The Balanced Chemical Equation for Photosynthesis

Photosynthesis Overall Chemical Reaction

Frank Krahmer / Getty Images

  • Biochemistry
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Photosynthesis is the process in plants and certain other organisms that uses the energy from the sun to convert carbon dioxide and water into glucose (a sugar) and oxygen.

Here is the balanced equation for the overall reaction:

6 CO 2  + 6 H 2 O → C 6 H 12 O 6  + 6 O 2  

Where: CO 2  = carbon dioxide   H 2 O = water light is required C 6 H 12 O 6  = glucose O 2  = oxygen

Explanation

In words, the equation may be stated as: Six carbon dioxide molecules and six water molecules react to produce one glucose molecule and six oxygen molecules .

The reaction requires energy in the form of light to overcome the activation energy needed for the reaction to proceed. Carbon dioxide and water don't spontaneously convert into glucose and oxygen .

  • Chlorophyll Definition and Role in Photosynthesis
  • 10 Fascinating Photosynthesis Facts
  • What Are the Products of Photosynthesis?
  • Photosynthesis Vocabulary Terms and Definitions
  • Calvin Cycle Steps and Diagram
  • Chemical Equilibrium in Chemical Reactions
  • Equilibrium Constant Kc and How to Calculate It
  • What Are the 3 Parts of a Nucleotide? How Are They Connected?
  • What Is the Primary Function of the Calvin Cycle?
  • Chemosynthesis Definition and Examples
  • The Definition of Bioenergy
  • What Is Fermentation? Definition and Examples
  • What Is the Most Abundant Protein?
  • How to Calculate Limiting Reactant of a Chemical Reaction
  • How to Make a Phosphate Buffer
  • Photosynthesis Quiz
  • Chemistry Formulas

Photosynthesis Formula

Top Banner

Photosynthesis is the process of converting the energy in which solar energy is converted into the form of light which is used in the production of carbohydrate molecules.

Solved Examples

Here are a few solved problems on Photosynthesis .

Problem 1: Write the complete balanced reaction for Photosynthesis both in symbol and word equation.

The balanced reaction for photosynthesis in word form is

Carbon dioxide + Water → Glucose  + oxygen.

The balanced reaction for photosynthesis in symbol form is

6CO 2  + 6H 2 O  → C 6 H 12 O 6  + 6O 2  + 6H 2 O

FORMULAS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

how to balance chemical equation of photosynthesis

This information was really helpful to me thanks

how to balance chemical equation of photosynthesis

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

how to balance chemical equation of photosynthesis

Photosynthesis – Equation, Formula & Products

Core concepts.

In this tutorial, you will learn all about photosynthesis . We begin with an introduction to photosynthesis and its balanced chemical equation. Then, we analyze the two key stages involved in this process and take a look at the final products. Lastly, we consider the different types of photosynthesis.

Topics Covered in Other Articles

  • What is a Chemical Reaction? Physical vs Chemical Change Examples
  • What is a Reactant in Chemistry?
  • How to Balance Redox Reactions
  • Common Oxidizing Agents & Reducing Agents
  • What is Gluconeogenesis?

Introduction to Photosynthesis

The process by which plants and other organisms convert light energy (sunlight) into chemical energy (glucose) is known as photosynthesis. Sunlight powers a series of reactions that use water and carbon dioxide to synthesize glucose and release oxygen as a byproduct. Energy is stored in the chemical bonds of glucose and can be later harvested to fuel the organism’s activities through cellular respiration or fermentation .

Photosynthesis is an endergonic process because it requires an input of energy from the surroundings in order for a chemical change to take place. Furthermore, photosynthesis is a reduction-oxidation (redox) reaction , meaning that it involves the transfer of electrons between chemical species. During the process, carbon dioxide is reduced (i.e., gains electrons) to form glucose, and water is oxidized (i.e., loses electrons) to form molecular oxygen.

The complex process of photosynthesis takes place in chloroplasts (i.e., membrane-bound organelles in plant and algal cells). Chloroplasts have an outer membrane and an inner membrane. The stroma is the fluid-filled space within the inner membrane; it surrounds flattened sac-like structures known as thylakoids. Thylakoids consist of a thylakoid space (lumen) surrounded by a thylakoid membrane. The thylakoid membrane contains photosystems, which are large complexes of proteins and pigments. There are two types of photosystems: photosystem I (PSI) and photosystem II (PSII).

Chloroplast Structure

Chemical Equation for Photosynthesis

The overall balanced equation for photosynthesis is commonly written as 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 (shown below). In other words, six molecules of carbon dioxide and six molecules of water react in the presence of sunlight to produce one molecule of glucose (a six-carbon sugar) and six molecules of oxygen. 

Chemical Equation for Photosynthesis

Stages of Photosynthesis

There are two main stages of photosynthesis: the light-dependent reactions and the Calvin cycle.

Light-Dependent Reactions

The light-dependent reactions use light energy to make ATP (an energy-carrying molecule) and NADPH (an electron carrier) for use in the Calvin cycle. In addition, oxygen is released as a result of the oxidation of water. In plants and algae, the light-dependent reactions take place in the thylakoid membrane of chloroplasts. The most common form of the light-dependent reactions is a process known as non-cyclic photophosphorylation. This process involves two key steps: ATP synthesis (via photosystem II) and NADPH synthesis (via photosystem I).

  • Step 1 (ATP Synthesis): Pigments in photosystem II (such as chlorophylls) absorb light and energize electrons. A proton gradient is formed as these excited electrons travel down an electron transport chain and release energy that pumps hydrogen ions from the stroma to the thylakoid lumen. The splitting of water molecules through photolysis produces hydrogen ions (as well as oxygen molecules) that further contribute to this electrochemical gradient. As hydrogen ions flow down their gradient (i.e., back across the thylakoid membrane and into the stroma), they travel through an enzyme known as ATP synthase. ATP synthase catalyzes the formation of adenosine triphosphate (ATP) using ADP (adenosine diphosphate) and inorganic phosphate (P i ).
  • Step 2 (NADPH Synthesis): Electrons are transferred to photosystem I and energized by the light absorbed by PSI pigments. The electrons reach the end of the electron transport chain and are passed to an enzyme known as ferredoxin-NADP + reductase (FNR). FNR catalyzes the reaction by which NADP + is reduced to NADPH.

Z-Scheme Diagram of Photosynthesis

Calvin Cycle

The Calvin cycle (also referred to as the light-independent reactions) takes place in the stroma of chloroplasts and is not directly dependent on sunlight. Instead, this stage utilizes the products of the light-dependent reactions (ATP and NADPH), along with carbon dioxide, to synthesize glucose. The Calvin cycle consists of three basic steps: carbon fixation, reduction, and regeneration.

  • Step 1 (Carbon Fixation): RuBisCO (the most abundant enzyme on Earth) catalyzes the carboxylation of ribulose-1,5-biphosphate (RuBP) by carbon dioxide to produce an unstable six-carbon compound. This six-carbon compound is then readily converted into two molecules of 3-phosphoglyceric acid (3-PGA).
  • Step 2 (Reduction): An enzyme known as phosphoglycerate kinase catalyzes the phosphorylation of 3-PGA by ATP to produce 1,3-biphosphoglyceric acid (1,3-BPG) and ADP. Next, another enzyme (glyceraldehyde 3-phosphate dehydrogenase) catalyzes the reduction of 1,3-BPG by NADPH to produce glyceraldehyde 3-phosphate (G3P) and NADP + .
  • Step 3 (Regeneration): Every turn of the Calvin cycle produces two molecules of G3P. Therefore, six turns of the cycle produce twelve molecules of G3P. Two of these G3P molecules exit the cycle and are used to synthesize one molecule of glucose. Meanwhile, the other ten molecules of G3P remain in the cycle and are used to regenerate six RuBP molecules. The regeneration of RuBP requires ATP, but it allows the cycle to continue.

Calvin Cycle Diagram

Products of Photosynthesis

The major product of photosynthesis is glucose, a simple sugar with the molecular formula C 6 H 12 O 6 . Plants and other photosynthetic organisms use glucose for numerous functions, including those listed below.

  • Cellular Respiration: Glucose is broken down in order to produce ATP (which can be used to fuel other cellular activities) through a process known as cellular respiration.
  • Biosynthesis of Starch and Cellulose: Glucose molecules can be linked together to form complex carbohydrates such as starch and cellulose. Plants and other organisms use starch to store energy and cellulose to support/rigidify their cell walls.
  • Protein Synthesis: Glucose can be combined with nitrates (from the soil) to produce amino acids, which can then be used to build proteins.

In addition, oxygen is released into the atmosphere during the process of photosynthesis. Plants (along with many other organisms) use oxygen to carry out aerobic respiration.

Types of Photosynthesis

There are three main types of photosynthesis: C3, C4, and CAM (crassulacean acid metabolism). They differ in the way that they manage photorespiration, a wasteful process that occurs when the enzyme rubisco acts on oxygen instead of carbon dioxide. Photorespiration competes with the Calvin cycle and decreases the efficiency of photosynthesis (by wasting energy and using up fixed carbon).

C3 Photosynthesis

The majority of plants use C3 photosynthesis, a process in which no special features or adaptations are used to combat photorespiration. Hot, dry climates are not ideal for C3 plants (e.g., rice, wheat, and barley) because of the increased rate of photorespiration, which is due to the buildup of oxygen that occurs when plants close their stomata (leaf pores) in order to prevent water loss.

how to balance chemical equation of photosynthesis

C4 Photosynthesis

C4 photosynthesis reduces photorespiration by performing the initial carbon dioxide fixation and Calvin cycle in two different cell types. This process utilizes an additional enzyme known as phosphoenolpyruvate (PEP) carboxylase. PEP carboxylase does not react with oxygen (unlike rubisco) and is able to catalyze a reaction between carbon dioxide and PEP in the mesophyll cells to produce the intermediate four-carbon compound oxaloacetate. Oxaloacetate is then reduced to malate and transported to bundle sheath cells. In these cells, malate undergoes decarboxylation, forming a special compartment for the concentration of carbon dioxide around rubisco.

As a result, the Calvin cycle can proceed as normal, and an opportunity for rubisco to bind to oxygen is prevented. C4 plants (e.g., maize and sugarcane) have a competitive advantage over C3 plants in hot, dry environments where the benefits of reduced photorespiration outweigh the additional energy costs associated with C4 photosynthesis.

C4 Plants (Maize)

CAM Photosynthesis

Crassulacean acid metabolism, also known as CAM photosynthesis, reduces photorespiration by performing the initial carbon dioxide fixation and Calvin cycle at separate times. CAM plants (e.g., cactus and pineapple) open their stomata at night, allowing carbon dioxide to enter the leaf. The carbon dioxide is converted to oxaloacetate by PEP carboxylase, the same enzyme used in C4 photosynthesis. Oxaloacetate is subsequently reduced to malate, which is stored as malic acid in vacuoles .

During the day (when light is readily available), CAM plants close their stomata and prepare for the Calvin cycle. Malate is transported into chloroplasts and broken down to release carbon dioxide, which is heavily concentrated around the enzyme rubisco. Similar to C4 photosynthesis, crassulacean acid metabolism is an energetically expensive process. However, it is quite useful for plants in hot, arid climates that need to minimize photorespiration and conserve water.

CAM Plants (Cacti)

Further Reading

  • What is Gibbs Free Energy?
  • Endothermic vs Exothermic Reactions
  • Catalysts & Activation Energy
  • Proteins and Amino Acids
  • Claisen Condensations

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

Photosynthesis Equation: What Is It? How Does It Work?

author image

General Education

banana-1551095_640

The word photosynthesis comes from two Greek words: photo, meaning “light”, and synthesis, meaning “put together.” Looking at that those two roots, we have a good idea of what happens during the chemical process of photosynthesis: plants put together water and carbon dioxide with light to create glucose and oxygen.

In this article, we’ll break down what photosynthesis is, why photosynthesis is important, and discuss the chemical equation for photosynthesis: what it is and what each part of it means.

What Is Photosynthesis?

Put simply, photosynthesis is how plants, algae, and certain types of bacteria harness energy from sunlight to create chemical energy for themselves to live.

There are two main types of photosynthesis: oxygenic photosynthesis and anoxygenic photosynthesis. Oxygenic photosynthesis is more common—that’s the type we see in plants and algae. Anoxygenic photosynthesis mainly occurs in bacteria.

In oxygenic photosynthesis, plants use light energy to combine carbon dioxide (CO2) and water (H2O). This chemical reaction produces carbohydrates for the plants to consume and oxygen, which is released back into the air.

Anoxygenic photosynthesis is very similar, but it doesn’t produce oxygen. We’ll be focusing on the more common type of photosynthesis, oxygenic photosynthesis, for the rest of this article.

Why Is Photosynthesis Important?

Photosynthesis is important for a few reasons:

First, it produces energy that plants need to live. The resulting carbohydrates provide plants with the energy to grow and live.

Second, photosynthesis helps take in the carbon dioxide produced by breathing organisms and convert that into oxygen, which is then reintroduced back into the atmosphere. Basically, with photosynthesis, plants are helping produce the oxygen that all living things need to breathe and survive.

leaf-318743_640

Photosynthesis Equation

Here is the chemical equation for photosynthesis:

6CO2 + 12H2O + Light Energy ------> C6H12O6 + 6O2 + 6H2O

Photosynthesis Formula Breakdown

Now that we know what the photosynthesis equation is, let’s break down each piece of the photosynthesis formula.

On the reactants side, we have:

6CO2 = Six molecules of carbon dioxide

12H2O = Twelve molecules of water

Light Energy = Light from the sun

On the products side, we have:

C6H12O6 = glucose

6O2 = six molecules of oxygen

6H2O = six molecules of water

As we learned earlier, the glucose will be used by the plant as energy. The oxygen and water will be released back into the atmosphere to help other living things.

What You Need to Know About the Photosynthesis Formula

During photosynthesis, plants use light energy to combine carbon dioxide and water to produce glucose, oxygen, and water.

Photosynthesis is important because it provides plants with the energy they need to survive. It also releases needed oxygen and water back into the atmosphere.

What's Next?

Are you studying clouds in your science class? Get help identifying the different types of clouds with our expert guide.

Working on a research paper but aren't sure where to start? Then check out our guide, where we've collected tons of high-quality research topics you can use for free.

Need help with English class —specifically with identifying literary devices in texts you read? Then you'll definitely want to take a look at our comprehensive explanation of the most important literary devices and how they're used.

Looking for help studying for your AP exam? Our one-on-one online AP tutoring services can help you prepare for your AP exams. Get matched with a top tutor who got a high score on the exam you're studying for!

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Hayley Milliman is a former teacher turned writer who blogs about education, history, and technology. When she was a teacher, Hayley's students regularly scored in the 99th percentile thanks to her passion for making topics digestible and accessible. In addition to her work for PrepScholar, Hayley is the author of Museum Hack's Guide to History's Fiercest Females.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

  • COVID-19 Tracker
  • Biochemistry
  • Anatomy & Physiology
  • Microbiology
  • Neuroscience
  • Animal Kingdom
  • NGSS High School
  • Latest News
  • Editors’ Picks
  • Weekly Digest
  • Quotes about Biology

Biology Dictionary

Photosynthesis

BD Editors

Reviewed by: BD Editors

Photosynthesis Definition

Photosynthesis is the biochemical pathway which converts the energy of light into the bonds of glucose molecules. The process of photosynthesis occurs in two steps. In the first step, energy from light is stored in the bonds of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH). These two energy-storing cofactors are then used in the second step of photosynthesis to produce organic molecules by combining carbon molecules derived from carbon dioxide (CO 2 ). The second step of photosynthesis is known as the Calvin Cycle. These organic molecules can then be used by mitochondria to produce ATP, or they can be combined to form glucose, sucrose, and other carbohydrates. The chemical equation for the entire process can be seen below.

Photosynthesis Equation

Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex molecules. While a 3-carbon molecule is the direct result of photosynthesis, glucose is simply two of these molecules combined and is often represented as the direct result of photosynthesis due to glucose being a foundational molecule in many cellular systems. You will also notice that 6 gaseous oxygen molecules are produced, as a by-produce. The plant can use this oxygen in its mitochondria during oxidative phosphorylation . While some of the oxygen is used for this purpose, a large portion is expelled into the atmosphere and allows us to breathe and undergo our own oxidative phosphorylation, on sugar molecules derived from plants. You will also notice that this equation shows water on both sides. That is because 12 water molecules are split during the light reactions, while 6 new molecules are produced during and after the Calvin cycle. While this is the general equation for the entire process, there are many individual reactions which contribute to this pathway.

Stages of Photosynthesis

The light reactions.

The light reactions happen in the thylakoid membranes of the chloroplasts of plant cells. The thylakoids have densely packed protein and enzyme clusters known as photosystems . There are two of these systems, which work in conjunction with each other to remove electrons and hydrogens from water and transfer them to the cofactors ADP and NADP + . These photosystems were named in the order of which they were discovered, which is opposite of how electrons flow through them. As seen in the image below, electrons excited by light energy flow first through photosystem II (PSII), and then through photosystem I (PSI) as they create NADPH. ATP is created by the protein ATP synthase , which uses the build-up of hydrogen atoms to drive the addition of phosphate groups to ADP.

Thylakoid membrane

The entire system works as follows. A photosystem is comprised of various proteins that surround and connect a series of pigment molecules . Pigments are molecules that absorb various photons, allowing their electrons to become excited. Chlorophyll a is the main pigment used in these systems, and collects the final energy transfer before releasing an electron. Photosystem II starts this process of electrons by using the light energy to split a water molecule, which releases the hydrogen while siphoning off the electrons. The electrons are then passed through plastoquinone, an enzyme complex that releases more hydrogens into the thylakoid space . The electrons then flow through a cytochrome complex and plastocyanin to reach photosystem I. These three complexes form an electron transport chain , much like the one seen in mitochondria. Photosystem I then uses these electrons to drive the reduction of NADP + to NADPH. The additional ATP made during the light reactions comes from ATP synthase, which uses the large gradient of hydrogen molecules to drive the formation of ATP.

The Calvin Cycle

With its electron carriers NADPH and ATP all loaded up with electrons, the plant is now ready to create storable energy. This happens during the Calvin Cycle , which is very similar to the citric acid cycle seen in mitochondria. However, the citric acid cycle creates ATP other electron carriers from 3-carbon molecules, while the Calvin cycle produces these products with the use of NADPH and ATP. The cycle has 3 phases, as seen in the graphic below.

Calvin cycle

During the first phase, a carbon is added to a 5-carbon sugar, creating an unstable 6-carbon sugar. In phase two, this sugar is reduced into two stable 3-carbon sugar molecules. Some of these molecules can be used in other metabolic pathways, and are exported. The rest remain to continue cycling through the Calvin cycle. During the third phase, the five-carbon sugar is regenerated to start the process over again. The Calvin cycle occurs in the stroma of a chloroplast. While not considered part of the Calvin cycle, these products can be used to create a variety of sugars and structural molecules.

Products of Photosynthesis

The direct products of the light reactions and the Calvin cycle are 3-phosphoglycerate and G3P, two different forms of a 3-carbon sugar molecule. Two of these molecules combined equals one glucose molecule, the product seen in the photosynthesis equation. While this is the main food source for plants and animals, these 3-carbon skeletons can be combined into many different forms. A structural form worth note is cellulose , and extremely strong fibrous material made essentially of strings of glucose. Besides sugars and sugar-based molecules, oxygen is the other main product of photosynthesis. Oxygen created from photosynthesis fuels every respiring organism on the planet.

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., . . . Matsudaira, P. (2008). Molecular Cell Biology 6th. ed . New York: W.H. Freeman and Company. Nelson, D. L., & Cox, M. M. (2008). Principles of Biochemistry . New York: W.H. Freeman and Company.

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, adenosine triphosphate (atp), digestive system, mitochondria.

Basic Biology

  • $ 0.00 0 items

Photosynthesis

Photosynthesis is arguably the most important set of chemical reactions on Earth. It is a process that occurs in plants and some microorganisms and results in the production of sugars. Plants produce their own food through the process of photosynthesis.

The products of photosynthesis are a source of energy for plants, animals, and almost all other living things. Photosynthesis also leads to an increase in the concentration of oxygen in the atmosphere. Without photosynthesis, animals would never have evolved because the oxygen we need to breathe and survive would not be present in the air or oceans.

Photosynthesis is a set of chemical reactions that uses energy from the sun and carbon dioxide to produce sugar and oxygen. The sugar provides plants with energy to grow, and the plant material provides food for grazing animals.

When plants die their leaves , stems and roots are food sources for decomposers such as fungi and bacteria . Photosynthesis, therefore, supports entire ecosystems by providing energy which cascades down from plants and algae to animals, fungi and other microorganisms.

Overall chemistry of photosynthesis

Photosynthesis is a complex series of reactions. At the simplest look, photosynthesis consists of carbon dioxide (CO₂) and water (H₂O) being converted into glucose (C₆H₁₂O₆) and oxygen (O₂) with help from the sun’s energy. The overall general equation looks like this:

carbon dioxide + water + light energy → glucose + oxygen

More correctly balanced and in the chemical formula, the equation looks like this:

6 CO₂ + 6 H₂O + energy → C₆H₁₂O₆ + 6 O₂

This shows that it takes six molecules of carbon dioxide and water to produce one molecule of glucose and six molecules of oxygen.

In reality, photosynthesis is far more complicated than this simple reaction. It is a complex series of reactions that are not yet completely understood. These reactions occur within special organelles of a plant cell called ‘chloroplasts’.

Chloroplasts

A chloroplast is a small cellular structure found inside of plant cells and the cells of other photosynthesizing organisms. It is inside chloroplasts where photosynthesis occurs.

A chloroplast contains stacks of disk-like structures called ‘thylakoids’ which are surrounded by a fluid called ‘stroma’. Different parts of the photosynthesis process occur in the thylakoids and stroma of chloroplasts.

The thylakoid disks contain a pigment called ‘chlorophyll a’ , the magic ingredient that has made photosynthesis so successful. The process of photosynthesis begins with chlorophyll a in the thylakoids and is completed in the stroma surrounding the thylakoids.

Chlorophyll a

Chlorophyll a is a molecule found inside the chloroplasts of photosynthesizing cells. It is able to use light energy from the sun to split a molecule of water and begin the process of photosynthesis.

Splitting a water molecule releases an electron with the energy to start turning CO₂ into glucose. Splitting the molecule of water also releases oxygen which is how photosynthesis produces oxygen.

H₂O + light energy → H⁺ + O₂ + electron

Chlorophyll a is one of the few molecules that has the ability to use light energy in this way. Other molecules, such as chlorophyll b and carotenoids, can perform the same function but are not as efficient as chlorophyll a .

A chlorophyll a molecule has a specific shape that allows the molecule to absorb a range of different light waves. It does not, however, absorb green light waves but instead reflects the green light. This makes chlorophyll a appear green and is the reason why plants are mostly green.

The process of photosynthesis can be split into two parts: the light reactions and the Calvin cycle. Chlorophyll a is involved in the light reactions of photosynthesis.

Light reactions

The light reactions are a set of reactions that convert solar energy into cellular energy. They are performed in the thylakoids of chloroplasts and are driven by chlorophyll a .

The general purpose of the light reactions is to use the sun’s energy to produce molecules called ‘ATP’ and ‘NADPH’. These two molecules can then be used to fix CO₂ into sugar in the Calvin cycle.

The light reactions can be split into two stages that work together called ‘photosystem I’ and ‘photosystem II’. Both photosystems contain chlorophyll a molecules that absorb the energy of light particles called ‘photons’. The energy that is absorbed is used to split water molecules and excite electrons.

Photosystem II is the site where water is split into hydrogen ions (H⁺ or protons), an electron and oxygen. The electrons are energized by chlorophyll molecules within photosystem II and channeled to a reaction center chlorophyll molecule.

Photosynthesis

From the reaction center, the excited electron is passed down what is called an ‘electron transport chain’. As the electron moves along the electron transport chain, the energy of the electron is used to pump H⁺ from the stroma into the thylakoid.

The pumping of H⁺ results in a buildup of H⁺ in the thylakoid. Naturally, H⁺ wants to have a balanced concentration on both the inside and the outside of the thylakoid.

The H⁺ is able to move back out to the stroma via an enzyme called ‘ATP synthase’. As the H⁺ moves through ATP synthase it drives the enzyme to produce a molecule called ATP from ADP. ATP is then available to be used in the Calvin cycle.

As the electron moves down the electron transport chain from photosystem II it loses its energy. At the end of the electron transport chain, it is passed into photosystem I where it is re-energized by photons.

The electron then moves along the electron transport chain of photosystem I and its energy is used to reduce NADP⁺ to NADPH. The NADPH molecule is used along with ATP to fix CO₂ into sugar in the Calvin cycle.

The production of ATP and NADPH is a successful conversion of solar energy into cellular energy. These molecules, however, have a short lifespan and are typically used very quickly after being formed. The remaining steps in the photosynthesis process serve the purpose of converting the short-lived cellular energy into long-lived chemical energy in the form of sugar.

Calvin cycle

The Calvin cycle, also known as the dark reactions or light independent reactions, is where CO₂ is first encountered in photosynthesis. The Calvin cycle is a cycle of reactions that occur in the stroma of chloroplasts. The overall outcome from the Calvin cycle is that CO₂ from the atmosphere is used to make sugar, fatty acids or alcohol.

The Calvin cycle consists of three stages: carbon fixation, reduction, and regeneration of a molecule called ‘RuBP’.

In the carbon fixation stage, CO₂ is added to the five carbon molecule called RuBP (ribulose 1,5-bisphophate). This addition makes a six carbon molecule. The six carbon molecule is split into two smaller molecules with three carbons each called ‘PGA’ (3-phosphoglycerate).

The reduction phase of the Calvin cycle reduces PGA to a second three carbon molecule called ‘G3P’ (glyceralderhyde-3-phosphate). Molecules produced in the light reactions, ATP and NADPH, provide the energy for this reaction to occur.

From every three molecules of CO₂ that are fixed, six molecules of G3P are created. Five of these molecules remain in the Calvin cycle and are used in the final stage of the Calvin cycle, the regeneration of RuBP. Five molecules of G3P are able to create three molecules of RuBP with some extra help from the ATP created in the light reactions.

The remaining one molecule of G3P is free to exit the Calvin cycle. It takes the fixation of six CO₂ molecules to create two spare molecules of G3P. These two molecules of G3P are free to be used to make glucose, fatty acids or an alcohol known as ‘glycerol’.

Overall, the reactions of the Calvin cycle takes CO₂ from the atmosphere and creates a three carbon molecule called G3P . G3P is used to regenerate RuBP and produce sugars, fatty acids or alcohol. Cellular energy in the form of ATP and NADPH provide the energy to make these reactions occur.

Primary producers

Any organism that can use the sun’s energy to produce chemical energy can be referred to as a primary producer. These organisms produce the chemical energy that almost all other life depends on. Instead of sourcing food from other organisms, primary producers create their own food using the sun’s energy and CO₂.

Primary producers are at the bottom of the food chain. On land , plants are the main primary producers and they supply food for animals and other organisms.

In the ocean and freshwater environments, microscopic organisms called ‘phytoplankton’ are the main primary producers. Phytoplankton are at the bottom of the food chain in these aquatic ecosystems.

Benefits of photosynthesis

In theory, it would be possible for plants to use the sun’s energy to directly produce cellular energy. Instead, plants produce sugars which then need to be broken down via respiration before a plant cell can access the energy that has been absorbed.

The benefit to this roundabout way of utilizing the sun’s energy is that sugars can be stored for later use. Cellular energy has a very short lifespan and is typically used very shortly after becoming available. Using photosynthesis, plants are able to build up stores of energy when the sun is present to be used when the sun is absent i.e. nighttime or winter.

In good conditions, plants produce more sugars than they need to survive and are able to grow. The growth of plant tissue supports the life of animals, bacteria, fungi and protists .

These organisms will either directly or indirectly be supported by the energy supplies of photosynthesizing organisms. Many animals, known as grazers, feed on plant material. Bacteria live in and on plants. Many species of bacteria and fungi are supported by breaking down dead plant material in a process called ‘decomposition’.

Learn through playing – a photosynthesis game produced by Bioman Biology

Last edited: 12 October 2016

Basic Biology: An Introduction

eBook - $2.95

Also available from Amazon , Book Depository and all other good bookstores.

What does DNA stand for?

Know the answer? Why not test yourself with our quick 20 question quiz

MRS GREN

  • Anatomy & Physiology
  • Astrophysics
  • Earth Science
  • Environmental Science
  • Organic Chemistry
  • Precalculus
  • Trigonometry
  • English Grammar
  • U.S. History
  • World History

... and beyond

  • Socratic Meta
  • Featured Answers

Search icon

What is the balanced equation for photosynthesis?

how to balance chemical equation of photosynthesis

Related questions

  • What are the types of stoichiometry examples, with examples?
  • Question #e2e82
  • What mass of carbon dioxide can 1.00 kg of lithium oxide absorb?
  • What is an example of a stoichiometry practice problem?
  • What is an example of a balanced equation practice problem?
  • How can I balance a chemical equation?
  • How can stoichiometry be used?
  • How do stoichiometric ratios relate reactants to products?
  • How does gas stoichiometry differ from stoichiometry of solids and liquids?
  • How does stoichiometry relate to the law of conservation?

Impact of this question

how to balance chemical equation of photosynthesis

More From Forbes

The photosynthesis equation made easy.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

The balanced equation for photosynthesis is:

6CO 2   + 6H 2 O + Sunlight ———> C 6 H 12 O 6   + 6O 2

The balanced photosynthesis equation

That may be all you needed, but just in case, let's give a bit more detail.

The photosynthesis equation in words is:

Carbon Dioxide + Water + Sunlight ———> Glucose (simple sugar) + Oxygen

Here's a breakdown of that equation

  • The reactants of photosynthesis are everything to the left of the "———>" arrow, thus the reactants of photosynthesis are carbon dioxide, water, and sunlight energy.
  • The products of photosynthesis are everything to the right of the "———>" arrow, thus the products of photosynthesis are glucose and oxygen.

Quick Studying Tip:

If you memorize the photosynthesis equation, you've also memorized the cellular respiration equation. That's because respiration is the exact opposite as photosynthesis with one small difference. Instead of sunlight energy input, respiration outputs usable energy.

How To Buy Cryptocurrency

Best cryptocurrencies to buy now, best cryptocurrency exchange.

Respiration equation: C 6 H 12 O 6   + 6O 2 ———> 6CO 2   + 6H 2 O + ATP (energy)

Trevor Nace

  • Editorial Standards
  • Reprints & Permissions
  • Skip to primary navigation
  • Skip to main content
  • Skip to footer

Biology Wise

Biology Wise

Balanced Photosynthesis Equation

The balanced equation for photosynthesis helps us to understand the process of glucose synthesis by plants in a simplified form. Read this write-up to gain more information about this subject.

Like it? Share it!

Balanced Photosynthesis Equation

The presence of chlorophyll and the ability to undergo photosynthesis are some attributes that distinguish plants from animals. Photosynthesis is defined as the chemical process, wherein carbon dioxide in the presence of water and radiant energy gets converted to glucose (chemical energy), giving out oxygen as byproducts.

What is the Photosynthesis Equation?

Green plants along with algae and some bacteria are grouped under photoautotrophs, meaning they can make their own food in the presence of light by photosynthesis. This conversion of light energy into chemical energy occurs in the pigment containing plastids called chloroplasts.

The process that takes place in the chloroplasts for glucose production is put forth in the equation for photosynthesis. In the equation, the combining reactants and resulting products are expressed along with their respective numbers of molecules.

Balanced Photosynthesis Chemical Equation

Carbon dioxide, water, and radiant energy is present on the reactant side, whereas on the other side are the products of photosynthesis process, i.e., glucose and oxygen. Putting this in a simplified formula, the following equation represents this process.

Step 1 : CO 2 + H 2 O + Light energy → C 6 H 12 O 6 + O 2

A chemical reaction is said to be balanced, when both sides of the photosynthesis equation (reactants and products) have the same number of molecules for each of the elements.

Needless to mention, the above formula for photosynthesis is not balanced, as there is only one atom of carbon in the reactant side, while there are 6 carbon atoms in the product side. As you try to balance the above equation, put 6 in front of the carbon dioxide molecule, after which the resulting equation will be:

Step 2 : 6 CO 2 + H 2 O + Light energy → C 6 H 12 O 6 + O 2

Now, the number of carbon atoms is 6 in both sides. The remaining atoms to be balanced are hydrogen and oxygen. Hydrogen has only 2 atoms on the reactant side, and 12 atoms on the product side.

Thus, in order to balance the number of hydrogen atoms, place 6 in front of the water molecule in the reactant side. With this step, the partly balanced photosynthesis formula is represented by:

Step 3 : 6 CO 2 + 6 H 2 O + Light energy → C 6 H 12 O 6 + O 2

With this step, the numbers of carbon and hydrogen atoms are balanced on both sides of the photosynthesis equation. Thus, the final step is to balance the number of oxygen atoms.

Carefully calculate the number of oxygen atoms on the reactant side; i.e., 12 atoms from carbon dioxide (6 CO 2 ) and 6 atoms from water (6 H 2 O) form a total of 18 atoms. In the product side, there are 6 atoms from glucose (C 6 H 12 O 6 ) and 2 atoms from oxygen molecule (O 2 ) forming a total of 8 atoms.

And to balance the deficit atoms on the product side, put 6 in front of the oxygen molecule:

Step 4 : 6 CO 2 + 6 H 2 O + Light energy → C 6 H 12 O 6 + 6 O 2

So, this is how you can balance the photosynthesis equation in a step-by-step manner. It shows that six molecules each of carbon dioxide and water combine together in the presence of light energy, so as to form one glucose molecule and six oxygen molecules.

Get Updates Right to Your Inbox

Privacy overview.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions

Development of the idea

Overall reaction of photosynthesis.

  • Basic products of photosynthesis
  • Evolution of the process
  • Light intensity and temperature
  • Carbon dioxide
  • Internal factors
  • Energy efficiency of photosynthesis
  • Structural features
  • Light absorption and energy transfer
  • The pathway of electrons
  • Evidence of two light reactions
  • Photosystems I and II
  • Quantum requirements
  • The process of photosynthesis: the conversion of light energy to ATP
  • Elucidation of the carbon pathway
  • Carboxylation
  • Isomerization/condensation/dismutation
  • Phosphorylation
  • Regulation of the cycle
  • Products of carbon reduction
  • Photorespiration
  • Carbon fixation in C 4 plants
  • Carbon fixation via crassulacean acid metabolism (CAM)
  • Differences in carbon fixation pathways
  • The molecular biology of photosynthesis

Photosynthesis

Why is photosynthesis important?

What is the basic formula for photosynthesis, which organisms can photosynthesize.

Sunlight shining on leaves. Photosynthesis

photosynthesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Khan Academy - Photosynthesis
  • Biology LibreTexts - Photosynthesis
  • University of Florida - Institute of Food and Agricultural Sciences - Photosynthesis
  • Milne Library - Inanimate Life - Photosynthesis
  • National Center for Biotechnology Information - Chloroplasts and Photosynthesis
  • Roger Williams University Pressbooks - Introduction to Molecular and Cell Biology - Photosynthesis
  • BCcampus Open Publishing - Concepts of Biology – 1st Canadian Edition - Overview of Photosynthesis
  • photosynthesis - Children's Encyclopedia (Ages 8-11)
  • photosynthesis - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Photosynthesis

Photosynthesis is critical for the existence of the vast majority of life on Earth. It is the way in which virtually all energy in the biosphere becomes available to living things. As primary producers, photosynthetic organisms form the base of Earth’s food webs and are consumed directly or indirectly by all higher life-forms. Additionally, almost all the oxygen in the atmosphere is due to the process of photosynthesis. If photosynthesis ceased, there would soon be little food or other organic matter on Earth, most organisms would disappear, and Earth’s atmosphere would eventually become nearly devoid of gaseous oxygen.

The process of photosynthesis is commonly written as: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 . This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products. The sugar is used by the organism, and the oxygen is released as a by-product.

The ability to photosynthesize is found in both eukaryotic and prokaryotic organisms. The most well-known examples are plants, as all but a very few parasitic or mycoheterotrophic species contain chlorophyll and produce their own food. Algae are the other dominant group of eukaryotic photosynthetic organisms. All algae, which include massive kelps and microscopic diatoms , are important primary producers.  Cyanobacteria and certain sulfur bacteria are photosynthetic prokaryotes, in whom photosynthesis evolved. No animals are thought to be independently capable of photosynthesis, though the emerald green sea slug can temporarily incorporate algae chloroplasts in its body for food production.

Recent News

photosynthesis , the process by which green plants and certain other organisms transform light energy into chemical energy . During photosynthesis in green plants, light energy is captured and used to convert water , carbon dioxide , and minerals into oxygen and energy-rich organic compounds .

It would be impossible to overestimate the importance of photosynthesis in the maintenance of life on Earth . If photosynthesis ceased, there would soon be little food or other organic matter on Earth. Most organisms would disappear, and in time Earth’s atmosphere would become nearly devoid of gaseous oxygen. The only organisms able to exist under such conditions would be the chemosynthetic bacteria , which can utilize the chemical energy of certain inorganic compounds and thus are not dependent on the conversion of light energy.

How are plant cells different from animal cells?

Energy produced by photosynthesis carried out by plants millions of years ago is responsible for the fossil fuels (i.e., coal , oil , and gas ) that power industrial society . In past ages, green plants and small organisms that fed on plants increased faster than they were consumed, and their remains were deposited in Earth’s crust by sedimentation and other geological processes. There, protected from oxidation , these organic remains were slowly converted to fossil fuels. These fuels not only provide much of the energy used in factories, homes, and transportation but also serve as the raw material for plastics and other synthetic products. Unfortunately, modern civilization is using up in a few centuries the excess of photosynthetic production accumulated over millions of years. Consequently, the carbon dioxide that has been removed from the air to make carbohydrates in photosynthesis over millions of years is being returned at an incredibly rapid rate. The carbon dioxide concentration in Earth’s atmosphere is rising the fastest it ever has in Earth’s history, and this phenomenon is expected to have major implications on Earth’s climate .

Requirements for food, materials, and energy in a world where human population is rapidly growing have created a need to increase both the amount of photosynthesis and the efficiency of converting photosynthetic output into products useful to people. One response to those needs—the so-called Green Revolution , begun in the mid-20th century—achieved enormous improvements in agricultural yield through the use of chemical fertilizers , pest and plant- disease control, plant breeding , and mechanized tilling, harvesting, and crop processing. This effort limited severe famines to a few areas of the world despite rapid population growth , but it did not eliminate widespread malnutrition . Moreover, beginning in the early 1990s, the rate at which yields of major crops increased began to decline. This was especially true for rice in Asia. Rising costs associated with sustaining high rates of agricultural production, which required ever-increasing inputs of fertilizers and pesticides and constant development of new plant varieties, also became problematic for farmers in many countries.

Photosynthesis diagram showing how water, light, and carbon dioxide are absorbed by a plant and that oxygen and sugars are produced. Also show a person to illustrate the oxygen/carbon dioxide cycle between plants and animals.

A second agricultural revolution , based on plant genetic engineering , was forecast to lead to increases in plant productivity and thereby partially alleviate malnutrition. Since the 1970s, molecular biologists have possessed the means to alter a plant’s genetic material (deoxyribonucleic acid, or DNA ) with the aim of achieving improvements in disease and drought resistance, product yield and quality, frost hardiness, and other desirable properties. However, such traits are inherently complex, and the process of making changes to crop plants through genetic engineering has turned out to be more complicated than anticipated. In the future such genetic engineering may result in improvements in the process of photosynthesis, but by the first decades of the 21st century, it had yet to demonstrate that it could dramatically increase crop yields.

Another intriguing area in the study of photosynthesis has been the discovery that certain animals are able to convert light energy into chemical energy. The emerald green sea slug ( Elysia chlorotica ), for example, acquires genes and chloroplasts from Vaucheria litorea , an alga it consumes, giving it a limited ability to produce chlorophyll . When enough chloroplasts are assimilated , the slug may forgo the ingestion of food. The pea aphid ( Acyrthosiphon pisum ) can harness light to manufacture the energy-rich compound adenosine triphosphate (ATP); this ability has been linked to the aphid’s manufacture of carotenoid pigments.

General characteristics

The study of photosynthesis began in 1771 with observations made by the English clergyman and scientist Joseph Priestley . Priestley had burned a candle in a closed container until the air within the container could no longer support combustion . He then placed a sprig of mint plant in the container and discovered that after several days the mint had produced some substance (later recognized as oxygen) that enabled the confined air to again support combustion. In 1779 the Dutch physician Jan Ingenhousz expanded upon Priestley’s work, showing that the plant had to be exposed to light if the combustible substance (i.e., oxygen) was to be restored. He also demonstrated that this process required the presence of the green tissues of the plant.

In 1782 it was demonstrated that the combustion-supporting gas (oxygen) was formed at the expense of another gas, or “fixed air,” which had been identified the year before as carbon dioxide. Gas-exchange experiments in 1804 showed that the gain in weight of a plant grown in a carefully weighed pot resulted from the uptake of carbon, which came entirely from absorbed carbon dioxide, and water taken up by plant roots; the balance is oxygen, released back to the atmosphere. Almost half a century passed before the concept of chemical energy had developed sufficiently to permit the discovery (in 1845) that light energy from the sun is stored as chemical energy in products formed during photosynthesis.

Chemical equation.

This equation is merely a summary statement, for the process of photosynthesis actually involves numerous reactions catalyzed by enzymes (organic catalysts ). These reactions occur in two stages: the “light” stage, consisting of photochemical (i.e., light-capturing) reactions; and the “dark” stage, comprising chemical reactions controlled by enzymes . During the first stage, the energy of light is absorbed and used to drive a series of electron transfers, resulting in the synthesis of ATP and the electron-donor-reduced nicotine adenine dinucleotide phosphate (NADPH). During the dark stage, the ATP and NADPH formed in the light-capturing reactions are used to reduce carbon dioxide to organic carbon compounds. This assimilation of inorganic carbon into organic compounds is called carbon fixation.

Chemical equation.

Van Niel’s proposal was important because the popular (but incorrect) theory had been that oxygen was removed from carbon dioxide (rather than hydrogen from water, releasing oxygen) and that carbon then combined with water to form carbohydrate (rather than the hydrogen from water combining with CO 2 to form CH 2 O).

By 1940 chemists were using heavy isotopes to follow the reactions of photosynthesis. Water marked with an isotope of oxygen ( 18 O) was used in early experiments. Plants that photosynthesized in the presence of water containing H 2 18 O produced oxygen gas containing 18 O; those that photosynthesized in the presence of normal water produced normal oxygen gas. These results provided definitive support for van Niel’s theory that the oxygen gas produced during photosynthesis is derived from water.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

From carbon dioxide to oxygen and back - Class 11

Course: from carbon dioxide to oxygen and back - class 11   >   unit 1, photosynthesis.

  • Breaking down photosynthesis stages
  • Intro to photosynthesis
  • Oxidation and reduction review from biological point-of-view
  • Photosynthesis evolution
  • Photosynthesis review
  • Overview of photosynthesis

how to balance chemical equation of photosynthesis

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

Video transcript

Photosynthesis Equations ( Edexcel IGCSE Biology )

Revision note.

Lára

Biology Lead

Photosynthesis Equation

  • Photosynthesis can be summarised in a word equation as shown below:

Photosynthesis word equation, IGCSE & GCSE Biology revision notes

Word equation for photosynthesis

How plants get the materials they need, IGCSE & GCSE Biology revision notes

Where do the reactants come from and where do the products go?

  • Six carbon dioxide molecules combine with six water molecules to make one glucose molecule and six oxygen molecules

Balanced chemical equation for photosynthesis, IGCSE & GCSE Biology revision notes

The balanced chemical equation for photosynthesis

The photosynthesis equation is the exact reverse of the aerobic respiration equation so if you have learned one you also know the other one! You will usually get more marks for providing the balanced chemical equation than the word equation.

You've read 0 of your 10 free revision notes

Get unlimited access.

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000 + Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Author: Lára

Lára graduated from Oxford University in Biological Sciences and has now been a science tutor working in the UK for several years. Lára has a particular interest in the area of infectious disease and epidemiology, and enjoys creating original educational materials that develop confidence and facilitate learning.

COMMENTS

  1. The Balanced Chemical Equation for Photosynthesis

    What Are the Products of Photosynthesis? Here is the balanced equation for the overall reaction: 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2. In words, the equation may be stated as: Six carbon dioxide molecules and six water molecules react to produce one glucose molecule and six oxygen molecules .

  2. Photosynthesis Formula -The Balanced Chemical Equation for Photosynthesis

    Here are a few solved problems on Photosynthesis. Problem 1: Write the complete balanced reaction for Photosynthesis both in symbol and word equation. Carbon dioxide + Water → Glucose + oxygen. Photosynthesis process can be represented by a chemical equation. The overall balanced equation is 6CO2 + 6H2O ------> C6H12O6 + 6O2.

  3. Photosynthesis

    Chemical Equation for Photosynthesis. The overall balanced equation for photosynthesis is commonly written as 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 (shown below). In other words, six molecules of carbon dioxide and six molecules of water react in the presence of sunlight to produce one molecule of glucose (a six-carbon sugar) and six ...

  4. Photosynthesis Equation: What Is It? How Does It Work?

    Photosynthesis is important for a few reasons: First, it produces energy that plants need to live. The resulting carbohydrates provide plants with the energy to grow and live. Second, photosynthesis helps take in the carbon dioxide produced by breathing organisms and convert that into oxygen, which is then reintroduced back into the atmosphere.

  5. Balancing chemical equations: Photosynthesis

    Review balancing equations by watching an example involving photosynthesis.

  6. Photosynthesis

    The chemical equation for the entire process can be seen below. Photosynthesis Equation. 6 CO 2 + 6 H 2 O + Light -> C 6 H 12 O 6 + 6 O 2 + 6 H 2 O. Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex ...

  7. Balancing the Chemical Equation for Photosynthesis

    We solve an underdetermined homogeneous system of linear equations to balance the chemical reaction for photosynthesis. The solution to the system is require...

  8. Photosynthesis

    More correctly balanced and in the chemical formula, the equation looks like this: 6 CO₂ + 6 H₂O + energy → C₆H₁₂O₆ + 6 O₂. This shows that it takes six molecules of carbon dioxide and water to produce one molecule of glucose and six molecules of oxygen. In reality, photosynthesis is far more complicated than this simple reaction.

  9. Balanced Chemical Equation for Photosynthesis

    Stephanie taught high school science and math and has a Master's Degree in Secondary Education. Photosynthesis has a relatively simple balanced chemical equation. Take a look at an introduction to ...

  10. What is the balanced equation for photosynthesis?

    Photosynthesis is the combining of Carbon Dioxide and Water to make Glucose and Oxygen. The equation is: 12H 2O+ 6CO2 → 6H 2O +C6H 12O6 + 6O2. This reaction must occur in the presence of sunlight because light energy is required. The equation can also be written out in words as: In the presence of sunlight, six moles of carbon dioxide and six ...

  11. The Photosynthesis Equation Made Easy

    The balanced equation for photosynthesis is: 6CO 2 + 6H 2 O + Sunlight ———> C 6 H 12 O 6 + 6O 2. The balanced photosynthesis equation. That may be all you needed, but just in case, let's ...

  12. Balanced Photosynthesis Equation

    Balanced Photosynthesis Chemical Equation. Carbon dioxide, water, and radiant energy is present on the reactant side, whereas on the other side are the products of photosynthesis process, i.e., glucose and oxygen. Putting this in a simplified formula, the following equation represents this process. Step 1: CO2 + H2O + Light energy → C6H12O6 + O2.

  13. Intro to photosynthesis (article)

    Photosynthesis is the process in which light energy is converted to chemical energy in the form of sugars. In a process driven by light energy, glucose molecules (or other sugars) are constructed from water and carbon dioxide, and oxygen is released as a byproduct. The glucose molecules provide organisms with two crucial resources: energy and ...

  14. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2 ), hydrogen ions (H ...

  15. Photosynthesis Definition, Process & Equation

    The photosynthesis equation is 6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂. In this equation, each grouping of letters and numbers is a chemical formula for a molecule. ... CO₂ is the chemical ...

  16. Photosynthesis Chemical Equation: Extended

    Balanced chemical equation for photosynthesis. The light energy is converted into chemical energy in the bonds holding the atoms in the glucose molecules together; Exam Tip. The photosynthesis equation is the exact reverse of the aerobic respiration equation so if you have learned one you also know the other one!

  17. Photosynthesis (video)

    Photosynthesis involves two stages: the light-dependent reactions, which require sunlight and water to produce oxygen, ATP, and NADPH, and the light-independent reactions (or "dark reactions"), which use the products of the light-dependent reactions along with carbon dioxide to produce carbohydrates. Created by Sal Khan.

  18. Photosynthesis Equations

    The balanced chemical equation for photosynthesis. Exam Tip. The photosynthesis equation is the exact reverse of the aerobic respiration equation so if you have learned one you also know the other one! You will usually get more marks for providing the balanced chemical equation than the word equation.