent (or poor) countries that do not have a sufficient representative number of people at the bottom (or top) end of the expenditure spectrum, the population in the corresponding expenditure groups is empty. Expenditure shares of 11 food items are matched with the 140 products in this study (Supplementary Table 20 ). We calculate the dietary intake of different food products for each expenditure group in each country by multiplying the food expenditure share of groups with the total dietary intake amounts of food products of each country.

This study assumes that the amount of food consumption is proportionate to food expenditures and the purchasing price for the same product is unchanged across 201 groups ignoring higher prices for high-quality or luxury food items within the same food category. Although the assumption of an unchanged purchasing price is an unsolved limitation shared by similar studies using monetary expenditure data 31 , 34 , 41 , household expenditures on food can still effectively highlight the differences in food consumption and emissions across consumer groups with different affordability of, and spending on, food. We also assume that the proportion of food sources from local production and trade for the same food category remains constant across the 201 groups. In other words, the magnitude of dietary emissions is solely determined by the size and pattern of food expenditure of each group and the associated supply chains for each food consumption item.

For countries that are major food consumers (and emitters) but without data in WBGCD, expenditure shares from countries with similar development levels and eating habits and neighbouring geographical locations are used to calculate the distribution of their food expenditure. We finally select 201 expenditure groups in 139 countries/areas, covering 95% of the global population in 2019 (Supplementary Table 3 and Supplementary Data 3 ). Details for dealing with missing data are provided in Supplementary Table 7 . Countries or areas are then classified into 18 regions for comparison according to geographical locations (Supplementary Table 8 ). The WBGCD expenditure data from the year 2011 are adjusted to PPP in 2019 to represent the expenditure level of populations in figures. Results of emissions from 13 types of food categories of 201 expenditure groups at the national and regional levels are shown in Supplementary Data 8 , 10 and 11 .

Analysis of GF-Gini coefficients

Calculation of gf-gini coefficients.

This study uses the GF-Gini coefficient 33 , 89 , which is based on the well-known Gini coefficient 90 , to measure the inequality of GHG footprints from 201 expenditure groups within countries, regions and globally. The GF-Gini coefficient ranges from 0 to 1, indicating the emission distribution across expenditure groups changes from perfect equality to perfect inequality. The GF-Gini coefficient of each food category is calculated as 33 :

where Gini j indicate the GF-Gini coefficient of food category j (including product i , i  = 1, 2, 3, …, n ). Expenditure groups and their population are reordered in ascending order of per capita GHG footprint of food category j and m refers to the reordered number of groups ( m  = 1, 2, 3, …, 201). \({D}_{m}^{j}\) and \({Y}_{m}^{j}\) represent the proportions of population and GHG footprints (of food category j ) for each expenditure group, respectively. \({T}_{m}^{j}\) is the cumulative proportion of GHG footprints of each expenditure group. The results of national, regional and global GF-Gini coefficients are shown in Supplementary Tables 9 and 10 .

Regression analysis

We use the regression approach to examine the relationship between the national GF-Gini coefficients and the per capita GDP 91 , 92 of 139 countries/areas. The GF-Gini coefficient of each country is regarded as the dependent variable ( y ) and the national per capita GDP acts as the independent variable ( x ). Initially, locally weighted regression is applied to illustrate the trend lines within the scatterplot. Subsequently, we test different regression methods for validation based on the general trend. Ultimately, we found that logarithmic regression is the most fitting for dietary emissions of most food categories, particularly in the case of animal-based products. Thus, the logarithmic regression is applied.

Scenario of the planetary health diet

Scenario setting and assumptions.

To estimate the emission changes resulting from the transition from the 2019 diet to the global planetary health diet, we build a hypothetical scenario by assuming that individuals belonging to 201 different expenditure groups in all countries will all reach the reference intake level of 13 types of food categories 12 . First, we assume that the proportion of food sources from local production and trade in each country is unchanged, that is, emission changes from dietary shifts would be calculated on the basis of emissions from local production and imports accounting for emissions along global food supply chains, similar to studies by refs. 25 , 26 . At the same time, emission changes induced by decreased food consumption in countries following the planetary health diet, such as carbon uptake from agriculture abandonment 59 or emission increase from non-food biomass production in saved agricultural land 77 , are not considered in this study. Second, we assume that agricultural and food-related production technology, trade patterns and emission intensities of food supply chain processes remain unchanged during the diet transition. Third, fluctuations in food prices induced by altered food demand or the affordability of the planetary health diet for different consumer groups are not considered in this study.

Diet gaps for different food categories

The diet gap (DG) reflects gaps between present dietary intake and the planetary health diet 12 , 25 , as follows:

where \({{\rm{DG}}}_{{\rm{per}}}^{j,r}\) is defined as the percentage ratio of the present per capita caloric intake of food category j in country r each year ( \({{\rm{DI}}}_{{\rm{per}}}^{\,j,r}\) ) to the annual reference level ( \({{\rm{DI}}}_{{\rm{EAT}}\_{\rm{per}}}^{i}\) ). \({{\rm{DI}}}_{{\rm{EAT}\_day\_per}}^{\,j}\) is the recommended per capita caloric intake of food category j each day 12 (Supplementary Table 17 ). We assume a uniform annual calorie reference level for each food category across all populations in all countries. We allow flexibility in local diets by keeping the composition of each food category unchanged, requiring only that the calorie content reaches the reference level. According to the definition, present food intake is considered insufficient compared with reference levels when DG is <100%, while it is deemed excessive and should be reduced when DG is >100%. Daily per capita caloric intake of food categories from 201 expenditure groups of countries or regions are shown in Supplementary Data 12 and 13 . We calculate the DG for food categories of 201 expenditure groups at national and regional levels (Supplementary Data 14 and 15 ).

According to equation ( 1 ), the total emissions per unit of calorie content of food category j in country r ( \({F}_{{\rm{energy}}}^{\;j,r}\) ) can be calculated as:

where E j,r refers to the national emissions due to consumption of food category j in country r . Thus, emission changes for adopting the planetary health diet are calculated as follows:

where \(\Delta {E}_{{\rm{intake}}}^{\;j,r}\) represents the national emission changes of food category j in country r , \({E}_{{\rm{intake}}}^{\;j,r}\) is the national emissions from intake of food category j in country r . Changes in dietary emissions of food categories from 201 groups are shown in Supplementary Data 9 . The number of people with increased/decreased emissions from 201 groups is shown in Supplementary Data 19 .

Uncertainty analysis

We assess the uncertainty range of dietary emissions from different food products using a Monte Carlo approach, which simulates the uncertainties caused by activity data, emission factors and parameters in each emission process 16 , 59 , 93 . More details can be found in Supplementary Methods 1 .

Limitations

This study has the following limitations regarding data analysis and scenario setting.

In terms of data analysis, this study is limited by the data availability. First, we use regional household food loss and waste factors of aggregated food categories without more detailed product division at the national level because of a lack of data. There might also be differences between calculated and actual food intake amounts that are unable to be removed, such as animal bones or fruit skins 25 . Second, we use the consumer household-expenditure dataset based on WBGCD for the year 2011, which provides the most precise and detailed differentiation of consumer groups and their consumption patterns within countries so far. We assume that the shares in food expenditure and population for each expenditure group are the same as in 2011. Third, we assume that the composition of different products aggregated in one category consumed by expenditure groups is the same as the national consumption composition and there is no difference in the price of food products purchased by people from different expenditure groups. In addition, data for some populous high- or upper-middle-income countries are missing from the household-expenditure dataset. However, the countries are the world’s major food consumers and emitters, their emission changes due to diet shifts are important for the global food system. We use the expenditure shares of similar countries in the household-expenditure dataset to allocate the distributions of food expenditure in these countries.

In terms of scenario setting, we focus on the impact induced by changes in consumer choices without changing the proportion of food supply sources (domestic production and imports). We do not consider altering the proportions of supply sources and associated emissions in this study. However, future studies may explore the impacts of the production side and supply chains for diet shifts. Moreover, as we focus on the present emission inequality and mitigation potentials within the food system, we assume that the income and expenditure levels of expenditure groups remain unchanged. However, a shift in food supply may affect household income and subsequently alter the household food budgets, especially for populations employed in, or countries reliant on, food-related sectors. Additionally, as a result of data and model limitations, this study does not consider price fluctuations induced by food demand and subsequent changes in household affordability or spillover effects (between food categories or to non-food sectors). Future studies may combine assessment models incorporating elasticities to project the long-term feasibilities and consequences of diet shifts.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

Data for LULUC, agricultural and beyond-farm emissions and data for physical food consumption are curated by the FAO and can be freely obtained from FAOSTAT 82 , available from ref. 16 . Data of food loss and waste rate are retrieved from FAOSTAT 82 and ref. 25 . The global household-expenditure data are obtained from the World Bank 42 and refs. 17 , 41 . Population data used in this study are obtained from World Population Prospects of the United Nations 86 . Data on per capita GDP in countries can be collected from the World Bank 91 and the International Monetary Fund 92 . Supplementary datasets are also available on Zenodo ( https://doi.org/10.5281/zenodo.11934909 ) 94 . Source data are provided with this paper.

Code availability

Data collection is performed in MATLAB and Microsoft Excel. Code developed for data processing in MATLAB and R in this study is available from Zenodo ( https://doi.org/10.5281/zenodo.11880402 ) 95 .

Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113 , 4146–4151 (2016).

Article   CAS   Google Scholar  

Kesse-Guyot, E. et al. Sustainability analysis of French dietary guidelines using multiple criteria. Nat. Sustain. 3 , 377–385 (2020).

Article   Google Scholar  

Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2 , 198–209 (2021).

Tubiello, F. N. et al. Pre-and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 14 , 1795–1809 (2022).

Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5 °C and 2 °C climate change targets. Science 370 , 705–708 (2020).

Ivanovich, C. C., Sun, T., Gordon, D. R. & Ocko, I. B. Future warming from global food consumption. Nat. Clim. Change 13 , 297–302 (2023).

Béné, C. et al. Five priorities to operationalize the EAT-Lancet Commission report. Nat. Food 1 , 457–459 (2020).

Navarre, N., Schrama, M., de Vos, C. & Mogollón, J. M. Interventions for sourcing EAT-Lancet diets within national agricultural areas: a global analysis. One Earth 6 , 31–40 (2023).

Laine, J. E. et al. Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study. Lancet Planet. Health 5 , e786–e796 (2021).

Craig, W. J. Health effects of vegan diets. Am. J. Clin. Nutr. 89 , S1627–S1633 (2009).

Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393 , 1958–1972 (2019).

Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393 , 447–492 (2019).

The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable (FAO, 2022); https://www.fao.org/documents/card/en/c/cc0639en

Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4 , 924–929 (2014).

Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562 , 519–525 (2018).

Li, Y. et al. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains. Nat. Food 4 , 483–495 (2023).

Hubacek, K., Baiocchi, G., Feng, K. & Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 8 , 912 (2017).

Sustainable Development Goals: 17 Goals to Transform Our World (United Nations, 2017); https://www.un.org/sustainabledevelopment/sustainable-development-goals/

Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605 , 90–96 (2022).

Hasegawa, T., Havlík, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2 , 826–833 (2019).

Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 62 , 101926 (2020).

Denton, F. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 1727–1790 (Cambridge Univ. Press, 2022).

Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515 , 518–522 (2014).

Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2 , e451–e461 (2018).

Tuninetti, M., Ridolfi, L. & Laio, F. Compliance with EAT-Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nat. Food 3 , 143–151 (2022).

Semba, R. D. et al. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 1 , 481–484 (2020).

Guo, Y. et al. Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth 5 , 268–282 (2022).

Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3 , 29–37 (2022).

Mbow, C. et al. in Climate Change and Land (eds Shukla, P. R. et al.) Ch. 5 (IPCC, 2019); https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_Chapter_5.pdf

Millward-Hopkins, J. & Oswald, Y. Reducing global inequality to secure human wellbeing and climate safety: a modelling study. Lancet Planet. Health 7 , e147–e154 (2023).

Guan, Y. et al. Burden of the global energy price crisis on households. Nat. Energy 8 , 304–316 (2023).

Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2 , 361–369 (2017).

Mi, Z. et al. Economic development and converging household carbon footprints in China. Nat. Sustain. 3 , 529–537 (2020).

Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5 , 311–320 (2022).

He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1 , 122–127 (2018).

Rao, N. D. et al. Healthy, affordable and climate-friendly diets in India. Glob. Environ. Change 49 , 154–165 (2018).

He, P., Feng, K., Baiocchi, G., Sun, L. & Hubacek, K. Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat. Food 2 , 664–672 (2021).

Reynolds, C. J., Horgan, G. W., Whybrow, S. & Macdiarmid, J. I. Healthy and sustainable diets that meet greenhouse gas emission reduction targets and are affordable for different income groups in the UK. Public Health Nutr. 22 , 1503–1517 (2019).

Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste-Extent, Causes and Prevention (FAO, 2011); https://www.fao.org/3/mb060e/mb060e00.htm

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland and fertiliser use. Sci. Total Environ. 438 , 477–489 (2012).

Zhong, H., Feng, K., Sun, L., Cheng, L. & Hubacek, K. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 273 , 110979 (2020).

Global Consumption Database (World Bank, 2022); https://datatopics.worldbank.org/consumption/

Wier, M., Birr-Pedersen, K., Jacobsen, H. K. & Klok, J. Are CO 2 taxes regressive? Evidence from the Danish experience. Ecol. Econ. 52 , 239–251 (2005).

Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT-Lancet reference diet: a global analysis. Lancet Glob. Health 8 , e59–e66 (2020).

The State of Food Security and Nutrition in the World 2023 (FAO, 2023); https://doi.org/10.4060/cc3017en

World Bank Country and Lending Groups (World Bank, 2021); https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

Okou, C., Spray, J. A. & Unsal, M. F. D. Staple Food Prices in Sub-Saharan Africa: An Empirical Assessment (International Monetary Fund, 2022); https://www.imf.org/en/Publications/WP/Issues/2022/07/08/Staple-Food-Prices-in-Sub-Saharan-Africa-An-Empirical-Assessment-520567

Delgermaa, D., Yamaguchi, M., Nomura, M. & Nishi, N. Assessment of Mongolian dietary intake for planetary and human health. PLoS Glob. Public Health 3 , e0001229 (2023).

Burkhart, S., Underhill, S. & Raneri, J. Realizing the potential of neglected and underutilized bananas in improving diets for nutrition and health outcomes in the Pacific Islands. Front. Sustain. Food Syst. 6 , 805776 (2022).

Pingali, P. Agricultural policy and nutrition outcomes—getting beyond the preoccupation with staple grains. Food Secur. 7 , 583–591 (2015).

Sibhatu, K. T. & Qaim, M. Rural food security, subsistence agriculture and seasonality. PloS ONE 12 , e0186406 (2017).

Headey, D. D. & Alderman, H. H. The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. J. Nutr. 149 , 2020–2033 (2019).

Bai, Y., Alemu, R., Block, S. A., Headey, D. & Masters, W. A. Cost and affordability of nutritious diets at retail prices: evidence from 177 countries. Food Policy 99 , 101983 (2021).

Batis, C. et al. Adoption of healthy and sustainable diets in Mexico does not imply higher expenditure on food. Nat. Food 2 , 792–801 (2021).

Bennett, M. K. International contrasts in food consumption. Geogr. Rev. 31 , 365–376 (1941).

D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56 , 456–531 (2018).

Traditional Pacific Island Crops (Univ. Hawaii, 2024); https://guides.library.manoa.hawaii.edu/paccrops

Fiji—Agricultural Commodities (International Trade Administration, 2022); https://www.trade.gov/country-commercial-guides/fiji-agricultural-commodities

Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589 , 554–561 (2021).

Hong, C. et al. Land-use emissions embodied in international trade. Science 376 , 597–603 (2022).

Darmon, N., Lacroix, A., Muller, L. & Ruffieux, B. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int. J. Behav. Nutr. Phys. Act. 11 , 66 (2014).

Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360 , 987–992 (2018).

Bacon, L. & Krpan, D. (Not) Eating for the environment: the impact of restaurant menu design on vegetarian food choice. Appetite 125 , 190–200 (2018).

Swinburn, B. A. et al. The global syndemic of obesity, undernutrition and climate change: the Lancet Commission report. Lancet 393 , 791–846 (2019).

Geyik, O., Hadjikakou, M., Karapinar, B. & Bryan, B. A. Does global food trade close the dietary nutrient gap for the world’s poorest nations? Glob. Food Secur. 28 , 100490 (2021).

Pradhan, P., Fischer, G., Van Velthuizen, H., Reusser, D. E. & Kropp, J. P. Closing yield gaps: how sustainable can we be. PloS ONE 10 , e0129487 (2015).

Sánchez, P. A. Tripling crop yields in tropical Africa. Nat. Geosci. 3 , 299–300 (2010).

Huang, J., Pray, C. & Rozelle, S. Enhancing the crops to feed the poor. Nature 418 , 678–684 (2002).

The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets (FAO, 2020); https://www.fao.org/documents/card/en?details=ca9692en

Allcott, H. et al. Food deserts and the causes of nutritional inequality. Q. J. Econ. 134 , 1793–1844 (2019).

Springmann, M., Clark, M. A., Rayner, M., Scarborough, P. & Webb, P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet. Health 5 , e797–e807 (2021).

Darmon, N. & Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73 , 643–660 (2015).

Baylis, K., Peplow, S., Rausser, G. & Simon, L. Agri-environmental policies in the EU and United States: a comparison. Ecol. Econ. 65 , 753–764 (2008).

Swinnen, J. The right price of food. Dev. Policy Rev. 29 , 667–688 (2011).

Headey, D. D. Food prices and poverty. World Bank Econ. Rev. 32 , 676–691 (2018).

Google Scholar  

Headey, D. & Hirvonen, K. Higher food prices can reduce poverty and stimulate growth in food production. Nat. Food 4 , 699–706 (2023).

Gatto, A., Kuiper, M. & van Meijl, H. Economic, social and environmental spillovers decrease the benefits of a global dietary shift. Nat. Food 4 , 496–507 (2023).

Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10 , 024007 (2015).

Davis, K. F. et al. Alternative cereals can improve water use and nutrient supply in India. Sci. Adv. 4 , eaao1108 (2018).

Le Quéré, C. et al. Temporary reduction in daily global CO 2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 10 , 647–653 (2020).

Shan, Y. et al. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Change 11 , 200–206 (2021).

FAOSTAT Database (FAO, 2022); https://www.fao.org/faostat/en/

Supply Utilization Accounts, Food Blances, FAOSTAT Online Database (FAO, 2022); https://www.fao.org/faostat/en/#data/SCL

Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70 , 1032–1040 (2011).

Kastner, T., Erb, K.-H. & Haberl, H. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9 , 034015 (2014).

World Population Prospects 2022 (United Nations, 2022); https://population.un.org/wpp/Download/Standard/Population/

Food Balance Sheets—A Handbook (FAO, 2001); https://www.fao.org/3/x9892e/X9892e05.htm#P8217_125315

Nutritive Factors (FAO, 2023); https://www.fao.org/economic/the-statistics-division-ess/publications-studies/publications/nutritive-factors/en/

Wiedenhofer, D. et al. Unequal household carbon footprints in China. Nat. Clim. Change 7 , 75–80 (2017).

Gini, C. Measurement of inequality of incomes. Econ. J. 31 , 124–125 (1921).

The World Bank Data: GDP per Capita (Current US$) (World Bank, 2023); https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD

Datasets, World Economic Outlook (April 2023): GDP per Capita, Current Prices (IMF, 2023); https://www.imf.org/external/datamapper/NGDPDPC@WEO/OEMDC/ADVEC/WEOWORLD

Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2 , 724–732 (2021).

Li, Y. et al. Supplementary Datasets for ‘Reducing climate change impacts from the global food system through diet shifts’. Zenodo https://doi.org/10.5281/zenodo.11934909 (2024).

Li, Y. et al. Code for ‘Reducing climate change impacts from the global food system through diet shifts’. Zenodo https://doi.org/10.5281/zenodo.11880402 (2024).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos 72243004, 32101315, 71904098). Y.S. and S.S. acknowledge support from the National Natural Science Foundation of China (grant no. 72243004). Yu Li acknowledges support from the National Natural Science Foundation of China (grant no. 32101315). P.H. acknowledges support from the National Natural Science Foundation of China under a Young Scholar Programme Grant (grant no. 71904098). Yanxian Li and Y.H. acknowledge the funding support by the China Scholarship Council PhD programme. We thank Y. Zhou for supporting visualization and J. Yan for assisting in writing and revising. For the purpose of open access, a CC BY public copyright license is applied to any author accepted manuscript arising from this submission.

Author information

Authors and affiliations.

Integrated Research on Energy, Environment and Society (IREES), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, the Netherlands

Yanxian Li, Franco Ruzzenenti & Klaus Hubacek

School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK

Department of Earth System Science, Tsinghua University, Beijing, China

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Yuli Shan & Ye Hang

School of Public Administration, Chongqing Technology and Business University, Chongqing, China

School of Business, East China University of Science and Technology, Shanghai, China

You can also search for this author in PubMed   Google Scholar

Contributions

Yanxian Li, Y.S. and K.H. designed the research. Yanxian Li performed the analysis with support from P.H., Yu Li, Y.H. and S.S. on analytical approaches and visualization. Yanxian Li led the writing with efforts from P.H., Y.S., F.R. and K.H. Y.S. and K.H. supervised and coordinated the overall research. All co-authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Yuli Shan or Klaus Hubacek .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Climate Change thanks Catharina Latka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information.

Supplementary Methods, Discussion, Figs. 1–23, Tables 1–24 and references.

Reporting Summary

Supplementary data.

Detailed data for calculated results in this study.

Source Data Fig. 1

Source data for creating Fig. 1.

Source Data Fig. 2

Source data for creating Fig. 2.

Source Data Fig. 3

Source data for creating Fig. 3.

Source Data Fig. 4

Source data for creating Fig. 4.

Source data Fig. 5

Source data for creating Fig. 5.

Source Data Fig. 6

Source data for creating Fig. 6.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, Y., He, P., Shan, Y. et al. Reducing climate change impacts from the global food system through diet shifts. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-02084-1

Download citation

Received : 07 November 2023

Accepted : 05 July 2024

Published : 13 August 2024

DOI : https://doi.org/10.1038/s41558-024-02084-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

an essay about the effects of global warming

U.S. flag

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Global net climate effects of anthropogenic reactive nitrogen.

Anthropogenic activities have substantially enhanced the loadings of reactive nitrogen (Nr) in the Earth system since pre-industrial times1,2, contributing to widespread eutrophication and air pollution3–6. Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of −0.34 [−0.20, −0.50] W m−2 in the year 2019 relative to the year 1850. This net cooling effect is the result of increased aerosol loading, reduced methane lifetime and increased terrestrial carbon sequestration associated with increases in anthropogenic Nr, which are not offset by the warming effects of enhanced atmospheric nitrous oxide and ozone. Future predictions using three representative scenarios show that this cooling effect may be weakened primarily as a result of reduced aerosol loading and increased lifetime of methane, whereas in particular N2O-induced warming will probably continue to increase under all scenarios. Our results indicate that future reductions in anthropogenic Nr to achieve environmental protection goals need to be accompanied by enhanced efforts to reduce anthropogenic greenhouse gas emissions to achieve climate change mitigation in line with the Paris Agreement.

Devastating wildfires, brutal heat, intense hurricanes, and extreme flooding. As a result of climate change , we’ve seen an increase in the frequency, severity, and intensity of hazardous weather across the United States. The National Oceanic and Atmospheric Administration (NOAA) estimates that between 2018 and 2022, the United States experienced 90 disasters with losses exceeding $1 billion each and total costs exceeding $621 billion; a 48 percent increase in the number of disasters per year; and a 37 percent increase in costs from the preceding decade. So far, 2023 is proving to be the costliest year yet when it comes to weather disasters. 1 Billion-Dollar Weather and Climate Disasters, 2023, NOAA National Centers for Environmental Information.

About the authors

This article is a collaborative effort by Zach Bruick, Munya Muvezwa, Kirtiman Pathak, Daniel Stephens , Shelley Stewart , and Alexis Trittipo , representing views from the McKinsey Institute for Black Economic Mobility and McKinsey’s Sustainability Practice.

Impacts of climate change—such as property value damage, loss of labor productivity, health problems due to prolonged exposure to heat or lack of clean water and air, and temporary or permanent displacement when a residence becomes uninhabitable—can put the prospect of Black socioeconomic mobility  in the United States at greater risk. Black populations are particularly vulnerable to physical-hazard exposure, since they are concentrated in areas especially susceptible to extreme weather. As people and businesses attempt to adjust to a low-carbon economy, they must also further contend with second-order transition risks—such as the loss of jobs in impacted industries—resulting from market changes.

Our research methodology

Our analysis assessing the physical risks of climate change on Black populations in the United States draws from the expertise of McKinsey Climate Analytics, climate modeling from leading public and private firms, and socioeconomic data from the US Census Bureau’s 2020 American Community Survey.

The climate hazard analyses were conducted by McKinsey Climate Analytics, which is McKinsey’s sustainability solution for climate modeling led by experienced and credentialed climate scientists and meteorologists. The analysis for this study examined four climate hazards with particular relevance to Black communities: wildfires, extreme heat, hurricanes, and flooding. For wildfire risk, we crafted risk zones based on the number of high-fire-risk days (leveraging the Fire Weather Index, with a climate model ensemble based on data from the Climatology Lab MACA CMIP5 data set), elevation (NASA Shuttle Radar Topography Mission), and land cover (European Space Agency Climate Change Initiative). For extreme heat, we used heat stress projections from the Woodwell Climate Research Center. For hurricanes, we used climate-conditioned hurricane simulations from WindRiskTech, which account for how warming oceans and atmospheres may affect hurricane intensity and frequency. Flooding data was sourced from the World Resources Institute’s Aqueduct floods model.

For our analysis of the Southeastern region of the United States, we examined data from the above-mentioned sources for the following states: Alabama, Arkansas, Florida, Georgia, Louisiana, Maryland, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia. We conducted census tract analyses by merging demographic features (primarily focusing on population composition by race but also looking at household wealth and median household income) with current and forward-looking views of climate hazards. Future projections of climate risk use a 20-year average centered on 2050, using the RCP 8.5 scenario, which is aligned to a global mean temperature rise of approximately 2°C over pre-industrial levels. (RCP stands for “representative concentration pathway.” Four RCP scenarios were developed by the Intergovernmental Panel on Climate Change to assess the impacts of various emission pathways on the climate system. RCP 8.5 has the highest emission concentrations across the four scenarios in the RCP framework.) For each climate hazard, a relevant metric was chosen to classify areas at high or low risk. For wildfires, the metric used was living in a high-risk fire zone; for extreme heat, the total number of working hours potentially lost due to heat stress; for hurricanes, the 1-in-100-year likelihood of sustained wind speed exceeding 74 mph; and for flooding, the 1-in-100-year likelihood of flood depth exceeding a half inch.

For our urban analysis examples, we selected Baltimore and New Orleans based on their diverse populations, history of redlining and segregation, and geographic locations with a susceptibility to flooding. Our mapping data comes from the University of Richmond’s Mapping Inequality project, the definitive academic resource for data and research related to historical redlining in the United States.

Maps are a key diagnostic tool for assessing the impacts of climate change. In the following maps, we examine how extreme weather events and chronic climate changes may affect the prospect of Black socioeconomic mobility as the world continues to grow warmer. We look at the distribution of the Black population mapped against physical climate risk in the whole of the United States, regionally in several Southeastern states, and in two metropolitan areas with a history of segregation and redlining (see sidebar, “Our research methodology”). Given the deep impacts of climate change, it will be critical to help communities adapt and build resilience.

As the effects of climate change become more evident each year, we all have the opportunity to play a critical role in ensuring an inclusive response to climate change, both through equitable adaptation to climate hazards and to a just climate transition, by addressing the disproportionate impact on Black communities.

In order to manage the primary and second-order risks for Black communities created by climate change, among many approaches , both the public and private sectors can begin by considering the following:

  • broad education around both the impacts of climate on communities and the implications of climate risk on intergenerational wealth transfer, such as the effects on housing, an asset class heavily impacted by physical hazards
  • community leader engagement from Black communities as states plan for climate adaptation and transition to a lower carbon economy
  • financial inclusion of Black communities as stores, banks, and factories reorient their footprints and their operations to address climate risks
  • equitable access to finance and opportunities to integrate Black entrepreneurs in innovation hubs supporting a transition to a green economy

Climate change may create significant physical risks for Black populations in the United States, but it could create opportunities to address existing racial gaps, too. A concerted effort at understanding the impact of climate risk for Black workers, business owners, consumers, savers, and residents can help the private and public sectors identify racial gaps, allow for timely adaptation to build resilience against physical risks, and enable equitable access to climate finance opportunities.

Zach Bruick is a research science expert in McKinsey’s Denver office, Munya Muvezwa is a partner in the Charlotte office, Kirtiman Pathak is a senior expert in the Stamford office, Daniel Stephens is a senior partner in the Washington, DC, office, Shelley Stewart is a senior partner in the New York office, where Alexis Trittipo is a partner.

The authors wish to thank Kelly Kochanski, Noma Moyo, Xiaohan Wang, and the McKinsey Climate Analytics team for their contributions to this article.

This article was edited by Christine Y. Chen, a senior editor in the Denver office.

This interactive experience is a collaborative effort led by McKinsey Global Publishing, with contributions from Vicki Brown, Nayomi Chibana, Stephen Landau, Janet Michaud, Diane Rice, Jonathon Rivait, Dana Sand, Katie Shearer, and Jessica Wang.

Explore a career with us

Related articles.

Elderly Black man and woman holding hot beverage tumblers

A guide to impact investing in Black economic mobility

The economic state of Black America: What is and what could be

The economic state of Black America: What is and what could be

A $300 billion opportunity: Serving the emerging Black American consumer

A $300 billion opportunity: Serving the emerging Black American consumer

IMAGES

  1. Persuasive Essay Sample: Global Warming

    an essay about the effects of global warming

  2. Essay on Global Warming with Samples (150

    an essay about the effects of global warming

  3. ≫ Global Warming Effects Free Essay Sample on Samploon.com

    an essay about the effects of global warming

  4. 138 Global Warming Essay Topics & Ideas

    an essay about the effects of global warming

  5. Global Warming Essay

    an essay about the effects of global warming

  6. Global Warming Awareness Essay

    an essay about the effects of global warming

COMMENTS

  1. Essay on Effects of Global Warming for Students

    500+ Words Essay on Effects of Global Warming. Global warming refers to climate change that causes an increase in the average of Earth's temperature. Natural events and human influences are believed to be top contributions towards the increase in average temperatures. Global warming is a rise in the surface and atmospheric temperature of the ...

  2. Essay on Global Warming with Samples (150, 250, 500 Words

    These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming. Also Read: Concept of Sustainable Development. Sample Essays on Global Warming. Here are some sample essays on Global Warming: Essay on Global Warming Paragraph in 100 - 150 ...

  3. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  4. What are the effects of global warming?

    What are the effects of global warming? One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic ...

  5. Global Warming Essay: Causes, Effects, and Prevention

    This article will help you understand how to write an essay about global warming from many different perspectives. Topics. The different effects of global warming in two different geographic regions. Possible social or humanitarian effects from global warming, such as population migration. The places on Earth most at risk due to rising sea levels.

  6. How a warming Earth is changing our brains, bodies and minds

    Global average surface temperatures have risen by about 1.1°C (2°F) since the pre-industrial era, with most of this warming occurring in the past 40 years. Ice is melting; seas are steadily rising; storms are - well, you know this story. And yet, most frequently, it is still a story of the world out there: the world outside of us.

  7. Essay on Global Warming

    Q.1 List the causes of Global Warming. A.1 There are various causes of global warming both natural and manmade. The natural one includes a greenhouse gas, volcanic eruption, methane gas and more. Next up, manmade causes are deforestation, mining, cattle rearing, fossil fuel burning and more.

  8. Causes and Effects of Climate Change

    Fossil fuels - coal, oil and gas - are by far&nbsp;the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent ...

  9. Causes and effects of global warming

    global warming, Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution.In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2-7.2 °F (1.8-4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was ...

  10. Potential effects of global warming

    Global warming - Climate Change, Impacts, Solutions: The path of future climate change will depend on what courses of action are taken by society—in particular the emission of greenhouse gases from the burning of fossil fuels. A range of alternative emission scenarios has been proposed by the IPCC since the Fifth Assessment Report (AR5), which was published in 2014, to examine potential ...

  11. Consequences and Effects of Global Warming -- What is the Impact?

    Human influences are the number one cause of global warming, especially the carbon pollution we cause by burning fossil fuels and the pollution capture we prevent by destroying forests. The carbon ...

  12. Causes, Effects and Solutions to Global Warming

    There are many effects that will happen in the future if global warming continues. That includes polar ice caps melting, economic consequences, warmer waters and more hurricanes, spread of diseases and earthquake. First effect is polar ice caps melting. As the temperature increase, the ice at the North Pole will melt.

  13. Global Warming Essay

    A rise in global temperatures can lead to additional changes in the environment, such as rising sea levels. Since an increase in the temperature causes the glaciers and icebergs to melt at a rapid pace, it causes the sea levels to rise. On the Weather: Global Warming causes intense heat waves by significantly increasing the temperature which ...

  14. IPCC climate report: Earth is warmer than it's been in ...

    Hotting up. Earth's global surface temperature has increased by around 1.1 °C compared with the average in 1850-1900 — a level that hasn't been witnessed since 125,000 years ago, before ...

  15. What Is Climate Change?

    Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Changes observed in Earth's climate since the mid-20th century are driven by human activities, particularly fossil ...

  16. Climate change widespread, rapid, and intensifying

    Global Warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty was launched in ...

  17. Global Warming

    Global warming is the long-term warming of the planet's overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels.As the human population has increased, so has the volume of . fossil fuels burned.. Fossil fuels include coal, oil, and natural gas, and burning them causes ...

  18. Climate change impacts

    Global temperatures rose about 1.98°F offsite link (1.1°C) from 1901 to 2020, but climate change refers to more than an increase in temperature. It also includes sea level rise, changes in weather patterns like drought and flooding, and much more. Things that we depend upon and value — water, energy, transportation, wildlife, agriculture, ecosystems, and human health — are experiencing ...

  19. What are the effects of global warming?

    The effects of global warming can be seen and felt across the planet. Global warming, the gradual heating of Earth's surface, oceans and atmosphere, is caused by human activity, primarily the ...

  20. What Is Climate Change?

    Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Changes observed in Earth's climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, […]

  21. What evidence exists that Earth is warming and that humans are the main

    Full story. We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth's natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures.

  22. What is global warming, facts and information

    The "greenhouse effect" is the warming that happens when certain gases in Earth's atmosphere trap heat. These gases let in light but keep heat from escaping, like the glass walls of a greenhouse ...

  23. Climate change: a threat to human wellbeing and health of the planet

    Global Warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty was launched in ...

  24. Essay On Global Warming

    Essay On Global Warming in 300 Words. Global warming is a phenomenon where the earth's average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural "blanket", which prevents the heat from escaping ...

  25. What is the Economic Impact of Climate Change on Global GDP?

    Economists, including the late research professor of economics Martin Weitzman and William Nordhaus of Yale, began in the 1990s to consider the potential economic effects of climate change. By their rough estimates and a large body of subsequent work, each 1-degree Celsius rise in world temperature would reduce world gross domestic product (GDP) by 1 to 3 percent.

  26. How Close Are the Planet's Climate Tipping Points?

    Even if humanity moves swiftly to rein in global warming, 70 percent to 90 percent of today's reef-building corals could die in the coming decades. If we don't, the toll could be 99 percent or ...

  27. Global Warming Solution Essay (pdf)

    Global Warming Solution Essay Crafting an essay on the subject of global warming solutions is undoubtedly a challenging endeavor. Tackling such a complex and pressing issue demands a comprehensive understanding of the scientific, economic, and political aspects surrounding climate change. The task involves delving into a vast pool of information, ranging from greenhouse gas emissions and ...

  28. Reducing climate change impacts from the global food system ...

    Food choices impact both our health and the environment 1,2.The food system is responsible for about one-third of global anthropogenic GHG emissions 3,4 and climate goals become unattainable ...

  29. Global net climate effects of anthropogenic reactive nitrogen

    Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of −0.34 [−0.20, −0.50] W m−2 in the year 2019 relative to the year 1850.

  30. Climate change and race: The impact on Black lives

    Impacts of climate change—such as property value damage, loss of labor productivity, health problems due to prolonged exposure to heat or lack of clean water and air, and temporary or permanent displacement when a residence becomes uninhabitable—can put the prospect of Black socioeconomic mobility in the United States at greater risk. Black populations are particularly vulnerable to ...