• Biochemistry and Molecular Biology
  • Biostatistics
  • Environmental Health and Engineering
  • Epidemiology
  • Health Policy and Management
  • Health, Behavior and Society
  • International Health
  • Mental Health
  • Molecular Microbiology and Immunology
  • Population, Family and Reproductive Health
  • Program Finder
  • Admissions Services
  • Course Directory
  • Academic Calendar
  • Hybrid Campus
  • Lecture Series
  • Convocation
  • Strategy and Development
  • Implementation and Impact
  • Integrity and Oversight
  • In the School
  • In the Field
  • In Baltimore
  • Resources for Practitioners
  • Articles & News Releases
  • In The News
  • Statements & Announcements
  • At a Glance
  • Student Life
  • Strategic Priorities
  • Inclusion, Diversity, Anti-Racism, and Equity (IDARE)
  • What is Public Health?

A Top Vaccine Expert Answers Important Questions About a COVID-19 Vaccine

The covid-19 vaccine is on track to become the fastest-developed vaccine in history. that doesn’t mean the process is skipping any critical steps..

Understanding what we know—and still don’t—about a vaccine for COVID-19 can help shed light on its safety and efficacy.

Ruth Karron, MD , is one of the top vaccine experts in the world, serving on vaccine committees for the CDC, the WHO, and the FDA. Karron, who leads the  Center for Immunization Research  at the Johns Hopkins Bloomberg School of Public Health, recently spoke with  Josh Sharfstein  and answered a list of important questions about the COVID-19 vaccine.

How close are we to a vaccine?

There are some very encouraging developments. We have a few vaccines now that will go into Phase 3 clinical trials, also known as efficacy trials. That means that those vaccines have passed certain goalposts in terms of initial evaluations of safety and immune response such that they can be evaluated in larger trials.

We know that these vaccines are promising, but we don’t yet know if they are going to work. That’s what the purpose of an efficacy trial is—as well as to provide a broader assessment of safety of the vaccine in a large number of people.

Tell me more about these efficacy trials. What do they actually entail?

They involve large numbers of people: In these particular trials for COVID vaccines, there are going to be about 30,000 people enrolled per trial. Individuals are given a vaccine, and then they are followed both to make sure that the side effects from the vaccine are acceptable and to see whether they develop a SARS-CoV-2 infection along with some symptoms.

These are placebo-controlled trials, meaning that some individuals will get a COVID vaccine and some will get a placebo. Then, the rates of disease will be compared in the people who got placebo and the people who got the vaccine to determine the efficacy of the vaccine.

How successful does a vaccine have to be in one of these studies for it to be considered effective?

Recently, the FDA issued guidance about the development of COVID vaccines. The guidance that they issued to vaccine manufacturers— this is a document that is available to the general public —is that a vaccine would need to be at least 50% effective. This means that an individual who was vaccinated would be 50% less likely to get COVID disease—or whatever the particular endpoint is that’s measured in the trial—than individuals that weren’t vaccinated.

This is a reasonable goal for a number of reasons. Typically, the more severe a disease is, the better chance a vaccine has of preventing that disease. So, a vaccine that’s 50% effective against mild COVID disease—which might be the endpoint that’s measured in a clinical trial, or  any  evidence of COVID infection with any symptom, which is how a lot of trials are designed—might be more effective against severe disease. 

When you have a disease that’s as prevalent as COVID—and if we think about what the U.S. has experienced in the past several months in terms of severe disease and death—even if we were only able to cut those numbers in half, that would be a major achievement.

How long would a vaccine be effective for? If you get 50% effectiveness or more, that’s good news. But if it’s only effective for a few months, that’s not such good news. 

Time will tell for that. The short answer is that we don’t yet know. Even for the data we have on the vaccine so far in smaller studies, we haven’t yet had the opportunity to follow individuals for very long. The very first people who got the very first vaccine were immunized in March and it’s only July. So, we don’t know very much about the durability of the immune response in people.

Our hope would be [that protection would last] at least a year or more and then people might need boosters.

It’s also possible that a vaccine might not entirely protect against mild disease. So you might actually experience mild disease and then have a boost in your immune response and not suffer severe disease. From a public health perspective, that would be completely acceptable. If we turned a severe disease not into “ no disease ” but into mild disease, that would be a real victory.

Let’s talk about safety. What are they looking for in a 30,000-person study to figure out whether a vaccine is considered safe enough to use?

Every person who is enrolled in the trial will complete information about the kinds of acute symptoms that you might expect following an infection. People will need to provide information about swelling, redness, tenderness around the injection site, fever, and any other symptoms they might experience in the three to seven days following vaccination.

More long term, people will be looking to make sure that when COVID disease is experienced, there’s not any evidence of more severe disease with vaccination [which is known as disease enhancement]. 

There was a lot of discussion as these vaccines were being developed of a concern about disease enhancement. This is based on some animal models—not with SARS-CoV-2 but with other coronaviruses. We haven’t seen any evidence of enhanced disease thus far and there are a number of scientific reasons why we don’t think it should occur with these vaccines. But, of course, it’s something we would still watch for very carefully just as with any other safety signal.

How should we think about the possibility of adverse effects that might come up after the period of the vaccine trial?

There are a couple of things to mention about that, and one is that individuals with these trials will be followed for a year or longer. It may be that a vaccine is either approved for emergency use or licensed before all of that long-term follow up is completed. Nevertheless, companies will be obligated to complete that follow up and report those results back to the FDA. 

It’s important to enroll older adults in these studies. All of these large efficacy trials will be stratified so there will be some younger adults and some older adults enrolled. 

In addition, it’s very likely—and this would not just happen with COVID vaccines, but whenever the FDA licenses vaccines—that there is an obligation for post-licensure assessments. If a COVID vaccine is licensed, the companies will work with the FDA to determine exactly what kind of post-licensure safety assessments will need to be done.

COVID affects certain populations more than others—particularly older adults and people with chronic illnesses. What do these studies need [in order] to address the question of whether a vaccine will be protective for them?

I also think it will be important to enroll older adults across an age span. A 65-year-old is not the same as an 85-year-old. Also, a healthy older adult is not the same as a frail older adult who might be living in a care facility. 

We’ll need some information about diverse elderly populations in order to think about how to allocate vaccines. There may also be other alternatives for older adults if they don’t respond well to vaccines. There’s a lot of work going on on development of monoclonal antibodies [ learn more about lab-produced antibodies in a recent podcast episode with Arturo Casadevall ] as an alternative for groups that don’t respond well to vaccines such as elderly, frail adults.

Let’s say there are 30,000 patients in the study and only a few hundred who are over 80 years old. What can you learn about a relatively small population of much older adults that would be informative about that group?

We may not have a large enough number of people in that subgroup to directly look at efficacy of a vaccine. But we might have enough to look at the immune response—the antibody response, for example, of a vaccine. 

If, in the course of these trials, we can determine a correlative protection—for example, a laboratory measure like a level of a particular kind of antibody that correlates with protection against COVID disease—we can at least look at the immune responses in that subset of very elderly and decide if they are the same or different than the younger groups’. If they are the same, we may be more comfortable making the leap to say that it’s likely those individuals will also be protected by the vaccine.

So, we will learn more from a vaccine trial than just whether or not a vaccine works. We’re going to find out, perhaps, what predicts whether the vaccine works. That information might help us understand—without having to do a whole new trial—who might be protected by a vaccine.

It’s certainly a hope. 

The majority of vaccines that we use today don’t have such a marker of protection and they’re very effective. Just because we can’t detect a marker doesn’t mean that a vaccine is not effective. It means that we’re not smart enough to figure out what that marker should be. 

We really hope that there will be such a marker of protection because then we can link that—and, in FDA speak, that’s called “bridging”—to another population where we can just look at that marker of immunity rather than doing a whole efficacy trial.

How should we think about the need for racial and ethnic diversity in these clinical trials?

It’s critically important that we have racial and ethnic diversity. 

We know that COVID causes increased rates of severe disease in Latinx and Black populations and in Native American populations. We will certainly want to be able to offer these COVID vaccines to these high-risk populations and encourage their use. But we need to know how well these vaccines work in these populations—if different vaccines work differently—so that we can offer the most effective vaccines. 

It would not be an understatement to say that there can be a measure of distrust from some communities that have experienced discrimination from the health care system. How does that play into vaccine research?

It’s really important to engage those communities in a number of ways. One way is to engage local leaders early in the process. Lay leaders and leaders of faith communities can have focus groups to find out what their concerns are and how those can be allayed. 

I think a very important issue that has been raised by some people who might potentially volunteer for some of these trials has to do with eventual access. People want to have some sense that if they participate in a trial, not only might they have access to the vaccine at the end of that trial, but their families and their communities would, too. Ensuring access among these high risk and vulnerable communities is really critical. 

A clear policy decision to make sure that a vaccine is widely available without charge might actually help with the studies to prove whether or not that vaccine is safe and effective?

That’s absolutely the case. It’s great that you brought up the “without charge” piece, too, because a vaccine that’s made available but costs something to the individual may not be used. Particularly for people who don’t have health insurance or people who are undocumented. It has to be broadly and freely available.

Let’s talk about other specific populations. One of those is pregnant women. We know that they can certainly get COVID-19 and that there are some signs that they can have a more severe course. How do you think about the issue of pregnant women in vaccine studies?

I’ve done some work in this area —particularly with  Ruth Faden  and  Carleigh Krubiner  in the  Berman Institute of Bioethics —specifically related to ensuring that pregnant women are considered and included in vaccine development and implementation for vaccines against epidemic and pandemic diseases. 

When thinking about trials, there needs to be a justification for  excluding  pregnant women from trials rather than a justification for  including  them. The justification often is—and certainly is the case with these early COVID vaccines—that we don’t know enough yet about the vaccine or the vaccine platform or the safety of the vaccine to do a study in pregnant people. 

With the mRNA vaccine, for example, [the type of vaccine being considered for COVID-19] we don’t currently have a licensed mRNA vaccine. It’s a new platform and we’re just learning about the safety of that platform so it wouldn’t have been appropriate to include pregnant women in the early stage trials. 

But these 30,000-person studies are going to be really big studies. They will certainly enroll people of child-bearing potential. And even though there’s what we call an exclusion criterion—women are not supposed to be pregnant at the time they are enrolled, and usually women of child-bearing potential will take a pregnancy test prior to enrollment and immunization—we know from previous experience that it’s quite likely that some women will become pregnant in the months immediately following immunization. It happens quite frequently. So, it’s important for companies and the government to anticipate that this will be the case and to think about how they will systematically collect data from women who do become pregnant during these trials. 

It’s not that the data needs to be interpreted cautiously—because pregnant women aren’t being formally randomized and we don’t have that kind of trial design—but there are things that could be learned and it’s important to think now about how to collect those data. It’s also important to think about how pregnant women could be directly included in both trials and deployment later down the road. 

What about young children who are less likely to get severe disease? Would your approach to clinical trials be different?

Yes. I think we need to learn a bit more about the epidemiology in children. Fortunately, children don’t seem to suffer from acute COVID disease at the rates that adults do. But we need to learn more about that and we also need to learn from our trials in adults before we make decisions about how and whether children will be included in vaccine trials. 

Once we have a vaccine that has made it through these various stages and we’re ready to start immunizing people outside of a pure clinical trial, how close are we to really getting the benefit of the vaccine? How does all the work it takes to develop a vaccine compare to what comes next?

The best vaccine in the world won’t work if it isn’t used. 

Use has two parts to it: One is availability and access, and the other part is acceptance.

We need to think about what kind of infrastructure we should be planning now for what we’re going to need to deliver this vaccine. We’ll set priorities; certainly not everyone is going to get a vaccine all at once. But certainly, over time we will expect that all adults will receive the vaccine and perhaps children. So we’ll need to have systems in place that can deliver the vaccine. At the same time, we need to make sure that the vaccine is acceptable. We need to communicate the importance of vaccination to the public and address their concerns so that we can not only be able to deliver vaccines, but have those be accepted by the public.

So, there’s a lot of work to be done. But this isn’t science fiction: We are really on a path to a vaccine for a brand new infectious disease.

Yes. If you think back to the fact that in January, we barely knew what this virus was, and here we are, seven months later, embarking on efficacy trials, it’s really a remarkable accomplishment. We have a lot to do yet, but in the time that we’re assessing the efficacy of these vaccines and making sure that they can be delivered to the public, people really need to stay safe and to do all the things we’ve been encouraging them to do all along. 

But we are well on our way to developing vaccines not only for people in the U.S., but for people all over the world.

Public Health On Call

This conversation is excerpted from the July 31 episode of Public Health On Call. 

Subscribe to Podcast

Related Content

Jim Tonascia

Noted Biostatistician and Epidemiologist Jim Tonascia Retires

A world globe with a mask on

Why We’re Still Waiting for a Pandemic Treaty

An illustration of a wave in the ocean covered in COVID molecules with a person swimming underneath it holding a vaccine

Why COVID Surges in the Summer

A vehicle is left abandoned in floodwater on a highway after Hurricane Beryl swept through the area on July 8, 2024, in Houston, Texas.

The Visible and Unseen Dangers Lurking in Floodwater

Commuters walk under the Olympic rings at the Gare de Lyon train station, on July 23, 2024, ahead of the Paris 2024 Olympic and Paralympic Games.

Public Health Prep for the 2024 Paris Olympics

Essay on Coronavirus Vaccine

500+ words essay on  coronavirus vaccine.

The Coronavirus has infected millions of people so far all over the world. In addition to that, millions of people have lost their lives to it. Ever since the outbreak, researchers all over the world have been working constantly to develop vaccines that will work effectively against the virus. We will take a look at the Coronavirus vaccine that is present today. Vaccines have the ability to save people’s lives. Developing the vaccine for Coronavirus was a huge step to end the pandemic.

coronavirus vaccine

Working of Coronavirus Vaccine

As Coronavirus caused a lot of confusion and fear amongst people, it is natural people were not aware of how the vaccine works. To begin with, a vaccine will work by mimicking an infectious agent.

The agent can be viruses, bacteria or any other microorganisms. They carry the potential of causing disease. When it mimics that, our immune system learns how to respond against it rapidly and efficiently.

As per the traditional methods, vaccines have managed to do this as they introduce a weakened form of an infectious agent. It enables our immune system to basically build its memory.

As a result, our immune system can then identify it quickly and fight against it before it gets the chance to harm us or make us ill. Similarly, some of the coronavirus vaccines have been made like that.

On the other hand, there are other coronavirus vaccines that researchers have developed by making use of new approaches. We refer to them as messenger RNA or mRNA vaccines.

Over here, they do not introduce antigens in our bodies. Instead, mRNA vaccines give the genetic code our body needs to enable our immune system for producing the antigen itself.

For several years, researchers have been studying mRNA vaccine technology. Thus, they do not contain any live virus and also do not interfere with the human DNA .

Get the huge list of more than 500 Essay Topics and Ideas

Safety of Coronavirus Vaccine

While the vaccines are being developed at a fast pace, they also require rigorous testing. The tests are done in clinical trials to ensure that they meet the benchmarks for the safety and efficiency of international standards.

When they meet the standards, then only can they get the go-ahead from WHO and national regulatory agencies. UNICEF has said that it will attain and supply only those vaccines that meet the WHO guidelines and have met the regulatory approval.

As of now, the vaccine doses are limited in number. Thus, the healthcare workers, first responders, people over the age of 75 and residents of long-term care facilities will receive the first doses.

After that, everyone will be able to get it once more of them are available. To get the vaccine, a person may require to pay a fee. However, some government institutions are providing it free of cost.

In order to get the vaccine, one must check with their local and state health departments on a regular basis. When they get the chance, they must get the dose right away.

The Coronavirus outbreak has challenged the whole world. Constantly, the experts and authorities are working to develop the vaccines. Therefore, we can also do our bit and adopt preventive measures to limit the spread of this disease. The major goal is to get the vaccine to everyone so that we can go on and about with our normal lives.

FAQ on Essay on Coronavirus Vaccine

Question 1: What are some common side effects of the Coronavirus vaccine?

Answer 1:  The most common side effect includes a sore arm, fever , headache, and fatigue. However, not to worry, side effects are good in this case. They indicate that your vaccine is starting to work as it triggers your immune system.

Question 2: When do Coronavirus vaccine side effects kick in?

Answer 2: Usually, most of the side effects start to kick in within the first 3 days after you get your vaccine. Moreover, they will last up to 1 to 2 days only.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Home

COVID-19 vaccines: everything you need to know

No matter which one you take, covid-19 vaccines offer potentially life-saving protection against a disease that has killed millions. read more about how they work below..

Credit: Talukdar David / Shutterstock.com

Frequently asked questions about COVID-19 vaccines

What are the different types of covid-19 vaccines.

There are four types of vaccines in clinical trials: whole virus, protein subunit, viral vector and nucleic acid (RNA and DNA), each of which protects people, but by producing immunity in a slightly different way.

How safe are COVID-19 vaccines?

Despite the record speed at which they have been developed, COVID-19 vaccines have still been subject to the same checks, balances, and scientific and regulatory rigour as any other vaccine, and shown to be safe.

How did we get COVID-19 vaccines so quickly?

An unprecedented combination of political will, global collaboration and funding have enabled the rapid development of COVID-19 vaccines, without compromising vaccine safety.

Why are fully vaccinated people still catching COVID-19?

No vaccine is perfect, so “breakthrough infections”, where people get sick with an infection even after vaccination, are to be expected with any disease. But just how common are they when it comes to COVID-19, and what should you expect if you test positive for SARS-CoV-2 after being fully vaccinated?

Do kids need a COVID-19 vaccine?

New variants have evolved that seem to be able to affect children more, with low- and middle-income countries worst affected. New research is showing vaccines can be effective in children, but they remain at relatively low risk of the disease. While millions of vulnerable people in low- and middle-income countries have yet to have a single dose, it’s vital that they remain priorities for vaccine rollouts.

Can antibody tests show if a COVID-19 vaccine is working?

Many COVID-19 antibody tests are not designed to specifically detect antibodies that develop as a result of vaccination, and thus cannot show whether antibodies are of the right quantity or quality for protection against infection or illness.

If I’ve had COVID-19, do I really need the vaccine?

Vaccines mimic our body’s natural response to infection. However while a previous infection does give you some immunity against COVID-19, vaccination gives your body a massive immune boost – including against new variants.

Do we need booster doses?

A number of wealthy nations have decided to press ahead with plans to administer COVID-19 vaccine boosters in the coming months, yet with so many in under-resourced countries still without vaccines, we should be prioritising vaccinating all adults first.

Do COVID-19 vaccines affect fertility or periods?

Anecdotal evidence suggests the vaccine could temporarily affect menstruation, but the effects are short-lived and scientists say there is no evidence that vaccines affect fertility.

  • Read more: Do COVID-19 vaccines affect menstruation and fertility?
  • Read more: Five things you need to know about COVID-19 vaccines and your period

What is the link between COVID-19 vaccines and myocarditis?

Countries that are now vaccinating adolescents and young adults have seen an unexpected, though very rare, side-effect: heart inflammation.

How long after I get COVID-19 will I test positive?

Testing positive for COVID-19 – even without symptoms – can be disruptive to daily life, but how long should we expect to test positive for?

Does a faint line on a COVID-19 test mean I’m no longer infectious?

Rapid antigen or lateral flow tests can help to identify when someone with COVID-19 is most infectious, but even a faint line should be treated as a positive result.

What happens in Long COVID?

Long COVID has altered the lives of millions of people, all living in the limbo of experiencing COVID-19 symptoms weeks or months after their initial infection, yet not knowing how or when they will recover. Published on International Long COVID Awareness Day, here are ten stories about a condition that we still have much to learn about.

Key partners:

CEPI, WHO, Gavi and UNICEF

In collaboration with:

write an informative essay about covid 19 vaccine brainly

Share the facts

We all need information that can be trusted. Misinformation and false claims threaten to undermine the success of vaccines and put people's lives at risk.

Help us to increase the amount of fact-based, accurate content by sharing the digital content below from our partners.

write an informative essay about covid 19 vaccine brainly

  • How are vaccines developed?
  • Manufacturing, safety and quality control of vaccines
  • COVID-19 advice for the public: Mythbusters

write an informative essay about covid 19 vaccine brainly

  • Vaccine misinformation management guide
  • Countering online misinformation resource pack

write an informative essay about covid 19 vaccine brainly

  • Vaccine science
  • #TeamVaccines campaign
  • COVID-19 vaccines FAQs

write an informative essay about covid 19 vaccine brainly

  • Covid-19 vaccines: information hub

write an informative essay about covid 19 vaccine brainly

  • Trusted verified information

write an informative essay about covid 19 vaccine brainly

  • Journalist Resource Hub on Vaccines and Immunization
  • Health Workers Resource Hub on Vaccines and Immunization  

Vaccine confidence project logo

  • Vaccine confidence project

Vaccine acceptance & demand logo

  • Vaccine acceptance & demand

Related Content

Subscribe to our newsletter.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 14 May 2021

Public attitudes toward COVID-19 vaccination: The role of vaccine attributes, incentives, and misinformation

  • Sarah Kreps 1 ,
  • Nabarun Dasgupta 2 ,
  • John S. Brownstein 3 , 4 ,
  • Yulin Hswen 5 &
  • Douglas L. Kriner   ORCID: orcid.org/0000-0002-9353-2334 1  

npj Vaccines volume  6 , Article number:  73 ( 2021 ) Cite this article

19k Accesses

81 Citations

43 Altmetric

Metrics details

  • Health care
  • Translational research

While efficacious vaccines have been developed to inoculate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also known as COVID-19), public vaccine hesitancy could still undermine efforts to combat the pandemic. Employing a survey of 1096 adult Americans recruited via the Lucid platform, we examined the relationships between vaccine attributes, proposed policy interventions such as financial incentives, and misinformation on public vaccination preferences. Higher degrees of vaccine efficacy significantly increased individuals’ willingness to receive a COVID-19 vaccine, while a high incidence of minor side effects, a co-pay, and Emergency Use Authorization to fast-track the vaccine decreased willingness. The vaccine manufacturer had no influence on public willingness to vaccinate. We also found no evidence that belief in misinformation about COVID-19 treatments was positively associated with vaccine hesitancy. The findings have implications for public health strategies intending to increase levels of community vaccination.

Similar content being viewed by others

write an informative essay about covid 19 vaccine brainly

Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA

write an informative essay about covid 19 vaccine brainly

Vaccine hesitancy and monetary incentives

write an informative essay about covid 19 vaccine brainly

Providing normative information increases intentions to accept a COVID-19 vaccine

Introduction.

In less than a year, an array of vaccines was developed to bring an end to the SARS-CoV-2 pandemic. As impressive as the speed of development was the efficacy of vaccines such as Moderna and Pfizer, which are over 90%. Despite the growing availability and efficacy, however, vaccine hesitancy remains a potential impediment to widespread community uptake. While previous surveys indicate that overall levels of vaccine acceptance may be around 70% in the United States 1 , the case of Israel may offer a cautionary tale about self-reported preferences and vaccination in practice. Prospective studies 2 of vaccine acceptance in Israel showed that about 75% of the Israeli population would vaccinate, but Israel’s initial vaccination surge stalled around 42%. The government, which then augmented its vaccination efforts with incentive programs, attributed unexpected resistance to online misinformation 3 .

Research on vaccine hesitancy in the context of viruses such as influenza and measles, mumps, and rubella, suggests that misinformation surrounding vaccines is prevalent 4 , 5 . Emerging research on COVID-19 vaccine preferences, however, points to vaccine attributes as dominant determinants of attitudes toward vaccination. Higher efficacy is associated with greater likelihood of vaccinating 6 , 7 , whereas an FDA Emergency Use Authorization 6 or politicized approval timing 8 is associated with more hesitancy. Whether COVID-19 misinformation contributes to vaccine preferences or whether these attributes or policy interventions such as incentives play a larger role has not been studied. Further, while previous research has focused on a set of attributes that was relevant at one particular point in time, the evidence and context about the available vaccines has continued to shift in ways that could shape public willingness to accept the vaccine. For example, governments, employers, and economists have begun to think about or even devise ways to incentivize monetarily COVID-19 vaccine uptake, but researchers have not yet studied whether paying people to receive the COVID-19 vaccine would actually affect likely behavior. As supply problems wane and hesitancy becomes a limiting factor, understanding whether financial incentives can overcome hesitancy becomes a crucial question for public health. Further, as new vaccines such as Johnson and Johnson are authorized, knowing whether the vaccine manufacturer name elicits or deters interest in individuals is also important, as are the corresponding efficacy rates of different vaccines and the extent to which those affect vaccine preferences. The purpose of this study is to examine how information about vaccine attributes such as efficacy rates, the incidence of side effects, the nature of the governmental approval process, identity of the manufacturers, and policy interventions, including economic incentives, affect intention to vaccinate, and to examine the association between belief in an important category of misinformation—false claims concerning COVID-19 treatments—and willingness to vaccinate.

General characteristics of study population

Table 1 presents sample demographics, which largely reflect those of the US population as a whole. Of the 1335 US adults recruited for the study, a convenience sample of 1100 participants consented to begin the survey, and 1096 completed the full questionnaire. The sample was 51% female; 75% white; and had a median age of 43 with an interquartile range of 31–58. Comparisons of the sample demographics to those of other prominent social science surveys and U.S. Census figures are shown in Supplementary Table 1 .

Vaccination preferences

Each subject was asked to evaluate a series of seven hypothetical vaccines. For each hypothetical vaccine, our conjoint experiment randomly assigned values of five different vaccine attributes—efficacy, the incidence of minor side effects, government approval process, manufacturer, and cost/financial inducement. Descriptions of each attribute and the specific levels used in the experiment are summarized in Table 2 . After seeing the profile of each vaccine, the subject was asked whether she would choose to receive the vaccine described, or whether she would choose not to be vaccinated. Finally, subjects were asked to indicate how likely they would be to take the vaccine on a seven-point likert scale.

Across all choice sets, in 4419 cases (58%) subjects said they would choose the vaccine described in the profile rather than not being vaccinated. As shown in Fig. 1 , several characteristics of the vaccine significantly influenced willingness to vaccinate.

figure 1

Circles present the estimated effect of each attribute level on the probability of a subject accepting vaccination from the attribute’s baseline level. Horizontal lines through points indicate 95% confidence intervals. Points without error bars denote the baseline value for each attribute. The average marginal component effects (AMCEs) are the regression coefficients reported in model 1 of Table 3 .

Efficacy had the largest effect on individual vaccine preferences. An efficacy rate of 90% increased uptake by about 20% relative to the baseline at 50% efficacy. Even a high incidence of minor side effects (1 in 2) had only a modest negative effect (about 5%) on willingness to vaccinate. Whether the vaccine went through full FDA approval or received an Emergency Use Authorization (EUA), an authority that allows the Food and Drug Administration mechanisms to accelerate the availability and use of treatments or medicines during medical emergencies 9 , significantly influenced willingness to vaccinate. An EUA decreased the likelihood of vaccination by 7% compared to a full FDA authorization; such a decline would translate into about 23 million Americans. While a $20 co-pay reduced the likelihood of vaccination relative to a no-cost baseline, financial incentives did not increase willingness to vaccinate. Lastly, the manufacturer had no effect on vaccination attitudes, despite the public pause of the AstraZeneca trial and prominence of Johnson & Johnson as a household name (our experiment was fielded before the pause in the administration of the Johnson & Johnson shot in the United States).

Model 2 of Table 3 presents an expanded model specification to investigate the association between misinformation and willingness to vaccinate. The primary additional independent variable of interest is a misinformation index that captures the extent to which each subject believes or rejects eight claims (five false; three true) about COVID-19 treatments. Additional analyses using alternate operationalizations of the misinformation index yield substantively similar results (Supplementary Table 4 ). This model also includes a number of demographic control variables, including indicators for political partisanship, gender, educational attainment, age, and race/ethnicity, all of which are also associated with belief in misinformation about the vaccine (Supplementary Table 2 ). Finally, the model also controls for subjects’ health insurance status, past experience vaccinating against seasonal influenza, attitudes toward the pharmaceutical industry, and beliefs about vaccine safety generally.

Greater levels of belief in misinformation about COVID-19 treatments were not associated with greater vaccine hesitancy. Instead, the relevant coefficient is positive and statistically significant, indicating that, all else being equal, individuals who scored higher on our index of misinformation about COVID-19 treatments were more willing to vaccinate than those who were less susceptible to believing false claims.

Strong beliefs that vaccines are safe generally was positively associated with willingness to accept a COVID-19 vaccine, as were past histories of frequent influenza vaccination and favorable attitudes toward the pharmaceutical industry. Women and older subjects were significantly less likely to report willingness to vaccinate than men and younger subjects, all else equal. Education was positively associated with willingness to vaccinate.

This research offers a comprehensive examination of attitudes toward COVID-19 vaccination, particularly the role of vaccine attributes, potential policy interventions, and misinformation. Several previous studies have analyzed the effects of vaccine characteristics on willingness to vaccinate, but the modal approach is to gauge willingness to accept a generic COVID-19 vaccine 10 , 11 . Large volumes of research show, however, that vaccine preferences hinge on specific vaccine attributes. Recent research considering the influence of attributes such as efficacy, side effects, and country of origin take a step toward understanding how properties affect individuals’ intentions to vaccinate 6 , 7 , 8 , 12 , 13 , but evidence about the attributes of actual vaccines, debates about how to promote vaccination within the population, and questions about the influence of misinformation have moved quickly 14 .

Our conjoint experiment therefore examined the influence of five vaccine attributes on vaccination willingness. The first category of attributes involved aspects of the vaccine itself. Since efficacy is one of the most common determinants of vaccine acceptance, we considered different levels of efficacy, 50%, 70%, and 90%, levels that are common in the literature 7 , 15 . Evidence from Phase III trials suggests that even the 90% efficacy level in our design, which is well above the 50% threshold from the FDA Guidance for minimal effectiveness for Emergency Use Authorization 16 , has been exceeded by both Pfizer’s and Moderna’s vaccines 17 , 18 . The 70% efficacy threshold is closer to the initial reports of the efficacy of the Johnson & Johnson vaccine, whose efficacy varied across regions 19 . Our analysis suggests that efficacy levels associated with recent mRNA vaccine trials increases public vaccine uptake by 20% over a baseline of a vaccine with 50% efficacy. A 70% efficacy rate increases public willingness to vaccinate by 13% over a baseline vaccine with 50% efficacy.

An additional set of epidemiological attributes consisted of the frequency of minor side effects. While severe side effects were plausible going into early clinical trials, evidence clearly suggests that minor side effects are more common, ranging from 10% to 100% of people vaccinated depending on the number of doses and the dose group (25–250 mcg) 20 . Since the 100 mcg dose was supported in Phase III trials 21 , we include the highest adverse event probability—approximating 60% as 1 in 2—and 1 in 10 as the lowest likelihood, approximating the number of people who experienced mild arthralgia 20 . Our findings suggest that a the prevalence of minor side effects associated with recent trials (i.e. a 1 in 2 chance), intention to vaccinate decreased by about 5% versus a 1 in 10 chance of minor side effects baseline. However, at a 25% rate of minor side effects, respondents did not indicate any lower likelihood of vaccination compared to the 10% baseline. Public communications about how to reduce well-known side effects, such as pain at the injection site, could contribute to improved acceptance of the vaccine, as it is unlikely that development of vaccine-related minor side effects will change.

We then considered the effect of EUA versus full FDA approval. The influenza H1N1 virus brought the process of EUA into public discourse 22 , and the COVID-19 virus has again raised the debate about whether and how to use EUA. Compared to recent studies also employing conjoint experimental designs that showed just a 3% decline in support conditional on EUA 6 , we found decreases in support of more than twice that with an EUA compared to full FDA approval. Statements made by the Trump administration promising an intensely rapid roll-out or isolated adverse events from vaccination in the UK may have exacerbated concerns about EUA versus full approval 8 , 23 , 24 , 25 . This negative effect is even greater among some subsets of the population. As shown in additional analyses reported in the Supplementary Information (Supplementary Fig. 5 ), the negative effects are greatest among those who believe vaccines are generally safe. Among those who believe vaccines generally are extremely safe, the EUA decreased willingness to vaccinate by 11%, all else equal. This suggests that outreach campaigns seeking to assure those troubled by the authorization process used for currently available vaccines should target their efforts on those who are generally predisposed to believe vaccines are safe.

Next, we compared receptiveness as a function of the manufacturer: Moderna, Pfizer, Johnson and Johnson, and AstraZeneca, all firms at advanced stages of vaccine development. Vaccine manufacturers in the US have not yet attempted to use trade names to differentiate their vaccines, instead relying on the association with manufacturer reputation. In other countries, vaccine brand names have been more intentionally publicized, such as Bharat Biotech’s Covaxin in India and Gamaleya Research Institute of Epidemiology and Microbiology Sputnik V in Russia. We found that manufacturer names had no impact on willingness to vaccinate. As with hepatitis and H. influenzae vaccines 26 , 27 , interchangeability has been an active topic of debate with coronavirus mRNA vaccines which require a second shot for full immunity. Our research suggests that at least as far as public receptiveness goes, interchangeability would not introduce concerns. We found no significant differences in vaccination uptake across any of the manufacturer treatments. Future research should investigate if a manufacturer preference develops as new evidence about efficacy and side effects becomes available, particularly depending on whether future booster shots, if needed, are deemed interchangeable with the initial vaccination.

Taking up the question of how cost and financial incentives shape behavior, we looked at paying and being paid to vaccinate. While existing research suggests that individuals are often willing to pay for vaccines 28 , 29 , some economists have proposed that the government pay individuals up to $1,000 to take the COVID-19 vaccine 30 . However, because a cost of $300 billion to vaccinate the population may be prohibitive, we posed a more modest $100 incentive. We also compared this with a $10 incentive, which previous studies suggest is sufficient for actions that do not require individuals to change behavior on a sustained basis 31 . While having to pay a $20 co-pay for the vaccine did deter individuals, the additional economic incentives had no positive effect although they did not discourage vaccination 32 . Consistent with past research 31 , 33 , further analysis shows that the negative effect of the $20 co-pay was concentrated among low-income earners (Supplementary Fig. 7 ). Financial incentives failed to increase vaccination willingness across income levels.

Our study also yields important insights into the relationship between one prominent category of COVID-19 misinformation and vaccination preferences. We find that susceptibility to misinformation about COVID-19 treatments—based on whether individuals can distinguish between factual and false information about efforts to combat COVID-19—is considerable. A quarter of subjects scored no higher on our misinformation index than random guessing or uniform abstention/unsure responses (for the full distribution, see Supplementary Fig. 2 ). However, subjects who scored higher on our misinformation index did not exhibit greater vaccination hesitancy. These subjects actually were more likely to believe in vaccine safety more generally and to accept a COVID-19 vaccine, all else being equal. These results run counter to recent findings of public opinion in France where greater conspiracy beliefs were negatively correlated with willingness to vaccinate against COVID-19 34 and in Korea where greater misinformation exposure and belief were negatively correlated with taking preventative actions 35 . Nevertheless, the results are robust to alternate operationalizations of belief in misinformation (i.e., constructing the index only using false claims, or measuring misinformation beliefs as the number of false claims believed: see Supplementary Table 4 ).

We recommend further study to understand the observed positive relationship between beliefs in COVID-19 misinformation about fake treatments and willingness to receive the COVID-19 vaccine. To be clear, we do not posit a causal relationship between the two. Rather, we suspect that belief in misinformation may be correlated with an omitted factor related to concerns about contracting COVID-19. For example, those who believe COVID-19 misinformation may have a higher perception of risk of COVID-19, and therefore be more willing to take a vaccine, all else equal 36 . Additional analyses reported in the Supplementary Information (Supplementary Fig. 6 ) show that the negative effect of an EUA on willingness to vaccinate was concentrated among those who scored low on the misinformation index. An EUA had little effect on the vaccination preferences of subjects most susceptible to misinformation. This pattern is consistent with the possibility that these subjects were more concerned with the disease and therefore more likely to vaccinate, regardless of the process through which the vaccine was brought to market.

We also observe that skepticism toward vaccines in general does not correlate perfectly with skepticism toward the COVID-19 vaccine. Therefore, it is important not to conflate people who are wary of the COVID-19 vaccine and those who are anti-vaccination, as even medically informed individuals may be hesitant because of the speed at which the COVID-19 vaccine was developed. For example, older people are more likely to believe vaccines are safe but less willing to receive the COVID-19 vaccine in our survey, perhaps following the high rates of vaccine skepticism among medical staff expressing concerns regarding the safety of a rapidly-developed vaccine 2 . This inverse relationship between age and willingness to vaccinate is also surprising. Most opinion surveys find older adults are more likely to vaccinate than younger adults 37 . However, most of these survey questions ask about willingness to take a generic vaccine. Two prior studies, both recruiting subjects from the Lucid platform and employing conjoint experiments to examine the effects of vaccine attributes on public willingness to vaccinate, also find greater vaccine hesitancy among older Americans 6 , 7 . Future research could explore whether these divergent results are a product of the characteristics of the sample or of the methodological design in which subjects have much more information about the vaccines when indicating their vaccination preferences.

An important limitation of our study is that it necessarily offers a snapshot in time, specifically prior to both the election and vaccine roll-out. We recommend further study to understand more how vaccine perceptions evolve both in terms of the perceived political ownership of the vaccine—now that President Biden is in office—and as evidence has emerged from the millions of people who have been vaccinated. Similarly, researchers should consider analyzing vaccine preferences in the context of online vaccine controversies that have been framed in terms of patient autonomy and right to refuse 38 , 39 . Vaccination mandates may evoke feelings of powerlessness, which may be exacerbated by misinformation about the vaccines themselves. Further, researchers should more fully consider how individual attributes such as political ideology and race intersect with vaccine preferences. Our study registered increased vaccine hesitancy among Blacks, but did not find that skepticism was directly related to misinformation. Perceptions and realities of race-based maltreatment could also be moderating factors worth exploring in future analyses 40 , 41 .

Overall, we found that the most important factor influencing vaccine preferences is vaccine efficacy, consistent with a number of previous studies about attitudes toward a range of vaccines 6 , 42 , 43 . Other attributes offer potential cautionary flags and opportunities for public outreach. The prospect of a 50% likelihood of mild side effects, consistent with the evidence about current COVID-19 vaccines being employed, dampens likelihood of uptake. Public health officials should reinforce the relatively mild nature of the side effects—pain at the injection site and fatigue being the most common 44 —and especially the temporary nature of these effects to assuage public concerns. Additionally, in considering policy interventions, public health authorities should recognize that a $20 co-pay will likely discourage uptake while financial incentives are unlikely to have a significant positive effect. Lastly, belief in misinformation about COVID-19 does not appear to be a strong predictor of vaccine hesitancy; belief in misinformation and willingness to vaccinate were positively correlated in our data. Future research should explore the possibility that exposure to and belief in misinformation is correlated with other factors associated with vaccine preferences.

Survey sample and procedures

This study was approved by the Cornell Institutional Review Board for Human Participant Research (protocol ID 2004009569). We conducted the study on October 29–30, 2020, prior to vaccine approval, which means we captured sentiments prospectively rather than based on information emerging from an ongoing vaccination campaign. We recruited a sample of 1096 adult Americans via the Lucid platform, which uses quota sampling to produce samples matched to the demographics of the U.S. population on age, gender, ethnicity, and geographic region. Research has shown that experimental effects observed in Lucid samples largely mirror those found using probability-based samples 45 . Supplementary Table 1 presents the demographics of our sample and comparisons to both the U.S. Census American Community Survey and the demographics of prominent social science surveys.

After providing informed consent on the first screen of the online survey, participants turned to a choice-based conjoint experiment that varied five attributes of the COVID-19 vaccine. Conjoint analyses are often used in marketing to research how different aspects of a product or service affect consumer choice. We build on public health studies that have analyzed the influence of vaccine characteristics on uptake within the population 42 , 46 .

Conjoint experiment

We first designed a choice-based conjoint experiment that allowed us to evaluate the relative influence of a range of vaccine attributes on respondents’ vaccine preferences. We examined five attributes summarized in Table 2 . Past research has shown that the first two attributes, efficacy and the incidence of side effects, are significant drivers of public preferences on a range of vaccines 47 , 48 , 49 , including COVID-19 6 , 7 , 13 , 50 . In this study, we increased the expected incidence of minor side effects from previous research 6 to reflect emerging evidence from Phase III trials. The third attribute, whether the vaccine received full FDA approval or an EUA, examines whether the speed of the approval process affects public vaccination preferences 6 . The fourth attribute, the manufacturer of the vaccine, allows us to examine whether the highly public pause in the AstraZeneca trial following an adverse event, and the significant differences in brand familiarity between smaller and less broadly known companies like Moderna and household name Johnson & Johnson affects public willingness to vaccinate. The fifth attribute examines the influence of a policy tool—offsetting the costs of vaccination or even incentivizing it financially—on public willingness to vaccinate.

Attribute levels and attribute order were randomly assigned across participants. A sample choice set is presented in Supplementary Fig. 1 . After viewing each profile individually, subjects were asked: “If you had to choose, would you choose to get this vaccine, or would you choose not to be vaccinated?” Subjects then made a binary choice, responding either that they “would choose to get this vaccine” or that they “would choose not to be vaccinated.” This is the dependent variable for the regression analyses in Table 3 . After making a binary choice to take the vaccine or not be vaccinated, we also asked subjects “how likely or unlikely would you be to get the vaccine described above?” Subjects indicated their vaccination preference on a seven-point scale ranging from “extremely likely” to “extremely unlikely.” Additional analyses using this ordinal dependent variable reported in Supplementary Table 3 yield substantively similar results to those presented in Table 3 .

To determine the effect of each attribute-level on willingness to vaccinate, we followed Hainmueller, Hopkins, and Yamamoto and employed an ordinary least squares (OLS) regression with standard errors clustered on respondent to estimate the average marginal component effects (AMCEs) for each attribute 51 . The AMCE represents the average difference in a subject choosing a vaccine when comparing two different attribute values—for example, 50% efficacy vs. 90% efficacy—averaged across all possible combinations of the other vaccine attribute values. The AMCEs are nonparametrically identified under a modest set of assumptions, many of which (such as randomization of attribute levels) are guaranteed by design. Model 1 in Table 3 estimates the AMCEs for each attribute. These AMCEs are illustrated in Fig. 1 .

Analyzing additional correlates of vaccine acceptance

To explore the association between respondents’ embrace of misinformation about COVID-19 treatments and vaccination willingness, the survey included an additional question battery. To measure the extent of belief in COVID-19 misinformation, we constructed a list of both accurate and inaccurate headlines about the coronavirus. We focused on treatments, relying on the World Health Organization’s list of myths, such as “Hand dryers are effective in killing the new coronavirus” and true headlines such as “Avoiding shaking hands can help limit the spread of the new coronavirus 52 .” Complete wording for each claim is provided in Supplementary Appendix 1 . Individuals read three true headlines and five myths, and then responded whether they believed each headline was true or false, or whether they were unsure. We coded responses to each headline so that an incorrect accuracy assessment yielded a 1; a correct accuracy assessment a -1; and a response of unsure was coded as 0. From this, we created an additive index of belief in misinformation that ranged from -8 to 8. The distribution of the misinformation index is presented in Supplementary Fig. 2 . A possible limitation of this measure is that because the survey was conducted online, some individuals could have searched for the answers to the questions before responding. However, the median misinformation index score for subjects in the top quartile in terms of time spent taking the survey was identical to the median for all other respondents. This may suggest that systematic searching for correct answers is unlikely.

To ensure that any association observed between belief in misinformation and willingness to vaccinate is not an artifact of how we operationalized susceptibility to misinformation, we also constructed two alternate measures of belief in misinformation. These measures are described in detail in the Supplementary Information (see Supplementary Figs. 3 and 4 ). Additional regression analyses using these alternate measures of misinformation beliefs yield substantively similar results (see Supplementary Table 4 ). Additional analyses examining whether belief in misinformation moderates the effect of efficacy and an FDA EUA on vaccine acceptance are presented in Supplementary Fig. 6 .

Finally, model 2 of Table 3 includes a range of additional control variables. Following past research, it includes a number of demographic variables, including indicator variables identifying subjects who identify as Democrats or Republicans; an indicator variable identifying females; a continuous variable measuring age (alternate analyses employing a categorical variable yield substantively similar results); an eight-point measure of educational attainment; and indicator variables identifying subjects who self-identify as Black or Latinx. Following previous research 6 , the model also controlled for three additional factors often associated with willingness to vaccinate: an indicator variable identifying whether each subject had health insurance; a variable measuring past frequency of influenza vaccination on a four-point scale ranging from “never” to “every year”; beliefs about the general safety of vaccines measured on a four-point scale ranging from “not at all safe” to “extremely safe”; and a measure of attitudes toward the pharmaceutical industry ranging from “very positive” to “very negative.”

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data and statistical code to reproduce the tables and figures in the manuscript and Supplementary Information are published at the Harvard Dataverse via this link: 10.7910/DVN/ZYU6CO.

Hamel, L., Kirzinger, A., Munana, C. & Brodie, M. KFF COVID-19 Vaccine Monitor: December 2020 | KFF (2020).

Dror, A. A. et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. Eur. J. Epidemiol. 35 , 775–779 (2020).

Article   CAS   PubMed   Google Scholar  

Scharf, I. & Ben Zion, I. As Vaccinations Lag, Israel Combats Online Misinformation. AP2 (21AD).

Nyhan, B. & Reifler, J. Does correcting myths about the flu vaccine work? An experimental evaluation of the effects of corrective information. Vaccine 33 , 459–464 (2015).

Article   PubMed   Google Scholar  

Hussain, A., Ali, S., Ahmed, M. & Hussain, S. The anti-vaccination movement: a regression in modern medicine. Cureus 10 , e2919 (2018).

PubMed   PubMed Central   Google Scholar  

Kreps, S. et al. Factors Associated With US Adults’ Likelihood of Accepting COVID-19 Vaccination. JAMA Netw. open 3 , (2020).

Motta, M. Can a COVID-19 vaccine live up to Americans’ expectations? A conjoint analysis of how vaccine characteristics influence vaccination intentions. Soc. Sci. Med . 113642, https://doi.org/10.1016/j.socscimed.2020.113642 (2021).

Bokemper, S. E., Huber, G. A., Gerber, A. S., James, E. K. & Omer, S. B. Timing of COVID-19 vaccine approval and endorsement by public figures. Vaccine , https://doi.org/10.1016/j.vaccine.2020.12.048 (2021).

Quinn, S. C., Jamison, A. M. & Freimuth, V. Communicating effectively about emergency use authorization and vaccines in the COVID-19 pandemic. Am. J. Public Health e1–e4 (2020).

Malik, A. A., McFadden, S. A. M., Elharake, J. & Omer, S. B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 26 , 100495 (2020).

Article   PubMed   PubMed Central   Google Scholar  

Fisher, K. A. et al. Attitudes toward a potential SARS-CoV-2 vaccine: a survey of U.S. adults. Ann. Intern. Med. 173 , 964–973 (2020).

Lazarus, J. V. et al . A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med . 1–4 (2020).

Schwarzinger, M., Watson, V., Arwidson, P., Alla, F. & Luchini, S. COVID-19 vaccine hesitancy in a representative working-age population in France: a survey experiment based on vaccine characteristics. Lancet Public Heal ., https://doi.org/10.1016/s2468-2667(21)00012-8 (2021).

Wood, S. & Schulman, K. Beyond politics—promoting Covid-19 vaccination in the United States. N. Engl. J. Med . NEJMms2033790, https://doi.org/10.1056/NEJMms2033790 (2021).

Marshall, H. S., Chen, G., Clarke, M. & Ratcliffe, J. Adolescent, parent and societal preferences and willingness to pay for meningococcal B vaccine: a discrete choice experiment. Vaccine 34 , 671–677 (2016).

Administration, F. and D. Development and Licensure of Vaccines to Prevent COVID-19: Guidance for Industry . (2020).

Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383 , 2603–2615 (2020).

Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med ., https://doi.org/10.1056/nejmoa2035389 (2020).

Johnson & Johnson. Johnson & Johnson Announces Single-Shot Janssen COVID-19 Vaccine Candidate Met Primary Endpoints in Interim Analysis of its Phase 3 ENSEMBLE Trial. (2020). Available at: https://www.jnj.com/johnson-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial . (Accessed 28 Feb 2021).

Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. 383 , 1920–1931 (2020).

Anderson, E. J. et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383 , 2427–2438 (2020).

Quinn, S. C., Kumar, S., Freimuth, V. S., Kidwell, K. & Musa, D. Public willingness to take a vaccine or drug under emergency use authorization during the 2009 H1N1 pandemic. Biosecurity Bioterrorism 7 , 275–290 (2009).

Holden Thorp, H. A dangerous rush for vaccines. Science 369 , 885 (2020).

Limaye, R. J., Sauer, M. & Truelove, S. A. Politicizing public health: the powder keg of rushing COVID-19 vaccines. Hum. Vaccines Immunother ., https://doi.org/10.1080/21645515.2020.1846400 (2020).

Feuer, W. Trump Says ‘No President’s Ever Pushed’ the FDA Like Jim, Vaccine Coming ‘Very Shortly’. CNBC (2020).

Soysal, A., Gokçe, I., Pehlivan, T. & Bakir, M. Interchangeability of a hepatitis A vaccine second dose: Avaxim 80 following a first dose of Vaqta 25 or Havrix 720 in children in Turkey. Eur. J. Pediatr. 166 , 533–539 (2007).

Greenberg, D. P. & Feldman, S. Vaccine interchangeability. Clin. Pediatrics 42 , 93–99 (2003).

Article   Google Scholar  

Bishai, D., Brice, R., Girod, I., Saleh, A. & Ehreth, J. Conjoint analysis of French and German parents’ willingness to pay for meningococcal vaccine. PharmacoEconomics 25 , 143–154 (2007).

Cameron, M. P., Newman, P. A., Roungprakhon, S. & Scarpa, R. The marginal willingness-to-pay for attributes of a hypothetical HIV vaccine. Vaccine 31 , 3712–3717 (2013).

Litan, R. Want herd immunity? Pay people to take the vaccine. Brookings (2020).

Kane, R. L., Johnson, P. E., Town, R. J. & Butler, M. A structured review of the effect of economic incentives on consumers’ preventive behavior. Am. J. Preventive Med. 27 , 327–352 (2004).

Volpp, K. G., Loewenstein, G. & Buttenheim, A. M. Behaviorally informed strategies for a National COVID-19 vaccine promotion program. JAMA - J. Am. Med. Assoc. 325 , 125–126 (2020).

Google Scholar  

Nowalk, M. P. et al. Improving influenza vaccination rates in the workplace. A randomized trial. Am. J. Prev. Med. 38 , 237–246 (2010).

Bertin, P., Nera, K. & Delouvée, S. Conspiracy beliefs, rejection of vaccination, and support for hydroxychloroquine: a conceptual replication-extension in the COVID-19 pandemic context. Front. Psychol. 11 , 2471 (2020).

Lee, J. J. et al. Associations between COVID-19 misinformation exposure and belief with COVID-19 knowledge and preventive behaviors: cross-sectional online study. J. Med. Internet Res. 22 , e22205 (2020).

Reyna, V. F. Risk perception and communication in vaccination decisions: a fuzzy-trace theory approach. Vaccine 30 , 3790–3797 (2012).

Lin, C., Tu, P. & Beitsch, L. M. Confidence and receptivity for covid‐19 vaccines: a rapid systematic review. Vaccines 9 , 1–32 (2021).

Broniatowski, D. A. et al. Facebook pages, the ‘Disneyland’ measles outbreak, and promotion of vaccine refusal as a civil right, 2009–2019. Am. J. Public Health 110 , S312–S318 (2020).

Moon, K., Riege, A., Gourdon-Kanhukamwe, A. & Vallée-Tourangeau, G. The Moderating Effect of Autonomy on Promotional Health Messages Encouraging Flu Vaccination Uptake Among Healthcare Professionals . (PsyArXiv, 2020), https://doi.org/10.31234/OSF.IO/AJV4Q .

Ferdinand, K. C., Nedunchezhian, S. & Reddy, T. K. The COVID-19 and influenza “Twindemic”: barriers to influenza vaccination and potential acceptance of SARS-CoV2 vaccination in African Americans. J. Natl. Med. Assoc. 112 , 681–687 (2020).

PubMed   Google Scholar  

Jaiswal, J., LoSchiavo, C. & Perlman, D. C. Disinformation, misinformation and inequality-driven mistrust in the time of COVID-19: lessons unlearned from AIDS denialism. AIDS Behav. 24 , 2776–2780 (2020).

Determann, D. et al. Acceptance of vaccinations in pandemic outbreaks: a discrete choice experiment. PLoS ONE 9 , e102505 (2014).

Simpson, C. R., Ritchie, L. D., Robertson, C., Sheikh, A. & McMenamin, J. Effectiveness of H1N1 vaccine for the prevention of pandemic influenza in Scotland, UK: A retrospective observational cohort study. Lancet Infect. Dis. 12 , 696–702 (2012).

Remmel, A. COVID vaccines and safety: what the research says. Nature 590 , 538–540 (2021).

Coppock, A. & McClellan, O. A. Validating the demographic, political, psychological, and experimental results obtained from a new source of online survey respondents. Res. Polit. 6 , 1–14 (2019).

de Bekker-Grob, E. W. et al. The impact of vaccination and patient characteristics on influenza vaccination uptake of elderly people: A discrete choice experiment. Vaccine 36 , 1467–1476 (2018).

Determann, D. et al. Public preferences for vaccination programmes during pandemics caused by pathogens transmitted through respiratory droplets–A discrete choice experiment in four European countries, 2013. Eurosurveillance 21 , 1–13 (2016).

de Bekker-Grob, E. W. et al. Girls’ preferences for HPV vaccination: A discrete choice experiment. Vaccine 28 , 6692–6697 (2010).

Guo, N., Zhang, G., Zhu, D., Wang, J. & Shi, L. The effects of convenience and quality on the demand for vaccination: results from a discrete choice experiment. Vaccine 35 , 2848–2854 (2017).

Kaplan, R. M. & Milstein, A. Influence of a COVID-19 vaccine’s effectiveness and safety profile on vaccination acceptance. Proc. Natl. Acad. Sci. USA 118 , 2021726118 (2021).

Hainmueller, J., Hopkins, D. J. & Yamamoto, T. Causal inference in conjoint analysis: Understanding multidimensional choices via stated preference experiments. Polit. Anal. 22 , 1–30 (2014).

Organization, W. H. Coronavirus disease (COVID-19) advice for the public: Mythbusters. (2020). Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters . (Accessed 14 Jan 2021).

Download references

Acknowledgements

S.K. and D.K. would like to thank the Cornell Atkinson Center for Sustainability for financial support.

Author information

Authors and affiliations.

Department of Government, Cornell University, Ithaca, NY, USA

Sarah Kreps & Douglas L. Kriner

Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA

Nabarun Dasgupta

Department of Pediatrics, Harvard Medical School, Boston, MA, USA

John S. Brownstein

Computational Epidemiology Lab, Boston Children’s Hospital, Boston, MA, USA

Epidemiology and Biostatistics, University of California, San Francisco, CA, USA

Yulin Hswen

You can also search for this author in PubMed   Google Scholar

Contributions

S.K. and D.K. designed the experiment/survey instrument and conducted the statistical analysis. S.K., N.D., J.B., Y.H., and D.K. all contributed to the conceptual design of the research and to the writing of the paper.

Corresponding author

Correspondence to Douglas L. Kriner .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, reporting summary, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Kreps, S., Dasgupta, N., Brownstein, J.S. et al. Public attitudes toward COVID-19 vaccination: The role of vaccine attributes, incentives, and misinformation. npj Vaccines 6 , 73 (2021). https://doi.org/10.1038/s41541-021-00335-2

Download citation

Received : 25 January 2021

Accepted : 06 April 2021

Published : 14 May 2021

DOI : https://doi.org/10.1038/s41541-021-00335-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Public perspectives on covid-19 public health and social measures in japan and the united kingdom: a qualitative study.

  • Saki Kawamitsu
  • Tin Zar Win
  • Chris Smith

BMC Public Health (2024)

Progress with COVID vaccine development and implementation

  • Richard W. Titball
  • David I. Bernstein
  • Alan D. T. Barrett

npj Vaccines (2024)

Knowledge, attitudes and demographic drivers for COVID-19 vaccine hesitancy in Malawi

  • Yamikani Ndasauka
  • Halima Sumayya Twabi
  • Catherine Makhumula-Mtimuni

Scientific Reports (2024)

A synthesis of evidence for policy from behavioural science during COVID-19

  • Kai Ruggeri
  • Friederike Stock
  • Robb Willer

Nature (2024)

The rapid progress in COVID vaccine development and implementation

  • Nicolas V. J. Fanget

npj Vaccines (2022)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

write an informative essay about covid 19 vaccine brainly

  • How to Order

User Icon

Persuasive Essay Guide

Persuasive Essay About Covid19

Caleb S.

How to Write a Persuasive Essay About Covid19 | Examples & Tips

14 min read

Persuasive Essay About Covid19

People also read

A Comprehensive Guide to Writing an Effective Persuasive Essay

A Catalogue of 300 Best Persuasive Essay Topics for Students

Persuasive Essay Outline - A Complete Guide

30+ Persuasive Essay Examples To Get You Started

Read Excellent Examples of Persuasive Essay About Gun Control

How To Write A Persuasive Essay On Abortion

Learn to Write a Persuasive Essay About Business With 5 Best Examples

Check Out 14 Persuasive Essays About Online Education Examples

Persuasive Essay About Smoking - Making a Powerful Argument with Examples

Are you looking to write a persuasive essay about the Covid-19 pandemic?

Writing a compelling and informative essay about this global crisis can be challenging. It requires researching the latest information, understanding the facts, and presenting your argument persuasively.

But don’t worry! with some guidance from experts, you’ll be able to write an effective and persuasive essay about Covid-19.

In this blog post, we’ll outline the basics of writing a persuasive essay . We’ll provide clear examples, helpful tips, and essential information for crafting your own persuasive piece on Covid-19.

Read on to get started on your essay.

Arrow Down

  • 1. Steps to Write a Persuasive Essay About Covid-19
  • 2. Examples of Persuasive Essay About COVID-19
  • 3. Examples of Persuasive Essay About COVID-19 Vaccine
  • 4. Examples of Persuasive Essay About COVID-19 Integration
  • 5. Examples of Argumentative Essay About Covid 19
  • 6. Examples of Persuasive Speeches About Covid-19
  • 7. Tips to Write a Persuasive Essay About Covid-19
  • 8. Common Topics for a Persuasive Essay on COVID-19 

Steps to Write a Persuasive Essay About Covid-19

Here are the steps to help you write a persuasive essay on this topic, along with an example essay:

Step 1: Choose a Specific Thesis Statement

Your thesis statement should clearly state your position on a specific aspect of COVID-19. It should be debatable and clear. For example:


"COVID-19 vaccination mandates are necessary for public health and safety."

Step 2: Research and Gather Information

Collect reliable and up-to-date information from reputable sources to support your thesis statement. This may include statistics, expert opinions, and scientific studies. For instance:

  • COVID-19 vaccination effectiveness data
  • Information on vaccine mandates in different countries
  • Expert statements from health organizations like the WHO or CDC

Step 3: Outline Your Essay

Create a clear and organized outline to structure your essay. A persuasive essay typically follows this structure:

  • Introduction
  • Background Information
  • Body Paragraphs (with supporting evidence)
  • Counterarguments (addressing opposing views)

Step 4: Write the Introduction

In the introduction, grab your reader's attention and present your thesis statement. For example:


The COVID-19 pandemic has presented an unprecedented global challenge, and in the face of this crisis, many countries have debated the implementation of vaccination mandates. This essay argues that such mandates are essential for safeguarding public health and preventing further devastation caused by the virus.

Step 5: Provide Background Information

Offer context and background information to help your readers understand the issue better. For instance:


COVID-19, caused by the novel coronavirus SARS-CoV-2, emerged in late 2019 and quickly spread worldwide, leading to millions of infections and deaths. Vaccination has proven to be an effective tool in curbing the virus's spread and severity.

Step 6: Develop Body Paragraphs

Each body paragraph should present a single point or piece of evidence that supports your thesis statement. Use clear topic sentences , evidence, and analysis. Here's an example:


One compelling reason for implementing COVID-19 vaccination mandates is the overwhelming evidence of vaccine effectiveness. According to a study published in the New England Journal of Medicine, the Pfizer-BioNTech and Moderna vaccines demonstrated an efficacy of over 90% in preventing symptomatic COVID-19 cases. This level of protection not only reduces the risk of infection but also minimizes the virus's impact on healthcare systems.

Step 7: Address Counterarguments

Acknowledge opposing viewpoints and refute them with strong counterarguments. This demonstrates that you've considered different perspectives. For example:


Some argue that vaccination mandates infringe on personal freedoms and autonomy. While individual freedom is a crucial aspect of democratic societies, public health measures have long been implemented to protect the collective well-being. Seatbelt laws, for example, are in place to save lives, even though they restrict personal choice.

Step 8: Write the Conclusion

Summarize your main points and restate your thesis statement in the conclusion. End with a strong call to action or thought-provoking statement. For instance:


In conclusion, COVID-19 vaccination mandates are a crucial step toward controlling the pandemic, protecting public health, and preventing further loss of life. The evidence overwhelmingly supports their effectiveness, and while concerns about personal freedoms are valid, they must be weighed against the greater good of society. It is our responsibility to take collective action to combat this global crisis and move toward a safer, healthier future.

Step 9: Revise and Proofread

Edit your essay for clarity, coherence, grammar, and spelling errors. Ensure that your argument flows logically.

Step 10: Cite Your Sources

Include proper citations and a bibliography page to give credit to your sources.

Remember to adjust your approach and arguments based on your target audience and the specific angle you want to take in your persuasive essay about COVID-19.

Order Essay

Paper Due? Why Suffer? That's our Job!

Examples of Persuasive Essay About COVID-19

When writing a persuasive essay about the COVID-19 pandemic, it’s important to consider how you want to present your argument. To help you get started, here are some example essays for you to read:




Here is another example explaining How COVID-19 has changed our lives essay:

The COVID-19 pandemic, which began in late 2019, has drastically altered the way we live. From work and education to social interactions and healthcare, every aspect of our daily routines has been impacted. Reflecting on these changes helps us understand their long-term implications.

COVID-19, caused by the novel coronavirus SARS-CoV-2, is an infectious disease first identified in December 2019 in Wuhan, China. It spreads through respiratory droplets and can range from mild symptoms like fever and cough to severe cases causing pneumonia and death. The rapid spread and severe health impacts have led to significant public health measures worldwide.

The pandemic shifted many to remote work and online education. While some enjoy the flexibility, others face challenges like limited access to technology and blurred boundaries between work and home.

Social distancing and lockdowns have led to increased isolation and mental health issues. However, the pandemic has also fostered community resilience, with people finding new ways to connect and support each other virtually.

Healthcare systems have faced significant challenges, leading to innovations in telemedicine and a focus on public health infrastructure. Heightened awareness of hygiene practices, like handwashing and mask-wearing, has helped reduce the spread of infectious diseases.

COVID-19 has caused severe economic repercussions, including business closures and job losses. While governments have implemented relief measures, the long-term effects are still uncertain. The pandemic has also accelerated trends like e-commerce and contactless payments.

The reduction in travel and industrial activities during lockdowns led to a temporary decrease in pollution and greenhouse gas emissions. This has sparked discussions about sustainable practices and the potential for a green recovery.

COVID-19 has reshaped our lives in numerous ways, affecting work, education, social interactions, healthcare, the economy, and the environment. As we adapt to this new normal, it is crucial to learn from these experiences and work towards a more resilient and equitable future.

Let’s look at another sample essay:

The COVID-19 pandemic has been a transformative event, reshaping every aspect of our lives. In my opinion, while the pandemic has brought immense challenges, it has also offered valuable lessons and opportunities for growth.

One of the most striking impacts has been on our healthcare systems. The pandemic exposed weaknesses and gaps, prompting a much-needed emphasis on public health infrastructure and the importance of preparedness. Innovations in telemedicine and vaccine development have been accelerated, showing the incredible potential of scientific collaboration.

Socially, the pandemic has highlighted the importance of community and human connection. While lockdowns and social distancing measures increased feelings of isolation, they also fostered a sense of solidarity. People found creative ways to stay connected and support each other, from virtual gatherings to community aid initiatives.

The shift to remote work and online education has been another significant change. This transition, though challenging, demonstrated the flexibility and adaptability of both individuals and organizations. It also underscored the importance of digital literacy and access to technology.

Economically, the pandemic has caused widespread disruption. Many businesses closed, and millions lost their jobs. However, it also prompted a reevaluation of business models and work practices. The accelerated adoption of e-commerce and remote work could lead to more sustainable and efficient ways of operating in the future.

In conclusion, the COVID-19 pandemic has been a profound and complex event. While it brought about considerable hardship, it also revealed the strength and resilience of individuals and communities. Moving forward, it is crucial to build on the lessons learned to create a more resilient and equitable world.

Check out some more PDF examples below:

Persuasive Essay About Covid-19 Pandemic

Sample Of Persuasive Essay About Covid-19

Persuasive Essay About Covid-19 In The Philippines - Example

If you're in search of a compelling persuasive essay on business, don't miss out on our “ persuasive essay about business ” blog!

Examples of Persuasive Essay About COVID-19 Vaccine

Covid19 vaccines are one of the ways to prevent the spread of COVID-19, but they have been a source of controversy. Different sides argue about the benefits or dangers of the new vaccines. Whatever your point of view is, writing a persuasive essay about it is a good way of organizing your thoughts and persuading others.

A persuasive essay about the COVID-19 vaccine could consider the benefits of getting vaccinated as well as the potential side effects.

Below are some examples of persuasive essays on getting vaccinated for Covid-19.

Covid19 Vaccine Persuasive Essay

Persuasive Essay on Covid Vaccines

Interested in thought-provoking discussions on abortion? Read our persuasive essay about abortion blog to eplore arguments!

Examples of Persuasive Essay About COVID-19 Integration

Covid19 has drastically changed the way people interact in schools, markets, and workplaces. In short, it has affected all aspects of life. However, people have started to learn to live with Covid19.

Writing a persuasive essay about it shouldn't be stressful. Read the sample essay below to get an idea for your own essay about Covid19 integration.

Persuasive Essay About Working From Home During Covid19

Searching for the topic of Online Education? Our persuasive essay about online education is a must-read.

Examples of Argumentative Essay About Covid 19

Covid-19 has been an ever-evolving issue, with new developments and discoveries being made on a daily basis.

Writing an argumentative essay about such an issue is both interesting and challenging. It allows you to evaluate different aspects of the pandemic, as well as consider potential solutions.

Here are some examples of argumentative essays on Covid19.

Argumentative Essay About Covid19 Sample

Argumentative Essay About Covid19 With Introduction Body and Conclusion

Looking for a persuasive take on the topic of smoking? You'll find it all related arguments in out Persuasive Essay About Smoking blog!

Examples of Persuasive Speeches About Covid-19

Do you need to prepare a speech about Covid19 and need examples? We have them for you!

Persuasive speeches about Covid-19 can provide the audience with valuable insights on how to best handle the pandemic. They can be used to advocate for specific changes in policies or simply raise awareness about the virus.

Check out some examples of persuasive speeches on Covid-19:

Persuasive Speech About Covid-19 Example

Persuasive Speech About Vaccine For Covid-19

You can also read persuasive essay examples on other topics to master your persuasive techniques!

Tips to Write a Persuasive Essay About Covid-19

Writing a persuasive essay about COVID-19 requires a thoughtful approach to present your arguments effectively. 

Here are some tips to help you craft a compelling persuasive essay on this topic:

  • Choose a Specific Angle: Narrow your focus to a specific aspect of COVID-19, like vaccination or public health measures.
  • Provide Credible Sources: Support your arguments with reliable sources like scientific studies and government reports.
  • Use Persuasive Language: Employ ethos, pathos, and logos , and use vivid examples to make your points relatable.
  • Organize Your Essay: Create a solid persuasive essay outline and ensure a logical flow, with each paragraph focusing on a single point.
  • Emphasize Benefits: Highlight how your suggestions can improve public health, safety, or well-being.
  • Use Visuals: Incorporate graphs, charts, and statistics to reinforce your arguments.
  • Call to Action: End your essay conclusion with a strong call to action, encouraging readers to take a specific step.
  • Revise and Edit: Proofread for grammar, spelling, and clarity, ensuring smooth writing flow.
  • Seek Feedback: Have someone else review your essay for valuable insights and improvements.

Tough Essay Due? Hire Tough Writers!

Common Topics for a Persuasive Essay on COVID-19 

Here are some persuasive essay topics on COVID-19:

  • The Importance of Vaccination Mandates for COVID-19 Control
  • Balancing Public Health and Personal Freedom During a Pandemic
  • The Economic Impact of Lockdowns vs. Public Health Benefits
  • The Role of Misinformation in Fueling Vaccine Hesitancy
  • Remote Learning vs. In-Person Education: What's Best for Students?
  • The Ethics of Vaccine Distribution: Prioritizing Vulnerable Populations
  • The Mental Health Crisis Amidst the COVID-19 Pandemic
  • The Long-Term Effects of COVID-19 on Healthcare Systems
  • Global Cooperation vs. Vaccine Nationalism in Fighting the Pandemic
  • The Future of Telemedicine: Expanding Healthcare Access Post-COVID-19

In search of more inspiring topics for your next persuasive essay? Our persuasive essay topics blog has plenty of ideas!

To sum it up,

You have read good sample essays and got some helpful tips. You now have the tools you needed to write a persuasive essay about Covid-19. So don't let the doubts stop you, start writing!

If you need professional writing help, don't worry! We've got that for you as well.

MyPerfectWords.com is a professional persuasive essay writing service that can help you craft an excellent persuasive essay on Covid-19. Our experienced essay writer will create a well-structured, insightful paper in no time!

So don't hesitate and place your ' write my essay online ' request today!

Frequently Asked Questions

What is a good title for a covid-19 essay.

FAQ Icon

A good title for a COVID-19 essay should be clear, engaging, and reflective of the essay's content. Examples include:

  • "The Impact of COVID-19 on Global Health"
  • "How COVID-19 Has Transformed Our Daily Lives"
  • "COVID-19: Lessons Learned and Future Implications"

How do I write an informative essay about COVID-19?

To write an informative essay about COVID-19, follow these steps:

  • Choose a specific focus: Select a particular aspect of COVID-19, such as its transmission, symptoms, or vaccines.
  • Research thoroughly: Gather information from credible sources like scientific journals and official health organizations.
  • Organize your content: Structure your essay with an introduction, body paragraphs, and a conclusion.
  • Present facts clearly: Use clear, concise language to convey information accurately.
  • Include visuals: Use charts or graphs to illustrate data and make your essay more engaging.

How do I write an expository essay about COVID-19?

To write an expository essay about COVID-19, follow these steps:

  • Select a clear topic: Focus on a specific question or issue related to COVID-19.
  • Conduct thorough research: Use reliable sources to gather information.
  • Create an outline: Organize your essay with an introduction, body paragraphs, and a conclusion.
  • Explain the topic: Use facts and examples to explain the chosen aspect of COVID-19 in detail.
  • Maintain objectivity: Present information in a neutral and unbiased manner.
  • Edit and revise: Proofread your essay for clarity, coherence, and accuracy.

AI Essay Bot

Write Essay Within 60 Seconds!

Caleb S.

Caleb S. has been providing writing services for over five years and has a Masters degree from Oxford University. He is an expert in his craft and takes great pride in helping students achieve their academic goals. Caleb is a dedicated professional who always puts his clients first.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

Persuasive Essay

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Iran J Med Sci
  • v.45(4); 2020 Jul

A Narrative Review of COVID-19: The New Pandemic Disease

Kiana shirani, md.

1 Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Erfan Sheikhbahaei, MD

2 Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Zahra Torkpour, MD

Mazyar ghadiri nejad, phd.

3 Industrial Engineering Department, Girne American University, Kyrenia, TRNC, Turkey

Bahareh Kamyab Moghadas, PhD

4 Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Matina Ghasemi, PhD

5 Faculty of Business and Economics, Business Department, Girne American University, Kyrenia, TRNC, Turkey

Hossein Akbari Aghdam, MD

6 Department of Orthopedic Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Athena Ehsani, PhD

7 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Saeed Saber-Samandari, PhD

8 New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran

Amirsalar Khandan, PhD

9 Department of Electrical Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

10 0Technology Incubator Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Nearly every 100 years, humans collectively face a pandemic crisis. After the Spanish flu, now the world is in the grip of coronavirus disease 2019 (COVID-19). First detected in 2019 in the Chinese city of Wuhan, COVID-19 causes severe acute respiratory distress syndrome. Despite the initial evidence indicating a zoonotic origin, the contagion is now known to primarily spread from person to person through respiratory droplets. The precautionary measures recommended by the scientific community to halt the fast transmission of the disease failed to prevent this contagious disease from becoming a pandemic for a whole host of reasons. After an incubation period of about two days to two weeks, a spectrum of clinical manifestations can be seen in individuals afflicted by COVID-19: from an asymptomatic condition that can spread the virus in the environment, to a mild/moderate disease with cold/flu-like symptoms, to deteriorated conditions that need hospitalization and intensive care unit management, and then a fatal respiratory distress syndrome that becomes refractory to oxygenation. Several diagnostic modalities have been advocated and evaluated; however, in some cases, diagnosis is made on the clinical picture in order not to lose time. A consensus on what constitutes special treatment for COVID-19 has yet to emerge. Alongside conservative and supportive care, some potential drugs have been recommended and a considerable number of investigations are ongoing in this regard

What’s Known

  • Substantial numbers of articles on COVID-19 have been published, yet there is controversy among clinicians and confusion among the general population in this regard. Furthermore, it is unreasonable to expect physicians to read all the available literature on this subject.

What’s New

  • This article reviews high-quality articles on COVID-19 and effectively summarizes them for healthcare providers and the general population.

Introduction

A pathogen from a human-animal virus family, the coronavirus (CoV), which was identified as the main cause of respiratory tract infections, evolved to a novel and wild kind in Wuhan, a city in Hubei Province of China, and spread throughout the world, such that it created a pandemic crisis according to the World Health Organization (WHO). CoV is a large family of viruses that were first discovered in 1960. These viruses cause such diseases as common colds in humans and animals. Sometimes they attack the respiratory system, and sometimes their signs appear in the gastrointestinal tract. There have been different types of human CoV including CoV-229E, CoV-OC43, CoV-NL63, and CoV-HKU1, with the latter two having been discovered in 2004 and 2005, respectively. These types of CoV regularly cause respiratory infections in children and adults. 1 There are also other types of these viruses that are associated with more severe symptoms. The new CoV, scientifically known as “SARS-CoV-2”, causes severe acute respiratory syndrome (SARS). 2 A newer type of the virus was discovered in September 2012 in a 60-year-old man in Saudi Arabia who died of the disease; the man had traveled to Dubai a few days earlier. The second case was a 49-year-old man in Qatar who also passed away. The discovery was first confirmed at the Health Protection Agency’s Laboratory in Colindale, London. The outbreak of this CoV is known as the Middle East Respiratory Syndrome (MERS), commonly referred to as “MERS-CoV”. The virus has infected 2260 people and has killed 912, most of them in the Middle East. 3 - 5 Finally, in December 2019, for the first time in Wuhan, in Hubei Province of China, a new type of CoV was identified that caused pneumonia in humans. 6 SARS-CoV-2 has affected 5404512 people and killed more than 343514 around the world according to the WHO situation report-127 (May 26, 2020). 3 , 7 - 10 The WHO has officially termed the disease “COVID-19”, which refers to corona, the virus, the disease, the year 2019, and its etiology (SARS-CoV-2). This type of CoV had never been seen in humans before. The initial estimates showed a mortality rate ranging from between 1% and 3% in most countries to 5% in the worst-hit areas ( Figure 1 ). 9 Some Chinese researchers succeeded in determining how SARS-CoV-2 affects human cells, which could help to develop techniques of viral detection and had antiviral therapy potential. Via a process termed “cryogenic electron microscopy (cryo-EM)”, these scientists discovered that CoV enters human cells utilizing a kind of cell membrane glycoprotein: angiotensin-converting enzyme 2 (ACE2). Then, the S protein is split into two sub-units: S1 and S2. S1 keeps a receptor-binding domain (RBD); accordingly, SARS-CoV-2 can bind to the peptidase domain of ACE2 directly. It appears that S2 subsequently plays a role in cellular fusion. Chinese researchers used the cryo-EM technique to provide ACE2 when it is linked to an amino acid transporter called “B0AT1”. They also discovered how to connect SARS-CoV-2 to ACE2-B0AT1, which is another complex structure. Given that none of these molecular structures was previously known, the researchers hoped that these studies would lead to the development of an antiviral or vaccine that would help to prevent CoV. Along the way, scientists found that ACE2 has to undergo a molecular process in which it binds to another molecule to be activated. The resulting molecule can bind two SARS-CoV-2 protein molecules simultaneously. The scientists also studied different SARS-CoV-2 RBD binding methods compared with other SARS-CoV-RBDs, which showed how subtle changes in the molecular binding sequence make the coronal structure of the virus stronger.

An external file that holds a picture, illustration, etc.
Object name is IJMS-45-233-g001.jpg

Most cases with SARS-CoV-2 are asymptomatic or have mild clinical pictures such as influenza and colds. This group of patients should be detected and isolated in their homes to break the transmission chain of the disease and adhere to the precautionary recommendations in order not to infect other people. The screening process will help this group and suppress the outbreak in the community. Patients with the confirmed disease who are admitted to hospitals can contaminate this environment, which should be borne in mind by healthcare providers and policymakers.

Transmission

While the first mode of the transmission of COVID-19 to humans is still unknown, a seafood market where live animals were sold was identified as a potential source at the beginning of the outbreak in the epidemiologic investigations that found some infected patients who had visited or worked in that place. The other viruses in this family, namely MERS and SARS, were both confirmed to be zoonotic viruses. Afterward, the person-to-person spread was established as the main mode of transmission and the reason for the progression of the outbreak. 11 Similar to the influenza virus, SARS-CoV-2 spreads through the population via respiratory droplets. When an infected person coughs, sneezes, or talks, the respiratory secretions, which contain the virus, enter the environment as droplets. These droplets can reach the mucous membranes of individuals directly or indirectly when they touch an infected surface or any other source; the virus, thereafter, finds its ways to the eyes, nose, or mouth as the first incubation places. 11 - 15 It has been reported that droplets cannot travel more than two meters in the air, nor can they remain in the air owing to their high density. Nonetheless, given the other hitherto unknown modes of transmission, routine airborne transmission precautions should be considered in high-risk countries and during high-risk procedures such as manual ventilation with bags and masks, endotracheal intubation, open endotracheal suctioning, bronchoscopy, cardiopulmonary resuscitation, sputum induction, lung surgery, nebulizer therapy, noninvasive positive pressure ventilation (eg, bilevel positive airway pressure and continuous positive airway pressure ), and lung autopsy. In the early stages of the disease, the chances of the spread of the virus to other persons are high because the viral load in the body may be high despite the absence of any symptoms ( Figure 2 ). 11 - 13 The person-to-person transmission rates can be different depending on the location and the infection control intervention; still, according to the latest reports, the secondary COVID-19 infection rate ranges from 1% to 5%. 13 - 23 Although the RNA of the virus has been detected in blood and stool, fecal-oral and blood-borne transmissions are not regarded as significant modes of transmission yet. 19 - 26 There have been no reports of mother-to-fetus transmission in pregnant women. 27

An external file that holds a picture, illustration, etc.
Object name is IJMS-45-233-g002.jpg

SARS-CoV-2 mode of transmission and clinical manifestations are illustrated in this figure. The potential source of this outbreak was identified to be from animals, similar to MERS and SARS, in epidemiologic studies; nonetheless, person-to-person transmission through droplets is currently the important mode. After reaching mucous membranes by direct or indirect close contact, the virus replicates in the cells and the immune system attacks the body due to its nature. Afterward, the clinical pictures appear, which are much more similar to influenza. However, different patients will have a spectrum of signs and symptoms.

Source Investigation

Recently, the appearance of SARS-CoV-2 in society shocked the healthcare system. 28 - 32 Veterinary corona virologists reported that COVID-19 was isolated from wildlife. Several studies have shown that bats are receptors of the CoV new version in 2019 with variants and changes in the environment featuring various biological characteristics. 33 - 36 The aforementioned mammals are a major source of CoV, which causes mild-to-severe respiratory illness and can even be deadly. In recent years, the virus has killed several thousands of people of all ages. 37 - 39 The mutated alternative of the virus can be transmitted to humans and cause acute respiratory distress. 40 , 41 One of the main causes of the spread of the virus is the exotic and unusual Chinese food in Wuhan: CoV is a direct result of the Chinese food cycle. The virus is found in the body of animals such as bats, 42 and snake or bat soup is a favorite Chinese food. Therefore, this sequence is replicated continuously. Almost everyone who was infected for the first time was directly in the local Wuhan market or had indirectly tried snake or bat soup in a Chinese restaurant. An investigation stated that the Malayan pangolin (Manis javanica) was a possible host for SARS-CoV-2 and recommended that it be removed from the wet market to prevent zoonotic transmissions in the future. 43 , 44

Pathogenesis

The important mechanisms of the severe pathogenesis of SARS-CoV-2 are not fully understood. Extensive lung injury in SARS-CoV-2 has been related to increased virus titers; monocyte, macrophage, and neutrophil infiltrations into the lungs; and elevated levels of pro-inflammatory cytokines and chemokines. Thus, the clinical exacerbation of SARS-CoV-2 infection may be in consequence of a combination of direct virus-induced cytopathic and immunopathological effects due to excessive cytokinesis. Changes in the cytokine/chemokine profile during SARS infection showed increased levels of circulating cytokines such as tumor necrosis factor-α (TNF-α), C–X–C motif chemokine 10 (CXCL10), interleukin (IL)-6, and IL-8 levels, in conjunction with elevated levels of serum pro-inflammatory cytokines such as IL-1, IL-6, IL-12, interferon-gamma (IFN-γ), and transforming growth factor-β (TGF-β). Nevertheless, constant stimulation by the virus creates a cytokine storm that has been related to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndromes (MODS) in patients with COVID-19, which may ultimately lead to diminished immunity by lowering the number of CD4+ and CD8+ T cells and natural killer cells (crucial in antiviral immunity) and decreasing cytokine production and functional ability (exhaustion). It has been shown that IL-10, an inhibitory cytokine, is a major player and a potential target for therapeutic aims. 45 - 51 Severe cases of COVID-19 have respiratory distress and failure, which has been linked to the altered metabolism of heme by SARS-CoV-2. Some virus proteins can dissociate iron from porphyrins by attacking the 1-β chain of hemoglobin, which decreases the oxygen-transferring ability of hemoglobin. Research has also indicated that chloroquine and favipiravir might inhibit this process. 52

Clinical Manifestations

SARS-CoV-2, which attacks the respiratory system, has a spectrum of manifestations; nonetheless, it has three main primary symptoms after an incubation period of about two days to two weeks: fever and its associated symptoms such as malaise/fatigue/weakness; cough, which is nonproductive in most of the cases but can be productive indeed; and shortness of breath (dyspnea) due to low blood oxygenation. Although these symptoms appear in the body of the affected person over two to 14 days, patients may refer to the clinic with gastrointestinal symptoms (nausea/vomiting-diarrhea) or decreased sense of smell and/or taste. More devastatingly, however, patients may refer to the emergency room with such coagulopathies as pulmonary thromboembolism, cerebral venous thrombosis, and other related manifestations. The WHO has stated that dry throat and dry cough are other symptoms detected in the early stages of the infection. 53 , 54 The estimations of the severity of the disease are as follows: mild (no or mild pneumonia) in 81%, severe (eg, with dyspnea, hypoxia, or >50% lung involvement on imaging within 24 to 48 hours) in 14%, and critical (eg, with respiratory failure, shock, or multiorgan dysfunction) in 5%. In the early stages, the overall mortality rate was 2.3% and no deaths were observed in non-severe patients. Patients with advanced age or underlying medical comorbidities have more mortality and morbidity. 55 Although adults of middle age and older are most commonly affected by SARS-CoV-2, individuals at any age can be infected. A few studies have reported symptomatic infection in children; still, when it occurs, it has mild symptoms. The vast majority of cases have the infection with no signs and symptoms or mild clinical pictures; they are called “the asymptomatic group”. These patients do not seek medical care and if they come into close contact with others, they can spread the virus. Therefore, quarantine in their home is the best option for the population to break the transmission of the virus. It should be considered that some of these asymptomatic patients have clinical signs such as chest computed tomography scan (CT-Scan) infiltrations. Similar to bacterial pneumonia, lower respiratory signs and symptoms are the most frequent manifestations in serious cases of COVID-19, characterized by fever, cough, dyspnea, and bilateral infiltrates on chest imaging. In a study describing pneumonia in Wuhan, the most common clinical signs and symptoms at the onset of the illness were fever in 99% (although fever might not be a universal finding), fatigue in 70%, dry cough in 59%, anorexia in 40%, myalgia in 35%, dyspnea in 31%, and sputum production in 27%. Headache, sore throat, and rhinorrhea are less common, and gastrointestinal symptoms (eg, nausea and diarrhea) are relatively rare. 7 , 42 , 43 , 45 - 48 , 56 , 57 According to our clinical experience in Iran, anosmia, atypical chest pain, diarrhea, nausea/vomiting, and hemoptysis are other presenting symptoms in the clinic. It should be noted that COVID-19 has some unexplained potential complications such as secondary bacterial infections, myocarditis, central nervous system injury, cerebral edema, MODS, acute demyelinating encephalomyelitis (ADEM), kidney injury, liver injury, new-onset seizure, coagulopathy, and arrhythmias.

Laboratory data : Complete blood counts, which constitute a routine laboratory test, have shown different results in terms of the white blood cell count: from leukopenia and lymphopenia to leukocytosis, although lymphopenia appears to be the most common. Fatal cases have exhibited severe lymphopenia accompanied by an increased level of D-dimer. Liver function enzymes can be increased; however, it is not sufficient to diagnose a disease. The serum procalcitonin level is a marker of infection, especially in bacterial diseases. Patients with COVID-19 who require intensive care unit (ICU) management may have elevated procalcitonin. Increased urea and creatinine, creatinine-phosphokinase, lactate dehydrogenase, and C-reactive protein are other findings in some cases. 7 , 56 , 57

Imaging studies : Routine chest X-ray (CXR) is widely deemed the first-step management to evaluate any respiratory involvement. Although negative findings in CXR do not rule out the viral disease, patients without common findings do not have severe disease and can, consequently, be managed in the outpatient setting. 58 , 59 Another modality is chest CT-Scan. It can be ordered in suspected cases with typical symptoms at the first step, or it can be performed after the detection of any abnormalities in CXR. The most common demonstrations in CT-Scan images are ground-glass opacification, round opacities, and crazy paving with or without bilateral consolidative abnormalities (multilobar involvement) in contrast to most cases of bacterial pneumonia, which have locally limited involvement. Pleural thickening, pleural effusion, and lymphadenopathy are less common. 58 - 61 Tree-in-bud, peribronchial distribution, nodules, and cavity are not in favor of common COVID-19 findings. Although reverse transcriptase-polymerase chain reaction (RT-PCR) is used to confirm the diagnosis, it is a time-consuming procedure and has high false-negative/false-positive findings; hence, in the emergency clinical setting, CT-Scan findings can be a good approach to make the diagnosis. It is deserving of note, however, that false-positive/false-negative cases were reported by one study to be high and other differential diagnoses should be in mind in order not to miss any other cases such as acute pulmonary edema in patients with heart disease.

Suspected cases should be diagnosed as soon as possible to isolate and control the infection immediately. COVID-19 should be considered in any patient with fever and/or lower respiratory tract symptoms with any of the following risk factors in the previous 2 weeks: close contact with confirmed or suspected cases in any environment, especially at work in healthcare places without sufficient protective equipment or long-time standing in those places, and living in or traveling from well-known places where the disease is an epidemic. 61 - 66 Patients with severe lower respiratory tract disease without alternative etiologies and a clear history of exposure should be considered having COVID-19 unless confirmed otherwise. According to the Centers for Disease Control and Prevention (CDC), sending tests to check SARS-CoV-2 in suspected cases is based on physicians’ clinical judgment. Although there are some positive cases without clinical manifestations (ie, fever and/or symptoms of acute respiratory illness such as cough and dyspnea), infectious disease and control centers should take action in society to limit the exposure of such patients to other healthy individuals. The CDC prioritizes the use of the specific test for hospitalized patients, symptomatic patients who are at risk of fatal conditions (eg, age ≥65 y, chronic medical conditions, and immunocompromising conditions) and those who have exposure risks (recent travel, contact with patients with COVID-19, and healthcare workers). 61 - 66 Although treatment should be started after the confirmation of the disease, RT-PCR for highly suspected cases is a time-consuming test; accordingly, a considerable number of clinicians favor the use of a combination of clinical manifestations with imaging modalities (eg, CT-Scan findings) and their clinical judgment regarding the probability of the disease in order not to lose more time. 61 - 66

Treatment of COVID-19

There is no confirmed recommended treatment or vaccine for SARS-CoV-2; prevention is, therefore, better than treatment. Nevertheless, the high contagiousness of COVID-19, combined with the fact that some individuals fail to adhere to precautionary measures or they have significant risk factors, means that this infectious disease is inevitable in some people. Beside supportive treatments, many types of medications have been introduced. These medications come from previous experimental studies on SARS, MERS, influenza, or human immunodeficiency virus (HIV); hence, their efficacy needs further experimental and clinical approval. Patients with mild symptoms who do not have significant risk factors should be managed in their home like a self-made quarantine (in an isolated room); still, prompt hospital admission is required if patients exhibit signs of disease deterioration. 25 , 67 , 68 Isolation from other family members is an important prevention tip. Patients should wear face masks, eat healthy and warm foods similar to when struggling with influenza or colds, do the handwashing process, dispose of the contaminated materials cautiously, and disinfect suspicious surfaces with standard disinfectants. 69 Patients with severe symptoms or admission criteria should be hospitalized with other patients who have the same disease in an isolated department. When the disease is progressed, ICU care is mandatory. 25 , 67 , 68 SARS-CoV-2 attacks the respiratory system, diminishing the oxygenation process and forcing patients with low blood oxygen saturation to take extra oxygen from different modalities. Nasal cannulae, face masks with or without a reservoir, intubation in severe cases, and then extracorporeal membrane oxygenation in refractory hypoxia have been used; however, the safety and efficacy of these measures should be evaluated. As was mentioned above, impaired coagulation is one of the major complications of the disease; consequently, alongside all recommended supportive care and drugs, anticoagulants such as heparin should be administered prophylactically ( Table 1 ). Although it is said that all the clinical signs and symptoms of COVID-19 are induced by the immune system, as other research on influenza and MERS has revealed, glucocorticoids are not recommended in COVID-19 pneumonia unless other indications are present (eg, exacerbation of chronic obstructive pulmonary disease and refractory septic shock) due to the high risk of mortality and delayed viral clearance. Earlier in the national and international guidelines, nonsteroidal anti-inflammatory drugs such as naproxen were recommended on the strength of their antipyretic and anti-inflammatory components; however, the guideline has been revised recently and acetaminophen with or without codeine is currently the favored drug in patients with COVID-19. 25 , 67 , 68 According to the pathogenesis of the disease, whereby cytokine storm and immune-cell exhaustion can be seen in severe cases, selective antibodies against harmful interleukins such as IL-6 and IL-10 or other possible agents can be therapeutic for fatal complications. Tocilizumab, an IL-6 inhibitor, albeit with limited clinical efficacy, has been introduced in China’s National Health Commission treatment guideline for severe infection with profound pulmonary involvement (ie, white lung). 70 , 87

Summary of possible anti-COVID-19 drugs

Drug NameMechanism of ActionRegimenReferences
Hydroxychloroquine sulfateAntigen-presenting cell lysosomal pH modulator; toll-like receptor family inhibitor; hemozoin biocrystalization inhibitor; altering the ACE2 glycosylation, which inhibits S-protein binding and phagocytosisFirst day, 400 mg BD and then, 200 mg BD , -
Chloroquine phosphateLate endosomal and lysosomal pH enhancer, zinc ionophore (RdRP inhibitor)First day 500 mg BD and then, 250 mg BD , -
Lopinavir/RitonavirCombined protease inhibitor400 mg/100 mg BD , , , - , ,
Atazanavir/RitonavirCombined protease inhibitor300 mg/100 mg once daily ,
AtazanavirProtease inhibitor400 mg once daily ,
FavipiravirRdRP inhibitorLoading dose, 1600 mg and then, 600 mg TDS , ,
RemdesivirRdRP inhibitorFirst day, 200 mg IV daily and then, 100 mg IV daily , , - ,
RibavirinRdRP inhibitor1200 mg BD -
OseltamivirNeuraminidase inhibitors75 mg BD ,
Interferon-β-1aAntiviral cytokine22 or 44 μg 3 times/week , , ,

mg, Milligrams; BD, Every 12 hours; RdRP, RNA-dependent RNA polymerase; TDS, Every 8 hours; IV, Intravenous; IL, Interleukin; μg, Micrograms

RNA synthesis inhibitors (eg, tenofovir disoproxil fumarate and 2’-deoxy-3’-thiacytidine [3TC]), neuraminidase inhibitors (NAIs), nucleoside analogs, lopinavir/ritonavir, atazanavir, remdesivir, favipiravir, INF-β, and Chinese traditional medicine (eg, Shufeng Jiedu and Lianhuaqingwen capsules) are the major candidates for COVID-19. 26 , 70 , 85 , 88 - 96 Antiviral drugs have been investigated for various diseases, but their efficacy in the treatment of COVID-19 is under investigation and several randomized clinical trials are ongoing to release a consensus result on the treatment of this infectious disease. Moderate-to-severe SARS-CoV-2 disease needs drug therapy. Favipiravir, a previously validated drug for influenza, is a drug that has shown promising results for COVID-19 in experimental and clinical studies, but it is under further evaluation. 70 , 79 , 80 Remdesivir, which was developed for Ebola, is an antiviral drug that is under evaluation for moderate-to-severe COVID-19 owing to its promising results in in vitro investigations. 70 , 73 - 75 , 81 Remdesivir was shown to have reduced the virus titer in infected mice with MERS-CoV and improved lung tissue damage with more efficiency compared with a group treated with lopinavir/ritonavir/INF-β. 67 , 70 Another investigation studied the potential efficacy of INF-β-1 in the early stages of COVID-19 as a potential antiviral drug. 86 Although there is some hope, an evidence-based consensus requires further clinical trials. 70 , 77 A combined protease inhibitor, lopinavir/ritonavir, is used for HIV infection and has shown interesting results for SARS and MERS in in vitro studies. 73 - 75 The clinical effectiveness of lopinavir/ritonavir for SARS-CoV-2 was also reported in a case report. 70 , 71 , 74 , 76 Atazanavir, another protease inhibitor, with or without ritonavir is another possible anti-COVID-19 treatment. 77 , 78 NAIs, including oseltamivir, zanamivir, and peramivir, are recommended as antiviral treatment in influenza. 68 Oral oseltamivir was tried for COVID-19 in China and was first recommended in the Iranian guideline for COVID-19 treatment; nevertheless, because of the absence of strong evidence indicating its efficacy for SARS-CoV-2, it was eliminated from the subsequent updates of the guideline. 85 RNA-dependent RNA polymerase inhibitors with anti-hepatitis C effects such as ribavirin have shown satisfactory results against SARS-CoV-2 RNA polymerase; however, they have limited clinical approval. 82 - 84 The well-known drugs for rheumatoid arthritis, systemic lupus erythematosus, and an antimalarial drug, chloroquine 71 and hydroxychloroquine 21 are other potential drugs for moderate-to-severe COVID-19 but with limited or no clinical appraisal. Hydroxychloroquine has exhibited better safety and fewer side effects than chloroquine, which makes it the preferred choice. 70 Furthermore, the immunomodulatory effects of hydroxychloroquine can be used to control the cytokine precipitation in the late phases of SARS-CoV-2 infections. There are numerous mechanisms for the antiviral activity of hydroxychloroquine. A weak base drug, hydroxychloroquine concentrates on such intracellular sections as endosomes and lysosomes, thereby halting viral replication in the phase of fusion and uncoating. Additionally, this immunosuppressive and antiparasitic drug is capable of altering the glycosylation of ACE2 and inhibiting both S-protein binding and phagocytosis. 72 A recent multicenter study showed that regarding the risks of cardiovascular adverse effects and mortality rates, hydroxychloroquine or chloroquine with or without a macrolide (eg, azithromycin) was not beneficial for hospitalized patients, although further research is needed to end such controversies. 97

Disease Duration

It is not easy to quarantine the patients who have fully recovered because there is evidence that they are highly infectious. 81 The recovery time for confirmed cases based on the National Health Commission reports of China’s government was estimated to range between 18 and 22 days. 73 As indicated by the WHO, the healing time seems to be around two weeks for moderate infections and 3 to 6 weeks for the severe/ serious disease. 75 Pan Feng and others studied 21 confirmed cases with COVID-19 pneumonia with about 82 CT-Scan images with a mean interval of four days. Lung abnormalities on chest CT showed the highest severity approximately 10 days after the initial onset of symptoms. All patients became clear after 11 to 26 days of hospitalization. From day zero to day 26, four stages of lung CT were defined as follows: Stage 1 (first 4 days): ground-glass opacities; Stage 2 (second 4 days): crazy-paving patterns; Stage 3 (days 9–13): maximum total CT scores in the consolidations; and Stage 4 (≥14 d): steady improvements in the consolidations with a reduction in the total CT score without any crazy-paving pattern. 74 Nevertheless, there are also rare cases reported from some studies that show the recurrence of COVID-19 after negative preliminary RT-PCR results. For example, Lan and othersstudied one hospitalized and three home-quarantined patients with COVID-19 and evaluated them with RT-PCR tests of the nucleic acid. All the patients with positive RT-PCR test results had CT imaging with ground-glass opacification or mixed ground-glass opacification and consolidation with mild-to-moderate disease. After antiviral treatments, all four patients had two consecutive negative RT-PCR test results within 12 to 32 days. Five to 13 days after hospital discharge or the discontinuation of the quarantine, RT-PCR tests were repeated, and all were positive. An additional RT-PCR test was performed using a kit from a different manufacturer, and the results were also positive. Their findings propose that a minimum percentage of recovered patients may still be infection carriers. 76

Supplements for COVID-19

Since the appearance of SARS-CoV-2 in Wuhan, China, there have been reports of the unreliable and unpredictable use of mysterious therapies. Some recommendations such as the use of certain herbs and extracts including oregano oil, mulberry leaf, garlic, and black sesame may be safe as long as people do not utilize their hands for instance. 98 According to data released by the CDC, vitamin C (VitC) supplements can decrease the risk of colds in people besides preventing CoV from spreading. The aforementioned organization states that frequent consumption of VitC supplements can also decrease the duration of the cold; however, if used only after the cold has risen, its consumption does not influence the disease course. VitC also plays an important role in the body. One of the main reasons for taking VitC is to strengthen the immune system because this vitamin plays a significant part in the immune system. Firstly, VitC can increase the production of white blood cells (lymphocytes and phagocytes) in the bone marrow, which can support and protect the body against infections. Secondly, VitC helps immune cells to function better while preserving white blood cells from damaging molecules such as free oxidative radicals and ions. Thirdly, VitC is an essential part of the skin’s immune system. This vitamin is actively transported to the skin surface, where it serves as an antioxidant and helps to strengthen the skin barrier by optimizing the collagen synthesis process. Patients with pneumonia have lower levels of VitC and have been revealed to have a longer recovery time. 69 , 99 In a randomized investigation, 200 mg/d of VitC was applied to older patients and resulted in improvements in the respiratory symptoms. Another investigation reported 80% fewer mortalities in a controlled group of VitC takers. 73 However, for effective immune system improvement, VitC should be consumed alongside adequate doses of several other supplements. Although VitC plays an important role in the body, often a balanced diet and the consumption of fresh fruits and vegetables can quickly fill the blanks. While taking high amounts of VitC is less risky because it is water-soluble and its waste is eliminated in the urine, it can induce diarrhea, nausea, and abdominal spasms at higher concentrations. Too much VitC may cause calcium-oxalate kidney stones. People with genetic hemochromatosis, an iron deficiency disorder, should consult a physician before taking any VitC supplements as high levels of VitC can lead to tissue damage. Some studies have evaluated the different doses of oral or intravenous VitC for patients admitted to the hospital for COVID-19. Although they used different regimens, all of them demonstrated satisfactory results regarding the resolution of the compilations of the disease, decreased mortality, and shortened lengths of stay in the ICU and/or the hospital. 100 , 101 Immunologists have also recommended 6 000 units of vitamin A (VitA) per day for two weeks, more than twice the recommended limit for VitA, which can create a poisoning environment over time. According to the guidance of the National Institutes of Health (NIH), middle-aged men and women should take 1 and 2 mg of VitA every day, respectively. The safe upper limit of this vitamin is 6000 mg or 5000 units, and overdose can have serious outcomes such as dizziness, nausea, headache, coma, and even death. Extreme consumption of VitA throughout pregnancy can lead to birth anomalies.

Similar to VitC, vitamin D (VitD) has antioxidant, anti-inflammatory, and immune-modulatory effects in our body such as reducing pro-inflammatory cytokines and inhibiting viral replication according to experimental studies. 83 The VitD state of our body is checked through 25 (OH) VitD in the serum. VitD deficiency is pandemic around the world due to multifactorial reasons. It has been shown that VitD deficient patients are prone to SARS-CoV-2 and, accordingly, treating VitD deficiency is not without benefits. Grant and others recommended 10 000 units per day for two weeks and then 5 000 units per day as the maintenance dose to keep the level between 40 and 100 ng/mL. 102 VitD toxicity causes gastrointestinal discomfort (dyspepsia), congestion, hypercalcemia, confusion, positional disorders, dysrhythmia, and kidney dysfunction.

James Robb, 103 a researcher who detected CoV for the first time as a consultant pathologist with the National Cancer Institute of America, suggested the influence of zinc consumption. Oral zinc supplements can be dissolved in the nback of the throat. Short-term therapy with oral zinc can decrease the duration of viral colds in adults. Zinc intake is also associated with the faster resolution of nasal congestion, nasal drainage, sore throats, and coughs. Researchers 104 , 105 have warned that the consumption of more than 1 mg of zinc a day can lead to zinc poisoning and have side effects such as lowered immune function. Children and old people with zinc insufficiency in developing nations are extremely vulnerable to pneumonia and other viral infections. It has also been determined that zinc has a major role in the production and activation of T-cell lymphocytes. 106 , 107

And finally, for high-risk people or those who work in high-risk places such as healthcare providers, hydroxychloroquine has been mentioned to be effective as a prophylactic regimen ( Table 2 ). Although different doses have been investigated so far, Pourdowlat and others recommended 200 mg daily before exposure, and for the post-exposure scenario, a loading dose of 600-800 mg followed by a maintenance dose of 200 mg daily. 74

Possible prophylactic regimens against SARS-CoV-2 infection

AgentMechanism of ActionRegimenReference
VitA Antioxidant, anti-inflammatory, immune-regulatory agent6 000 IU/d for 2 weeks -
VitC1)intravenous 200 mg/kg body weight/d, divided into 4 doses for ICU-care patients 2)oral 6 g/d 3)one 10–20 g IV (max: 1.5 g/kg) -
VitD 10 000 IU/d for 2 weeks until the 25(OH)Vit D level reaches 40–60 ng/mL and then 5 000 IU/d
ZincAntioxidant, anti-inflammatory, immune-regulatory agent, intracellular signal molecule in immune cells, RdRP inhibitorMax: 1 mg/d -
Hydroxychloroquine sulfateAntigen-presenting cell lysosomal pH modulator; toll-like receptor family inhibitor; hemozoin biocrystalization inhibitor; altering the ACE2 glycosylation, which inhibits S-protein binding and phagocytosis200 mg/d

IU, International unit; mg, Milligrams; kg, Kilograms; ICU, Intensive care unit; g, Grams; IV, Intravenous; Vit, Vitamin; ng, Nanograms; mL, Milliliter

COVID-19 Kits and Deep Learning

COVID-19 has threatened public health, and its fast global spread has caught the scientific community by surprise. 108 Hence, developing a technique capable of swiftly and reliably detecting the virus in patients is vital to prevent the spreading of the virus. 109 , 110 One of the ways to diagnose this new virus is through RT-PCR, a test that has previously demonstrated its efficacy in detecting such CoV infections as MERS-CoV and SARS-CoV. Consequently, increasing the availability of RT-PCR kits is a worldwide concern. The timing of the RT-PCR test and the type of strain collected are of vital importance in the diagnosis of COVID-19. One of the characteristics of this new virus is that the serum is negative in the early stage, while respiratory specimens are positive. The level of the virus at the early stage of the illness is also high, even though the infected individual experiences mild symptoms. 111 For the management of the emerging situation of COVID-19 in Wuhan, various effective diagnostic kits were urgently made available to markets. While a few different diagnostics kits are used merely for research endeavors, only a single kit developed by the Beijing Genome Institute (BGI) called “Real-Time Fluorescent PCR” has been authenticated for clinical diagnostics. Fluorescent RT-PCR is reliable and able to offer fast results probably within a few hours (usually within two hours). Besides RT-PCR, China has successfully developed a metagenomic-sequencing kit based on combinatorial probe-anchor synthesis that can identify virus-related bacteria, allowing observation and evaluation during the transmission of the virus. Furthermore, the metagenomic-sequencing kit based on combinatorial probe-anchor synthesis is far faster than the abovementioned fluorescent RT-PCR kit. Apart from China, a Singapore-based laboratory, Veredus, developed a virus detection kit (Vere-CoV) in late January. It is a portable Lab-On-Chip used to detect MERS-CoV, SARS-CoV, and SARS-CoV-2, in a single examination. This kit works based on the VereChip™ technology, the lines of code (LOC) program incorporating two different influential molecular biological functions (microarray and PCR) precisely. Several studies have focused on SARS-CoV diagnostic testing. These papers have presented investigative approaches to the identification of the virus using molecular testing (ie, RT-PCR). Researchers probed into the use of a nested PCR technique that contains a pre-amplification step or integrating the N gene as an extra subtle molecular marker to improve on the sensitivity. 112 - 115 CT-Scan is very useful for diagnosing, evaluating, and screening infections caused by COVID-19. One recommendation for scanning the disease is to take a scan every three to five days. According to researchers, most CT-Scan images from patients with COVID-19 are bilateral or peripheral ground-glass opacification, with or without stabilization. Nowadays, because of a paucity of computerized quantification tools, only qualitative reports and sometimes inaccurate analyses of contaminated areas are drawn upon in radiology reports. A categorization system based on the deep learning approach was proposed by a study to automatically measure infected parts and their volumetric ratios in the lung. The functionality of this system was evaluated by making some comparisons between the infected portions and the manually-delineated ones on the CT-Scan images of 300 patients with COVID-19. To increase the manual drawing of training samples and the non-interference in the automated results, researchers adopted a human-based approach in collaboration with radiologists so as to segment the infected region. This approach shortens the time to about four minutes after 3-time updating. The mean Dice similarity coefficient illustrated that the automatically detected infected parts were 91.6% similar to the manually detected ones, and the average of the percentage estimated error was 0.3% for the whole lung. 116 , 117

Prevention Considerations

In the healthcare setting, any individual with the manifestations of COVID-19 (eg, fever, cough, and dyspnea) should wear a face mask, have a separate waiting area, and keep the distance of at least two meters. Symptomatic patients should be asked about recent travel or close contact with a patient in the preceding two weeks to find other possible infected patients. The CDC and WHO have announced special precautions for healthcare providers in the hospital and during different procedures. Wearing tight-fitting face masks with special filters and impermeable face shields is necessary for all of them. 11 , 18 , 65 , 66 , 76 , 118 - 124 Other people should pay attention to the CDC and WHO preventive strategies, which recommend that individuals not touch their eyes, mouth, and nose before washing or disinfecting their hands; wash their hands regularly according to the standard protocol; use effective disinfection solutions (ie, containing at least 60% ethylic alcohol) for contaminated surfaces; cover their mouth when coughing and sneezing; avoid waiting or walking in crowded areas, and observe isolation protocols in their home. Postponing elective work and decreasing non-urgent visits and traveling to areas in the grip of COVID-19 may be useful to lessen the risk of exposure. If suspected individuals with mild symptoms are managed in outpatient settings, an isolated room with minimal exposure to others should be designed. Patients and their caregivers should wear tight-fitting face masks. 11 , 18 , 65 , 66 , 76 , 118 - 124 Substantial numbers of individuals with COVID-19 are asymptomatic with potential exposure; accordingly, a screening tool should be employed to evaluate these cases. In addition to passport checks, corona checks have been incorporated into the protocols in airports and other crowded places. The use of a remote thermometer to measure body temperature leads to an increase in the number of false-negative cases. It is, thus, essential that everyone pay sufficient heed to the WHO and CDC recommendations in their daily life. Traveling is not prohibited, but it should be restricted and passengers from any country should be monitored. 11 , 18 , 65 , 66 , 76 , 118 - 124

SARS-CoV-2 is the new highly contagious CoV, which was first reported in China. While it had a zoonotic origin in the beginning, it subsequently spread throughout the world by human contact. COVID-19 has a spectrum of manifestations, which is not lethal most of the time. To diagnose this condition, physicians can avail themselves of laboratory and imaging findings besides signs and symptoms. RT-PCR is the gold standard, but it lacks sufficient sensitivity and specificity. Although there are some potential drugs for COVID-19 and some vitamins or minerals for prophylaxis, the best preventive strategies are quarantine (staying at home) and the use of personal protective equipment and disinfectants.

Acknowledgement

The authors express their gratitude toward the Supporting Organizations for Foreign Iranian Students, Islamic Azad University Isfahan (Khorasgan) Branch, and Isfahan University of Medical Sciences.

Conflict of Interest: None declared.

Introduction - Pandemic Preparedness | Lessons From COVID-19

Introduction.

  • Recommendations
  • Other Views
  • Defense & Security
  • Diplomacy & International Institutions
  • Energy & Environment
  • Human Rights
  • Politics & Government
  • Social Issues
  • All Regions
  • Europe & Eurasia
  • Global Commons
  • Middle East & North Africa
  • Sub-Saharan Africa
  • More Explainers
  • Backgrounders
  • Special Projects

Research & Analysis

  • All Research & Analysis
  • Centers & Programs
  • Books & Reports
  • Independent Task Force Program
  • Fellowships

Communities

  • All Communities
  • State & Local Officials
  • Religion Leaders
  • Local Journalists
  • Lectureship Series
  • Webinars & Conference Calls
  • Member Login
  • ForeignAffairs.com
  • Co-chairs Sylvia Mathews Burwell and Frances Fragos Townsend
  • Authors Thomas J. Bollyky and Stewart M. Patrick
  • The work ahead—home

On December 31, 2019, the World Health Organization (WHO) contacted China about media reports of a cluster of viral pneumonias in Wuhan, later attributed to a coronavirus, now named SARS-CoV-2 . By January 30, 2020, scarcely a month later, WHO declared the virus to be a public health emergency of international concern (PHEIC)—the highest alarm the organization can sound. Thirty days more and the pandemic was well underway; the coronavirus had spread to more than seventy countries and territories on six continents, and there were roughly ninety thousand confirmed cases worldwide of COVID-19, the disease caused by the coronavirus.

The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in detecting, containing, and rapidly responding to and mitigating the spread of potentially dangerous emerging infectious diseases. The ability to marshal early action depends on nations and global institutions being prepared for the worst-case scenario of a severe pandemic and ready to execute on that preparedness The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in detecting, containing, and rapidly responding to and mitigating the spread of potentially dangerous emerging infectious diseases. The ability to marshal early action depends on nations and global institutions being prepared for the worst-case scenario of a severe pandemic and ready to execute on that preparedness before that worst-case outcome is certain.

The rapid spread of the coronavirus and its devastating death toll and economic harm have revealed a failure of global and U.S. domestic preparedness and implementation, a lack of cooperation and coordination across nations, a breakdown of compliance with established norms and international agreements, and a patchwork of partial and mishandled responses. This pandemic has demonstrated the difficulty of responding effectively to emerging outbreaks in a context of growing geopolitical rivalry abroad and intense political partisanship at home.

Pandemic preparedness is a global public good. Infectious disease threats know no borders, and dangerous pathogens that circulate unabated anywhere are a risk everywhere. As the pandemic continues to unfold across the United States and world, the consequences of inadequate preparation and implementation are abundantly clear. Despite decades of various commissions highlighting the threat of global pandemics and international planning for their inevitability, neither the United States nor the broader international system were ready to execute those plans and respond to a severe pandemic. The result is the worst global catastrophe since World War II.

The lessons of this pandemic could go unheeded once life returns to a semblance of normalcy and COVID-19 ceases to menace nations around the globe. The United States and the world risk repeating many of the same mistakes that exacerbated this crisis, most prominently the failure to prioritize global health security, to invest in the essential domestic and international institutions and infrastructure required to achieve it, and to act quickly in executing a coherent response at both the national and the global level.

The goal of this report is to curtail that possibility by identifying what went wrong in the early national and international responses to the coronavirus pandemic and by providing a road map for the United States and the multilateral system to better prepare and execute in future waves of the current pandemic and when the next pandemic threat inevitably emerges. This report endeavors to preempt the next global health challenge before it becomes a disaster.

A Rapid Spread, a Grim Toll, and an Economic Disaster

On January 23, 2020, China’s government began to undertake drastic measures against the coronavirus, imposing a lockdown on Wuhan, a city of ten million people, aggressively testing, and forcibly rounding up potential carriers in makeshift quarantine centers. 1 In the subsequent days and weeks, the Chinese government extended containment to most of the country, sealing off cities and villages and mobilizing tens of thousands of health workers to contain and treat the disease. By the time those interventions began, however, the disease had already spread well beyond the country’s borders.

SARS-CoV-2 is a highly transmissible emerging infectious disease for which no highly effective treatments or vaccines currently exist and against which people have no preexisting immunity. Some nations have been successful so far in containing its spread through public health measures such as testing, contact tracing, and isolation of confirmed and suspected cases. Those nations have managed to keep the number of cases and deaths within their territories low.

More than one hundred countries implemented either a full or a partial shutdown in an effort to contain the spread of the virus and reduce pressure on their health systems. Although these measures to enforce physical distancing slowed the pace of infection, the societal and economic consequences in many nations have been grim. The supply chain for personal protective equipment (PPE), testing kits, and medical equipment such as oxygen treatment equipment and ventilators remains under immense pressure to meet global demand.

If international cooperation in response to COVID-19 has been occurring at the top levels of government, evidence of it has been scant, though technical areas such as data sharing have witnessed some notable successes. Countries have mostly gone their own ways, closing borders and often hoarding medical equipment. More than a dozen nations are competing in a biotechnology arms race to find a vaccine. A proposed international arrangement to ensure timely equitable access to the products of that biomedical innovation has yet to attract the necessary support from many vaccine-manufacturing nations, and many governments are now racing to cut deals with pharmaceutical firms and secure their own supplies.

As of August 31, 2020, the pandemic had infected at least twenty-five million people worldwide and killed at least 850,000 (both likely gross undercounts), including at least six million reported cases and 183,000 deaths in the United States. Meanwhile, the world economy had collapsed into a slump rivaling or surpassing the Great Depression, with unemployment rates averaging 8.4 percent in high-income economies. In the second quarter of 2020, the U.S gross domestic product (GDP) fell 9.5 percent, the largest quarterly decline in the nation’s history. 2

Already in May 2020, the Asia Development Bank estimated that the pandemic would cost the world $5.8 to 8.8 trillion, reducing global GDP in 2020 by 6.4 to 9.7 percent. The ultimate financial cost could be far higher. 3

The United States is among the countries most affected by the coronavirus, with about 24 percent of global cases (as of August 31) but just 4 percent of the world’s population. While many countries in Europe and Asia succeeded in driving down the rate of transmission in spring 2020, the United States experienced new spikes in infections in the summer because the absence of a national strategy left it to individual U.S. states to go their own way on reopening their economies. In the hardest-hit areas, U.S. hospitals with limited spare beds and intensive care unit capacity have struggled to accommodate the surge in COVID-19 patients. Resource-starved local and state public health departments have been unable to keep up with the staggering demand for case identification, contract tracing, and isolation required to contain the coronavirus’s spread.

A Failure to Heed Warnings

  • Institute of Medicine, Microbial Threats to Health (1992)
  • National Intelligence Estimate, The Global Infectious Disease Threat and Its Implications ...

This failing was not for any lack of warning of the dangers of pandemics. Indeed, many had sounded the alarm over the years. For nearly three decades, countless epidemiologists, public health specialists, intelligence community professionals, national security officials, and think tank experts have underscored the inevitability of a global pandemic of an emerging infectious disease. Starting with the Bill Clinton administration, successive administrations, including the current one, have included pandemic preparedness and response in their national security strategies. The U.S. government, foreign counterparts, and international agencies commissioned multiple scenarios and tabletop exercises that anticipated with uncanny accuracy the trajectory that a major outbreak could take, the complex national and global challenges it would create, and the glaring gaps and limitations in national and international capacity it would reveal.

The global health security community was almost uniformly in agreement that the most significant natural threat to population health and global security would be a respiratory virus—either a novel strain of influenza or a coronavirus that jumped from animals to humans. 4 Yet, for all this foresight and planning, national and international institutions alike have failed to rise to the occasion.

  • National Intelligence Estimate, The Global Infectious Disease Threat and Its Implications for the United States (2000)
  • Launch of the U.S. Global Health Security Initiative (2001)
  • Institute of Medicine, Microbial Threats to Health: Emergence, Detection, and Response (2003)
  • Revision of the International Health Regulations (2005)
  • World Health Organization, Global Influenza Preparedness Plan (2005)
  • Homeland Security Council, National Strategy for Pandemic Influenza (2005)
  • U.S. Department of Health and Human Services, National Health Security Strategy of the United States of America (2009)
  • U.S. Director of National Intelligence, Worldwide Threat Assessments (2009–2019)
  • World Health Organization, Report of Review Committee on the Functioning of the International Health Regulations (2005) in Relation to Pandemic (H1N1) 2009 (2011)
  • Pandemic and All-Hazards Preparedness Reauthorization Act of 2013
  • Launch of the Global Health Security Agenda (2014)
  • Blue Ribbon Study Panel on Biodefense (now Bipartisan Commission on Biodefense) (2015)
  • National Security Strategy (2017)
  • National Biodefense Strategy (2018)
  • Crimson Contagion Simulation (2019)
  • Global Preparedness Monitoring Board, A Work at Risk: Annual Report on Global Preparedness for Health Emergencies (2019)
  • CSIS Commission, Ending the Cycle of Crisis and Complacency in U.S. Global Health Security (2019)
  • U.S. National Health Security Strategy, 2019–2022 (2019)
  • Global Health Security Index (2019)

Further Reading

Health-Systems Strengthening in the Age of COVID-19

By Angela E. Micah , Katherine Leach-Kemon , Joseph L Dieleman August 25, 2020

What Is the World Doing to Create a COVID-19 Vaccine?

By Claire Felter Aug 26, 2020

What Does the World Health Organization Do?

By CFR.org Editors Jun 1, 2020

MINI REVIEW article

Covid-19: emergence, spread, possible treatments, and global burden.

\nRaghuvir Keni

  • 1 Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
  • 2 Department of Health Sciences, School of Education and Health, Cape Breton University, Sydney, NS, Canada

The Coronavirus (CoV) is a large family of viruses known to cause illnesses ranging from the common cold to acute respiratory tract infection. The severity of the infection may be visible as pneumonia, acute respiratory syndrome, and even death. Until the outbreak of SARS, this group of viruses was greatly overlooked. However, since the SARS and MERS outbreaks, these viruses have been studied in greater detail, propelling the vaccine research. On December 31, 2019, mysterious cases of pneumonia were detected in the city of Wuhan in China's Hubei Province. On January 7, 2020, the causative agent was identified as a new coronavirus (2019-nCoV), and the disease was later named as COVID-19 by the WHO. The virus spread extensively in the Wuhan region of China and has gained entry to over 210 countries and territories. Though experts suspected that the virus is transmitted from animals to humans, there are mixed reports on the origin of the virus. There are no treatment options available for the virus as such, limited to the use of anti-HIV drugs and/or other antivirals such as Remdesivir and Galidesivir. For the containment of the virus, it is recommended to quarantine the infected and to follow good hygiene practices. The virus has had a significant socio-economic impact globally. Economically, China is likely to experience a greater setback than other countries from the pandemic due to added trade war pressure, which have been discussed in this paper.

Introduction

Coronaviridae is a family of viruses with a positive-sense RNA that possess an outer viral coat. When looked at with the help of an electron microscope, there appears to be a unique corona around it. This family of viruses mainly cause respiratory diseases in humans, in the forms of common cold or pneumonia as well as respiratory infections. These viruses can infect animals as well ( 1 , 2 ). Up until the year 2003, coronavirus (CoV) had attracted limited interest from researchers. However, after the SARS (severe acute respiratory syndrome) outbreak caused by the SARS-CoV, the coronavirus was looked at with renewed interest ( 3 , 4 ). This also happened to be the first epidemic of the 21st century originating in the Guangdong province of China. Almost 10 years later, there was a MERS (Middle East respiratory syndrome) outbreak in 2012, which was caused by the MERS-CoV ( 5 , 6 ). Both SARS and MERS have a zoonotic origin and originated from bats. A unique feature of these viruses is the ability to mutate rapidly and adapt to a new host. The zoonotic origin of these viruses allows them to jump from host to host. Coronaviruses are known to use the angiotensin-converting enzyme-2 (ACE-2) receptor or the dipeptidyl peptidase IV (DPP-4) protein to gain entry into cells for replication ( 7 – 10 ).

In December 2019, almost seven years after the MERS 2012 outbreak, a novel Coronavirus (2019-nCoV) surfaced in Wuhan in the Hubei region of China. The outbreak rapidly grew and spread to neighboring countries. However, rapid communication of information and the increasing scale of events led to quick quarantine and screening of travelers, thus containing the spread of the infection. The major part of the infection was restricted to China, and a second cluster was found on a cruise ship called the Diamond Princess docked in Japan ( 11 , 12 ).

The new virus was identified to be a novel Coronavirus and was thus initially named 2019-nCoV; later, it was renamed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ( 13 ), and the disease it causes is now referred to as Coronavirus Disease-2019 (COVID-19) by the WHO. The virus was suspected to have begun its spread in the Huanan seafood wholesale market in the Wuhan region. It is possible that an animal that was carrying the virus was brought into or sold in the market, causing the spread of the virus in the crowded marketplace. One of the first claims made was in an article published in the Journal of Medical Virology ( 14 ), which identified snakes as the possible host. A second possibility was that pangolins could be the wild host of SARS-CoV-2 ( 15 ), though the most likely possibility is that the virus originated from bats ( 13 , 16 – 19 ). Increasing evidence and experts are now collectively concluding the virus had a natural origin in bats, as with previous such respiratory viruses ( 2 , 20 – 24 ).

Similarly, SARS and MERS were also suspected to originate from bats. In the case of MERS, the dromedary camel is an intermediate host ( 5 , 10 ). Bats have been known to harbor coronaviruses for quite some time now. Just as in the case of avian flu, SARS, MERS, and possibly even HIV, with increasing selection and ecological pressure due to human activities, the virus made the jump from animal to man. Humans have been encroaching increasingly into forests, and this is true over much of China, as in Africa. Combined with additional ecological pressure due to climate change, such zoonotic spillovers are now more common than ever. It is likely that the next disease X will also have such an origin ( 25 ). We have learned the importance of identification of the source organism due to the Ebola virus pandemic. Viruses are unstable organisms genetically, constantly mutating by genetic shift or drift. It is not possible to predict when a cross-species jump may occur and when a seemingly harmless variant form of the virus may turn into a deadly strain. Such an incident occurred in Reston, USA, with the Reston virus ( 26 ), an alarming reminder of this possibility. The identification of the original host helps us to contain future spreads as well as to learn about the mechanism of transmission of viruses. Until the virus is isolated from a wild animal host, in this case, mostly bats, the zoonotic origin will remain hypothetical, though likely. It should further be noted that the virus has acquired several mutations, as noted by a group in China, indicating that there are more than two strains of the virus, which may have had an impact on its pathogenicity. However, this claim remains unproven, and many experts have argued otherwise; data proving this are not yet available ( 27 ). A similar finding was reported from Italy and India independently, where they found two strains ( 28 , 29 ). These findings need to be further cross-verified by similar analyses globally. If true, this finding could effectively explain why some nations are more affected than others.

Transmission

When the spread of COVID-19 began ( Figure 1 ), the virus appeared to be contained within China and the cruise ship “Diamond Princess,” which formed the major clusters of the virus. However, as of April 2020, over 210 countries and territories are affected by the virus, with Europe, the USA, and Iran forming the new cluster of the virus. The USA ( Figure 2 ) has the highest number of confirmed COVID-19 cases, whereas India and China, despite being among the most population-dense countries in the world, have managed to constrain the infection rate by the implementation of a complete lockdown with arrangements in place to manage the confirmed cases. Similarly, the UK has also managed to maintain a low curve of the graph by implementing similar measures, though it was not strictly enforced. Reports have indicated that the presence of different strains or strands of the virus may have had an effect on the management of the infection rate of the virus ( 27 – 29 ). The disease is spread by droplet transmission. As of April 2020, the total number of infected individuals stands at around 3 million, with ~200,000 deaths and more than 1 million recoveries globally ( 30 , 34 ). The virus thus has a fatality rate of around 2% and an R 0 of 3 based on current data. However, a more recent report from the CDC, Atlanta, USA, claims that the R 0 could be as high as 5.7 ( 35 ). It has also been observed from data available from China and India that individuals likely to be infected by the virus from both these countries belong to the age groups of 20–50 years ( 36 , 37 ). In both of these countries, the working class mostly belongs to this age group, making exposure more likely. Germany and Singapore are great examples of countries with a high number of cases but low fatalities as compared to their immediate neighbors. Singapore is one of the few countries that had developed a detailed plan of action after the previous SARS outbreak to deal with a similar situation in the future, and this worked in their favor during this outbreak. Both countries took swift action after the outbreak began, with Singapore banning Chinese travelers and implementing screening and quarantine measures at a time when the WHO recommended none. They ordered the elderly and the vulnerable to strictly stay at home, and they ensured that lifesaving equipment and large-scale testing facilities were available immediately ( 38 , 39 ). Germany took similar measures by ramping up testing capacity quite early and by ensuring that all individuals had equal opportunity to get tested. This meant that young, old, and at-risk people all got tested, thus ensuring positive results early during disease progression and that most cases were mild like in Singapore, thus maintaining a lower death percentage ( 40 ). It allowed infected individuals to be identified and quarantined before they even had symptoms. Testing was carried out at multiple labs, reducing the load and providing massive scale, something which countries such as the USA did quite late and India restricted to select government and private labs. The German government also banned large gatherings and advocated social distancing to further reduce the spread, though unlike India and the USA, this was done quite late. South Korea is another example of how a nation has managed to contain the spread and transmission of the infection. South Korea and the USA both reported their first COVID-19 cases on the same day; however, the US administration downplayed the risks of the disease, unlike South Korean officials, who constantly informed their citizens about the developments of the disease using the media and a centralized messaging system. They also employed the Trace, Test, and Treat protocol to identify and isolate patients fast, whereas the USA restricted this to patients with severe infection and only later broadened this criterion, like many European countries as well as India. Unlike the USA, South Korea also has universal healthcare, ensuring free diagnostic testing.

www.frontiersin.org

Figure 1 . Timeline of COVID-19 progression ( 30 – 32 ).

www.frontiersin.org

Figure 2 . Total confirmed COVID 19 cases as of May 2020 ( 33 ).

The main mode of transmission of 2019-nCoV is human to human. As of now, animal-to-human transfer has not yet been confirmed. Asymptomatic carriers of the virus are at major risk of being superinfectors with this disease, as all those infected may not develop the disease ( 41 ). This is a concern that has been raised by nations globally, with the Indian government raising concerns on how to identify and contain asymptomatic carriers, who could account for 80% of those infected ( 42 ). Since current resources are directed towards understanding the hospitalized individuals showing symptoms, there is still a vast amount of information about asymptomatic individuals that has yet to be studied. For example, some questions that need to be answered include: Do asymptomatic individuals develop the disease at any point in time at all? Do they eventually develop antibodies? How long do they shed the virus for? Can any tissue of these individuals store the virus in a dormant state? Asymptomatic transmission is a gray area that encompasses major unknowns in COVID-19.

The main route of human-to-human transmission is by droplets, which are generated during coughing, talking, or sneezing and are then inhaled by a healthy individual. They can also be indirectly transmitted to a person when they land on surfaces that are touched by a healthy individual who may then touch their nose, mouth, or eyes, allowing the virus entry into the body. Fomites are also a common issue in such diseases ( 43 ).

Aerosol-based transmission of the virus has not yet been confirmed ( 43 ). Stool-based transmission via the fecal-oral route may also be possible since the SARS-CoV-2 has been found in patient feces ( 44 , 45 ). Some patients with COVID-19 tend to develop diarrhea, which can become a major route of transmission if proper sanitation and personal hygiene needs are not met. There is no evidence currently available to suggest intrauterine vertical transmission of the disease in pregnant women ( 46 ).

More investigation is necessary of whether climate has played any role in the containment of the infection in countries such as India, Singapore, China, and Israel, as these are significantly warmer countries as compared with the UK, the USA, and Canada ( Figure 2 ). Ideally, a warm climate should prevent the virus from surviving for longer periods of time on surfaces, reducing transmissibility.

Pathophysiology

On gaining entry via any of the mucus membranes, the single-stranded RNA-based virus enters the host cell using type 2 transmembrane serine protease (TMPRSS2) and ACE2 receptor protein, leading to fusion and endocytosis with the host cell ( 47 – 49 ). The uncoated RNA is then translated, and viral proteins are synthesized. With the help of RNA-dependant RNA polymerase, new RNA is produced for the new virions. The cell then undergoes lysis, releasing a load of new virions into the patients' body. The resultant infection causes a massive release of pro-inflammatory cytokines that causes a cytokine storm.

Clinical Presentation

The clinical presentation of the disease resembles beta coronavirus infections. The virus has an incubation time of 2–14 days, which is the reason why most patients suspected to have the illness or contact with an individual having the illness remain in quarantine for the said amount of time. Infection with SARS-CoV-2 causes severe pneumonia, intermittent fever, and cough ( 50 , 51 ). Symptoms of rhinorrhoea, pharyngitis, and sneezing have been less commonly seen. Patients often develop acute respiratory distress syndrome within 2 days of hospital admission, requiring ventilatory support. It has been observed that during this phase, the mortality tends to be high. Chest CT will show indicators of pneumonia and ground-glass opacity, a feature that has helped to improve the preliminary diagnosis ( 51 ). The primary method of diagnosis for SARS-CoV-2 is with the help of PCR. For the PCR testing, the US CDC recommends testing for the N gene, whereas the Chinese CDC recommends the use of ORF lab and N gene of the viral genome for testing. Some also rely on the radiological findings for preliminary screening ( 52 ). Additionally, immunodiagnostic tests based on the presence of antibodies can also play a role in testing. While the WHO recommends the use of these tests for research use, many countries have pre-emptively deployed the use of these tests in the hope of ramping up the rate and speed of testing ( 52 – 54 ). Later, they noticed variations among the results, causing them to stop the use of such kits; there was also debate among the experts about the sensitivity and specificity of the tests. For immunological tests, it is beneficial to test for antibodies against the virus produced by the body rather than to test for the presence of the viral proteins, since the antibodies can be present in larger titers for a longer span of time. However, the cross-reactivity of these tests with other coronavirus antibodies is something that needs verification. Biochemical parameters such as D-dimer, C-reactive protein, and variations in neutrophil and lymphocyte counts are some other parameters that can be used to make a preliminary diagnosis; however, these parameters vary in a number of diseases and thus cannot be relied upon conclusively ( 51 ). Patients with pre-existing diseases such as asthma or similar lung disorder are at higher risk, requiring life support, as are those with other diseases such as diabetes, hypertension, or obesity. Those above the age of 60 have displayed the highest mortality rate in China, a finding that is mirrored in other nations as well ( Figure 3 ) ( 55 ). If we cross-verify these findings with the population share that is above the age of 70, we find that Italy, the United Kingdom, Canada, and the USA have one of the highest elderly populations as compared to countries such as India and China ( Figure 4 ), and this also reflects the case fatality rates accordingly ( Figure 5 ) ( 33 ). This is a clear indicator that aside from comorbidities, age is also an independent risk factor for death in those infected by COVID-19. Also, in the US, it was seen that the rates of African American deaths were higher. This is probably due to the fact that the prevalence of hypertension and obesity in this community is higher than in Caucasians ( 56 , 57 ). In late April 2020, there are also claims in the US media that young patients in the US with COVID-19 may be at increased risk of stroke; however, this is yet to be proven. We know that coagulopathy is a feature of COVID-19, and thus stroke is likely in this condition ( 58 , 59 ). The main cause of death in COVID-19 patients was acute respiratory distress due to the inflammation in the linings of the lungs caused by the cytokine storm, which is seen in all non-survival cases and in respiratory failure. The resultant inflammation in the lungs, served as an entry point of further infection, associated with coagulopathy end-organ failure, septic shock, and secondary infections leading to death ( 60 – 63 ).

www.frontiersin.org

Figure 3 . Case fatality rate by age in selected countries as of April 2020 ( 33 ).

www.frontiersin.org

Figure 4 . Case fatality rate in selected countries ( 33 ).

www.frontiersin.org

Figure 5 . Population share above 70 years of age ( 33 ).

For COVID-19, there is no specific treatment available. The WHO announced the organization of a trial dubbed the “Solidarity” clinical trial for COVID-19 treatments ( 64 ). This is an international collaborative study that investigates the use of a few prime candidate drugs for use against COVID-19, which are discussed below. The study is designed to reduce the time taken for an RCT by over 80%. There are over 1087 studies ( Supplementary Data 1 ) for COVID-19 registered at clinicaltrials.gov , of which 657 are interventional studies ( Supplementary Data 2 ) ( 65 ). The primary focus of the interventional studies for COVID-19 has been on antimalarial drugs and antiviral agents ( Table 1 ), while over 200 studies deal with the use of different forms of oxygen therapy. Most trials focus on improvement of clinical status, reduction of viral load, time to improvement, and reduction of mortality rates. These studies cover both severe and mild cases.

www.frontiersin.org

Table 1 . List of therapeutic drugs under study for COVID-19 as per clinical trials registered under clinicaltrials.gov .

Use of Antimalarial Drugs Against SARS-CoV-2

The use of chloroquine for the treatment of corona virus-based infection has shown some benefit in the prevention of viral replication in the cases of SARS and MERS. However, it was not validated on a large scale in the form of a randomized control trial ( 50 , 66 – 68 ). The drugs of choice among antimalarials are Chloroquine (CQ) and Hydroxychloroquine (HCQ). The use of CQ for COVID-19 was brought to light by the Chinese, especially by the publication of a letter to the editor of Bioscience Trends by Gao et al. ( 69 ). The letter claimed that several studies found CQ to be effective against COVID-19; however, the letter did not provide many details. Immediately, over a short span of time, interest in these two agents grew globally. Early in vitro data have revealed that chloroquine can inhibit the viral replication ( 70 , 71 ).

HCQ and CQ work by raising the pH of the lysosome, the cellular organelle that is responsible for phagocytic degradation. Its function is to combine with cell contents that have been phagocytosed and break them down eventually, in some immune cells, as a downstream process to display some of the broken proteins as antigens, thus further enhancing the immune recruitment against an antigen/pathogen. The drug was to be administered alone or with azithromycin. The use of azithromycin may be advocated by the fact that it has been seen previously to have some immunomodulatory role in airway-related disease. It appears to reduce the release of pro-inflammatory cytokines in respiratory illnesses ( 72 ). However, HCQ and azithromycin are known to have a major drug interaction when co-administered, which increases the risk of QT interval prolongation ( 73 ). Quinine-based drugs are known to have adverse effects such as QT prolongation, retinal damage, hypoglycemia, and hemolysis of blood in patients with G-6-PD deficiency ( 66 ). Several preprints, including, a metanalysis now indicate that HCQ may have no benefit for severe or critically ill patients who have COVID-19 where the outcome is need for ventilation or death ( 74 , 75 ). As of April 21, 2020, after having pre-emptively recommended their use for SARS-CoV-2 infection, the US now advocates against the use of these two drugs based on the new data that has become available.

Use of Antiviral Drugs Against SARS-CoV-2

The antiviral agents are mainly those used in the case of HIV/AIDS, these being Lopinavir and Ritonavir. Other agents such as nucleoside analogs like Favipiravir, Ribavirin, Remdesivir, and Galidesivir have been tested for possible activity in the prevention of viral RNA synthesis ( 76 ). Among these drugs, Lopinavir, Ritonavir, and Remdesivir are listed in the Solidarity trial by the WHO.

Remdesivir is a nucleotide analog for adenosine that gets incorporated into the viral RNA, hindering its replication and causing chain termination. This agent was originally developed for Ebola Virus Disease ( 77 ). A study was conducted with rhesus macaques infected with SARS-CoV-2 ( 78 ). In that study, after 12 h of infection, the monkeys were treated with either Remdesivir or vehicle. The drug showed good distribution in the lungs, and the animals treated with the drug showed a better clinical score than the vehicle group. The radiological findings of the study also indicated that the animals treated with Remdesivir have less lung damage. There was a reduction in viral replication but not in virus shedding. Furthermore, there were no mutations found in the RNA polymerase sequences. A randomized clinical control study that became available in late April 2020 ( 79 ), having 158 on the Remdesivir arm and 79 on the placebo arm, found that Remdesivir reduced the time to recovery in the Remdesivir-treated arm to 11 days, while the placebo-arm recovery time was 15 days. Though this was not found to be statistically significant, the agent provided a basis for further studies. The 28-days mortality was found to be similar for both groups. This has now provided us with a basis on which to develop future molecules. The study has been supported by the National Institute of Health, USA. The authors of the study advocated for more clinical trials with Remdesivir with a larger population. Such larger studies are already in progress, and their results are awaited. Remdesivir is currently one of the drugs that hold most promise against COVID-19.

An early trial in China with Lopinavir and Ritonavir showed no benefit compared with standard clinical care ( 80 ). More studies with this drug are currently underway, including one in India ( 81 , 82 ).

Use of Convalescent Patient Plasma

Another possible option would be the use of serum from convalescent individuals, as this is known to contain antibodies that can neutralize the virus and aid in its elimination. This has been tried previously for other coronavirus infections ( 83 ). Early emerging case reports in this aspect look promising compared to other therapies that have been tried ( 84 – 87 ). A report from China indicates that five patients treated with plasma recovered and were eventually weaned off ventilators ( 84 ). They exhibited reductions in fever and viral load and improved oxygenation. The virus was not detected in the patients after 12 days of plasma transfusion. The US FDA has provided detailed recommendations for investigational COVID-19 Convalescent Plasma use ( 88 ). One of the benefits of this approach is that it can also be used for post-exposure prophylaxis. This approach is now beginning to be increasingly adopted in other countries, with over 95 trials registered on clinicaltrials.gov alone, of which at least 75 are interventional ( 89 ). The use of convalescent patient plasma, though mostly for research purposes, appears to be the best and, so far, the only successful option for treatment available.

From a future perspective, the use of monoclonal antibodies for the inhibition of the attachment of the virus to the ACE-2 receptor may be the best bet. Aside from this, ACE-2-like molecules could also be utilized to attach and inactivate the viral proteins, since inhibition of the ACE-2 receptor would not be advisable due to its negative repercussions physiologically. In the absence of drug regimens and a vaccine, the treatment is symptomatic and involves the use of non-invasive ventilation or intubation where necessary for respiratory failure patients. Patients that may go into septic shock should be managed as per existing guidelines with hemodynamic support as well as antibiotics where necessary.

The WHO has recommended that simple personal hygiene practices can be sufficient for the prevention of spread and containment of the disease ( 90 ). Practices such as frequent washing of soiled hands or the use of sanitizer for unsoiled hands help reduce transmission. Covering of mouth while sneezing and coughing, and disinfection of surfaces that are frequently touched, such as tabletops, doorknobs, and switches with 70% isopropyl alcohol or other disinfectants are broadly recommended. It is recommended that all individuals afflicted by the disease, as well as those caring for the infected, wear a mask to avoid transmission. Healthcare works are advised to wear a complete set of personal protective equipment as per WHO-provided guidelines. Fumigation of dormitories, quarantine rooms, and washing of clothes and other fomites with detergent and warm water can help get rid of the virus. Parcels and goods are not known to transmit the virus, as per information provided by the WHO, since the virus is not able to survive sufficiently in an open, exposed environment. Quarantine of infected individuals and those who have come into contact with an infected individual is necessary to further prevent transmission of the virus ( 91 ). Quarantine is an age-old archaic practice that continues to hold relevance even today for disease containment. With the quarantine being implemented on such a large scale in some countries, taking the form of a national lockdown, the question arises of its impact on the mental health of all individuals. This topic needs to be addressed, especially in countries such as India and China, where it is still a matter of partial taboo to talk about it openly within the society.

In India, the Ministry of Ayurveda, Yoga, and Naturopathy, Unani, Siddha and Homeopathy (AYUSH), which deals with the alternative forms of medicine, issued a press release that the homeopathic, drug Arsenicum album 30, can be taken on an empty stomach for 3 days to provide protection against the infection ( 92 ). It also provided a list of herbal drugs in the same press release as per Ayurvedic and Unani systems of medicine that can boost the immune system to deal with the virus. However, there is currently no evidence to support the use of these systems of medicine against COVID-19, and they need to be tested.

The prevention of the disease with the use of a vaccine would provide a more viable solution. There are no vaccines available for any of the coronaviruses, which includes SARS and MERS. The development of a vaccine, however, is in progress at a rapid pace, though it could take about a year or two. As of April 2020, no vaccine has completed the development and testing process. A popular approach has been with the use of mRNA-based vaccine ( 93 – 96 ). mRNA vaccines have the advantage over conventional vaccines in terms of production, since they can be manufactured easily and do not have to be cultured, as a virus would need to be. Alternative conventional approaches to making a vaccine against SARS-CoV-2 would include the use of live attenuated virus as well as using the isolated spike proteins of the virus. Both of these approaches are in progress for vaccine development ( 97 ). Governments across the world have poured in resources and made changes in their legislation to ensure rapid development, testing, and deployment of a vaccine.

Barriers to Treatment

Lack of transparency and poor media relations.

The lack of government transparency and poor reporting by the media have hampered the measures that could have been taken by healthcare systems globally to deal with the COVID-19 threat. The CDC, as well as the US administration, downplayed the threat and thus failed to stock up on essential supplies, ventilators, and test kits. An early warning system, if implemented, would have caused borders to be shut and early lockdowns. The WHO also delayed its response in sounding the alarm regarding the severity of the outbreak to allow nations globally to prepare for a pandemic. Singapore is a prime example where, despite the WHO not raising concerns and banning travel to and from China, a country banned travelers and took early measures, thus managing the outbreak quite well. South Korea is another example of how things may have played out had those measures by agencies been taken with transparency. Increased transparency would have allowed the healthcare sector to better prepare and reduced the load of patients they had to deal with, helping flatten the curve. The increased patient load and confusion among citizens arising from not following these practices has proved to be a barrier to providing effective treatments to patients with the disease elsewhere in the world.

Lack of Preparedness and Protocols

Despite the previous SARS outbreak teaching us important lessons and providing us with data on a potential outbreak, many nations did not take the important measures needed for a future outbreak. There was no allocation of sufficient funds for such an event. Many countries experienced severe lack of PPE, and the lockdown precautions hampered the logistics of supply and manufacturing of such essential equipment. Singapore and South Korea had protocols in place and were able to implement them at a moment's notice. The spurt of cases that Korea experienced was managed well, providing evidence to this effect. The lack of preparedness and lack of protocol in other nations has resulted in confusion as to how the treatment may be administered safely to the large volume of patients while dealing with diagnostics. Both of these factors have limited the accessibility to healthcare services due to sheer volume.

Socio-Economic Impact

During the SARS epidemic, China faced an economic setback, and experts were unsure if any recovery would be made. However, the global and domestic situation was then in China's favor, as it had a lower debt, allowing it to make a speedy recovery. This is not the case now. Global experts have a pessimistic outlook on the outcome of this outbreak ( 98 ). The fear of COVID-19 disease, lack of proper understanding of the dangers of the virus, and the misinformation spread on the social media ( 99 ) have caused a breakdown of the economic flow globally ( 100 ). An example of this is Indonesia, where a great amount of fear was expressed in responses to a survey when the nation was still free of COVID-19 ( 101 ). The pandemic has resulted in over 2.6 billion people being put under lockdown. This lockdown and the cancellation of the lunar year celebration has affected business at the local level. Hundreds of flights have been canceled, and tourism globally has been affected. Japan and Indonesia are estimated to lose over 2.44 billion dollars due to this ( 102 , 103 ). Workers are not able to work in factories, transportation in all forms is restricted, and goods are not produced or moved. The transport of finished products and raw materials out of China is low. The Economist has published US stock market details indicating that companies in the US that have Chinese roots fell, on average, 5 points on the stock market as compared to the S&P 500 index ( 104 ). Companies such as Starbucks have had to close over 4,000 outlets due to the outbreak as a precaution. Tech and pharma companies are at higher risk since they rely on China for the supply of raw materials and active pharmaceutical ingredients. Paracetamol, for one, has reported a price increase of over 40% in India ( 104 – 106 ). Mass hysteria in the market has caused selling of shares of these companies, causing a tumble in the Indian stock market. Though long-term investors will not be significantly affected, short-term traders will find themselves in soup. Politically, however, this has further bolstered support for world leaders in countries such as India, Germany, and the UK, who are achieving good approval ratings, with citizens being satisfied with the government's approach. In contrast, the ratings of US President Donald Trump have dropped due to the manner in which the COVID-19 pandemic was handled. These minor impacts may be of temporary significance, and the worst and direct impact will be on China itself ( 107 – 109 ), as the looming trade war with the USA had a negative impact on the Chinese and Asian markets. The longer production of goods continues to remain suspended, the more adversely it will affect the Chinese economy and the global markets dependent on it ( 110 ). If this disease is not contained, more and more lockdowns by multiple nations will severely affect the economy and lead to many social complications.

The appearance of the 2019 Novel Coronavirus has added and will continue to add to our understanding of viruses. The pandemic has once again tested the world's preparedness for dealing with such outbreaks. It has provided an outlook on how a massive-scale biological event can cause a socio-economic disturbance through misinformation and social media. In the coming months and years, we can expect to gain further insights into SARS-CoV-2 and COVID-19.

Author Contributions

KN: conceptualization. RK, AA, JM, and KN: investigation. RK and AA: writing—original draft preparation. KN, PN, and JM: writing—review and editing. KN: supervision.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors would like to acknowledge the contributions made by Dr. Piya Paul Mudgal, Assistant Professor, Manipal Institute of Virology, Manipal Academy of Higher Education towards inputs provided by her during the drafting of the manuscript.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh.2020.00216/full#supplementary-material

Supplementary Data 1, 2. List of all studies registered for COVID-19 on clinicaltrials.gov .

1. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA. (1967) 57:933–40. doi: 10.1073/pnas.57.4.933

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Esper F, Weibel C, Ferguson D, Landry ML, Kahn JS. Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children. J Infect Dis. (2005) 191:492–8. doi: 10.1086/428138

3. Stöhr K. A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet. (2003) 361:1730–3. doi: 10.1016/S0140-6736(03)13376-4

4. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. (2003) 361:1319–25. doi: 10.1016/S0140-6736(03)13077-2

5. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. (2015) 386:995–1007. doi: 10.1016/S0140-6736(15)60454-8

6. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. (2012) 367:1814–20. doi: 10.1056/NEJMoa1211721

7. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. (2009) 7:439–50. doi: 10.1038/nrmicro2147

8. Li W, Moore MJ, Vasllieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. (2003) 426:450–4. doi: 10.1038/nature02145

9. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. (2013) 503:535–8. doi: 10.1038/nature12711

10. Wang M, Hu Z. Bats as animal reservoirs for the SARS coronavirus: Hypothesis proved after 10 years of virus hunting. Virol Sin. (2013) 28:315–7. doi: 10.1007/s12250-013-3402-x

11. Diamond Princess Cruise Ship in Japan Confirms 99 New Coronavirus Cases | World news | The Guardian. Available online at: https://www.theguardian.com/world/2020/feb/17/coronavirus-japan-braces-for-hundreds-more-cases-as-another-china-city-locked-down (accessed February 17, 2020).

Google Scholar

12. Diamond Princess Coronavirus & Quarantine Updates - Notices & Advisories - Princess Cruises. Available online at: https://www.princess.com/news/notices_and_advisories/notices/diamond-princess-update.html (accessed February 17, 2020).

13. Gorbalenya AE, Baker SC, Baric RS, Groot RJ, de Drosten C, Gulyaeva AA, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. (2020) 5:536–44. doi: 10.1038/s41564-020-0695-z

14. Ji W, Wang W, Zhao X, Zai J, Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J Med Virol . (2020) 7:jmv.25682. doi: 10.1002/jmv.25682

15. Cyranoski D. Did pangolins spread the China coronavirus to people? Nature . (2020) doi: 10.1038/d41586-020-00364-2

CrossRef Full Text | Google Scholar

16. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. (2020) 395:565–74. doi: 10.1016/S0140-6736(20)30251-8

17. Wassenaar TM, Zou Y. 2019_nCoV: Rapid classification of betacoronaviruses and identification of traditional Chinese medicine as potential origin of zoonotic coronaviruses. Lett Appl Microbiol. (2020) 70:324–48. doi: 10.1111/lam.13285

18. Velavan TP, Meyer CG. The Covid-19 epidemic. Trop Med Int Heal . (2020) 25:278–80. doi: 10.1111/tmi.13383

19. Guarner J. Three Emerging Coronaviruses in Two Decades. Am J Clin Pathol . (2020) 153:420–21. doi: 10.1093/ajcp/aqaa029

20. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. (2005) 310:676–9. doi: 10.1126/science.1118391

21. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. doi: 10.1038/s41586-020-2012-7

22. Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. (2015) 21:1508–13. doi: 10.1038/nm.3985

23. COVID-19 Coronavirus Epidemic has a Natural Origin—ScienceDaily. Available online at: https://www.sciencedaily.com/releases/2020/03/200317175442.htm (accessed April 22, 2020).

24. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med . (2020) 26:450–2. doi: 10.1038/s41591-020-0820-9

25. Prioritizing Diseases for Research and Development in Emergency Contexts. Available online at: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed April 22, 2020).

26. Albariño CG, Guerrero LW, Jenks HM, Chakrabarti AK, Ksiazek TG, Rollin PE, et al. Insights into Reston virus spillovers and adaption from virus whole genome sequences. PLoS ONE. (2017) 12:e0178224. doi: 10.1371/journal.pone.0178224

27. Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng L, et al. Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv. (2020). doi: 10.2139/ssrn.3578153

28. Stefanelli P, Faggioni G, Lo Presti A, Fiore S, Marchi A, Benedetti E, et al. Whole genome and phylogenetic analysis of two SARS-CoV-2 strains isolated in Italy in January and February 2020: additional clues on multiple introductions and further circulation in Europe. Eurosurveillance. (2020) 25:2000305. doi: 10.2807/1560-7917.ES.2020.25.13.2000305

29. Yadav P, Potdar V, Choudhary M, Nyayanit D, Agrawal M, Jadhav S, et al. Full-genome sequences of the first two SARS-CoV-2 viruses from India. Indian J Med Res. (2020) 151:200–9. doi: 10.4103/ijmr.IJMR_663_20

30. WHO | Coronavirus disease 2019 (COVID-19) Situation Report – 26. Beijing (2020). Available online at: http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml (accessed February 16, 2020).

31. WHO | Middle East Respiratory Syndrome Coronavirus (MERS-CoV). World Health Organization (2020).

32. WHO | Summary of Probable SARS Cases With Onset of Illness From 1 November 2002 to 31 July 2003. World Health Organization (2015).

33. Worldometer. Coronavirus cases. Worldometer. (2020) 1−22.

34. Update on the Outbreak of New Coronavirus Pneumonia as of 24 hours on 15 February. Beijing (2020). Available online at: http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml (accessed February 16, 2020).

35. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. (2020) 26. doi: 10.3201/eid2607.200282

36. 83% of India's Coronavirus Patients Are Below the Age of 50: Health ministry data - India News. Available online at: https://www.indiatoday.in/india/story/83-of-india-s-coronavirus-patients-are-below-the-age-of-50-health-ministry-data-1663314-2020-04-04 (accessed April 23, 2020).

37. 42% of Coronavirus Patients in 21-40 age bracket: Govt. Available online at: https://economictimes.indiatimes.com/news/politics-and-nation/42-of-coronavirus-patients-in-21-40-age-bracket-govt/articleshow/74987254.cms (accessed April 23, 2020).

38. Why COVID-19 Case Counts Are so Low in Singapore Hong Kong and Taiwan | Advisory Board Daily Briefing. Available online at: https://www.advisory.com/daily-briefing/2020/03/19/asian-countries (accessed April 29, 2020).

39. Coronavirus: Why so Few Deaths Among Singapore's 14000 Covid-19 Infections? | South China Morning Post. Available online at: https://www.scmp.com/weekasia/health-environment/article/3081772/coronavirus-why-so-few-deaths-among-singapores-14000 (accessed April 29, 2020).

40. Stafford N. Covid-19: Why Germany's case fatality rate seems so low. BMJ. (2020) 7:369. doi: 10.1136/bmj.m1395

41. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N Engl J Med . (2020) 382:970–1. doi: 10.1056/NEJMc2001468

42. Coronavirus pandemic | 80% of COVID-19 Cases Either Asymptomatic or Show Mild Symptoms. Health ministry - Moneycontrol.com. Available online at: https://www.moneycontrol.com/news/india/coronavirus-pandemic-80-of-covid-19-cases-either-asymptomatic-or-show-mild-symptoms-health-ministry-5170631.html (accessed April 24, 2020).

43. WHO | Q&A on Coronaviruses. Available online at: https://www.who.int/news-room/q-a-detail/q-a-coronaviruses (accessed February 16, 2020).

44. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med . (2020) 382:929–36. doi: 10.1056/NEJMoa2001191

45. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. (2020) 5:335–37. doi: 10.1016/S2468-1253(20)30048-0

46. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. (2020) 395:809–15. doi: 10.1016/S0140-6736(20)30360-3

47. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. In: Coronaviruses: Methods and Protocols (New York: Springer), 1–23. doi: 10.1007/978-1-4939-2438-7_1

48. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. (2020) 92:418–23. doi: 10.1002/jmv.25681

49. Hoffmann M, Kleine-Weber H, Schroeder S, Mü MA, Drosten C, Pö S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. (2020) 181:271–80. doi: 10.1016/j.cell.2020.02.052

50. Cheng VCC, Chan JFW, To KKW, Yuen KY. Clinical management and infection control of SARS: Lessons learned. Antiviral Res. (2013) 100:407–19. doi: 10.1016/j.antiviral.2013.08.016

51. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020) 395:497–506. doi: 10.1016/S0140-6736(20)30183-5

52. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano . (2020) 14:3822–35. doi: 10.1021/acsnano.0c02624

53. Testing, | CDC,. Available online at: https://www.cdc.gov/coronavirus/2019-ncov/testing/index.html (accessed April 29, 2020).

54. Advice on the Use of Point-of-Care Immunodiagnostic Tests for COVID-19. Available online at: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19 (accessed April 29, 2020).

55. Zhang Yanping. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. (2020) Available online at: http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9bfea8db1a8f51 (accessed February 18, 2020).

56. Petersen R, Pan L, Blanck HM. Racial and ethnic disparities in adult obesity in the United States: CDC's tracking to inform state and local action. Prev Chronic Dis. (2019) 16:180579. doi: 10.5888/pcd16.180579

57. Wang L, Southerland J, Wang K, Bailey BA, Alamian A, Stevens MA, et al. Ethnic differences in risk factors for obesity among adults in California, the United States. (2017) 2017:2427483. doi: 10.1155/2017/2427483

58. Covid-19 Causes Sudden Strokes in Young Adults Doctors Say - CNN. Available online at: https://edition.cnn.com/2020/04/22/health/strokes-coronavirus-young-adults/index.html (accessed April 24, 2020).

59. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost . (2020) 1–4. doi: 10.1111/jth.14828

60. Lancet T, Medicine R. Comment Understanding pathways to death in patients with. Lancet Respir Med. (2020) 2019:2019–21. doi: 10.1016/S2213-2600(20)30165-X

61. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA . (2020) 323:1775–6. doi: 10.1001/jama.2020.4683

62. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. (2020) 395:1054–62. doi: 10.1016/S0140-6736(20)30566-3

63. Doctors Warn COVID-19 Might Cause Strokes in Young Adults. Available online at: https://nypost.com/2020/04/23/doctors-warn-covid-19-might-cause-strokes-in-young-adults/ (accessed April 24, 2020).

64. “Solidarity” Clinical Trial for COVID-19 Treatments. Available online at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments (accessed April 23, 2020).

65. Search, of: COVID-19 - List Results - ClinicalTrials.gov . Available online at: https://www.clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntry=&state=&city=&dist= (accessed May 1, 2020).

66. De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, Van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. (2014) 58:4875–84. doi: 10.1128/AAC.03011-14

67. Tai DYH. Pharmacologic treatment of SARS: current knowledge and recommendations. Ann Acad Med Singapore. (2007) 36:438–43.

PubMed Abstract | Google Scholar

68. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. (2020) 11:222. doi: 10.1038/s41467-019-13940-6

69. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. (2020) 14:72–73. doi: 10.5582/bst.2020.01047

70. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. (2020) 30:269–71. doi: 10.1038/s41422-020-0282-0

71. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. (2005) 2:1–0. doi: 10.1186/1743-422X-2-69

72. Cramer CL, Patterson A, Alchakaki A, Soubani AO. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgrad Med. (2017) 129:493–9. doi: 10.1080/00325481.2017.1285677

73. Plaquenil™ Hydroxychloroquine Sulfate Tablets USP Description. Available online at: http://www.cdc.gov/malaria (accessed April 21, 2020).

74. Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv. (2020) doi: 10.1101/2020.04.16.20065920

75. Shamshirian A, Hessami A, Heydari K, Alizadeh-Navaei R, Ebrahimzadeh MA, Ghasemian R, et al. Hydroxychloroquine Versus COVID-19: A Rapid Systematic Review and Meta-Analysis. medRxiv. (2020) doi: 10.1101/2020.04.14.20065276

76. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov . (2020) 19:149–50. doi: 10.1038/d41573-020-00016-0

77. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. (2016) 531:381–5. doi: 10.1038/nature17180

78. Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP, Schulz J, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv. (2020) doi: 10.1101/2020.04.15.043166

79. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. (2020) 395:1569–78. doi: 10.1016/S0140-6736(20)31022-9

80. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N Engl J Med . (2020) 382:1787–99. doi: 10.1056/NEJMoa2001282

81. Search, of: Lopinavir, Ritonavir, | COVID - List Results - ClinicalTrials.gov . Available online at: https://clinicaltrials.gov/ct2/results?term=Lopinavir%2CRitonavir&cond=COVID&draw=4&rank=22#rowId21 (accessed April 23, 2020).

82. Bhatnagar T, Murhekar M, Soneja M, Gupta N, Giri S, Wig N, et al. Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: protocol for restricted public health emergency use. Indian J Med Res. (2020) 151:184–9. doi: 10.4103/ijmr.IJMR_502_20

83. Yeh K-M, Chiueh T-S, Siu LK, Lin J-C, Chan PKS, Peng M-Y, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. (2005) 56:919–22. doi: 10.1093/jac/dki346

84. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA . (2020) 323:1582–9. doi: 10.1001/jama.2020.4783

85. Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis . (2020) 7:1–6. doi: 10.1093/ofid/ofaa102

86. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest . (2020) 138745:1–22. doi: 10.1172/JCI138745

87. Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. (2 020) doi: 10.1002/jmv.25882

88. Recommendations for Investigational COVID-19 Convalescent Plasma | FDA. Available online at: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma (accessed April 23, 2020).

89. Search, of: plasma | Interventional Studies | COVID - List Results - ClinicalTrials.gov . Available online at: https://clinicaltrials.gov/ct2/results?term=plasma&cond=COVID&Search=Apply&age_v=&gndr=&type=Intr&rslt= (accessed April 23, 2020).

90. Infection Prevention and Control. Available online at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control (accessed February 17, 2020).

91. Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med . (2020) 27:taaa020. doi: 10.1093/jtm/taaa020

92. Press Information Bureau AYUSH Advisory for Corona virus. Press Inf Bereau. Available online at: https://pib.gov.in/PressReleasePage.aspx?PRID=1600895 (accessed February 17, 2020).

93. CanSino, Biologics : China Announces First Human Trials of Covid-19 Vaccine | MarketScreener,. Available online at: https://www.marketscreener.com/CANSINO-BIOLOGICS-INC-59318312/news/CanSino-Biologics-China-announces-first-human-trials-of-Covid-19-vaccine-30183232/ (accessed April 7, 2020).

94. Safety, and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis SARS CoV-2 Infection - Full Text View - ClinicalTrials.gov . Available online at: https://clinicaltrials.gov/ct2/show/NCT04283461 (accessed April 7, 2020).

95. NIH, Clinical Trial of Investigational Vaccine for COVID-19 Begins | National Institutes of Health (NIH),. Available at: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins (accessed April 7, 2020).

96. Novel, Coronavirus vaccine manufacturing contract signed — The Jenner Institute,. Available online at: https://www.jenner.ac.uk/about/news/novel-coronavirus-vaccine-manufacturing-contract-signed (accessed April 7, 2020).

97. Xie L, Sun C, Luo C, Zhang Y, Zhang J, Yang J, et al. SARS-CoV-2 and SARS-CoV Spike-RBD structure and receptor binding comparison and potential implications on neutralizing antibody and vaccine development. bioRxiv [Preprint]. (2020). doi: 10.1101/2020.02.16.951723

98. The Global Economic Impact of the Coronavirus Outbreak – Harvard Gazette. Available online at: https://news.harvard.edu/gazette/story/2020/02/the-global-economic-impact-of-the-coronavirus-outbreak/ (accessed February 17, 2020).

99. Shimizu K. 2019-nCoV, fake news, and racism. Lancet . (2020) 395:685–6. doi: 10.1016/S0140-6736(20)30357-3

100. ROHDE RODNEY. 2019 Novel Coronavirus (2019-nCoV) Update: Uncoating the Virus. Am Soc Microbiol. (2020). Available online at: https://asm.org/Articles/2020/January/2019-Novel-Coronavirus-2019-nCoV-Update-Uncoating

101. Virus-free Indonesia more threatened by COVID-19 than Singapore Malaysia: Survey - World - The Jakarta Post. Available online at: https://www.thejakartapost.com/news/2020/02/18/virus-free-indonesia-more-threatened-by-covid-19-than-singapore-malaysia-survey.html (accessed February 18, 2020).

102. Japan, May Lose $1,.29 Billion in Tourism Revenue Due to COVID-19 Outbreak | The Japan Times. Available online at: https://www.japantimes.co.jp/news/2020/02/16/business/economy-business/japan-lose-billion-tourism-revenue-covid19-outbreak/#.XkvxX0fitPY (accessed February 18, 2020).

103. Coronavirus's Effect on Tourism Will Carry Into 2021 Experts Say - Bloomberg. Available online at: https://www.bloomberg.com/news/articles/2020-02-13/coronavirus-s-effect-on-tourism-will-carry-into-2021-experts-say (accessed February 18, 2020).

104. The, week in charts - The cost of covid-19 | Graphic detail | The Economist,. Available online at: https://www.economist.com/graphic-detail/2020/02/14/the-cost-of-covid-19 (accessed February 17, 2020).

105. coronavirus: Covid-19 Impact: Pharma Companies Feel the Pain as Prices of Key Inputs Shoot Up - The Economic Times. Available online at: https://economictimes.indiatimes.com/industry/healthcare/biotech/pharmaceuticals/covid-19-impact-pharma-companies-feel-the-pain-as-prices-of-key-inputs-shoot-up/articleshow/74144044.cms?from=mdr (accessed February 17, 2020).

106. Coronavirus Outbreak: Paracetamol Prices Jump 40% In India As Coronavirus Shuts Down China. Available online at: https://www.ndtv.com/india-news/coronavirus-outbreak-paracetamol-prices-jump-40-in-india-as-coronavirus-shuts-down-china-2181480 (accessed February 18, 2020).

107. The coronavirus could cripple China's economy for longer than Wall Street wants to believe | Business Insider India. Available online at: https://www.businessinsider.in/international/news/the-coronavirus-could-cripple-chinas-economy-for-longer-than-wall-street-wants-to-believe/articleshow/74162183.cms (accessed February 17, 2020).

108. Viral Slowdown - How China's Coronavirus Epidemic Could Hurt the World Economy | Leaders | The Economist. Available online at: https://www.economist.com/leaders/2020/02/13/how-chinas-coronavirus-epidemic-could-hurt-the-world-economy (accessed February 17, 2020).

109. China's Economic Battle With COVID-19 | The ASEAN Post. Available online at: https://theaseanpost.com/article/chinas-economic-battle-covid-19 (accessed February 17, 2020).

110. The Coronavirus Could Cost China's Economy $60 Billion this Quarter. - CNN. Available online at: https://edition.cnn.com/2020/01/31/economy/china-economy-coronavirus/index.html (accessed February 18, 2020).

Keywords: 2019-nCoV, COVID-19, SARS-CoV-2, coronavirus, pandemic, SARS

Citation: Keni R, Alexander A, Nayak PG, Mudgal J and Nandakumar K (2020) COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Front. Public Health 8:216. doi: 10.3389/fpubh.2020.00216

Received: 21 February 2020; Accepted: 11 May 2020; Published: 28 May 2020.

Reviewed by:

Copyright © 2020 Keni, Alexander, Nayak, Mudgal and Nandakumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Krishnadas Nandakumar, mailnandakumar77@gmail.com

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

  • All health topics »
  • Communicable diseases >>
  • Noncommunicable diseases >>
  • Global health response and cooperation >>
  • Universal health coverage >>
  • World AIDS Day
  • World Mental Health Day
  • World No Tobacco Day
  • News releases
  • Feature stories
  • Commentaries
  • Infographics
  • Feature stories /

COVID-19: What we know about the future of COVID-19 vaccines

Today marks the start of the World Immunization Week. The COVID-19 pandemic, while draws the world’s attention to the vaccine, also reminds us of the importance of immunization, which saves millions of lives each year.

WHO is working with partners all over the world to accelerate research and development of a safe and effective vaccine and ensure equitable access for the billions of people who will need it. But even with an expedited process, development of a vaccine for COVID-19 will take time. 

The ongoing pandemic disrupts routine immunization services in many countries. When immunization services are disrupted, even for brief periods during emergencies, the risk of vaccine-preventable disease outbreaks, such as measles and polio, increase. Further disease outbreaks will also overwhelm health systems already battling the impacts of COVID-19.

WHO continues to support countries to maintain essential immunization for all vaccine preventable diseases. We issued  guidance on immunization services during the COVID-19 pandemic , which provides guiding principles and considerations to support countries in their decision-making regarding provision of immunization services during the COVID-19 pandemic.

Question 1: The world is waiting for a vaccine against COVID-19. Could you explain how vaccines work to prevent disease?

Answer : Vaccination is a simple, safe, and effective way of protecting people against harmful diseases. Vaccines reduce risks of getting diseases by working with our body’s natural defenses to build protection. When we get a vaccine, our immune system responds, it

  • recognizes the invading germ, such as the virus or bacteria,
  • produces antibodies, proteins produced naturally by the immune system to fight disease;
  • remembers the disease and how to fight it. If you are then exposed to the germ in the future, your immune system can quickly destroy it before you become unwell.

Question 2: News says dozens of vaccine candidates are being research. How long does it usually take to develop a vaccine? What is the process people use to test a candidate vaccine and the process is important?

Answer:  Process of vaccine development usually needs a few years or even decades. Once a promising candidate vaccine is identified in research, it will firstly undergo scrupulous laboratory testing and preclinical studies, before the manufacture can apply for clinical trials: [1]

The clinical trials are bound by strict regulations and take place across three phases:

  • During Phase I, small groups (approximately 20-50 people) receive the vaccine. This phase will assess the safety, side effects, appropriate dosage, method of administration and composition of the vaccine.
  • If it is successful, it will proceed to Phase II. At this stage, the vaccine is usually given to several hundred people. This group will have the same characteristics (e.g. age, sex) as the people for whom the vaccine is intended to be given.
  • In Phase III, the vaccine is usually given to thousands of people to help ensure it is safe and effective for broader use. [2]

The results of all these studies will be rigorously assessed when regulators decide whether to approve a vaccine. Once a vaccine is approved for use, the vaccine must be continuously monitored to ensure the safety for the vaccinated peoples. [3]

Question 3: How do we know if vaccination will be safe? I know some people will have negative reactions after vaccination?

Answer:  Vaccines approved by competent national regulatory authorities are very safe. As with all medicines, side effects can occur after getting a vaccine. However, these are usually very minor and of short duration, such as a sore arm or a mild fever. More serious side effects are possible, but extremely rare. A person is far more likely to be seriously harmed by a disease than by a vaccine. [4]

WHO works closely with national authorities to ensure that global standards are developed and made readily available to assess the quality, safety and immunogenicity of biological products including vaccines. [5]

Question 4: Have human ever successfully curb a pandemic with vaccines?

Answer : Every year, millions of lives are saved thanks to immunization and it is recognized widely as one of the most successful and cost-effective health interventions.

Last December, the world celebrated the 40 th  anniversary of eradicating smallpox, which killed 300 million people in the 20th century alone. The success was attributed to an intense global smallpox vaccination campaign, in coordinated with broader public health measures. [6] , [7] Today, we are seeing progress to similar success in polio. With effective polio vaccine and immunization efforts, the world has reduced wild polio cases by 99%, averting 18 million irreversible paralyze and 1.5 million children’s lives. [8]

In China, the successful childhood vaccination program has been certified wild poliovirus-free, verified maternal and neo-natal tetanus elimination in 2012, verified children under 5 were HBV-infected decreased to 0.32% in 2014, dramatically and consistently reduced vaccine-prevention diseases (VPDs) incidences to historically recorded low level by 2018 (e.g., 2.8 per million population for measles, 2.8 per million for rubella, and 1.3 per 100,000 for Japanese encephalitis), and achieved over 95% national coverage for all vaccines used for infants in 2018 [9] .

Question 5: What is WHO doing in accelerating the development of vaccines against COVID-19

Answer:  Researchers around the world are working hard on accelerating the development of vaccines and therapeutics for COVID-19. WHO has launched various working groups to accelerate various aspects of vaccine development. A call was made by 130 scientists, funders and manufacturers to help speed the availability of a vaccine against COVID-19. More than 70 vaccines are in development globally, and several therapeutics are in clinical trials [10] . WHO is committed to ensuring that as medicines and vaccines are developed, they are shared equitably with all countries and people.

Question 6:  What else can we do to protect ourselves while we are waiting for the vaccine against COVID-19?

Answer:  As the response to COVID-19 continues, countries must act now protect immunization services, in order to further minimize disease outbreaks and loss of life. New WHO guidelines on immunization and COVID-19 recommend that governments temporarily pause preventive immunization campaigns where there is no active outbreak of a vaccine-preventable disease. But it urges countries prioritize the continuation of routine immunization of children in essential service delivery, as well as adult vaccinations such as influenza for groups most at risk. If immunization services must be suspended, urgent catch-up vaccinations should be rescheduled as soon as possible, prioritizing those most at risk. [11]

To date, there is no vaccine and no specific antiviral medicine to prevent or treat COVID-2019. Until specific and effective pharmaceutical interventions (e.g. therapies and vaccines) are available, people should continue to follow personal protection recommendations. At the individual level, people should follow procedures for reducing the risk of spread, such as proper hand-washing, covering your nose when sneezing, coughing into your elbow, not to touch your face, and keep practicing physical distancing.

References:

[1] https://www.who.int/news-room/q-a-detail/q-a-on-vaccine-safety

[2] https://www.who.int/news-room/q-a-detail/q-a-on-vaccine-safety

[3] https://www.who.int/news-room/q-a-detail/q-a-on-vaccine-safety

[4] https://www.who.int/news-room/q-a-detail/q-a-on-vaccine-safety

[5] https://www.who.int/immunization/quality_safety/en/

[6] https://www.who.int/news-room/detail/13-12-2019-who-commemorates-the-40th-anniversary-of-smallpox-eradication

[7] https://www.who.int/biologicals/vaccines/smallpox/en/

[8] https://www.who.int/en/news-room/fact-sheets/detail/poliomyelitis

[9] https://www.who.int/immunization/global_vaccine_action_plan/GVAP2019-RegionalReports-web.pdf  (p.78)

[10] www.who.int/blueprint/priority-diseases/key-action/Novel_Coronavirus_Landscape_nCoV_11April2020.PDF

[11] https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/maintaining-essential-health-services-and-systems  

IMAGES

  1. Complete Essay on Coronavirus (COVID-19) (with latest statistics)

    write an informative essay about covid 19 vaccine brainly

  2. 📗 Essay Sample on Impact of COVID 19

    write an informative essay about covid 19 vaccine brainly

  3. ≫ Nationalism and Covid-19 Pandemic Free Essay Sample on Samploon.com

    write an informative essay about covid 19 vaccine brainly

  4. Preparing countries for COVID-19 vaccine introduction

    write an informative essay about covid 19 vaccine brainly

  5. Guidelines to Plan for COVID-19 Vaccine Introduction, Version: July

    write an informative essay about covid 19 vaccine brainly

  6. The 2-Dose COVID-19 Vaccines: An Infographic

    write an informative essay about covid 19 vaccine brainly

COMMENTS

  1. Write an Informative essay about Covid 19 vaccination drive

    The COVID-19 pandemic, while draws the world's attention to the vaccine, also reminds us of the importance of immunization, which saves millions of lives each year. WHO is working with partners all over the world to accelerate research and development of a safe and effective vaccine and ensure equitable access for the billions of people who ...

  2. informative essay covid-19 vaccine

    In the short term, a person who has had a COVID-19 vaccine may experience flu-like symptoms and other side effects, including: •pain at the injection site. •swelling at the injection site. •fatigue. •headache and muscle pain. •a fever. The side effects may be worse after the second dose of the vaccine because the body's immune ...

  3. Getting the COVID-19 Vaccine

    For some COVID-19 vaccines, two doses are required . It's important to get the second dose if the vaccine requires two doses. For vaccines that require two doses, the first dose presents antigens - proteins that stimulate the production of antibodies - to the immune system for the first time. Scientists call this priming the immune response.

  4. Why it's safe and important to get the COVID-19 vaccine

    The COVID-19 vaccination will help keep you from getting the virus. COVID-19 vaccines were evaluated in clinical trials and have been approved because those studies show that the vaccine significantly reduces the probability of contracting the virus. Based on what has been proved about vaccines for other diseases, the COVID-19 vaccine may help ...

  5. The story behind COVID-19 vaccines

    Amid the staggering amount of suffering and death during this historic pandemic of COVID-19, a remarkable success story stands out. The development of several highly efficacious vaccines against a previously unknown viral pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in less than 1 year from the identification of the virus is unprecedented in the history of vaccinology.

  6. A Top Vaccine Expert Answers Important Questions About a COVID-19

    The COVID-19 vaccine is on track to become the fastest-developed vaccine in history. That doesn't mean the process is skipping any critical steps. Understanding what we know—and still don't—about a vaccine for COVID-19 can help shed light on its safety and efficacy.

  7. Essay on Coronavirus Vaccine

    500+ Words Essay on Coronavirus Vaccine. The Coronavirus has infected millions of people so far all over the world. In addition to that, millions of people have lost their lives to it. Ever since the outbreak, researchers all over the world have been working constantly to develop vaccines that will work effectively against the virus.

  8. Argumentative Essay about Covid 19 Vaccine

    Argumentative Essay about Covid 19 Vaccine . Answer: Today marks the start of the World Immunization Week. The COVID-19 pandemic, while draws the world's attention to the vaccine, also reminds us of the importance of immunization, which saves millions of lives each year. WHO is working with partners all over the world to accelerate research ...

  9. COVID-19 vaccines

    COVID-19 vaccines. The development and roll-out of COVID-19 vaccines have been fundamental in saving lives and protecting people from severe disease and death —especially those most at-risk and vulnerable to COVID-19, protecting health systems, and reducing widescale social disruption. WHO in the Western Pacific continues to work with ...

  10. COVID-19 vaccines: everything you need to know

    Do kids need a COVID-19 vaccine? New variants have evolved that seem to be able to affect children more, with low- and middle-income countries worst affected. New research is showing vaccines can be effective in children, but they remain at relatively low risk of the disease. While millions of vulnerable people in low- and middle-income ...

  11. Public attitudes toward COVID-19 vaccination: The role of vaccine

    While efficacious vaccines have been developed to inoculate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also known as COVID-19), public vaccine hesitancy could still ...

  12. How to stop the spread of COVID-19

    COVID-19 vaccines protect people from getting COVID-19. They are a vital tool to help stop the COVID-19 pandemic. The vaccine works with your body's immune system against the SARS-CoV-2 virus, which causes COVID-19.While COVID-19 vaccines will not make you sick, they may cause certain side effects and flu-like symptoms. This is to be expected.

  13. The COVID-19 Vaccination Challenge: Lessons From History

    Ahead of the COVID-19 vaccine rollout, health agencies in many countries issued guidance for phased vaccination campaigns, with health-care workers and residents of nursing homes and long-term ...

  14. How to talk about vaccines

    1. Listen with empathy. Start by listening with empathy to those who have questions around vaccination. Don't dismiss them, and acknowledge how they're feeling (without necessarily agreeing, for example "it's okay to have questions, or want more information before getting a vaccine"). 2. Ask open-ended questions.

  15. Persuasive Essay About Covid19

    To write an informative essay about COVID-19, follow these steps: Choose a specific focus: Select a particular aspect of COVID-19, such as its transmission, symptoms, or vaccines. Research thoroughly: Gather information from credible sources like scientific journals and official health organizations.

  16. A Narrative Review of COVID-19: The New Pandemic Disease

    Nearly every 100 years, humans collectively face a pandemic crisis. After the Spanish flu, now the world is in the grip of coronavirus disease 2019 (COVID-19). First detected in 2019 in the Chinese city of Wuhan, COVID-19 causes severe acute respiratory distress syndrome. Despite the initial evidence indicating a zoonotic origin, the contagion ...

  17. Essay on COVID-19 vaccine supply chains

    Essay on COVID-19 vaccine supply chains. The COVID-19 pandemic caused by the severe respiratory syndrome coronavirus 2 (SARS-CoV-2) is a threat to humanity in the 21st century. More than 1.7 million people died due to this pandemic. Research findings show that SARS-CoV and SARS-CoV 2 bear similar genetic properties [4].

  18. Coronavirus disease (COVID-19): Vaccine research and development

    In a human challenge vaccine study, healthy volunteers are given an experimental vaccine, and then deliberately exposed to the organism causing the disease to see if the vaccine works. Some scientists believe that this approach could accelerate COVID-19 vaccine development, in part because it would require far fewer volunteers than a typical study.

  19. How to Write About Coronavirus in a College Essay

    Students can choose to write a full-length college essay on the coronavirus or summarize their experience in a shorter form. To help students explain how the pandemic affected them, The Common App ...

  20. Introduction

    The COVID-19 pandemic is far from over and could yet evolve in unanticipated ways, but one of its most important lessons is already clear: preparation and early execution are essential in ...

  21. Accelerating a safe and effective COVID-19 vaccine

    The availability of a safe and effective vaccine for COVID-19 is well-recognized as an additional tool to contribute to the control of the pandemic. At the same time, the challenges and efforts needed to rapidly develop, evaluate and produce this at scale are enormous. It is vital that we evaluate as many vaccines as possible as we cannot ...

  22. Frontiers

    COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. The Coronavirus (CoV) is a large family of viruses known to cause illnesses ranging from the common cold to acute respiratory tract infection. The severity of the infection may be visible as pneumonia, acute respiratory syndrome, and even death.

  23. COVID-19: What we know about the future of COVID-19 vaccines

    Answer: Researchers around the world are working hard on accelerating the development of vaccines and therapeutics for COVID-19. WHO has launched various working groups to accelerate various aspects of vaccine development. A call was made by 130 scientists, funders and manufacturers to help speed the availability of a vaccine against COVID-19.