Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

Earn your MBA and SM in engineering with this transformative two-year program.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

Apply now and work for two to five years. We'll save you a seat in our MBA class when you're ready to come back to campus for your degree.

Executive Programs

The 20-month program teaches the science of management to mid-career leaders who want to move from success to significance.

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

New research examines ways the generative AI marketplace might evolve

4 developmental tasks you — and everyone else — will face in retirement

This finance exec is a fan of nonlinear career paths

Credit: Mimi Phan

Ideas Made to Matter

Design thinking, explained

Rebecca Linke

Sep 14, 2017

What is design thinking?

Design thinking is an innovative problem-solving process rooted in a set of skills.The approach has been around for decades, but it only started gaining traction outside of the design community after the 2008 Harvard Business Review article [subscription required] titled “Design Thinking” by Tim Brown, CEO and president of design company IDEO.

Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb .

At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second, explore a wide range of possible solutions; third, iterate extensively through prototyping and testing; and finally, implement through the customary deployment mechanisms. 

The skills associated with these steps help people apply creativity to effectively solve real-world problems better than they otherwise would. They can be readily learned, but take effort. For instance, when trying to understand a problem, setting aside your own preconceptions is vital, but it’s hard.

Creative brainstorming is necessary for developing possible solutions, but many people don’t do it particularly well. And throughout the process it is critical to engage in modeling, analysis, prototyping, and testing, and to really learn from these many iterations.

Once you master the skills central to the design thinking approach, they can be applied to solve problems in daily life and any industry.

Here’s what you need to know to get started.

Infographic of the design thinking process

Understand the problem 

The first step in design thinking is to understand the problem you are trying to solve before searching for solutions. Sometimes, the problem you need to address is not the one you originally set out to tackle.

“Most people don’t make much of an effort to explore the problem space before exploring the solution space,” said MIT Sloan professor Steve Eppinger. The mistake they make is to try and empathize, connecting the stated problem only to their own experiences. This falsely leads to the belief that you completely understand the situation. But the actual problem is always broader, more nuanced, or different than people originally assume.

Take the example of a meal delivery service in Holstebro, Denmark. When a team first began looking at the problem of poor nutrition and malnourishment among the elderly in the city, many of whom received meals from the service, it thought that simply updating the menu options would be a sufficient solution. But after closer observation, the team realized the scope of the problem was much larger , and that they would need to redesign the entire experience, not only for those receiving the meals, but for those preparing the meals as well. While the company changed almost everything about itself, including rebranding as The Good Kitchen, the most important change the company made when rethinking its business model was shifting how employees viewed themselves and their work. That, in turn, helped them create better meals (which were also drastically changed), yielding happier, better nourished customers.

Involve users

Imagine you are designing a new walker for rehabilitation patients and the elderly, but you have never used one. Could you fully understand what customers need? Certainly not, if you haven’t extensively observed and spoken with real customers. There is a reason that design thinking is often referred to as human-centered design.

“You have to immerse yourself in the problem,” Eppinger said.

How do you start to understand how to build a better walker? When a team from MIT’s Integrated Design and Management program together with the design firm Altitude took on that task, they met with walker users to interview them, observe them, and understand their experiences.  

“We center the design process on human beings by understanding their needs at the beginning, and then include them throughout the development and testing process,” Eppinger said.

Central to the design thinking process is prototyping and testing (more on that later) which allows designers to try, to fail, and to learn what works. Testing also involves customers, and that continued involvement provides essential user feedback on potential designs and use cases. If the MIT-Altitude team studying walkers had ended user involvement after its initial interviews, it would likely have ended up with a walker that didn’t work very well for customers. 

It is also important to interview and understand other stakeholders, like people selling the product, or those who are supporting the users throughout the product life cycle.

The second phase of design thinking is developing solutions to the problem (which you now fully understand). This begins with what most people know as brainstorming.

Hold nothing back during brainstorming sessions — except criticism. Infeasible ideas can generate useful solutions, but you’d never get there if you shoot down every impractical idea from the start.

“One of the key principles of brainstorming is to suspend judgment,” Eppinger said. “When we're exploring the solution space, we first broaden the search and generate lots of possibilities, including the wild and crazy ideas. Of course, the only way we're going to build on the wild and crazy ideas is if we consider them in the first place.”

That doesn’t mean you never judge the ideas, Eppinger said. That part comes later, in downselection. “But if we want 100 ideas to choose from, we can’t be very critical.”

In the case of The Good Kitchen, the kitchen employees were given new uniforms. Why? Uniforms don’t directly affect the competence of the cooks or the taste of the food.

But during interviews conducted with kitchen employees, designers realized that morale was low, in part because employees were bored preparing the same dishes over and over again, in part because they felt that others had a poor perception of them. The new, chef-style uniforms gave the cooks a greater sense of pride. It was only part of the solution, but if the idea had been rejected outright, or perhaps not even suggested, the company would have missed an important aspect of the solution.

Prototype and test. Repeat.

You’ve defined the problem. You’ve spoken to customers. You’ve brainstormed, come up with all sorts of ideas, and worked with your team to boil those ideas down to the ones you think may actually solve the problem you’ve defined.

“We don’t develop a good solution just by thinking about a list of ideas, bullet points and rough sketches,” Eppinger said. “We explore potential solutions through modeling and prototyping. We design, we build, we test, and repeat — this design iteration process is absolutely critical to effective design thinking.”

Repeating this loop of prototyping, testing, and gathering user feedback is crucial for making sure the design is right — that is, it works for customers, you can build it, and you can support it.

“After several iterations, we might get something that works, we validate it with real customers, and we often find that what we thought was a great solution is actually only just OK. But then we can make it a lot better through even just a few more iterations,” Eppinger said.

Implementation

The goal of all the steps that come before this is to have the best possible solution before you move into implementing the design. Your team will spend most of its time, its money, and its energy on this stage.

“Implementation involves detailed design, training, tooling, and ramping up. It is a huge amount of effort, so get it right before you expend that effort,” said Eppinger.

Design thinking isn’t just for “things.” If you are only applying the approach to physical products, you aren’t getting the most out of it. Design thinking can be applied to any problem that needs a creative solution. When Eppinger ran into a primary school educator who told him design thinking was big in his school, Eppinger thought he meant that they were teaching students the tenets of design thinking.

“It turns out they meant they were using design thinking in running their operations and improving the school programs. It’s being applied everywhere these days,” Eppinger said.

In another example from the education field, Peruvian entrepreneur Carlos Rodriguez-Pastor hired design consulting firm IDEO to redesign every aspect of the learning experience in a network of schools in Peru. The ultimate goal? To elevate Peru’s middle class.

As you’d expect, many large corporations have also adopted design thinking. IBM has adopted it at a company-wide level, training many of its nearly 400,000 employees in design thinking principles .

What can design thinking do for your business?

The impact of all the buzz around design thinking today is that people are realizing that “anybody who has a challenge that needs creative problem solving could benefit from this approach,” Eppinger said. That means that managers can use it, not only to design a new product or service, “but anytime they’ve got a challenge, a problem to solve.”

Applying design thinking techniques to business problems can help executives across industries rethink their product offerings, grow their markets, offer greater value to customers, or innovate and stay relevant. “I don’t know industries that can’t use design thinking,” said Eppinger.

Ready to go deeper?

Read “ The Designful Company ” by Marty Neumeier, a book that focuses on how businesses can benefit from design thinking, and “ Product Design and Development ,” co-authored by Eppinger, to better understand the detailed methods.

Register for an MIT Sloan Executive Education course:

Systematic Innovation of Products, Processes, and Services , a five-day course taught by Eppinger and other MIT professors.

  • Leadership by Design: Innovation Process and Culture , a two-day course taught by MIT Integrated Design and Management director Matthew Kressy.
  • Managing Complex Technical Projects , a two-day course taught by Eppinger.
  • Apply for M astering Design Thinking , a 3-month online certificate course taught by Eppinger and MIT Sloan senior lecturers Renée Richardson Gosline and David Robertson.

Steve Eppinger is a professor of management science and innovation at MIT Sloan. He holds the General Motors Leaders for Global Operations Chair and has a PhD from MIT in engineering. He is the faculty co-director of MIT's System Design and Management program and Integrated Design and Management program, both master’s degrees joint between the MIT Sloan and Engineering schools. His research focuses on product development and technical project management, and has been applied to improving complex engineering processes in many industries.

Read next: 10 agile ideas worth sharing

Related Articles

A robot hand holds a brush on top of a collage of illustrated motor vehicles

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Creative Problem Solving

What is creative problem solving.

Creative problem solving (CPS) is a process that design teams use to generate ideas and solutions in their work. Designers and design teams apply an approach where they clarify a problem to understand it, ideate to generate good solutions, develop the most promising one, and implement it to create a successful solution for their brand’s users.  

An illustration of a tilted square showing a process in motion with Clarify, Ideate, Develop and Implement shown on it.

© Creative Education Foundation, Fair Use

Why is Creative Problem Solving in UX Design Important?

Creative thinking and problem solving are core parts of user experience (UX) design. Note: the abbreviation “CPS” can also refer to cyber-physical systems. Creative problem solving might sound somewhat generic or broad. However, it’s an ideation approach that’s extremely useful across many industries.  

Not strictly a UX design-related approach, creative problem solving has its roots in psychology and education. Alex Osborn—who founded the Creative Education Foundation and devised brainstorming techniques—produced this approach to creative thinking in the 1940s. Along with Sid Parnes, he developed the Osborn-Parnes Creative Problem Solving Process. It was a new, systematic approach to problem solving and creativity fostering.  

Diagram of CPS process showing Fact finding, Idea finding and Solution finding with 12 sub-sections.

Osborn’s CPS Process.

© IdeaSandbox.com, Fair Use

The main focus of the creative problem solving model is to improve creative thinking and generate novel solutions to problems. An important distinction exists between it and a UX design process such as design thinking. It’s that designers consider user needs in creative problem solving techniques, but they don’t necessarily have to make their users’ needs the primary focus. For example, a design team might trigger totally novel ideas from random stimuli—as opposed to working systematically from the initial stages of empathizing with their users. Even so, creative problem solving methods still tend to follow a process with structured stages. 

What are 4 Stages of Creative Problem Solving?

The model, adapted from Osborn’s original, typically features these steps:  

Clarify: Design teams first explore the area they want to find a solution within. They work to spot the challenge, problem or even goal they want to identify. They also start to collect data or information about it. It’s vital to understand the exact nature of the problem at this stage. So, design teams must build a clear picture of the issue they seek to tackle creatively. When they define the problem like this, they can start to question it with potential solutions.  

Ideate: Now that the team has a grasp of the problem that faces them, they can start to work to come up with potential solutions. They think divergently in brainstorming sessions and other ways to solve problems creatively, and approach the problem from as many angles as they can.  

Develop: Once the team has explored the potential solutions, they evaluate these and find the strongest and weakest qualities in each. Then, they commit to the one they decide is the best option for the problem at hand.  

Implement: Once the team has decided on the best fit for what they want to use, they discuss how to put this solution into action. They gauge its acceptability for stakeholders. Plus, they develop an accurate understanding of the activities and resources necessary to see it become a real, bankable solution.  

What Else does CPS Involve?

A diagram showing Divergent and Convergent thinking as a process between a problem and solution.

© Interaction Design Foundation, CC BY-SA 4.0

Two keys to the enterprise of creative problem solving are:  

Divergent Thinking

This is an ideation mode which designers leverage to widen their design space when they start to search for potential solutions. They generate as many new ideas as possible using various methods. For example, team members might use brainstorming or bad ideas to explore the vast area of possibilities. To think divergently means to go for:  

Quantity over quality: Teams generate ideas without fear of judgment (critically evaluating these ideas comes later). 

Novel ideas: Teams use disruptive and lateral thinking to break away from linear thinking and strive for truly original and extraordinary ideas.  

Choice creation: The freedom to explore the design space helps teams maximize their options, not only regarding potential solutions but also about how they understand the problem itself.  

Author and Human-Computer Interactivity Expert, Professor Alan Dix explains some techniques that are helpful for divergent thinking:  

  • Transcript loading…

Convergent Thinking

This is the complementary half of the equation. In this ideation mode, designers analyze, filter, evaluate, clarify and modify the ideas they generated during divergent thinking. They use analytical, vertical and linear thinking to isolate novel and useful ideas, understand the design space possibilities and get nearer to potential solutions that will work best. The purpose with convergent thinking is to carefully and creatively:  

Look past logical norms (which people use in everyday critical thinking). 

Examine how an idea stands in relation to the problem.  

Understand the real dimensions of that problem.    

Professor Alan Dix explains convergent thinking in this video:  

What are the Benefits of Creative Problem Solving?

Design teams especially can benefit from this creative approach to problem solving because it:  

Empowers teams to arrive at a fine-grained definition of the problem they need to ideate over in a given situation.  

Gives a structured, learnable way to conduct problem-solving activities and direct them towards the most fruitful outcomes.  

Involves numerous techniques such as brainstorming and SCAMPER, so teams have more chances to explore the problem space more thoroughly.  

Can lead to large numbers of possible solutions thanks to a dedicated balance of divergent and convergent thinking.  

Values and nurtures designers and teams to create innovative design solutions in an accepting, respectful atmosphere.  

Is a collaborative approach that enables multiple participants to contribute—which makes for a positive environment with buy-in from those who participate.  

Enables teams to work out the most optimal solution available and examine all angles carefully before they put it into action.  

Is applicable in various contexts—such as business, arts and education—as well as in many areas of life in general.  

It’s especially crucial to see the value of creative problem solving in how it promotes out-of-the-box thinking as one of the valuable ingredients for teams to leverage.   

Watch as Professor Alan Dix explains how to think outside the box:  

How to Conduct Creative Problem Solving Best?

It’s important to point out that designers should consider—and stick to—some best practices when it comes to applying creative problem solving techniques. They should also adhere to some “house rules,” which the facilitator should define in no uncertain terms at the start of each session. So, designers and design teams should:  

Define the chief goal of the problem-solving activity: Everyone involved should be on the same page regarding their objective and what they want to achieve, why it’s essential to do it and how it aligns with the values of the brand. For example, SWOT analysis can help with this. Clarity is vital in this early stage.  Before team members can hope to work on ideating for potential solutions, they must recognize and clearly identify what the problem to tackle is.  

Have access to accurate information: A design team must be up to date with the realities that their brand faces, realities that their users and customers face, as well as what’s going on in the industry and facts about their competitors. A team must work to determine what the desired outcome is, as well as what the stakeholders’ needs and wants are. Another factor to consider in detail is what the benefits and risks of addressing a scenario or problem are—including the pros and cons that stakeholders and users would face if team members direct their attention on a particular area or problem.   

Suspend judgment: This is particularly important for two main reasons. For one, participants can challenge assumptions that might be blocking healthy ideation when they suggest ideas or elements of ideas that would otherwise seem of little value through a “traditional” lens. Second, if everyone’s free to suggest ideas without constraints, it promotes a calmer environment of acceptance—and so team members will be more likely to ideate better. Judgment will come later, in convergent thinking when the team works to tighten the net around the most effective solution. So, everyone should keep to positive language and encourage improvisational tactics—such as “yes…and”—so ideas can develop well.  

Balance divergent and convergent thinking: It’s important to know the difference between the two styles of thinking and when to practice them. This is why in a session like brainstorming, a facilitator must take control of proceedings and ensure the team engages in distinct divergent and convergent thinking sessions.  

Approach problems as questions: For example, “How Might We” questions can prompt team members to generate a great deal of ideas. That’s because they’re open-ended—as opposed to questions with “yes” or “no” answers. When a team frames a problem so freely, it permits them to explore far into the problem space so they can find the edges of the real matter at hand.  

An illustration showing the How Might We Formula with an example.

UX Strategist and Consultant, William Hudson explains “How Might We” questions in this video:  

Use a variety of ideation methods: For example, in the divergent stage, teams can apply methods such as random metaphors or bad ideas to venture into a vast expanse of uncharted territory. With random metaphors, a team prompts innovation by drawing creative associations. With bad ideas, the point is to come up with ideas that are weird, wild and outrageous, as team members can then determine if valuable points exist in the idea—or a “bad” idea might even expose flaws in conventional ways of seeing problems and situations.  

Professor Alan Dix explains important points about bad ideas:  

  • Copyright holder: William Heath Robinson. Appearance time: 1:30 - 1:33 Copyright license and terms: Public domain. Link: https://upload.wikimedia.org/wikipedia/commons/c/c9/William_Heath_Robinson_Inventions_-_Page_142.png
  • Copyright holder: Rev Stan. Appearance time: 1:40 - 1:44 Copyright license and terms: CC BY 2.0 Link: As yummy as chocolate teapot courtesy of Choccywoccydoodah… _ Flickr.html
  • Copyright holder: Fabel. Appearance time: 7:18 - 7:24 Copyright license and terms: CC BY-SA 3.0 Link: https://commons.wikimedia.org/wiki/File:Hammer_nails_smithonian.jpg
  • Copyright holder: Marcus Hansson. Appearance time: 05:54 - 05:58 Copyright license and terms: CC BY 2.0 Link: https://www.flickr.com/photos/marcus_hansson/7758775386

What Special Considerations Should Designers Have for CPS?

Creative problem solving isn’t the only process design teams consider when thinking of potential risks. Teams that involve themselves in ideation sessions can run into problems, especially if they aren’t aware of them. Here are the main areas to watch:  

Bias is natural and human. Unfortunately, it can get in the way of user research and prevent a team from being truly creative and innovative. What’s more, it can utterly hinder the iterative process that should drive creative ideas to the best destinations. Bias takes many forms. It can rear its head without a design team member even realizing it. So, it’s vital to remember this and check it. One team member may examine an angle of the problem at hand and unconsciously view it through a lens. Then, they might voice a suggestion without realizing how they might have framed it for team members to hear. Another risk is that other team members might, for example, apply confirmation bias and overlook important points about potential solutions because they’re not in line with what they’re looking for.  

Professor Alan Dix explains bias and fixation as obstacles in creative problem solving examples, and how to overcome them:  

Conventionalism

Even in the most hopeful ideation sessions, there’s the risk that some team members may slide back to conventional ways to address a problem. They might climb back inside “the box” and not even realize it. That’s why it’s important to mindfully explore new idea territories around the situation under scrutiny and not merely toy with the notion while clinging to a default “traditional” approach, just because it’s the way the brand or others have “always done things.”   

Dominant Personalities and Rank Pulling

As with any group discussion, it’s vital for the facilitator to ensure that everyone has the chance to contribute. Team members with “louder” personalities can dominate the discussions and keep quieter members from offering their thoughts. Plus, without a level playing field, it can be hard for more junior members to join in without feeling a sense of talking out of place or even a fear of reprisal for disagreeing with senior members.  

Another point is that ideation sessions naturally involve asking many questions, which can bring on two issues. First, some individuals may over-defend their ideas as they’re protective of them. Second, team members may feel self-conscious as they might think if they ask many questions that it makes them appear frivolous or unintelligent. So, it’s vital for facilitators to ensure that all team members can speak up and ask away, both in divergent thinking sessions when they can offer ideas and convergent thinking sessions when they analyze others’ ideas.  

Premature Commitment

Another potential risk to any creativity exercise is that once a team senses a solution is the “best” one, everyone can start to shut off and overlook the chance that an alternative may still arise. This could be a symptom of ideation fatigue or a false consensus that a proposed solution is infallible. So, it’s vital that team members keep open minds and try to catch potential issues with the best-looking solution as early as possible. The key is an understanding of the need for iteration—something that’s integral to the design thinking process, for example.   

A diagram of the 5-stage Design Thinking Process.

Overall, creative problem solving can help give a design team the altitude—and attitude—they need to explore the problem and solution spaces thoroughly. Team members can leverage a range of techniques to trawl through the hordes of possibilities that exist for virtually any design scenario. As with any method or tool, though, it takes mindful application and awareness of potential hazards to wield it properly. The most effective creative problem-solving sessions will be ones that keep “creative,” “problem” and “solving” in sharp focus until what emerges for the target audience proves to be more than the sum of these parts.  

Learn More About Creative Problem Solving

Take our course, Creativity: Methods to Design Better Products and Services . 

Watch our Master Class Harness Your Creativity To Design Better Products with Alan Dix, Professor, Author and Creativity Expert. 

Read our piece, 10 Simple Ideas to Get Your Creative Juices Flowing . 

Go to Exploring the Art of Innovation: Design Thinking vs. Creative Problem Solving by Marcino Waas for further details. 

Consult Creative Problem Solving by Harrison Stamell for more insights.  

Read The Osborn Parnes Creative Problem-Solving Process by Leigh Espy for additional information.  

See History of the creative problem-solving process by Jo North for more on the history of Creative Problem Solving. 

Questions about Creative Problem Solving

To start with, work to understand the user’s needs and pain points. Do your user research—interviews, surveys and observations are helpful, for instance. Analyze this data so you can spot patterns and insights. Define the problem clearly—and it needs to be extremely clear for the solution to be able to address it—and make sure it lines up with the users’ goals and your project’s objectives. 

You and your design team might hold a brainstorming session. It could be a variation such as brainwalking—where you move about the room ideating—or brainwriting, where you write down ideas. Alternatively, you could try generating weird and wonderful notions in a bad ideas ideation session. 

There’s a wealth of techniques you can use. In any case, engage stakeholders in brainstorming sessions to bring different perspectives on board the team’s trains of thought. What’s more, you can use tools like a Problem Statement Template to articulate the problem concisely. 

Take our course, Creativity: Methods to Design Better Products and Services . 

Watch as Author and Human-Computer Interaction Expert, Professor Alan Dix explains important points about bad ideas:  

Some things you might try are:  1. Change your environment: A new setting can stimulate fresh ideas. So, take a walk, visit a different room, or work outside. 

2. Try to break the problem down into smaller parts: Focus on just one piece at a time—that should make the task far less overwhelming. Use techniques like mind mapping so you can start to visualize connections and come up with ideas. 

3. Step away from work and indulge in activities that relax your mind: Is it listening to music for you? Or how about drawing? Or exercising? Whatever it is, if you break out of your routine and get into a relaxation groove, it can spark new thoughts and perspectives. 

4. Collaborate with others: Discuss the problem with colleagues, stakeholders, or—as long as you don’t divulge sensitive information or company secrets—friends. It can help you to get different viewpoints, and sometimes those new angles and fresh perspectives can help unlock a solution. 

5. Set aside dedicated time for creative thinking: Take time to get intense with creativity; prevent distractions and just immerse yourself in the problem as fully as you can with your team. Use techniques like brainstorming or the "Six Thinking Hats" to travel around the problem space and explore a wealth of angles. 

Remember, a persistent spirit and an open mind are key; so, keep experimenting with different approaches until you get that breakthrough. 

Watch as Professor Alan Dix explains important aspects of creativity and how to handle creative blocks: 

Read our piece, 10 Simple Ideas to Get Your Creative Juices Flowing . 

Watch as Professor Alan Dix explains the Six Thinking Hats ideation technique. 

Creative thinking is about coming up with new and innovative ideas by looking at problems from different angles—and imagining solutions that are truly fresh and unique. It takes an emphasis on divergent thinking to get “out there” and be original in the problem space. You can use techniques like brainstorming, mind mapping and free association to explore hordes of possibilities, many of which might be “hiding” in obscure corners of your—or someone on your team’s—imagination. 

Critical thinking is at the other end of the scale. It’s the convergent half of the divergent-convergent thinking approach. In that approach, once the ideation team have hauled in a good catch of ideas, it’s time for team members to analyze and evaluate these ideas to see how valid and effective each is. Everyone strives to consider the evidence, draw logical connections and eliminate any biases that could be creeping in to cloud judgments. Accuracy, sifting and refining are watchwords here. 

Watch as Professor Alan Dix explains divergent and convergent thinking: 

The tools you can use are in no short supply, and they’re readily available and inexpensive, too. Here are a few examples: 

Tools like mind maps are great ways to help you visualize ideas and make connections between them and elements within them. Try sketching out your thoughts and see how they relate to each other—you might discover unexpected gems, or germs of an idea that can splinter into something better, with more thought and development. 

The SCAMPER technique is another one you can try. It can help you catapult your mind into a new idea space as you Substitute, Combine, Adapt, Modify, Put to another use, Eliminate, and Reverse aspects of the problem you’re considering. 

The “5 Whys” technique is a good one to drill down to root causes with. Once you’ve spotted a problem, you can start working your way back to see what’s behind it. Then you do the same to work back to the cause of the cause. Keep going; usually five times will be enough to see what started the other problems as the root cause. 

Watch as the Father of UX Design, Don Norman explains the 5 Whys technique: 

Read all about SCAMPER in our topic definition of it. 

It’s natural for some things to get in the way of being creative in the face of a problem. It can be challenging enough to ideate creatively on your own, but it’s especially the case in group settings. Here are some common obstacles: 

1. Fear of failure or appearing “silly”: when people worry about making mistakes or sounding silly, they avoid taking risks and exploring new ideas. This fear stifles creativity. That’s why ideation sessions like bad ideas are so valuable—it turns this fear on its head. 

2. Rigid thinking: This can also raise itself as a high and thick barrier. If someone in an ideation session clings to established ways to approach problems (and potential solutions), it can hamper their ability to see different perspectives, let alone agree with them. They might even comment critically to dampen what might just be the brightest way forward. It takes an open mind and an awareness of one’s own bias to overcome this. 

3. Time pressure and resource scarcity: When a team has tight deadlines to work to, they may rush to the first workable solution and ignore a wide range of possibilities where the true best solution might be hiding. That’s why stakeholders and managers should give everyone enough time—as well as any needed tools, materials and support—to ideate and experiment. The best solution is in everybody’s interest, after all.  

It takes a few ingredients to get the environment just right for creative problem solving:  

Get in the mood for creativity: This could be a relaxing activity before you start your session, or a warm-up activity in the room. Then, later, encourage short breaks—they can rejuvenate the mind and help bring on fresh insights.  

Get the physical environment just right for creating problem solving: You and your team will want a comfortable and flexible workspace—preferably away from your workstations. Make sure the room is one where people can collaborate easily and also where they can work quietly. A meeting room is good as it will typically have room for whiteboards and comfortable space for group discussion. Note: you’ll also need sticky notes and other art supplies like markers. 

Make the atmosphere conducive for creative problem solving: Someone will need to play facilitator so everyone has some ground rules to work with. Encourage everyone to share ideas, that all ideas are valuable, and that egos and seniority have no place in the room. Of course, this may take some enforcement and repetition—especially as "louder" team members may try to dominate proceedings, anyway, and others may be self-conscious about sounding "ridiculous." 

Make sure you’ve got a diverse team: Diversity means different perspectives, which means richer and more innovative solutions can turn up. So, try to include individuals with different backgrounds, skills and viewpoints—sometimes, non-technical mindsets can spot ideas and points in a technical realm, which experienced programmers might miss, for instance. 

Watch our Master Class Harness Your Creativity To Design Better Products with Alan Dix, Professor, Author and Creativity Expert. 

Ideating alone? Watch as Professor Alan Dix gives valuable tips about how to nurture creativity: 

  • Copyright holder: GerritR. Appearance time: 6:54 - 6:59 Copyright license and terms: CC-BY-SA-4.0 Link: https://commons.wikimedia.org/wiki/File:Blick_auf_das_Dylan_Thomas_Boathouse_und_die_Trichterm%C3%BCndung_des_Taf,_Wales.jpg

Research plays a crucial role in any kind of creative problem solving, and in creative problem solving itself it’s about collecting information about the problem—and, by association, the users themselves. You and your team members need to have a well-defined grasp of what you’re facing before you can start reaching out into the wide expanses of the idea space.  

Research helps you lay down a foundation of knowledge and avoid reinventing the wheel. Also, if you study existing solutions and industry trends, you’ll be able to understand what has worked before and what hasn't.  

What’s more, research is what will validate the ideas that come out of your ideation efforts. From testing concepts and prototypes with real users, you’ll get precious input about your creative solutions so you can fine-tune them to be innovative and practical—and give users what they want in a way that’s fresh and successful. 

Watch as UX Strategist and Consultant, William Hudson explains important points about user research: 

First, it’s crucial for a facilitator to make sure the divergent stage of the creative problem solving is over and your team is on to the convergent stage. Only then should any analysis happen.  

If others are being critical of your creative solutions, listen carefully and stay open-minded. Look on it as a chance to improve, and don’t take it personally. Indeed, the session facilitator should moderate to make sure everyone understands the nature of constructive criticism.  

If something’s unclear, be sure to ask the team member to be more specific, so you can understand their points clearly. 

Then, reflect on what you’ve heard. Is it valid? Something you can improve or explain? For example, in a bad ideas session, there may be an aspect of your idea that you can develop among the “bad” parts surrounding it. 

So, if you can, clarify any misunderstandings and explain your thought process. Just stay positive and calm and explain things to your critic and other team member. The insights you’ve picked up may strengthen your solution and help to refine it. 

Last—but not least—make sure you hear multiple perspectives. When you hear from different team members, chances are you’ll get a balanced view. It can also help you spot common themes and actionable improvements you might make. 

Watch as Todd Zaki Warfel, Author, Speaker and Leadership Coach, explains how to present design ideas to clients, a valuable skill in light of discussing feedback from stakeholders. 

Lateral thinking is a technique where you approach problems from new and unexpected angles. It encourages you to put aside conventional step-by-step logic and get “out there” to explore creative and unorthodox solutions. Author, physician and commentator Edward de Bono developed lateral thinking as a way to help break free from traditional patterns of thought. 

In creative problem solving, you can use lateral thinking to come up with truly innovative ideas—ones that standard logical processes might overlook. It’s about bypassing these so you can challenge assumptions and explore alternatives that point you and your team to breakthrough solutions. 

You can use techniques like brainstorming to apply lateral thinking and access ideas that are truly “outside the box” and what your team, your brand and your target audience really need to work on. 

Professor Alan Dix explains lateral thinking in this video: 

1. Baer, J. (2012). Domain Specificity and The Limits of Creativity Theory . The Journal of Creative Behavior, 46(1), 16–29.   John Baer's influential paper challenged the notion of a domain-general theory of creativity and argued for the importance of considering domain-specific factors in creative problem solving. This work has been highly influential in shaping the understanding of creativity as a domain-specific phenomenon and has implications for the assessment and development of creativity in various domains. 

2. Runco, M. A., & Jaeger, G. J. (2012). The Standard Definition of Creativity . Creativity Research Journal, 24(1), 92–96.   Mark A. Runco and Gerard J. Jaeger's paper proposed a standard definition of creativity, which has been widely adopted in the field. They defined creativity as the production of original and effective ideas, products, or solutions that are appropriate to the task at hand. This definition has been influential in providing a common framework for creativity research and assessment. 

1. Fogler, H. S., LeBlanc, S. E., & Rizzo, B. (2014). Strategies for Creative Problem Solving (3rd ed.). Prentice Hall. 

This book focuses on developing creative problem-solving strategies, particularly in engineering and technical contexts. It introduces various heuristic problem-solving techniques, optimization methods, and design thinking principles. The authors provide a systematic framework for approaching ill-defined problems, generating and implementing solutions, and evaluating the outcomes. With its practical exercises and real-world examples, this book has been influential in equipping professionals and students with the skills to tackle complex challenges creatively. 

2. De Bono, E. (1985). Six Thinking Hats . Little, Brown and Company.   

Edward de Bono's Six Thinking Hats introduces a powerful technique for parallel thinking and decision-making. The book outlines six different "hats" or perspectives that individuals can adopt to approach a problem or situation from various angles. This structured approach encourages creative problem-solving by separating different modes of thinking, such as emotional, logical, and creative perspectives. De Bono's work has been highly influential in promoting lateral thinking and providing a practical framework for group problem solving. 

3. Osborn, A. F. (1963). Applied Imagination: Principles and Procedures of Creative Problem-Solving (3rd ed.). Charles Scribner's Sons.  

Alex F. Osborn's Applied Imagination is a pioneering work that introduced the concept of brainstorming and other creative problem-solving techniques. Osborn emphasized how important it is to defer judgment and generate a large quantity of ideas before evaluating them. This book laid the groundwork for many subsequent developments in the field of creative problem-solving, and it’s been influential in promoting the use of structured ideation processes in various domains. 

Answer a Short Quiz to Earn a Gift

What is the first stage in the creative problem-solving process?

  • Implementation
  • Idea Generation
  • Problem Identification

Which technique is commonly used during the idea generation stage of creative problem-solving?

  • Brainstorming
  • Prototyping

What is the main purpose of the evaluation stage in creative problem-solving?

  • To generate as many ideas as possible
  • To implement the solution
  • To assess the feasibility and effectiveness of ideas

In the creative problem-solving process, what often follows after implementing a solution?

  • Testing and Refinement

Which stage in the creative problem-solving process focuses on generating multiple possible solutions?

Better luck next time!

Do you want to improve your UX / UI Design skills? Join us now

Congratulations! You did amazing

You earned your gift with a perfect score! Let us send it to you.

Check Your Inbox

We’ve emailed your gift to [email protected] .

Literature on Creative Problem Solving

Here’s the entire UX literature on Creative Problem Solving by the Interaction Design Foundation, collated in one place:

Learn more about Creative Problem Solving

Take a deep dive into Creative Problem Solving with our course Creativity: Methods to Design Better Products and Services .

The overall goal of this course is to help you design better products, services and experiences by helping you and your team develop innovative and useful solutions. You’ll learn a human-focused, creative design process.

We’re going to show you what creativity is as well as a wealth of ideation methods ―both for generating new ideas and for developing your ideas further. You’ll learn skills and step-by-step methods you can use throughout the entire creative process. We’ll supply you with lots of templates and guides so by the end of the course you’ll have lots of hands-on methods you can use for your and your team’s ideation sessions. You’re also going to learn how to plan and time-manage a creative process effectively.

Most of us need to be creative in our work regardless of if we design user interfaces, write content for a website, work out appropriate workflows for an organization or program new algorithms for system backend. However, we all get those times when the creative step, which we so desperately need, simply does not come. That can seem scary—but trust us when we say that anyone can learn how to be creative­ on demand . This course will teach you ways to break the impasse of the empty page. We'll teach you methods which will help you find novel and useful solutions to a particular problem, be it in interaction design, graphics, code or something completely different. It’s not a magic creativity machine, but when you learn to put yourself in this creative mental state, new and exciting things will happen.

In the “Build Your Portfolio: Ideation Project” , you’ll find a series of practical exercises which together form a complete ideation project so you can get your hands dirty right away. If you want to complete these optional exercises, you will get hands-on experience with the methods you learn and in the process you’ll create a case study for your portfolio which you can show your future employer or freelance customers.

Your instructor is Alan Dix . He’s a creativity expert, professor and co-author of the most popular and impactful textbook in the field of Human-Computer Interaction. Alan has worked with creativity for the last 30+ years, and he’ll teach you his favorite techniques as well as show you how to make room for creativity in your everyday work and life.

You earn a verifiable and industry-trusted Course Certificate once you’ve completed the course. You can highlight it on your resume , your LinkedIn profile or your website .

All open-source articles on Creative Problem Solving

10 simple ideas to get your creative juices flowing.

creative problem solving vs design thinking

  • 4 years ago

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

creative problem solving vs design thinking

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Design Thinking & Why Is It Important?

Business team using the design thinking process

  • 18 Jan 2022

In an age when innovation is key to business success and growth, you’ve likely come across the term “design thinking.” Perhaps you’ve heard it mentioned by a senior leader as something that needs to be utilized more, or maybe you’ve seen it on a prospective employee's resume.

While design thinking is an ideology based on designers’ workflows for mapping out stages of design, its purpose is to provide all professionals with a standardized innovation process to develop creative solutions to problems—design-related or not.

Why is design thinking needed? Innovation is defined as a product, process, service, or business model featuring two critical characteristics: novel and useful. Yet, there’s no use in creating something new and novel if people won’t use it. Design thinking offers innovation the upgrade it needs to inspire meaningful and impactful solutions.

But what is design thinking, and how does it benefit working professionals?

What Is Design Thinking?

Design thinking is a mindset and approach to problem-solving and innovation anchored around human-centered design . While it can be traced back centuries—and perhaps even longer—it gained traction in the modern business world after Tim Brown, CEO and president of design company IDEO, published an article about it in the Harvard Business Review .

Design thinking is different from other innovation and ideation processes in that it’s solution-based and user-centric rather than problem-based. This means it focuses on the solution to a problem instead of the problem itself.

For example, if a team is struggling with transitioning to remote work, the design thinking methodology encourages them to consider how to increase employee engagement rather than focus on the problem (decreasing productivity).

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

The essence of design thinking is human-centric and user-specific. It’s about the person behind the problem and solution, and requires asking questions such as “Who will be using this product?” and “How will this solution impact the user?”

The first, and arguably most important, step of design thinking is building empathy with users. By understanding the person affected by a problem, you can find a more impactful solution. On top of empathy, design thinking is centered on observing product interaction, drawing conclusions based on research, and ensuring the user remains the focus of the final implementation.

The Four Phases of Innovation

So, what does design thinking entail? There are many models of design thinking that range from three to seven steps.

In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase innovation framework. The phases venture from concrete to abstract thinking and back again as the process loops, reverses, and repeats. This is an important balance because abstract thinking increases the likelihood that an idea will be novel. It’s essential, however, to anchor abstract ideas in concrete thinking to ensure the solution is valid and useful.

Here are the four phases for effective innovation and, by extension, design thinking.

four phases of the design thinking process

The first phase is about narrowing down the focus of the design thinking process. It involves identifying the problem statement to come up with the best outcome. This is done through observation and taking the time to determine the problem and the roadblocks that prevented a solution in the past.

Various tools and frameworks are available—and often needed—to make concrete observations about users and facts gathered through research. Regardless of which tools are implemented, the key is to observe without assumptions or biased expectations.

Once findings from your observations are collected, the next step is to shape insights by framing those observations. This is where you can venture into the abstract by reframing the problem in the form of a statement or question.

Once the problem statement or question has been solidified—not finalized—the next step is ideation. You can use a tool such as systematic inventive thinking (SIT) in this stage, which is useful for creating an innovative process that can be replicated in the future.

The goal is to ultimately overcome cognitive fixedness and devise new and innovative ideas that solve the problems you identified. Continue to actively avoid assumptions and keep the user at the forefront of your mind during ideation sessions.

The third phase involves developing concepts by critiquing a range of possible solutions. This includes multiple rounds of prototyping, testing, and experimenting to answer critical questions about a concept’s viability.

Remember: This step isn’t about perfection, but rather, experimenting with different ideas and seeing which parts work and which don’t.

4. Implement

The fourth and final phase, implementation, is when the entire process comes together. As an extension of the develop phase, implementation starts with testing, reflecting on results, reiterating, and testing again. This may require going back to a prior phase to iterate and refine until you find a successful solution. Such an approach is recommended because design thinking is often a nonlinear, iterative process.

In this phase, don’t forget to share results with stakeholders and reflect on the innovation management strategies implemented during the design thinking process. Learning from experience is an innovation process and design thinking project all its own.

Check out the video about the design thinking process below, and subscribe to our YouTube channel for more explainer content!

Why Design Thinking Skills Matter

The main value of design thinking is that it offers a defined process for innovation. While trial and error is a good way to test and experiment what works and what doesn’t, it’s often time-consuming, expensive, and ultimately ineffective. On the other hand, following the concrete steps of design thinking is an efficient way to develop new, innovative solutions.

On top of a clear, defined process that enables strategic innovation, design thinking can have immensely positive outcomes for your career—in terms of both advancement and salary.

Graph showing jobs requiring design thinking skills

As of December 2021, the most common occupations requiring design thinking skills were:

  • Marketing managers
  • Industrial engineers
  • Graphic designers
  • Software developers
  • General and operations managers
  • Management analysts
  • Personal service managers
  • Architectural and engineering managers
  • Computer and information systems managers

In addition, jobs that require design thinking statistically have higher salaries. Take a marketing manager position, for example. The median annual salary is $107,900. Marketing manager job postings that require design thinking skills, however, have a median annual salary of $133,900—a 24 percent increase.

Median salaries for marketing managers with and without design thinking skills

Overall, businesses are looking for talent with design thinking skills. As of November 2021, there were 29,648 job postings in the United States advertising design thinking as a necessary skill—a 153 percent increase from November 2020, and a 637 percent increase from November 2017.

As businesses continue to recognize the need for design thinking and innovation, they’ll likely create more demand for employees with those skills.

Learning Design Thinking

Design thinking is an extension of innovation that allows you to design solutions for end users with a single problem statement in mind. It not only imparts valuable skills but can help advance your career.

It’s also a collaborative endeavor that can only be mastered through practice with peers. As Datar says in the introduction to Design Thinking and Innovation : “Just as with learning how to swim, the best way to practice is to jump in and try.”

If you want to learn design thinking, take an active role in your education. Start polls, problem-solving exercises, and debates with peers to get a taste of the process. It’s also important to seek out diverse viewpoints to prepare yourself for the business world.

In addition, if you’re considering adding design thinking to your skill set, think about your goals and why you want to learn about it. What else might you need to be successful?

You might consider developing your communication, innovation, leadership, research, and management skills, as those are often listed alongside design thinking in job postings and professional profiles.

Graph showing common skills required alongside design thinking across industries

You may also notice skills like agile methodology, user experience, and prototyping in job postings, along with non-design skills, such as product management, strategic planning, and new product development.

Graph showing hard skills required alongside design thinking across industries

Is Design Thinking Right for You?

There are many ways to approach problem-solving and innovation. Design thinking is just one of them. While it’s beneficial to learn how others have approached problems and evaluate if you have the same tools at your disposal, it can be more important to chart your own course to deliver what users and customers truly need.

You can also pursue an online course or workshop that dives deeper into design thinking methodology. This can be a practical path if you want to improve your design thinking skills or require a more collaborative environment.

Are you ready to develop your design thinking skills? Explore our online course Design Thinking and Innovation to discover how to leverage fundamental design thinking principles and innovative problem-solving tools to address business challenges.

creative problem solving vs design thinking

About the Author

Logo

How to think like a designer: solving problems with creative design

woman thinking about design tools

Table of Contents

What is design thinking.

creative problem solving vs design thinking

Step by Step: From Idea to Solution

  • Product Development : Designing and improving products
  • Usability : Developing and optimizing services
  • Strategy Development : Creating and refining business models
  • Education : Designing learning environments and tackling social challenges
  • Organizational Development : Shaping corporate culture and benefits
  • Marketing : Developing and launching campaigns

Step 1: Understand and Observe

  • Who is the target audience?
  • What do the users want?
  • What needs does the software meet for them?
  • What goals do they have when using the software?

Step 2: Define

creative problem solving vs design thinking

Step 3: Generate Ideas

Step 4: build prototypes, step 5: test and learn.

creative problem solving vs design thinking

Two Practical Design Thinking Methods

  • Clearly define your objectives
  • Select representative individuals from your target group
  • Transparently explain the purpose of shadowing to participants
  • Document their activities, interactions, problems, and challenges

User Journey Mapping

Conclusion: unlock your creative potential with design thinking, see related articles.

creative problem solving vs design thinking

5 ways to design beautiful converting email newsletters

creative problem solving vs design thinking

How visuals simplify your business communication

creative problem solving vs design thinking

The 7 most common storytelling mistakes and how to avoid them

Get started with simpleshow today.

What Is Design Thinking? A Comprehensive Beginner's Guide

Design thinking is both an ideology and a process, concerned with solving complex problems in a highly user-centric way.

In this guide, we’ll give you a detailed definition of design thinking, illustrate exactly what the process involves, and underline why it matters: What is the value of design thinking, and in what contexts is it particularly useful?

We’ll also analyze the relationship between user experience design and design thinking and discuss two real-world case studies that show design thinking in action.

All sound a little overwhelming? Don’t worry—we’ve broken the guide down into digestible chunks.

If you want to skip to a certain section, just click on the relevant menu heading and you’ll go straight there.

  • What is Design Thinking?
  • What is the Design Thinking process?
  • What is the purpose of Design Thinking?
  • How do Design Thinking, lean, and agile work together?
  • What are the benefits of Design Thinking at work?
  • Design Thinking methodology in action: Case studies
  • What is the relationship between Design Thinking and UX Design?

Ready to explore the fascinating world of Design Thinking? Let’s go!

1. What is Design Thinking?

Design thinking is an approach used for practical and creative problem-solving. It is based heavily on the methods and processes that designers use (hence the name), but it has actually evolved from a range of different fields—including architecture, engineering and business. Design thinking can also be applied to any field; it doesn’t necessarily have to be design-specific.

For an audio-visual introduction, watch this video from design expert and CareerFoundry mentor, Camren Browne:

It’s important to note that design thinking is different from user-centered design . Learn more about this other approach to design here: Design Thinking vs. User-Centered Design .

Design thinking is extremely user-centric. It focuses on humans first and foremost , seeking to understand people’s needs and come up with effective solutions to meet those needs. It is what we call a solution-based approach to problem-solving.

What does this actually mean? Let’s take a look.

What’s the difference between Solution-Based and Problem-Based Thinking?

As the name suggests, solution-based thinking focuses on finding solutions; coming up with something constructive to effectively tackle a certain problem. This is the opposite of problem-based thinking, which tends to fixate on obstacles and limitations.

A good example of these two approaches in action is an empirical study carried out by Bryan Lawson, a Professor of Architecture at the University of Sheffield. Lawson wanted to investigate how a group of designers and a group of scientists would approach a particular problem.

He set each group the task of creating one-layer structures from a set of coloured blocks. The perimeter of the structure had to use either as many red bricks or as many blue bricks as possible (we can think of this is as the solution, the desired outcome), but there were unspecified rules regarding the placement and relationship of some of the blocks (the problem or limitation).

Lawson published his findings in his book How Designers Think , in which he observed that the scientists focused on identifying the problem (problem-based thinking) whilst the designers prioritized the need to find the right solution:

“The scientists adopted a technique of trying out a series of designs which used as many different blocks and combinations of blocks as possible as quickly as possible. Thus they tried to maximise the information available to them about the allowed combinations. If they could discover the rule governing which combinations of blocks were allowed, they could then search for an arrangement which would optimise the required colour around the layout.”

The designers, on the other hand:

“…selected their blocks in order to achieve the appropriately coloured perimeter. If this proved not to be an acceptable combination, then the next most favourably coloured block combination would be substituted and so on until an acceptable solution was discovered.”

Lawson’s findings go to the heart of what Design Thinking is all about: it’s an iterative process which favours ongoing experimentation until the right solution is found.

To learn more, check out this video introduction to design thinking , led by expert designer Camren Browne. For now, let’s take a look at the design thinking process and what that entails.

2. What is the Design Thinking process?

As already mentioned, the Design Thinking process is progressive and highly user-centric . Before looking at the process in more detail, let’s consider the four principles of Design Thinking as laid out by Christoph Meinel and Harry Leifer of the Hasso-Plattner-Institute of Design at Stanford University, California.

The Four Principles of Design Thinking

  • The human rule: No matter what the context, all design activity is social in nature, and any social innovation will bring us back to the “human-centric point of view”.
  • The ambiguity rule: Ambiguity is inevitable, and it cannot be removed or oversimplified. Experimenting at the limits of your knowledge and ability is crucial in being able to see things differently.
  • The redesign rule: All design is redesign. While technology and social circumstances may change and evolve, basic human needs remain unchanged. We essentially only redesign the means of fulfilling these needs or reaching desired outcomes.
  • The tangibility rule: Making ideas tangible in the form of prototypes enables designers to communicate them more effectively.

The Five Phases of Design Thinking

Based on these four principles, the Design Thinking process can be broken down into five steps or phases, as per the aforementioned Hasso-Plattner-Institute of Design at Stanford (otherwise known as d.school): Empathise, Define, Ideate, Prototype and Test. Let’s explore each of these in more detail.

Phase 1: Empathise

Empathy provides the critical starting point for Design Thinking . The first stage of the process is spent getting to know the user and understanding their wants, needs and objectives.

This means observing and engaging with people in order to understand them on a psychological and emotional level. During this phase, the designer seeks to set aside their assumptions and gather real insights about the user. Learn all about key empathy-building methods in our guide .

Phase 2: Define

The second stage in the Design Thinking process is dedicated to defining the problem. You’ll gather all of your findings from the empathise phase and start to make sense of them: what difficulties and barriers are your users coming up against? What patterns do you observe? What is the big user problem that your team needs to solve?

By the end of the define phase, you will have a clear problem statement . The key here is to frame the problem in a user-centered way; rather than saying “We need to…”, frame it in terms of your user: “Retirees in the Bay area need…”

Once you’ve formulated the problem into words, you can start to come up with solutions and ideas — which brings us onto stage three.

Phase 3: Ideate

With a solid understanding of your users and a clear problem statement in mind, it’s time to start working on potential solutions. The third phase in the Design Thinking process is where the creativity happens, and it’s crucial to point out that the ideation stage is a judgement-free zone!

Designers will hold ideation sessions in order to come up with as many new angles and ideas as possible. There are many different types of ideation technique that designers might use, from brainstorming and mindmapping to bodystorming (roleplay scenarios) and provocation—an extreme lateral-thinking technique that gets the designer to challenge established beliefs and explore new options and alternatives.

Towards the end of the ideation phase, you’ll narrow it down to a few ideas with which to move forward. You can learn about all the most important ideation techniques in this guide .

Phase 4: Prototype

The fourth step in the Design Thinking process is all about experimentation and turning ideas into tangible products. A prototype is basically a scaled-down version of the product which incorporates the potential solutions identified in the previous stages. This step is key in putting each solution to the test and highlighting any constraints and flaws.

Throughout the prototype stage, the proposed solutions may be accepted, improved, redesigned or rejected depending on how they fare in prototype form. You can read all about the prototyping stage of Design Thinking in our in-depth guide .

Phase 5: Test

After prototyping comes user testing, but it’s important to note that this is rarely the end of the Design Thinking process. In reality, the results of the testing phase will often lead you back to a previous step, providing the insights you need to redefine the original problem statement or to come up with new ideas you hadn’t thought of before. Learn all about user testing in this guide .

Is Design Thinking a linear process?

No! You might look at these clearly defined steps and see a very logical sequence with a set order. However, the Design Thinking process is not linear; it is flexible and fluid, looping back and around and in on itself! With each new discovery that a certain phase brings, you’ll need to rethink and redefine what you’ve done before—you’ll never be moving in a straight line!

3. What is the purpose of Design Thinking?

Now we know more about how Design Thinking works, let’s consider why it matters. There are many benefits of using a Design Thinking approach—be it in a business, educational, personal or social context.

First and foremost, Design Thinking fosters creativity and innovation. As human beings, we rely on the knowledge and experiences we have accumulated to inform our actions. We form patterns and habits that, while useful in certain situations, can limit our view of things when it comes to problem-solving.

Rather than repeating the same tried-and-tested methods, Design Thinking encourages us to remove our blinkers and consider alternative solutions. The entire process lends itself to challenging assumptions and exploring new pathways and ideas.

Design Thinking is often cited as the healthy middle ground of problem-solving—it is not steeped wholly in emotion and intuition, nor does it rely solely on analytics, science and rationale; it uses a mixture of both.

Another great benefit of Design Thinking is that it puts humans first. By focusing so heavily on empathy, it encourages businesses and organizations to consider the real people who use their products and services—meaning they are much more likely to hit the mark when it comes to creating meaningful user experiences. For the user, this means better, more useful products that actually improve our lives. For businesses, this means happy customers and a healthier bottom line.

What’s a “wicked problem” in Design Thinking?

Design Thinking is especially useful when it comes to solving “wicked problems”. The term “wicked problem” was coined by design theorist Horst Rittel in the 1970s to describe particularly tricky problems that are highly ambiguous in nature.

With wicked problems, there are many unknown factors; unlike “tame” problems, there is no definitive solution. In fact, solving one aspect of a wicked problem is likely to reveal or give rise to further challenges. Another key characteristic of wicked problems is that they have no stopping point; as the nature of the problem changes over time, so must the solution.

Solving wicked problems is therefore an ongoing process that requires Design Thinking! Some examples of wicked problems in our society today include things like poverty, hunger, and climate change.

If you’d like to learn more about them, and how Design Thinking can help tackle them, check out our full guide to wicked problems .

4. Design Thinking in the workplace: How do Design Thinking, lean, and agile work together?

Now we know what Design Thinking is, let’s consider how it fits into the overall product design process. You may be familiar with the terms “lean” and “agile”—and, as a UX designer, it’s important to understand how these three approaches work together.

What are lean and agile?

Based on the principles of lean manufacturing, lean UX focuses on streamlining the design process as much as possible—minimizing waste and maximizing value. Some core tenets of lean UX are:

  • Cross-functional collaboration between designers, engineers, and product managers.
  • Gathering feedback quickly and continuously, ensuring that you’re constantly learning and adapting as you go.
  • Deciding as late as possible and delivering fast, with less focus on long-term deliverables.
  • A strong emphasis on how the team operates as a whole.

Lean UX is a technique that works in conjunction with agile development methods. Agile is a software development process that works in iterative, incremental cycles known as sprints. Unlike traditional development methods, agile is flexible and adaptive. Based on the Agile Development Manifesto created in 2001, agile adheres to the following principles:

  • Individuals and interactions over processes and tools.
  • Working software over comprehensive documentation.
  • Customer collaboration over contract negotiation.
  • Responding to change over following a plan.

Combining Design Thinking with lean and agile

Design Thinking, lean, and agile are often seen as three separate approaches. Companies and teams will ask themselves whether to use lean or agile or Design Thinking—but actually, they can (and should!) be merged for optimal results.

Why? Because applying Design Thinking in a lean, agile environment helps to create a product development process that is not only user-centric, but also highly efficient from a business perspective. While it’s true that each approach has its own modus operandi, there is also significant overlap.

Combining principles from each can be crucial in keeping cross-functional teams on the same page—ensuring that designers, developers, product managers, and business stakeholders are all collaborating on one common vision.

So how do Design Thinking, lean, and agile work together?

As Jonny Schneider, Product Strategy and Design Principal at ThoughtWorks , explains: “Design Thinking is how we explore and solve problems; Lean is our framework for testing our beliefs and learning our way to the right outcomes; Agile is how we adapt to changing conditions with software.”

That’s all well and good, but what does it look like in practice?

As we’ve learned, Design Thinking is a solution-based approach to exploring and solving problems. It focuses on generating ideas with a specific problem in mind, keeping the user at the heart of the process throughout. Once you’ve established and designed a suitable solution, you’ll start to incorporate lean principles —testing your ideas, gathering quick and ongoing feedback to see what works—with particular emphasis on cross-team collaboration and overcoming departmental silos.

Agile ties all of this into short sprint cycles, allowing for adaptability in the face of change. In an agile environment, products are improved and built upon incrementally. Again, cross-team collaboration plays a crucial role; agile is all about delivering value that benefits both the end user and the business as a whole.

Together, Design Thinking, lean, and agile cut out unnecessary processes and documentation, leveraging the contributions of all key stakeholders for continuous delivery and improvement.

5. What are the benefits of Design Thinking at work?

As a designer, you have a pivotal role to play in shaping the products and experiences that your company puts to market. Integrating Design Thinking into your process can add huge business value, ultimately ensuring that the products you design are not only desirable for customers, but also viable in terms of company budget and resources.

With that in mind, let’s consider some of the main benefits of using Design Thinking at work:

  • Significantly reduces time-to-market: With its emphasis on problem-solving and finding viable solutions, Design Thinking can significantly reduce the amount of time spent on design and development—especially in combination with lean and agile.
  • Cost savings and a great ROI: Getting successful products to market faster ultimately saves the business money. Design Thinking has been proven to yield a significant return on investment; teams that are applying IBM’s Design Thinking practices , for example, have calculated an ROI of up to 300% as a result.
  • Improves customer retention and loyalty: Design Thinking ensures a user-centric approach, which ultimately boosts user engagement and customer retention in the long term.
  • Fosters innovation: Design Thinking is all about challenging assumptions and established beliefs, encouraging all stakeholders to think outside the box. This fosters a culture of innovation which extends well beyond the design team.
  • Can be applied company-wide: The great thing about Design Thinking is that it’s not just for designers. It leverages group thinking and encourages cross-team collaboration. What’s more, it can be applied to virtually any team in any industry.

Whether you’re establishing a Design Thinking culture on a company-wide scale, or simply trying to improve your approach to user-centric design, Design Thinking will help you to innovate, focus on the user, and ultimately design products that solve real user problems.

6. Design Thinking methodology in action: Case studies

So we’ve looked in quite some detail at the theory behind Design Thinking and the processes involved — but what does this look like in action? Let’s explore some case studies where Design Thinking has made a huge real-world impact .

Healthcare Case Study: How Design Thinking transformed the Rotterdam Eye Hospital

Executives at the Rotterdam Eye Hospital wanted to transform the patient experience from the typically grim, anxiety-riddled affair into something much more pleasant and personal. To do this, they incorporated Design Thinking and design principles into their planning process. Here’s how they did it:

First, they set out to understand their target user — patients entering the hospital for treatment. The hospital CEO, CFO, managers, staff and doctors established that most patients came into hospital with the fear of going blind.

Based on their findings from the empathise stage, they determined that fear reduction needed to be a priority. Their problem statement may have looked something like the following: “Patients coming into our hospital need to feel comfortable and at ease.”

Armed with a deep understanding of their patients and a clear mission statement, they started to brainstorm potential solutions. As any good design thinker would, they sought inspiration from a range of both likely and unlikely sources. They looked to flagship airline KLM and supermarket chain Albert Heijn to learn about scheduling, for example, while turning to other medical organizations for inspiration on operational excellence.

In the prototyping stage, the team presented the most promising ideas they had come up with so far to those in charge of caregiving at the hospital. These teams of caregivers then used these insights to design informal, small-scale experiments that could test a potential solution and see if it was worthy of wide-scale adoption.

The testing phase consisted of running the aforementioned experiments and seeing if they took off. As Dirk Deichmann and Roel van der Heijde explain , the “transition to formal adoption of these ideas tended to be more gradual. If an idea worked, sooner or later other groups would ask if they could try it too, and the best ideas spread organically.”

The outcome

By adopting a Design Thinking approach, the Rotterdam Eye Hospital were able to get to the heart of their users’ needs and find effective solutions to fulfil them. In doing so, they have greatly improved the user experience: patient intake has risen 47%, and the hospital has since won several awards for safety, quality and design.

Business Case Study: How Design Thinking helped financial service provider MLP regain consumer trust

After the financial crisis hit, financial service provider MLP found that consumer trust was at an all-time low. They needed to re-engage with their target users and come up with new ways of building trust. In search of innovation, they decided to test out a Design Thinking approach. Here’s what they learned:

By focusing on their users and making a conscious effort to understand their needs first-hand, MLP learned that the assumptions they’d been going on were not so accurate after all. As Thomas Freese, division manager for marketing at MLP, explains :

“We always used to speak to customers about the goals they want to achieve. But they do not want to commit to a certain goal, as they often do not know themselves what that is. Rather, they want to talk about their ideas as it is more open and flexible regarding their financial planning.”

With this newfound empathy for their users, MLP were able to reframe their mission statement. They knew that they needed to rebuild consumer trust, and that the way to do this would be to speak to the customer in their own language and become a more relatable brand.

Ideate and Prototype

During the ideate and prototype phases, they decided to experiment with a completely new image. Instead of the formal business attire typically associated with the financial sector, the MLP team members went out in casual clothing. They tested Lego prototypes and homemade posters in designated hotspots — including a university campus and train stations.

By testing this new approach, they learned some extremely valuable lessons about their users and how to communicate with them. They found that even something as simple as dressing more casually had a huge impact in reducing the negative connotations associated with financial services. They also learned the value of asking open questions; rather than trying to sell their prototype, Design Thinking taught them to ask questions that focus on the user’s needs.

The Outcome

Their first foray into Design Thinking proved to be a huge learning curve for MLP. Taking the time to speak to their users gave them the insights they needed to redesign their messaging, allowing them to start marketing much more effectively.

In light of their findings, MLP opened up a new office space in a student district, putting their editorial and social media teams in close proximity to their customer base. Of course, Design Thinking is an iterative process, so this is just one way in which MLP hopes to continue learning to speak their customers’ language.

7. What is the relationship between Design Thinking and UX Design?

At this point, you’ve no doubt noticed lots of similarities between Design Thinking and user experience design , and may be wondering how they relate to one another. Both are extremely user-centric and driven by empathy, and UX designers will use many of the steps laid out in the Design Thinking process, such as user research , prototyping and testing.

Despite these similarities, there are certain distinctions that can be made between the two. For one, the impact of Design Thinking is often felt on a more strategic level; it explores a problem space—in the context of understanding users, technological feasibility, and business requirements—to discover possible solutions. As we have seen from the Rotterdam Eye Hospital and MLP case studies, Design Thinking is embraced and implemented by all different teams across the business, including C-level executives.

If Design Thinking focuses on finding solutions, UX design is concerned with actually designing these solutions and making sure they are usable, accessible and pleasant for the user.

You can think of Design Thinking as a toolset that UX designers dip into, and if you’re operating within the UX design field, it is one of many crucial methodologies you’ll rely on when it comes to creating fantastic user experiences. You can learn more about UX Design and Design Thinking in our UX Design Course , as well as earn a design thinking certification by completing a course in it.

Further reading

Want to see what design thinking looks like in practice? Here’s an article for you: 5 Game-Changing Examples of Design Thinking .

And if you’re new to the design field and wondering what all these newfangled terms mean, you may well be interested in the following guides:

  • Learn How To Run Your Very Own Design Thinking Workshop!
  • What Are Design Sprints?
  • A Brief Guide To The Steps And Principles Of The Design Thinking Process
  • How To Learn UX Design And Become A UX Designer

loading

Human-Centered Change and Innovation

Innovation, change and transformation thought leadership, lovingly curated by braden kelley, design thinking vs. traditional problem-solving, which approach fosters better business innovation.

Building a Culture of Innovation

GUEST POST from Chateau G Pato

In today’s rapidly evolving business landscape, innovation is the key driver of growth and success. To stay ahead of the competition, businesses must adopt an approach that not only solves problems effectively but also incorporates human-centered thinking and fosters creativity. This thought leadership article explores the two prominent problem-solving methodologies – Design Thinking and Traditional Problem-Solving – and delves into their effectiveness in driving business innovation. Through the analysis of two case studies, we examine how each approach can impact an organization’s ability to innovate and ultimately thrive in a competitive market.

1. Design Thinking: Embracing Empathy and Creativity:

Design Thinking is a customer-centric approach that places emphasis on empathy, active listening, and iterative problem-solving. By gaining a deep understanding of end-users’ needs, aspirations, and pain points, businesses can create innovative solutions that truly resonate with their target audience. This methodology comprises five key stages: empathize, define, ideate, prototype, and test. Let’s explore a case study that illustrates the power of Design Thinking in fostering business innovation.

Case Study 1: Airbnb’s Transformation:

When Airbnb realized their business model needed a refresh, they turned to Design Thinking to reimagine the experience for users. By empathizing with both hosts and guests, Airbnb identified pain points, such as low trust levels and inconsistent property quality. They defined the core problem and developed innovative solutions through multiple brainstorming sessions. This iterative approach led to the creation of user-friendly features such as verified user profiles, secure booking processes, and an enhanced rating system. As a result, Airbnb disrupted the hospitality industry, revolutionizing how people book accommodations, and became a global success story.

2. Traditional Problem-Solving: Analytical and Linear Thinking:

Traditional problem-solving methods often follow a logical, linear approach. These methods rely on analyzing the problem, identifying potential solutions, and implementing the most viable option. While this approach has its merits, it can sometimes lack the human-centered approach essential for driving innovation. To delve deeper into the impact of traditional problem-solving on business innovation, let’s examine another case study.

Case Study 2: Blockbuster vs. Netflix:

Blockbuster, once an industry giant, relied on traditional problem-solving techniques. Despite being highly skilled at analyzing data and trends, Blockbuster failed to tap into their customers’ unmet needs. As the digital revolution occurred, Netflix recognized an opportunity to disrupt the traditional video rental business. Netflix utilized Design Thinking principles early on, empathizing with customers and understanding that convenience and personalized recommendations were paramount. Through their innovative technology and business model, Netflix transformed the way people consume media and eventually replaced Blockbuster.

Design Thinking and Traditional Problem-Solving are both valuable methodologies for business problem-solving. However, when it comes to fostering better business innovation, Design Thinking stands out as an approach that encourages human-centered thinking, empathy, and creativity. By incorporating Design Thinking principles into their problem-solving processes, organizations can develop innovative solutions that address the unmet needs of their customers. The case studies of Airbnb and Netflix demonstrate how adopting a Design Thinking approach can lead to significant business success, disrupting industries while putting the user experience at the forefront. As businesses continue to face dynamic challenges, embracing Design Thinking can empower them to drive continuous innovation and secure competitive advantage in the modern era.

SPECIAL BONUS: The very best change planners use a visual, collaborative approach to create their deliverables. A methodology and tools like those in Change Planning Toolkit ™ can empower anyone to become great change planners themselves.

Image credit: Pexels

Subscribe to Human-Centered Change & Innovation Weekly

Related posts:

  • How to Determine if Your Problem is Worth Solving
  • What is Design Thinking?
  • Applying Design Thinking for Innovation and Problem Solving
  • Design Thinking for Non-Designers

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

How to solve problems with design thinking

May 18, 2023 Is it time to throw out the standard playbook when it comes to problem solving? Uniquely challenging times call for unique approaches, write Michael Birshan , Ben Sheppard , and coauthors in a recent article , and design thinking offers a much-needed fresh perspective for leaders navigating volatility. Design thinking is a systemic, intuitive, customer-focused problem-solving approach that can create significant value and boost organizational resilience. The proof is in the pudding: From 2013 to 2018, companies that embraced the business value of design had TSR that were 56 percentage points higher than that of their industry peers. Check out these insights to understand how to use design thinking to unleash the power of creativity in strategy and problem solving.

Designing out of difficult times

What is design thinking?

The power of design thinking

Leading by design

Author Talks: Don Norman designs a better world

Are you asking enough from your design leaders?

Tapping into the business value of design

Redesigning the design department

Author Talks: Design your future

A design-led approach to embracing an ecosystem strategy

More than a feeling: Ten design practices to deliver business value

MORE FROM MCKINSEY

How design helps incumbents build new businesses

  • Product overview
  • All features
  • Latest feature release
  • App integrations

CAPABILITIES

  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Capacity planning
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • asana-intelligence icon Asana AI
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Project intake
  • Resource planning
  • Product launches
  • View all uses arrow-right icon

Featured Reads

creative problem solving vs design thinking

  • Work management resources Discover best practices, watch webinars, get insights
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Project planning |
  • How to solve problems using the design ...

How to solve problems using the design thinking process

Sarah Laoyan contributor headshot

The design thinking process is a problem-solving design methodology that helps you develop solutions in a human-focused way. Initially designed at Stanford’s d.school, the five stage design thinking method can help solve ambiguous questions, or more open-ended problems. Learn how these five steps can help your team create innovative solutions to complex problems.

As humans, we’re approached with problems every single day. But how often do we come up with solutions to everyday problems that put the needs of individual humans first?

This is how the design thinking process started.

What is the design thinking process?

The design thinking process is a problem-solving design methodology that helps you tackle complex problems by framing the issue in a human-centric way. The design thinking process works especially well for problems that are not clearly defined or have a more ambiguous goal.

One of the first individuals to write about design thinking was John E. Arnold, a mechanical engineering professor at Stanford. Arnold wrote about four major areas of design thinking in his book, “Creative Engineering” in 1959. His work was later taught at Stanford’s Hasso-Plattner Institute of Design (also known as d.school), a design institute that pioneered the design thinking process. 

This eventually led Nobel Prize laureate Herbert Simon to outline one of the first iterations of the design thinking process in his 1969 book, “The Sciences of the Artificial.” While there are many different variations of design thinking, “The Sciences of the Artificial” is often credited as the basis. 

Anatomy of Work Special Report: How to spot—and overcome—the most crucial enterprise challenges

Learn how enterprises can improve processes and productivity, no matter how complex your organization is. With fewer redundancies, leaders and their teams can hit goals faster.

[Resource Card] AOW Blog Image

A non-linear design thinking approach

Design thinking is not a linear process. It’s important to understand that each stage of the process can (and should) inform the other steps. For example, when you’re going through user testing, you may learn about a new problem that didn’t come up during any of the previous stages. You may learn more about your target personas during the final testing phase, or discover that your initial problem statement can actually help solve even more problems, so you need to redefine the statement to include those as well. 

Why use the design thinking process

The design thinking process is not the most intuitive way to solve a problem, but the results that come from it are worth the effort. Here are a few other reasons why implementing the design thinking process for your team is worth it.

Focus on problem solving

As human beings, we often don’t go out of our way to find problems. Since there’s always an abundance of problems to solve, we’re used to solving problems as they occur. The design thinking process forces you to look at problems from many different points of view. 

The design thinking process requires focusing on human needs and behaviors, and how to create a solution to match those needs. This focus on problem solving can help your design team come up with creative solutions for complex problems. 

Encourages collaboration and teamwork

The design thinking process cannot happen in a silo. It requires many different viewpoints from designers, future customers, and other stakeholders . Brainstorming sessions and collaboration are the backbone of the design thinking process.

Foster innovation

The design thinking process focuses on finding creative solutions that cater to human needs. This means your team is looking to find creative solutions for hyper specific and complex problems. If they’re solving unique problems, then the solutions they’re creating must be equally unique.

The iterative process of the design thinking process means that the innovation doesn’t have to end—your team can continue to update the usability of your product to ensure that your target audience’s problems are effectively solved. 

The 5 stages of design thinking

Currently, one of the more popular models of design thinking is the model proposed by the Hasso-Plattner Institute of Design (or d.school) at Stanford. The main reason for its popularity is because of the success this process had in successful companies like Google, Apple, Toyota, and Nike. Here are the five steps designated by the d.school model that have helped many companies succeed.

1. Empathize stage

The first stage of the design thinking process is to look at the problem you’re trying to solve in an empathetic manner. To get an accurate representation of how the problem affects people, actively look for people who encountered this problem previously. Asking them how they would have liked to have the issue resolved is a good place to start, especially because of the human-centric nature of the design thinking process. 

Empathy is an incredibly important aspect of the design thinking process.  The design thinking process requires the designers to put aside any assumptions and unconscious biases they may have about the situation and put themselves in someone else’s shoes. 

For example, if your team is looking to fix the employee onboarding process at your company, you may interview recent new hires to see how their onboarding experience went. Another option is to have a more tenured team member go through the onboarding process so they can experience exactly what a new hire experiences.

2. Define stage

Sometimes a designer will encounter a situation when there’s a general issue, but not a specific problem that needs to be solved. One way to help designers clearly define and outline a problem is to create human-centric problem statements. 

A problem statement helps frame a problem in a way that provides relevant context in an easy to comprehend way. The main goal of a problem statement is to guide designers working on possible solutions for this problem. A problem statement frames the problem in a way that easily highlights the gap between the current state of things and the end goal. 

Tip: Problem statements are best framed as a need for a specific individual. The more specific you are with your problem statement, the better designers can create a human-centric solution to the problem. 

Examples of good problem statements:

We need to decrease the number of clicks a potential customer takes to go through the sign-up process.

We need to decrease the new subscriber unsubscribe rate by 10%. 

We need to increase the Android app adoption rate by 20%.

3. Ideate stage

This is the stage where designers create potential solutions to solve the problem outlined in the problem statement. Use brainstorming techniques with your team to identify the human-centric solution to the problem defined in step two. 

Here are a few brainstorming strategies you can use with your team to come up with a solution:

Standard brainstorm session: Your team gathers together and verbally discusses different ideas out loud.

Brainwrite: Everyone writes their ideas down on a piece of paper or a sticky note and each team member puts their ideas up on the whiteboard. 

Worst possible idea: The inverse of your end goal. Your team produces the most goofy idea so nobody will look silly. This takes out the rigidity of other brainstorming techniques. This technique also helps you identify areas that you can improve upon in your actual solution by looking at the worst parts of an absurd solution. 

It’s important that you don’t discount any ideas during the ideation phase of brainstorming. You want to have as many potential solutions as possible, as new ideas can help trigger even better ideas. Sometimes the most creative solution to a problem is the combination of many different ideas put together.

4. Prototype stage

During the prototype phase, you and your team design a few different variations of inexpensive or scaled down versions of the potential solution to the problem. Having different versions of the prototype gives your team opportunities to test out the solution and make any refinements. 

Prototypes are often tested by other designers, team members outside of the initial design department, and trusted customers or members of the target audience. Having multiple versions of the product gives your team the opportunity to tweak and refine the design before testing with real users. During this process, it’s important to document the testers using the end product. This will give you valuable information as to what parts of the solution are good, and which require more changes.

After testing different prototypes out with teasers, your team should have different solutions for how your product can be improved. The testing and prototyping phase is an iterative process—so much so that it’s possible that some design projects never end.

After designers take the time to test, reiterate, and redesign new products, they may find new problems, different solutions, and gain an overall better understanding of the end-user. The design thinking framework is flexible and non-linear, so it’s totally normal for the process itself to influence the end design. 

Tips for incorporating the design thinking process into your team

If you want your team to start using the design thinking process, but you’re unsure of how to start, here are a few tips to help you out. 

Start small: Similar to how you would test a prototype on a small group of people, you want to test out the design thinking process with a smaller team to see how your team functions. Give this test team some small projects to work on so you can see how this team reacts. If it works out, you can slowly start rolling this process out to other teams.

Incorporate cross-functional team members : The design thinking process works best when your team members collaborate and brainstorm together. Identify who your designer’s key stakeholders are and ensure they’re included in the small test team. 

Organize work in a collaborative project management software : Keep important design project documents such as user research, wireframes, and brainstorms in a collaborative tool like Asana . This way, team members will have one central source of truth for anything relating to the project they’re working on.

Foster collaborative design thinking with Asana

The design thinking process works best when your team works collaboratively. You don’t want something as simple as miscommunication to hinder your projects. Instead, compile all of the information your team needs about a design project in one place with Asana. 

Related resources

creative problem solving vs design thinking

New site openings: How to reduce costs and delays

creative problem solving vs design thinking

Provider onboarding software: Simplify your hiring process

creative problem solving vs design thinking

15 creative elevator pitch examples for every scenario

creative problem solving vs design thinking

Timesheet templates: How to track team progress

Forage

Creative Thinking Definition

Creative thinking examples, why is creative thinking important, how to include creative thinking skills in a job application, how to build creativity, what is creative thinking definition and examples.

Zoe Kaplan

  • Share on Twitter Share on Twitter
  • Share on Facebook Share on Facebook
  • Share on LinkedIn Share on LinkedIn

woman thinking while sitting at desk

Forage puts students first. Our blog articles are written independently by our editorial team. They have not been paid for or sponsored by our partners. See our full  editorial guidelines .

Table of Contents

Creative thinking is the ability to come up with unique, original solutions. Also known as creative problem-solving, creative thinking is a valuable and marketable soft skill in a wide variety of careers. Here’s what you need to know about creative thinking at work and how to use it to land a job. 

Creative thinking is all about developing innovative solutions to problems. Creative thinkers brainstorm not only a large number of ideas but also a variety and range of them. In the workplace, creative thinking is highly valuable because employers look to hire innovative employees who can help them solve the company’s problems.

So, what does creative thinking in the workplace look like? First, a creative person brainstorms their ideas, then they’ll experiment with them. They look at ideas from multiple perspectives and examine how their solutions fit into the scope of what they’re working on. Creative thinkers aren’t afraid to take risks and try new ideas. In fact, this ability to develop, test, and implement original solutions makes them a valuable asset to just about any workplace. 

Creative thinking in the workplace might look like:

  • Holding an interactive brainstorm to gather initial thoughts on a project
  • Evaluating a current process and offering suggestions on how to improve it
  • Researching other ways to market a product and leading experiments on new marketing channels
  • Developing an innovative way to reach out to prospective clients
  • Identifying a unique opportunity to promote the company brand and developing a strategy to do so
  • Discovering a new way to measure a product initiative’s success and using learnings to iterate on the next version

Finding patterns in a company’s revenue growth and using data trends to strategize a new sales plan  

Creative thinking includes the process of innovative problem-solving — from analyzing the facts to brainstorming to working with others. Creative thinking examples include analytical skills, innovation, and collaboration.

creative problem solving vs design thinking

Analytical Skills

Analytical skills are problem-solving skills that help you sort through facts, data, and information to develop rational solutions. These skills aid you in the first part of the creative thinking process as you brainstorm and start to generate ideas. 

Analytical skills include:

  • Data analysis
  • Forecasting
  • Interpreting
  • Communication

Innovation is the ability to come up with something new; however, you don’t need to develop the first flying car to be an innovative thinker. “Something new” at work might mean a method you haven’t tried before or experimenting with an unfamiliar process. Innovators in the workplace aren’t afraid to step away from tradition and explore something original, even if it might fail. 

Innovation skills include:

  • Risk-taking
  • Brainstorming
  • Critical thinking

Collaboration

Creative thinking doesn’t have to happen alone; you might have your most creative ideas when bouncing your work off others. Collaboration skills ensure you consider multiple perspectives and ways of thinking when you develop and refine ideas.

Collaboration skills include:

  • Written and verbal communication
  • Active listening
  • Inclusivity

A soft skill like creative thinking will always be valuable to employers, whether you’re looking for a marketing job or trying to land a career in finance . Employers need employees who can develop and experiment with new ideas to help them solve complex problems. 

“Many employers seek candidates that are analytical and outside-the-box thinkers which are iterations of creative thinking skills,” says Alejandra Garcia, manager, alumni college and career success at Code2College and Forage content development partner. “Thus, creative thinking, creative problem solving, innovative thinking, and analytical skills are all valuable in the current workplace — these skills are especially important in our ever-changing workplaces with new emerging technologies.”

The data supports this idea, too. According to the World Economic Forum’s 2023 Future of Jobs report , creative thinking is the second most important skill for workers in 2023, preceded only by analytical skills. Other top skills include soft skills like resilience, flexibility and agility, motivation and self-awareness, and curiosity and lifelong learning .

“The ability to navigate new challenges quickly can benefit any workplace!” Laura Fontenot, resume writing expert, ACRW, and CPRW, says. “The current world of work is fast-paced, technically driven, and constantly changing. Being intuitive, creative, driven, and a problem solver are key.”

If creative thinking is one of the top soft skills employers look for, how do you show you have it in a job application? The key is to prove these skills through examples of how you’ve used them rather than just naming them.

On a Resume

While creative thinking is a skill employers might look for, you don’t necessarily need to write “creative thinking” on your resume to show you have this skill. Instead, it’s better to demonstrate how you’ve used creative thinking skills to drive results.

“Think of your best mental strengths,” says Fontenot. “Are you a great problem solver? Do you understand how to phrase things differently? Can you learn a new skill quickly? Those questions can help you find great words for the resume . Consider adding things like problem-solving, intuition, collaboration, fast learner, organized, or communication.”

Log in to view and download a customizable resume template with examples of how to include creative thinking skills:

creative problem solving vs design thinking

On Your Professional Profiles

You can show these skills outside of your resume in creative ways — including on your LinkedIn profile and website (if you have one!).

“Early professionals can make creative thinking a part of their professional brand by explicitly adding creative thinking or creative problem solving to their list of skills on their resumes and LinkedIn profiles — this will help with ATS optimizations,” Garcia advises. 

Yet beyond just listing this skill, Garcia adds that you can provide real proof of your creativity online, too.

“Consider adding projects or an online portfolio website link to your resume and LinkedIn where you can showcase projects you’ve worked on that demonstrate their problem-solving skills.”

In the Interview

In the interview , make sure you can describe your workflow and process for these projects or any other situation when you’ve used creative thinking. Elaborate how you brainstormed ideas, what range of ideas you had, how you tested and experimented, and how you decided on a final solution. 

It’s best to use the STAR method to structure your answers. This will ensure you clearly explain the situation and the results you brought by using your creative thinking skills.

>>MORE: Prepare to speak about your soft skills by practicing answers to commonly asked behavioral interview questions .

1. Put Yourself in a Box

Creative thinking is about “thinking outside the box,” but putting limitations on your problem-solving can help you think more freely and innovatively. For example, if someone tells you to make dinner, you may struggle to come up with a meal you don’t always cook. Yet if they ask you to make a hot dinner with three specific ingredients and two spices, you’ll more likely come up with something original. 

Putting yourself inside a box can help expand your thinking, whether that’s by telling yourself you need to include three charts in your presentation or giving yourself a strict word count for an article.

2. Switch up Your Routine

Routine can be a great productivity booster, but it also can get in the way of your creativity. So, switch up your routine for one project, day, or even an hour. This can be something as small as where you’re physically sitting when you do your work or something as big as your process for approaching projects. Challenging yourself to do something different will help you find creative ways to adapt to your new environment.

3. Challenge What’s Currently Working

Think about how you might expand or improve upon a current process. What would you do if you had more resources, whether that’s time, money, or another expert? What would you do if you had fewer resources? If this project was taking place at a different time of year? If the target audience was different? Imagining these different potential scenarios will force you to problem-solve and adjust for various (very possible!) circumstances. 

4. Find Inspiration

Creative thinking doesn’t happen in a bubble. It’s vital to ask for others’ opinions and ideas. Creative thinkers consider multiple perspectives and are curious about how others think. Ask your colleague about their work processes, whether it’s how they research for a client deliverable or how they approach meeting an external buyer. 

5. Ask for Feedback

The best way to improve a skill is to get feedback from others on how you’re using it — and you don’t need to set up a formal feedback session to do so. Instead, ask questions when you’re working with others about your work. Keep these questions open-ended and lead with curiosity instead of looking for a specific answer. What did they think of how you led the brainstorm? What would they have done differently? What strikes them about the final product? Keep an open mind and remember not to take the feedback personally. It’s an opportunity to grow, and growing those skills might just help you land your next job!

creative problem solving vs design thinking

Two Sigma Professional Skills Development Program

Level up your non-technical skills and learn how to approach problems, set goals, and communicate clearly.

Avg. Time: 5-6 hours

Skills you’ll build: Project planning, project management, relationship management, explaining analysis

Image credit: Canva

Zoe Kaplan

Related Posts

6 negotiation skills to level up your work life, how to build conflict resolution skills: case studies and examples, what is github uses and getting started, upskill with forage.

rate my placement logo

Build career skills recruiters are looking for.

International Journal of Learning, Teaching and Educational Research

  • Announcements
  • Editorial Board
  • Submit a Paper
  • Publication Ethics
  • ##PAPER TEMPLATE##
  • ##Retraction Policy##

Project-Based Learning in Fostering Creative Thinking and Mathematical Problem-Solving Skills: Evidence from Primary Education in Indonesia

The interdependence between the Project-Based Learning (PjBL) Model and the growth and enhancement of Creative Thinking and Mathematical Problem Solving Skills in Elementary Schools is unquestionable nowadays. Prior studies have yet to discover concrete evidence regarding the interdependence being discussed. This study highlighted cognitive abilities related to creative thinking and mathematics problem-solving by implementing the Project-Based Learning Model. This research was a quasi-experiment with a pretest-posttest control group design involving 43 students in the sixth grade of two elementary schools; data was collected through test and classroom observation, and then the data was analyzed using Multivariate Analysis of Variance (MANOVA). Conversely, students exposed to project-based learning models exhibit higher skill levels in creative thinking and problem-solving than those instructed using conventional learning models. The project-based learning model significantly impacted elementary school children’s creative thinking and mathematics problem-solving skills. These findings suggest that the Project-Based Learning Model is acceptable for instructors seeking to foster creativity in teaching mathematics at the primary school level in Indonesia or other countries with comparable settings.

https://doi.org/10.26803/ijlter.23.8.15

Adijaya, M. A., Widiana, I. W., Parwata, I. G. L. A., & Antara, I. G. W. S. (2023). Bloom’s taxonomy revision-oriented learning activities to improve procedural capabilities and learning outcomes. International Journal of Educational Methodology, 9(1), 261–270. https://doi.org/10.12973/ijem.9.1.261

Albab, U., Budiyono, & Indriati, D. (2020). Metacognition skills and higher order thinking skills (HOTS) in mathematics. Journal of Physics: Conference Series, 1613(1), Article 012017. https://doi.org/10.1088/1742-6596/1613/1/012017

Almulla, M. A. (2020). The effectiveness of the project-based learning (PBL) approach as a way to engage students in learning. SAGE Open, 10(3), 1–15. https://doi.org/10.1177/2158244020938702

Amerstorfer, C. M., & Münster-Kistner, C. F. V. (2021). Student perceptions of academic engagement and student-teacher relationships in problem-based learning. Frontiers in Psychology, 12, 1–18. https://doi.org/10.3389/fpsyg.2021.713057

Arends, R. I. (2013). Learning to teach (9th ed.). McGraw-Hill.

Arici, F. (2023). An examination of the effectiveness of problem-based learning method supported by augmented reality in science education. Journal of Computer Assisted Learning, 39(2), 446–476. https://doi.org/10.1111/jcal.12752

Astuti, P., Qohar, A., & Hidayanto, E. (2019). Proses berpikir siswa dalam menyelesaikan soal higher order thinking skills berdasarkan pemahaman konseptual dan prosedural [Students’ thinking process in solving higher order thinking skills questions based on conceptual and procedural understanding]. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 4(1), 117. https://doi.org/10.17977/jptpp.v4i1.11910

Astutik, S., Mahardika, I. K., Indrawati, Sudarti, & Supeno. (2020). HOTS student worksheet to identification of scientific creativity skill, critical thinking skill and creative thinking skill in physics learning. Journal of Physics: Conference Series, 1465(1), Article 012075. https://doi.org/10.1088/1742-6596/1465/1/012075

Aziz, A. A. M. A. (2021). The development of the HOTS mathematical problem-solving framework using the Bar model strategy: A need analysis. Review of International Geographical Education Online, 11(4), 972–981. https://doi.org/10.33403/rigeo.8006811

Babakr, Z. H., Mohamedamin, P., & Kakamad, K. (2019). Piaget’s cognitive developmental theory: Critical review. Education Quarterly Reviews, 2(3), 517–524. https://doi.org/10.31014/aior.1993.02.03.84

Benraghda, A. (2022). Self-assessment as a self-regulated learning approach in English oral presentations: College students’ choices and perceptions. Cogent Education, 9(1), Article 2123472. https://doi.org/10.1080/2331186X.2022.2123472

Cammies, C., Cunningham, J. A., & Pike, R. K. (2022). Not all Bloom and gloom: Assessing constructive alignment, higher order cognitive skills, and their influence on students’ perceived learning within the practical components of an undergraduate biology course. Journal of Biological Education, 58(3), 588–608. https://doi.org/10.1080/00219266.2022.2092191

Chen, J., Kolmos, A., & Du, X. (2021). Forms of implementation and challenges of PBL in engineering education: A review of literature. European Journal of Engineering Education, 46(1), 90–115. https://doi.org/10.1080/03043797.2020.1718615

Cheng, L., Wang, M., Chen, Y., Niu, W., Hong, M., & Zhu, Y. (2022). Design my music instrument: A project-based science, technology, engineering, arts, and mathematics program on the development of creativity. Frontiers in Psychology, 12, 1–8. https://doi.org/10.3389/fpsyg.2021.763948

C?r?t, D. K., & Aydemir, S. (2023). Online scratch activities during the COVID-19 pandemic: Computational and creative thinking. International Journal of Evaluation and Research in Education, 12(4), 2111–2120. https://doi.org/10.11591/ijere.v12i4.24938

Cook, S. C. (2020). Schema-based instruction for mathematical word problem solving: An evidence-based review for students with learning disabilities. Learning Disability Quarterly, 43(2), 75–87. https://doi.org/10.1177/0731948718823080

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publication.

Cruz, S., Lencastre, J. A., & Viseu, F. (2023). Heuristics and usability testing of a project-based learning online course: A case study with structural mathematical concepts. International Journal of Instruction, 16(3), 465–488. https://doi.org/10.29333/iji.2023.16325a

Diego-Mantecon, J. M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. ZDM – Mathematics Education, 53(5), 1137–1148. https://doi.org/10.1007/s11858-021-01303-9

Edwar, E., Putri, R. I. I., Zulkardi, Z., & Darmawijoyo, D. (2023). Developing a workshop model for high school mathematics teachers constructing HOTS questions through the Pendidikan Matematika Realistik Indonesia approach. Journal on Mathematics Education, 14(4), 603–626. https://doi.org/10.22342/jme.v14i4.pp603-626

Gunawardena, M. (2021). Scaffolding students’ critical thinking: A process not an end game. Thinking Skills and Creativity, 41, Article 100848. https://doi.org/10.1016/j.tsc.2021.100848

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, Article 101586. https://doi.org/10.1016/j.ijer.2020.101586

Handayani, A. D., & Iswantiningtyas, V. (2020). Javanese traditional games as a teaching and learning media to socialize and introduce mathematics since early age. Journal of Physics: Conference Series, 1521(3), 1–7. https://doi.org/10.1088/1742-6596/1521/3/032008

Hawari, A. D. M., & Noor, A. I. M. (2020). Project based learning pedagogical design in STEAM art education. Asian Journal of University Education, 16(3), 102–111. https://doi.org/10.24191/ajue.v16i3.11072

Hidayati, Y. M., Ngalim, A., Sutama, Arifin, Z., Abidin, Z., & Rahmawati, E. (2020). Level of combinatorial thinking in solving mathematical problems. Journal for the Education of Gifted Young Scientists, 8(3), 1231–1243. https://doi.org/10.17478/JEGYS.751038

Hujjatusnaini, N. (2020). The effect of blended project-based learning integrated with 21st-century skills on pre-service biology teachers’ higher-order thinking skills. Jurnal Pendidikan IPA Indonesia, 11(1), 104–118. https://doi.org/10.15294/jpii.v11i1.27148

Irdalisa, I., Zulherman, Z., Elvianasti, M., Widodo, W. S., & Hanum, E. (2024). Effectiveness of project-based learning on STEAM-based student’s worksheet analysis with ecoprint technique. International Journal of Educational Methodology, 10(1), 123–135. https://doi.org/10.12973/ijem.10.1.923

Jiang, B., & Li, Z. (2021). Effect of Scratch on computational thinking skills of Chinese primary school students. Journal of Computers in Education, 8(4), 505–525. https://doi.org/10.1007/s40692-021-00190-z

Jiang, Y., Xu, N., Xu, S., & Wang, S. (2022). The enlightenment of Piaget’s theory to Chinese primary school education. Advances in Social Science, Education and Humanities Research, 670, 878–882. https://doi.org/10.2991/assehr.k.220704.158

Junianto, J., & Wijaya, A. (2019). Developing students’ mathematical literacy through problem based learning. Journal of Physics: Conference Series, 1320(1), Article 012035. IOP Publishing. https://doi.org/10.1088/1742-6596/1320/1/012035

Karan, E. (2022). Enhancing students’ problem-solving skills through project-based learning. Journal of Problem Based Learning in Higher Education, 10(1), 74–87. https://doi.org/10.54337/ojs.jpblhe.v10i1.6887

Kemendikbudristek. (2023). Laporan PISA Kemendikbudristek [PISA report of the Ministry of Education and Culture]. PISA 2022 Dan Pemulihan Pembelajaran Indonesia (pp. 1–25). https://balaibahasariau.kemdikbud.go.id/wpcontent/uploads/2023/12/LAPORAN-PISA-KEMENDIKBUDRISTEK.pdf

Khalid, M., Saad, S., Hamid, S. R. A., Abdullah, M. R., Ibrahim, H., & Shahrill, M. (2020). Enhancing creativity and problem solving skills through creative problem solving in teaching mathematics. Creativity Studies, 13(2), 270–291. https://doi.org/10.3846/cs.2020.11027

Kharisma, F. N., Susilowati, S. M. E., & Ridlo, S. (2019). The effective learning models in developing problem-solving skills. KnE Social Sciences, 3(18), 595–604 https://doi.org/10.18502/kss.v3i18.4750

Kim, H. W., & Kim, M. K. (2021). A case study of children’s interaction types and learning motivation in small group project-based learning activities in a mathematics classroom. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), em2051. https://doi.org/10.29333/ejmste/11415

Kurniawan, E. S., Mundilarto, M., & Istiyono, E. (2024). Improving student higher order thinking skills using Synectic-HOTS-oriented learning model. International Journal of Evaluation and Research in Education, 13(2), 1132–1140. https://doi.org/10.11591/ijere.v13i2.25002

Lafmejani, A. Q. (2022). Cognitive evolution of the “Human” concept and its adaptation to Piaget’s theory. Caspian Journal of Neurological Sciences, 8(4), 222–233. https://doi.org/10.32598/CJNS.4.31.355.1

Lazi?, B. D., Kneževi?, J. B., & Mari?i?, S. M. (2021). The influence of project-based learning on student achievement in elementary mathematics education. South African Journal of Education, 41(3), Article 1909. https://doi.org/10.15700/saje.v41n3a1909

Leasa, M. (2020). The effect of learning styles on the critical thinking skills in natural science learning of elementary school students. Elementary Education Online, 19(4), 2086–2097. https://doi.org/10.17051/ilkonline.2020.763449

Lee, J. S., & Galindo, E. (2021). Examining project-based learning successes and challenges of mathematics preservice teachers in a teacher residency program: Learning by doing. Interdisciplinary Journal of Problem-Based Learning, 15(1), 1–20. https://doi.org/10.14434/ijpbl.v15i1.28786

Li, Z. (2022). Assessment of scientific thinking and creativity in an electronic educational environment. International Journal of Science Education, 44(3), 463–486. https://doi.org/10.1080/09500693.2022.2032863

Lin, X. (2021). Investigating the unique predictors of word-problem solving using meta-analytic structural equation modeling. Educational Psychology Review, 33(3), 1097?1124. https://doi.org/10.1007/s10648-020-09554-w

Liu, M. (2023). Bayesian optimization and ensemble learning algorithm combined method for deformation prediction of concrete dam. Structures, 54, 981–993. https://doi.org/10.1016/j.istruc.2023.05.136

Lu, X., & Kaiser, G. (2022). Creativity in students’ modelling competencies: Conceptualisation and measurement. Educational Studies in Mathematics, 109(2), 287–311. https://doi.org/10.1007/s10649-021-10055-y

MacLeod, M., & Veen, J. T. V. D. (2020). Scaffolding interdisciplinary project-based learning: A case study. European Journal of Engineering Education, 45(3), 363–377. https://doi.org/10.1080/03043797.2019.1646210

Marbán, J. M., Radwan, E., Radwan, A., & Radwan, W. (2021). Primary and secondary students’ usage of digital platforms for mathematics learning during the COVID19 outbreak: The case of the Gaza strip. Mathematics, 9(2), Article 110. https://doi.org/10.3390/math9020110

Menggo, S., Pramesti, P. D. M. Y., & Krismayani, N. W. (2023). Integrating project-based learning in preparing students’ interpersonal communication skills on speaking courses in Indonesia. International Journal of Learning, Teaching and Educational Research, 22(9), 219–240. https://doi.org/10.26803/ijlter.22.9.12

Meyer, M. W., & Norman, D. (2020). Changing design education for the 21st century. The Journal of Design, Economics, and Innovation, 6(1), 13–49. https://doi.org/10.1016/j.sheji.2019.12.002

Michalsky, T. (2024). Metacognitive scaffolding for preservice teachers’ self-regulated design of higher order thinking tasks. Heliyon, 10(2), e2480. https://doi.org/10.1016/j.heliyon.2024.e24280

Moma, L. (2015). Pengambangan instrumen kemampuan berpikir kreatif matematis untuk siswa SMP [Development of mathematical creative thinking instruments for junior high school students]. Delta-Pi: Jurnal Matematika Dan Pendidikan Matematika, 4(1), 27–41. https://doi.org/10.33387/dpi.v4i1.142

Morteza, T., & Moghaddam, M. Y. (2017). On the plausibility of Bloom’s higher order thinking strategies on learner autonomy: The paradigm shift. Asian-Pacific Journal of Second and Foreign Language Education, 2, Article 14. https://doi.org/10.1186/s40862-017-0037-8

Munar, A., Winarti, W., Nai’mah, N., Rezieka, D. G., & Aulia, A. (2022). Improving higher order thinking skill (HOTs) in early children using picture story book. AL-ISHLAH: Jurnal Pendidikan, 14(3), 4611–4618. https://doi.org/10.35445/alishlah.v14i3.2224

Muttaqin, H., Susanto, Hobri, & Tohir, M. (2021). Students’ creative thinking skills in solving mathematics higher order thinking skills (HOTs) problems based on online trading arithmetic. Journal of Physics: Conference Series, 1832(1), Article 012036. https://doi.org/10.1088/1742-6596/1832/1/012036

Ndiung, S., Sariyasa, Jehadus, E., & Apsari, R. A. (2021). The effect of treffinger creative learning model with the use RME principles on creative thinking skill and mathematics learning outcome. International Journal of Instruction, 14(2), 873–888. https://doi.org/10.29333/iji.2021.14249a

Newton, K. J. (2020). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. Journal of Experimental Education, 88(4), 503–515. https://doi.org/10.1080/00220973.2019.1586629

Nizaruddin, N., & Kusmaryono, I. (2023). Transforming students’ pseudo-thinking into real thinking in mathematical problem solving. International Journal of Educational Methodology, 9(3), 477–491. https://doi.org/10.12973/ijem.9.3.477

Nuryadin, A., Karlimah, K., Lidinillah, D. A. M., & Apriani, I. F. (2023). Blended learning after the pandemic: The flipped classroom as an alternative learning model for elementary classrooms. Participatory Educational Research, 10(3), 209–225. https://doi.org/10.17275/per.23.52.10.3

OECD (Organisation for Economic Co-operation and Development). (2024). PISA results 2022 (Volume III) – Factsheets: Indonesia. OECD. https://www.oecd.org/en/publications/pisa-results-2022-volume-iii-factsheets_041a90f1-en/indonesia_a7090b49-en.html

Pakpahan, F. H., & Saragih, M. (2022). Theory of cognitive development by Jean Piaget. Journal of Applied Linguistics, 2(2), 55–60. https://doi.org/10.52622/joal.v2i2.79

Palinussa, A. L. (2013). Students’ critical mathematical thinking skills and character: Experiments for junior high school students through realistic mathematics education culture-based. Journal on Mathematics Education, 4(1), 75–94. https://doi.org/10.22342/jme.4.1.566.75-94

Piaget, J. (1936). Origins of intelligence in the child. Routledge & Kegan Paul.

PISA. (2023). PISA 2022 results (Volume I and II) – Country notes: Indonesia. https://www.oecd.org/en/publications/pisa-2022-results-volume-i-and-ii-country-notes_ed6fbcc5-en/indonesia_c2e1ae0e-en.html

Prastiti, T. D., Tresnaningsih, S., Mairing, J. P., & Azkarahman, A. R. (2020). HOTS problem on function and probability: Does it impact to students’ mathematical literacy in Universitas Terbuka? Journal of Physics: Conference Series, 1613(1), Article 012003. https://doi.org/10.1088/1742-6596/1613/1/012003

Puccio, G., Lohiser, A., & Seemiller, C. (2021). Understanding convergent thinking: Developing effective critical thinking. In Creative problem solving: A 21st century workplace skill. SAGE Publications. https://doi.org/10.4135/9781071865637

Purwaningsih, E., Sari, A. M., Yuliati, L., Masjkur, K., Kurniawan, B. R., & Zahiri, M. A. (2020). Improving the problem-solving skills through the development of teaching materials with STEM-PjBL (science, technology, engineering, and mathematics-project based learning) model integrated with TPACK (technological pedagogical content knowledge). Journal of Physics: Conference Series, 1481(1), Article 012133. https://doi.org/10.1088/1742-6596/1481/1/012133

Putri, N., Rusdiana, D., & Suwarma, I. R. (2020). Enhanching physics students’ creative thinking skills using CBL model implemented in STEM in vocational school. Journal of Physics: Conference Series, 1521, Article 042045. https://doi.org/10.1088/1742-6596/1521/4/042045

Rahman, M. S., Juniati, D., & Manuharawati, M. (2023). The quality of mathematical proficiency in solving geometry problem: Difference cognitive independence and motivation. Pegem Journal of Education and Instruction, 13(3), 255–266. https://doi.org/10.47750/pegegog.13.03.27

Rehman, N., Zhang, W., Mahmood, A., Fareed, M. Z., & Batool, S. (2023). Fostering twenty-first century skills among primary school students through math project-based learning. Humanities and Social Sciences Communications, 10(1), Article 424. https://doi.org/10.1057/s41599-023-01914-5

Roble, D. B., Lomibao, L. S., & Luna, C. A. (2021). Developing students’ creative constructs in mathematics with problem-based (PB) and problem posing (PP) tasks. Canadian Journal of Family and Youth, 13(2), 82–94. https://doi.org/10.29173/cjfy29672

Rosidin, U., Suyatna, A., & Abdurrahman, A. (2019). A combined HOTS-based assessment/STEM learning model to improve secondary students’ thinking skills: A development and evaluation study. Journal for the Education of Gifted Young Scientists, 7(3), 435–448. https://doi.org/10.17478/jegys.518464

Rusilowati, A., Negoro, R. A., Aji, A. P., & Subali, B. (2023). Development of waves critical thinking test: Physics essay test for high school student. European Journal of Educational Research, 12(4), 1781–1794. https://doi.org/10.12973/eu-jer.12.4.1781

Safie, N., & Zakaria, S. (2023). Examining the effectiveness of thinking maps usage by analysing students’ achievement in mathematics subject. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(1), 197–209. https://doi.org/10.37934/ARASET.31.1.197209

Sahudra, T. M., Ary, K. K., Ramadhani, D., Asnawi, A., & Handrianto, C. (2021). The impact of project-based flipped learning model on the technological pedagogical content knowledge skill of prospective teachers. Sustainability (Switzerland), 13(5), Article 2606. https://doi.org/10.3390/su13052606

Saldo, I. J. P., & Walag, A. M. P. (2020). Utilizing problem-based and project-based learning in developing students’ communication and collaboration skills in physics. American Journal of Educational Research, 8(5), 232–237. https://doi.org/10.12691/education-8-5-1

Samsudin, M. A., Jamali, S. M., Zain, A. N. M., & Ebrahim, N. A. (2020). The effect of STEM project based learning on self-efficacy among high-school physics students. Journal of Turkish Science Education, 17(1), 94–108. https://doi.org/10.36681/tused.2020.15

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303?324. https://doi.org/10.1007/s10649-020-09973-0

Schleicher, A. (2018). PISA 2018 insights and interpretations. OECD. Available at https://www.oecd.org/content/dam/oecd/en/about/programmes/edu/pisa/publications/national-reports/pisa-2018/PISA%202018%20Insights%20and%20Interpretations%20FINAL%20PDF.pdf

Serin, H. (2023). Teaching mathematics: The role of project-based learning. International Journal of Social Sciences & Educational Studies, 10(2), Article 28. https://doi.org/10.23918/ijsses.v10i2p378

Setianingsih, R., Sa’dijah, C., As’ari, A. R., & Muksar, M. (2017). Investigating fifth-grade students’ construction of mathematical knowledge through classroom discussion. International Electronic Journal of Mathematics Education, 12(4), 383–396. https://doi.org/10.29333/iejme/619

Shidqi, L., Trisniawati, T., & Rhosyida, N. (2023). The development of kobatar learning media for learning mathematics in elementary school. Advances in Mobile Learning Educational Research, 3(2), 886–892. https://doi.org/10.25082/amler.2023.02.015

Simonton, K. L. (2021). Project-based learning and its potential in physical education: An instructional model inquiry. Curriculum Studies in Health and Physical Education, 12(1), 36–52. https://doi.org/10.1080/25742981.2020.1862683

Sofiyan, S., Amalia, R., & Suwardi, A. B. (2020). Development of mathematical teaching materials based on project-based learning to improve students’ HOTS and character. Journal of Physics: Conference Series, 1460(1), Article 012006. https://doi.org/10.1088/1742-6596/1460/1/012006

Son, A. L., Darhim, D., & Fatimah, S. (2020). Students’ mathematical problem-solving ability based on teaching models intervention and cognitive style. Journal on Mathematics Education, 11(2), 209–222. https://doi.org/10.22342/jme.11.2.10744.209-222

Suanto, E., Maat, S. M., & Zakaria, E. (2023). The effectiveness of the implementation of three dimensions geometry KARA module on higher order thinking skills (HOTS) and motivation. International Journal of Instruction, 16(3), 95–116. https://doi.org/10.29333/iji.2023.1636a

Sukkeewan, P., Songkram, N., & Nasongkhla, J. (2024). Development and validation of a reliable and valid assessment tool for measuring innovative thinking in vocational students. International Journal of Educational Methodology, 10(1), 35–44. https://doi.org/10.12973/ijem.10.1.835

Suratno, S., Wahono, B., Chang, C. Y., Retnowati, A., & Yushardi, Y. (2020). Exploring a direct relationship between students’ problem-solving abilities and academic achievement: A STEM education at a coffee plantation area. Journal of Turkish Science Education, 17(2), 211–224. https://doi.org/10.36681/tused.2020.22

Syahriridani, M., Susilo, H., & Ibrohim, I. (2022). Developing problem based learning through lesson study. Journal of Learning Improvement and Lesson Study, 1(2), 15–22. https://doi.org/10.24036/jlils.v1i2.20

Syamsuddin, A., Juniati, D., & Siswono, T. Y. E. (2020). Understanding the problem solving strategy based on cognitive style as a tool to investigate reflective thinking process of prospective teacher. Universal Journal of Educational Research, 8(6), 2614?2620. https://doi.org/10.13189/ujer.2020.080644

Tamur, M., Ndiung, S., Nurjaman, A., & Jerito, P. (2020). Do differences in measured mathematical abilities moderate the effectiveness of the realistic mathematics education approach? Meta-analysis studies. Jurnal Math Educator Nusantara, 7(1), 13–26. https://doi.org/10.29407/jmen.v7i1.15736

Tanjung, H. S., Nababan, S. A., Sa’dijah, C., & Subanji, S. (2020). Development of assessment tools of critical thinking in mathematics in the context of HOTS. Advances in Mathematics: Scientific Journal, 9(10), 8659–8667. https://doi.org/10.37418/amsj.9.10.91

Tanujaya, B., Prahmana, R. C. I., & Mumu, J. (2021). Mathematics instruction to promote mathematics higher-order thinking skills of students in Indonesia: Moving forward. TEM Journal, 10(4), 1945–1954. https://doi.org/10.18421/TEM104-60

Vink, I. C. D., Hornstra, L., & Kroesbergen, E. H. (2023). Latent profile analysis of working memory: Relations with creativity and academic achievement. Creativity Research Journal, 1–17. https://doi.org/10.1080/10400419.2023.2183323

Wang, X. M. (2023). An online progressive peer assessment approach to project-based learning: A constructivist perspective. Educational Technology Research and Development, 71(5), 2073–2101. https://doi.org/10.1007/s11423-023-10257-6

Widiatsih, A., Wardani, D. A. R., Royhana, U., Djamali, F., & Septory, B. J. (2020). The development of mathematical problems based on higher order thinking skills (HOTS) on comparative material by implementing PBL and its effect on the teacher’s creative thinking skill. Journal of Physics: Conference Series, 1538(1), Article 012110. https://doi.org/10.1088/1742-6596/1538/1/012110

Widyaningsih, S. W., & Yusuf, I. (2019). The project-based learning model is based on simple teaching tools and critical thinking skills. Kasuari: Physics Education Journal (KPEJ), 1(1), 12–21. https://doi.org/10.37891/kpej.v1i1.33

Wijaya, T. T., Zhou, Y., Ware, A., & Hermita, N. (2021). Improving the creative thinking skills of the next generation of mathematics teachers using dynamic mathematics software. International Journal of Emerging Technologies in Learning, 16(13), 212–226. https://doi.org/10.3991/ijet.v16i13.21535

Zubaidah, S., Fuad, N. M., Mahanal, S., & Suarsini, E. (2017). Improving creative thinking skills of students through differentiated science inquiry integrated with a mind map. Journal of Turkish Science Education, 14(4), 77–91. https://doi.org/10.12973/tused.10214a

Zulyusri, Z., Elfira, I., Lufri, L., & Santosa, T. A. (2023). Literature study: Utilization of the PjBL model in science education to improve creativity and critical thinking skills. Jurnal Penelitian Pendidikan IPA, 9(1), 133–143. https://doi.org/10.29303/jppipa.v9i1.2555

  • There are currently no refbacks.

e-ISSN: 1694-2116

p-ISSN: 1694-2493

IMAGES

  1. Relationship between creative problem solving and design thinking

    creative problem solving vs design thinking

  2. The Design Thinking Process

    creative problem solving vs design thinking

  3. Visualizing the 4 Essentials of Design Thinking

    creative problem solving vs design thinking

  4. Design Thinking vs. Problem Solving

    creative problem solving vs design thinking

  5. What is Design Thinking and How Important It is in Product?

    creative problem solving vs design thinking

  6. Infographic: Harness the Power of Design Thinking to Retool How You

    creative problem solving vs design thinking

VIDEO

  1. problem solving vs Indonesia🇮🇩

  2. Traditional Thinking vs Design Thinking

  3. Problem solving vs Experience#trendingshorts

  4. Coaching ? Problem Solving vs Problem Prevention

  5. Design Thinking Activities

  6. Be a problem SOLVER, not a problem FINDER!

COMMENTS

  1. What Is Creative Problem-Solving & Why Is It Important?

    Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

  2. Design Thinking vs Problem-Solving: Understanding the Differences

    Design thinking is more about creating new solutions, problem solving is more about finding solutions to existing problems. Design thinking starts by understanding the user's needs and then using that understanding to create new and innovative solutions. Problem-solving, on the other hand, is focused on finding a solution to a specific problem.

  3. Exploring the Art of Innovation: Design Thinking vs. Creative Problem

    In practice, the choice between design thinking and creative problem solving depends on the nature of the problem, the goals of the problem-solving process, and whether a user-centered approach is a primary consideration. Both approaches can be valuable tools for fostering innovation and finding solutions to complex challenges.

  4. Design thinking, explained

    Solve any business problem with this approach. Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb.. At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second ...

  5. Creative Problem Solving

    Creative thinking and problem solving are core parts of user experience (UX) design. Note: the abbreviation "CPS" can also refer to cyber-physical systems. Creative problem solving might sound somewhat generic or broad. However, it's an ideation approach that's extremely useful across many industries.

  6. What Is Design Thinking & Why Is It Important?

    The first, and arguably most important, step of design thinking is building empathy with users. By understanding the person affected by a problem, you can find a more impactful solution. On top of empathy, design thinking is centered on observing product interaction, drawing conclusions based on research, and ensuring the user remains the focus ...

  7. Design Thinking: A Creative Approach to Problem Solving

    Abstract. Design thinking—understanding the human needs related to a problem, reframing the problem in human-centric ways, creating many ideas in brainstorming sessions, and adopting a hands-on approach to prototyping and testing—offers a complementary approach to the rational problem-solving methods typically emphasized in business schools.

  8. Design Thinking: Solve problems with creative design

    Design thinking is an agile problem-solving framework that uses iterative processes. It focuses on understanding and addressing the needs of users throughout the problem-solving journey. Design thinking isn't just about finding quick solutions; it's about addressing existing problems with a user-focused approach.

  9. What is design thinking?

    Design thinking is a systemic, intuitive, customer-focused problem-solving approach that organizations can use to respond to rapidly changing environments and to create maximum impact. (6 pages) Design and conquer: in years past, the word "design" might have conjured images of expensive handbags or glossy coffee table books.

  10. What Exactly Is Design Thinking? [Updated Guide for 2024]

    Design thinking is an approach used for practical and creative problem-solving. It is based heavily on the methods and processes that designers use (hence the name), but it has actually evolved from a range of different fields—including architecture, engineering and business.

  11. Design Thinking vs. Traditional Problem-Solving Methods

    Congratulations! 🥳 Your problem-solving approach aligns more with Design Thinking🎨. You prioritize empathy, creativity, iteration, and human-centeredness, allowing you to understand user needs and explore innovative solutions. If you selected mostly B's: Well done! 👏 Your approach leans towards Traditional Problem-Solving 📊.

  12. PDF Creative Problem Solving

    CPS is a comprehensive system built on our own natural thinking processes that deliberately ignites creative thinking and produces innovative solutions. Through alternating phases of divergent and convergent thinking, CPS provides a process for managing thinking and action, while avoiding premature or inappropriate judgment. It is built upon a ...

  13. Creative Problem Solving

    Creative problem solving (CPS) is a way of solving problems or identifying opportunities when conventional thinking has failed. It encourages you to find fresh perspectives and come up with innovative solutions, so that you can formulate a plan to overcome obstacles and reach your goals. In this article, we'll explore what CPS is, and we'll ...

  14. What is the Design Thinking? Definition, Importance ...

    Design Thinking is defined as a human-centered approach to innovation and problem-solving that prioritizes understanding the needs of users, generating creative solutions, and iterating through rapid prototyping and testing. Learn more about design thinking importance, examples and process.

  15. Design Thinking vs. Traditional Problem-Solving

    1. Design Thinking: Embracing Empathy and Creativity: Design Thinking is a customer-centric approach that places emphasis on empathy, active listening, and iterative problem-solving. By gaining a deep understanding of end-users' needs, aspirations, and pain points, businesses can create innovative solutions that truly resonate with their ...

  16. Design Thinking vs. Problem Solving

    What's the difference between design thinking and problem solving? What do you do in each? Get the Design Thinking Guidebook: https://thefutur.com/design-thi...

  17. How to solve problems with design thinking

    The proof is in the pudding: From 2013 to 2018, companies that embraced the business value of design had TSR that were 56 percentage points higher than that of their industry peers. Check out these insights to understand how to use design thinking to unleash the power of creativity in strategy and problem solving. Designing out of difficult times.

  18. How to solve problems using the design thinking process

    Summary. The design thinking process is a problem-solving design methodology that helps you develop solutions in a human-focused way. Initially designed at Stanford's d.school, the five stage design thinking method can help solve ambiguous questions, or more open-ended problems. Learn how these five steps can help your team create innovative ...

  19. What Is Creative Thinking? Definition and Examples

    1. Put Yourself in a Box. Creative thinking is about "thinking outside the box," but putting limitations on your problem-solving can help you think more freely and innovatively. For example, if someone tells you to make dinner, you may struggle to come up with a meal you don't always cook.

  20. Design Thinking in Action: Tackling Wicked Problems with Creative

    Design Thinking: A Creative and User-Centric Approach to Problem Solving In today's complex and rapidly changing world, problem-solving is more important than ever. Design thinking, a creative ...

  21. Project-Based Learning in Fostering Creative Thinking and Mathematical

    The project-based learning model significantly impacted elementary school children's creative thinking and mathematics problem-solving skills. These findings suggest that the Project-Based Learning Model is acceptable for instructors seeking to foster creativity in teaching mathematics at the primary school level in Indonesia or other ...