Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

7 steps in hypothesis testing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 30, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Hypothesis Testing: Uses, Steps & Example

By Jim Frost 4 Comments

What is Hypothesis Testing?

Hypothesis testing in statistics uses sample data to infer the properties of a whole population . These tests determine whether a random sample provides sufficient evidence to conclude an effect or relationship exists in the population. Researchers use them to help separate genuine population-level effects from false effects that random chance can create in samples. These methods are also known as significance testing.

Data analysts at work.

For example, researchers are testing a new medication to see if it lowers blood pressure. They compare a group taking the drug to a control group taking a placebo. If their hypothesis test results are statistically significant, the medication’s effect of lowering blood pressure likely exists in the broader population, not just the sample studied.

Using Hypothesis Tests

A hypothesis test evaluates two mutually exclusive statements about a population to determine which statement the sample data best supports. These two statements are called the null hypothesis and the alternative hypothesis . The following are typical examples:

  • Null Hypothesis : The effect does not exist in the population.
  • Alternative Hypothesis : The effect does exist in the population.

Hypothesis testing accounts for the inherent uncertainty of using a sample to draw conclusions about a population, which reduces the chances of false discoveries. These procedures determine whether the sample data are sufficiently inconsistent with the null hypothesis that you can reject it. If you can reject the null, your data favor the alternative statement that an effect exists in the population.

Statistical significance in hypothesis testing indicates that an effect you see in sample data also likely exists in the population after accounting for random sampling error , variability, and sample size. Your results are statistically significant when the p-value is less than your significance level or, equivalently, when your confidence interval excludes the null hypothesis value.

Conversely, non-significant results indicate that despite an apparent sample effect, you can’t be sure it exists in the population. It could be chance variation in the sample and not a genuine effect.

Learn more about Failing to Reject the Null .

5 Steps of Significance Testing

Hypothesis testing involves five key steps, each critical to validating a research hypothesis using statistical methods:

  • Formulate the Hypotheses : Write your research hypotheses as a null hypothesis (H 0 ) and an alternative hypothesis (H A ).
  • Data Collection : Gather data specifically aimed at testing the hypothesis.
  • Conduct A Test : Use a suitable statistical test to analyze your data.
  • Make a Decision : Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.
  • Report the Results : Summarize and present the outcomes in your report’s results and discussion sections.

While the specifics of these steps can vary depending on the research context and the data type, the fundamental process of hypothesis testing remains consistent across different studies.

Let’s work through these steps in an example!

Hypothesis Testing Example

Researchers want to determine if a new educational program improves student performance on standardized tests. They randomly assign 30 students to a control group , which follows the standard curriculum, and another 30 students to a treatment group, which participates in the new educational program. After a semester, they compare the test scores of both groups.

Download the CSV data file to perform the hypothesis testing yourself: Hypothesis_Testing .

The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter .

  • Null Hypothesis (H 0 ) : The population means of the test scores for the two groups are equal (μ 1 = μ 2 ).
  • Alternative Hypothesis (H A ) : The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2 ).

Choosing the correct hypothesis test depends on attributes such as data type and number of groups. Because they’re using continuous data and comparing two means, the researchers use a 2-sample t-test .

Here are the results.

Hypothesis testing results for the example.

The treatment group’s mean is 58.70, compared to the control group’s mean of 48.12. The mean difference is 10.67 points. Use the test’s p-value and significance level to determine whether this difference is likely a product of random fluctuation in the sample or a genuine population effect.

Because the p-value (0.000) is less than the standard significance level of 0.05, the results are statistically significant, and we can reject the null hypothesis. The sample data provides sufficient evidence to conclude that the new program’s effect exists in the population.

Limitations

Hypothesis testing improves your effectiveness in making data-driven decisions. However, it is not 100% accurate because random samples occasionally produce fluky results. Hypothesis tests have two types of errors, both relating to drawing incorrect conclusions.

  • Type I error: The test rejects a true null hypothesis—a false positive.
  • Type II error: The test fails to reject a false null hypothesis—a false negative.

Learn more about Type I and Type II Errors .

Our exploration of hypothesis testing using a practical example of an educational program reveals its powerful ability to guide decisions based on statistical evidence. Whether you’re a student, researcher, or professional, understanding and applying these procedures can open new doors to discovering insights and making informed decisions. Let this tool empower your analytical endeavors as you navigate through the vast seas of data.

Learn more about the Hypothesis Tests for Various Data Types .

Share this:

7 steps in hypothesis testing

Reader Interactions

' src=

June 10, 2024 at 10:51 am

Thank you, Jim, for another helpful article; timely too since I have started reading your new book on hypothesis testing and, now that we are at the end of the school year, my district is asking me to perform a number of evaluations on instructional programs. This is where my question/concern comes in. You mention that hypothesis testing is all about testing samples. However, I use all the students in my district when I make these comparisons. Since I am using the entire “population” in my evaluations (I don’t select a sample of third grade students, for example, but I use all 700 third graders), am I somehow misusing the tests? Or can I rest assured that my district’s student population is only a sample of the universal population of students?

' src=

June 10, 2024 at 1:50 pm

I hope you are finding the book helpful!

Yes, the purpose of hypothesis testing is to infer the properties of a population while accounting for random sampling error.

In your case, it comes down to how you want to use the results. Who do you want the results to apply to?

If you’re summarizing the sample, looking for trends and patterns, or evaluating those students and don’t plan to apply those results to other students, you don’t need hypothesis testing because there is no sampling error. They are the population and you can just use descriptive statistics. In this case, you’d only need to focus on the practical significance of the effect sizes.

On the other hand, if you want to apply the results from this group to other students, you’ll need hypothesis testing. However, there is the complicating issue of what population your sample of students represent. I’m sure your district has its own unique characteristics, demographics, etc. Your district’s students probably don’t adequately represent a universal population. At the very least, you’d need to recognize any special attributes of your district and how they could bias the results when trying to apply them outside the district. Or they might apply to similar districts in your region.

However, I’d imagine your 3rd graders probably adequately represent future classes of 3rd graders in your district. You need to be alert to changing demographics. At least in the short run I’d imagine they’d be representative of future classes.

Think about how these results will be used. Do they just apply to the students you measured? Then you don’t need hypothesis tests. However, if the results are being used to infer things about other students outside of the sample, you’ll need hypothesis testing along with considering how well your students represent the other students and how they differ.

I hope that helps!

June 10, 2024 at 3:21 pm

Thank you so much, Jim, for the suggestions in terms of what I need to think about and consider! You are always so clear in your explanations!!!!

June 10, 2024 at 3:22 pm

You’re very welcome! Best of luck with your evaluations!

Comments and Questions Cancel reply

  • Comprehensive Learning Paths
  • 150+ Hours of Videos
  • Complete Access to Jupyter notebooks, Datasets, References.

Rating

Hypothesis Testing – A Deep Dive into Hypothesis Testing, The Backbone of Statistical Inference

  • September 21, 2023

Explore the intricacies of hypothesis testing, a cornerstone of statistical analysis. Dive into methods, interpretations, and applications for making data-driven decisions.

7 steps in hypothesis testing

In this Blog post we will learn:

  • What is Hypothesis Testing?
  • Steps in Hypothesis Testing 2.1. Set up Hypotheses: Null and Alternative 2.2. Choose a Significance Level (α) 2.3. Calculate a test statistic and P-Value 2.4. Make a Decision
  • Example : Testing a new drug.
  • Example in python

1. What is Hypothesis Testing?

In simple terms, hypothesis testing is a method used to make decisions or inferences about population parameters based on sample data. Imagine being handed a dice and asked if it’s biased. By rolling it a few times and analyzing the outcomes, you’d be engaging in the essence of hypothesis testing.

Think of hypothesis testing as the scientific method of the statistics world. Suppose you hear claims like “This new drug works wonders!” or “Our new website design boosts sales.” How do you know if these statements hold water? Enter hypothesis testing.

2. Steps in Hypothesis Testing

  • Set up Hypotheses : Begin with a null hypothesis (H0) and an alternative hypothesis (Ha).
  • Choose a Significance Level (α) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true. Think of it as the chance of accusing an innocent person.
  • Calculate Test statistic and P-Value : Gather evidence (data) and calculate a test statistic.
  • p-value : This is the probability of observing the data, given that the null hypothesis is true. A small p-value (typically ≤ 0.05) suggests the data is inconsistent with the null hypothesis.
  • Decision Rule : If the p-value is less than or equal to α, you reject the null hypothesis in favor of the alternative.

2.1. Set up Hypotheses: Null and Alternative

Before diving into testing, we must formulate hypotheses. The null hypothesis (H0) represents the default assumption, while the alternative hypothesis (H1) challenges it.

For instance, in drug testing, H0 : “The new drug is no better than the existing one,” H1 : “The new drug is superior .”

2.2. Choose a Significance Level (α)

When You collect and analyze data to test H0 and H1 hypotheses. Based on your analysis, you decide whether to reject the null hypothesis in favor of the alternative, or fail to reject / Accept the null hypothesis.

The significance level, often denoted by $α$, represents the probability of rejecting the null hypothesis when it is actually true.

In other words, it’s the risk you’re willing to take of making a Type I error (false positive).

Type I Error (False Positive) :

  • Symbolized by the Greek letter alpha (α).
  • Occurs when you incorrectly reject a true null hypothesis . In other words, you conclude that there is an effect or difference when, in reality, there isn’t.
  • The probability of making a Type I error is denoted by the significance level of a test. Commonly, tests are conducted at the 0.05 significance level , which means there’s a 5% chance of making a Type I error .
  • Commonly used significance levels are 0.01, 0.05, and 0.10, but the choice depends on the context of the study and the level of risk one is willing to accept.

Example : If a drug is not effective (truth), but a clinical trial incorrectly concludes that it is effective (based on the sample data), then a Type I error has occurred.

Type II Error (False Negative) :

  • Symbolized by the Greek letter beta (β).
  • Occurs when you accept a false null hypothesis . This means you conclude there is no effect or difference when, in reality, there is.
  • The probability of making a Type II error is denoted by β. The power of a test (1 – β) represents the probability of correctly rejecting a false null hypothesis.

Example : If a drug is effective (truth), but a clinical trial incorrectly concludes that it is not effective (based on the sample data), then a Type II error has occurred.

Balancing the Errors :

7 steps in hypothesis testing

In practice, there’s a trade-off between Type I and Type II errors. Reducing the risk of one typically increases the risk of the other. For example, if you want to decrease the probability of a Type I error (by setting a lower significance level), you might increase the probability of a Type II error unless you compensate by collecting more data or making other adjustments.

It’s essential to understand the consequences of both types of errors in any given context. In some situations, a Type I error might be more severe, while in others, a Type II error might be of greater concern. This understanding guides researchers in designing their experiments and choosing appropriate significance levels.

2.3. Calculate a test statistic and P-Value

Test statistic : A test statistic is a single number that helps us understand how far our sample data is from what we’d expect under a null hypothesis (a basic assumption we’re trying to test against). Generally, the larger the test statistic, the more evidence we have against our null hypothesis. It helps us decide whether the differences we observe in our data are due to random chance or if there’s an actual effect.

P-value : The P-value tells us how likely we would get our observed results (or something more extreme) if the null hypothesis were true. It’s a value between 0 and 1. – A smaller P-value (typically below 0.05) means that the observation is rare under the null hypothesis, so we might reject the null hypothesis. – A larger P-value suggests that what we observed could easily happen by random chance, so we might not reject the null hypothesis.

2.4. Make a Decision

Relationship between $α$ and P-Value

When conducting a hypothesis test:

We then calculate the p-value from our sample data and the test statistic.

Finally, we compare the p-value to our chosen $α$:

  • If $p−value≤α$: We reject the null hypothesis in favor of the alternative hypothesis. The result is said to be statistically significant.
  • If $p−value>α$: We fail to reject the null hypothesis. There isn’t enough statistical evidence to support the alternative hypothesis.

3. Example : Testing a new drug.

Imagine we are investigating whether a new drug is effective at treating headaches faster than drug B.

Setting Up the Experiment : You gather 100 people who suffer from headaches. Half of them (50 people) are given the new drug (let’s call this the ‘Drug Group’), and the other half are given a sugar pill, which doesn’t contain any medication.

  • Set up Hypotheses : Before starting, you make a prediction:
  • Null Hypothesis (H0): The new drug has no effect. Any difference in healing time between the two groups is just due to random chance.
  • Alternative Hypothesis (H1): The new drug does have an effect. The difference in healing time between the two groups is significant and not just by chance.

Calculate Test statistic and P-Value : After the experiment, you analyze the data. The “test statistic” is a number that helps you understand the difference between the two groups in terms of standard units.

For instance, let’s say:

  • The average healing time in the Drug Group is 2 hours.
  • The average healing time in the Placebo Group is 3 hours.

The test statistic helps you understand how significant this 1-hour difference is. If the groups are large and the spread of healing times in each group is small, then this difference might be significant. But if there’s a huge variation in healing times, the 1-hour difference might not be so special.

Imagine the P-value as answering this question: “If the new drug had NO real effect, what’s the probability that I’d see a difference as extreme (or more extreme) as the one I found, just by random chance?”

For instance:

  • P-value of 0.01 means there’s a 1% chance that the observed difference (or a more extreme difference) would occur if the drug had no effect. That’s pretty rare, so we might consider the drug effective.
  • P-value of 0.5 means there’s a 50% chance you’d see this difference just by chance. That’s pretty high, so we might not be convinced the drug is doing much.
  • If the P-value is less than ($α$) 0.05: the results are “statistically significant,” and they might reject the null hypothesis , believing the new drug has an effect.
  • If the P-value is greater than ($α$) 0.05: the results are not statistically significant, and they don’t reject the null hypothesis , remaining unsure if the drug has a genuine effect.

4. Example in python

For simplicity, let’s say we’re using a t-test (common for comparing means). Let’s dive into Python:

Making a Decision : “The results are statistically significant! p-value < 0.05 , The drug seems to have an effect!” If not, we’d say, “Looks like the drug isn’t as miraculous as we thought.”

5. Conclusion

Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

More Articles

F statistic formula – explained, correlation – connecting the dots, the role of correlation in data analysis, sampling and sampling distributions – a comprehensive guide on sampling and sampling distributions, law of large numbers – a deep dive into the world of statistics, central limit theorem – a deep dive into central limit theorem and its significance in statistics, similar articles, complete introduction to linear regression in r, how to implement common statistical significance tests and find the p value, logistic regression – a complete tutorial with examples in r.

Subscribe to Machine Learning Plus for high value data science content

© Machinelearningplus. All rights reserved.

7 steps in hypothesis testing

Machine Learning A-Z™: Hands-On Python & R In Data Science

Free sample videos:.

7 steps in hypothesis testing

Hypothesis Testing Framework

Now that we've seen an example and explored some of the themes for hypothesis testing, let's specify the procedure that we will follow.

Hypothesis Testing Steps

The formal framework and steps for hypothesis testing are as follows:

  • Identify and define the parameter of interest
  • Define the competing hypotheses to test
  • Set the evidence threshold, formally called the significance level
  • Generate or use theory to specify the sampling distribution and check conditions
  • Calculate the test statistic and p-value
  • Evaluate your results and write a conclusion in the context of the problem.

We'll discuss each of these steps below.

Identify Parameter of Interest

First, I like to specify and define the parameter of interest. What is the population that we are interested in? What characteristic are we measuring?

By defining our population of interest, we can confirm that we are truly using sample data. If we find that we actually have population data, our inference procedures are not needed. We could proceed by summarizing our population data.

By identifying and defining the parameter of interest, we can confirm that we use appropriate methods to summarize our variable of interest. We can also focus on the specific process needed for our parameter of interest.

In our example from the last page, the parameter of interest would be the population mean time that a host has been on Airbnb for the population of all Chicago listings on Airbnb in March 2023. We could represent this parameter with the symbol $\mu$. It is best practice to fully define $\mu$ both with words and symbol.

Define the Hypotheses

For hypothesis testing, we need to decide between two competing theories. These theories must be statements about the parameter. Although we won't have the population data to definitively select the correct theory, we will use our sample data to determine how reasonable our "skeptic's theory" is.

The first hypothesis is called the null hypothesis, $H_0$. This can be thought of as the "status quo", the "skeptic's theory", or that nothing is happening.

Examples of null hypotheses include that the population proportion is equal to 0.5 ($p = 0.5$), the population median is equal to 12 ($M = 12$), or the population mean is equal to 14.5 ($\mu = 14.5$).

The second hypothesis is called the alternative hypothesis, $H_a$ or $H_1$. This can be thought of as the "researcher's hypothesis" or that something is happening. This is what we'd like to convince the skeptic to believe. In most cases, the desired outcome of the researcher is to conclude that the alternative hypothesis is reasonable to use moving forward.

Examples of alternative hypotheses include that the population proportion is greater than 0.5 ($p > 0.5$), the population median is less than 12 ($M < 12$), or the population mean is not equal to 14.5 ($\mu \neq 14.5$).

There are a few requirements for the hypotheses:

  • the hypotheses must be about the same population parameter,
  • the hypotheses must have the same null value (provided number to compare to),
  • the null hypothesis must have the equality (the equals sign must be in the null hypothesis),
  • the alternative hypothesis must not have the equality (the equals sign cannot be in the alternative hypothesis),
  • there must be no overlap between the null and alternative hypothesis.

You may have previously seen null hypotheses that include more than an equality (e.g. $p \le 0.5$). As long as there is an equality in the null hypothesis, this is allowed. For our purposes, we will simplify this statement to ($p = 0.5$).

To summarize from above, possible hypotheses statements are:

$H_0: p = 0.5$ vs. $H_a: p > 0.5$

$H_0: M = 12$ vs. $H_a: M < 12$

$H_0: \mu = 14.5$ vs. $H_a: \mu \neq 14.5$

In our second example about Airbnb hosts, our hypotheses would be:

$H_0: \mu = 2100$ vs. $H_a: \mu > 2100$.

Set Threshold (Significance Level)

There is one more step to complete before looking at the data. This is to set the threshold needed to convince the skeptic. This threshold is defined as an $\alpha$ significance level. We'll define exactly what the $\alpha$ significance level means later. For now, smaller $\alpha$s correspond to more evidence being required to convince the skeptic.

A few common $\alpha$ levels include 0.1, 0.05, and 0.01.

For our Airbnb hosts example, we'll set the threshold as 0.02.

Determine the Sampling Distribution of the Sample Statistic

The first step (as outlined above) is the identify the parameter of interest. What is the best estimate of the parameter of interest? Typically, it will be the sample statistic that corresponds to the parameter. This sample statistic, along with other features of the distribution will prove especially helpful as we continue the hypothesis testing procedure.

However, we do have a decision at this step. We can choose to use simulations with a resampling approach or we can choose to rely on theory if we are using proportions or means. We then also need to confirm that our results and conclusions will be valid based on the available data.

Required Condition

The one required assumption, regardless of approach (resampling or theory), is that the sample is random and representative of the population of interest. In other words, we need our sample to be a reasonable sample of data from the population.

Using Simulations and Resampling

If we'd like to use a resampling approach, we have no (or minimal) additional assumptions to check. This is because we are relying on the available data instead of assumptions.

We do need to adjust our data to be consistent with the null hypothesis (or skeptic's claim). We can then rely on our resampling approach to estimate a plausible sampling distribution for our sample statistic.

Recall that we took this approach on the last page. Before simulating our estimated sampling distribution, we adjusted the mean of the data so that it matched with our skeptic's claim, shown in the code below.

We'll see a few more examples on the next page.

Using Theory

On the other hand, we could rely on theory in order to estimate the sampling distribution of our desired statistic. Recall that we had a few different options to rely on:

  • the CLT for the sampling distribution of a sample mean
  • the binomial distribution for the sampling distribution of a proportion (or count)
  • the Normal approximation of a binomial distribution (using the CLT) for the sampling distribution of a proportion

If relying on the CLT to specify the underlying sampling distribution, you also need to confirm:

  • having a random sample and
  • having a sample size that is less than 10% of the population size if the sampling is done without replacement
  • having a Normally distributed population for a quantitative variable OR
  • having a large enough sample size (usually at least 25) for a quantitative variable
  • having a large enough sample size for a categorical variable (defined by $np$ and $n(1-p)$ being at least 10)

If relying on the binomial distribution to specify the underlying sampling distribution, you need to confirm:

  • having a set number of trials, $n$
  • having the same probability of success, $p$ for each observation

After determining the appropriate theory to use, we should check our conditions and then specify the sampling distribution for our statistic.

For the Airbnb hosts example, we have what we've assumed to be a random sample. It is not taken with replacement, so we also need to assume that our sample size (700) is less than 10% of our population size. In other words, we need to assume that the population of Chicago Airbnbs in March 2023 was at least 7000. Since we do have our (presumed) population data available, we can confirm that there were at least 7000 Chicago Airbnbs in the population in 2023.

Additionally, we can confirm that normality of the sampling distribution applies for the CLT to apply. Our sample size is more than 25 and the parameter of interest is a mean, so this meets our necessary criteria for the normality condition to be valid.

With the conditions now met, we can estimate our sampling distribution. From the CLT, we know that the distribution for the sample mean should be $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

Now, we face our next challenge -- what to plug in as the mean and standard error for this distribution. Since we are adopting the skeptic's point of view for the purpose of this approach, we can plug in the value of $\mu_0 = 2100$. We also know that the sample size $n$ is 700. But what should we plug in for the population standard deviation $\sigma$?

When we don't know the value of a parameter, we will generally plug in our best estimate for the parameter. In this case, that corresponds to plugging in $\hat{\sigma}$, or our sample standard deviation.

Now, our estimated sampling distribution based on the CLT is: $\bar{X} \sim N(2100, 41.4045)$.

If we compare to our corresponding skeptic's sampling distribution on the last page, we can confirm that the theoretical sampling distribution is similar to the simulated sampling distribution based on resampling.

Assumptions not met

What do we do if the necessary conditions aren't met for the sampling distribution? Because the simulation-based resampling approach has minimal assumptions, we should be able to use this approach to produce valid results as long as the provided data is representative of the population.

The theory-based approach has more conditions, and we may not be able to meet all of the necessary conditions. For example, if our parameter is something other than a mean or proportion, we may not have appropriate theory. Additionally, we may not have a large enough sample size.

  • First, we could consider changing approaches to the simulation-based one.
  • Second, we might look at how we could meet the necessary conditions better. In some cases, we may be able to redefine groups or make adjustments so that the setup of the test is closer to what is needed.
  • As a last resort, we may be able to continue following the hypothesis testing steps. In this case, your calculations may not be valid or exact; however, you might be able to use them as an estimate or an approximation. It would be crucial to specify the violation and approximation in any conclusions or discussion of the test.

Calculate the evidence with statistics and p-values

Now, it's time to calculate how much evidence the sample contains to convince the skeptic to change their mind. As we saw above, we can convince the skeptic to change their mind by demonstrating that our sample is unlikely to occur if their theory is correct.

How do we do this? We do this by calculating a probability associated with our observed value for the statistic.

For example, for our situation, we want to convince the skeptic that the population mean is actually greater than 2100 days. We do that by calculating the probability that a sample mean would be as large or larger than what we observed in our actual sample, which was 2188 days. Why do we need the larger portion? We use the larger portion because a sample mean of 2200 days also provides evidence that the population mean is larger than 2100 days; it isn't limited to exactly what we observed in our sample. We call this specific probability the p-value.

That is, the p-value is the probability of observing a test statistic as extreme or more extreme (as determined by the alternative hypothesis), assuming the null hypothesis is true.

Our observed p-value for the Airbnb host example demonstrates that the probability of getting a sample mean host time of 2188 days (the value from our sample) or more is 1.46%, assuming that the true population mean is 2100 days.

Test statistic

Notice that the formal definition of a p-value mentions a test statistic . In most cases, this word can be replaced with "statistic" or "sample" for an equivalent statement.

Oftentimes, we'll see that our sample statistic can be used directly as the test statistic, as it was above. We could equivalently adjust our statistic to calculate a test statistic. This test statistic is often calculated as:

$\text{test statistic} = \frac{\text{estimate} - \text{hypothesized value}}{\text{standard error of estimate}}$

P-value Calculation Options

Note also that the p-value definition includes a probability associated with a test statistic being as extreme or more extreme (as determined by the alternative hypothesis . How do we determine the area that we consider when calculating the probability. This decision is determined by the inequality in the alternative hypothesis.

For example, when we were trying to convince the skeptic that the population mean is greater than 2100 days, we only considered those sample means that we at least as large as what we observed -- 2188 days or more.

If instead we were trying to convince the skeptic that the population mean is less than 2100 days ($H_a: \mu < 2100$), we would consider all sample means that were at most what we observed - 2188 days or less. In this case, our p-value would be quite large; it would be around 99.5%. This large p-value demonstrates that our sample does not support the alternative hypothesis. In fact, our sample would encourage us to choose the null hypothesis instead of the alternative hypothesis of $\mu < 2100$, as our sample directly contradicts the statement in the alternative hypothesis.

If we wanted to convince the skeptic that they were wrong and that the population mean is anything other than 2100 days ($H_a: \mu \neq 2100$), then we would want to calculate the probability that a sample mean is at least 88 days away from 2100 days. That is, we would calculate the probability corresponding to 2188 days or more or 2012 days or less. In this case, our p-value would be roughly twice the previously calculated p-value.

We could calculate all of those probabilities using our sampling distributions, either simulated or theoretical, that we generated in the previous step. If we chose to calculate a test statistic as defined in the previous section, we could also rely on standard normal distributions to calculate our p-value.

Evaluate your results and write conclusion in context of problem

Once you've gathered your evidence, it's now time to make your final conclusions and determine how you might proceed.

In traditional hypothesis testing, you often make a decision. Recall that you have your threshold (significance level $\alpha$) and your level of evidence (p-value). We can compare the two to determine if your p-value is less than or equal to your threshold. If it is, you have enough evidence to persuade your skeptic to change their mind. If it is larger than the threshold, you don't have quite enough evidence to convince the skeptic.

Common formal conclusions (if given in context) would be:

  • I have enough evidence to reject the null hypothesis (the skeptic's claim), and I have sufficient evidence to suggest that the alternative hypothesis is instead true.
  • I do not have enough evidence to reject the null hypothesis (the skeptic's claim), and so I do not have sufficient evidence to suggest the alternative hypothesis is true.

The only decision that we can make is to either reject or fail to reject the null hypothesis (we cannot "accept" the null hypothesis). Because we aren't actively evaluating the alternative hypothesis, we don't want to make definitive decisions based on that hypothesis. However, when it comes to making our conclusion for what to use going forward, we frame this on whether we could successfully convince someone of the alternative hypothesis.

A less formal conclusion might look something like:

Based on our sample of Chicago Airbnb listings, it seems as if the mean time since a host has been on Airbnb (for all Chicago Airbnb listings) is more than 5.75 years.

Significance Level Interpretation

We've now seen how the significance level $\alpha$ is used as a threshold for hypothesis testing. What exactly is the significance level?

The significance level $\alpha$ has two primary definitions. One is that the significance level is the maximum probability required to reject the null hypothesis; this is based on how the significance level functions within the hypothesis testing framework. The second definition is that this is the probability of rejecting the null hypothesis when the null hypothesis is true; in other words, this is the probability of making a specific type of error called a Type I error.

Why do we have to be comfortable making a Type I error? There is always a chance that the skeptic was originally correct and we obtained a very unusual sample. We don't want to the skeptic to be so convinced of their theory that no evidence can convince them. In this case, we need the skeptic to be convinced as long as the evidence is strong enough . Typically, the probability threshold will be low, to reduce the number of errors made. This also means that a decent amount of evidence will be needed to convince the skeptic to abandon their position in favor of the alternative theory.

p-value Limitations and Misconceptions

In comparison to the $\alpha$ significance level, we also need to calculate the evidence against the null hypothesis with the p-value.

The p-value is the probability of getting a test statistic as extreme or more extreme (in the direction of the alternative hypothesis), assuming the null hypothesis is true.

Recently, p-values have gotten some bad press in terms of how they are used. However, that doesn't mean that p-values should be abandoned, as they still provide some helpful information. Below, we'll describe what p-values don't mean, and how they should or shouldn't be used to make decisions.

Factors that affect a p-value

What features affect the size of a p-value?

  • the null value, or the value assumed under the null hypothesis
  • the effect size (the difference between the null value under the null hypothesis and the true value of the parameter)
  • the sample size

More evidence against the null hypothesis will be obtained if the effect size is larger and if the sample size is larger.

Misconceptions

We gave a definition for p-values above. What are some examples that p-values don't mean?

  • A p-value is not the probability that the null hypothesis is correct
  • A p-value is not the probability that the null hypothesis is incorrect
  • A p-value is not the probability of getting your specific sample
  • A p-value is not the probability that the alternative hypothesis is correct
  • A p-value is not the probability that the alternative hypothesis is incorrect
  • A p-value does not indicate the size of the effect

Our p-value is a way of measuring the evidence that your sample provides against the null hypothesis, assuming the null hypothesis is in fact correct.

Using the p-value to make a decision

Why is there bad press for a p-value? You may have heard about the standard $\alpha$ level of 0.05. That is, we would be comfortable with rejecting the null hypothesis once in 20 attempts when the null hypothesis is really true. Recall that we reject the null hypothesis when the p-value is less than or equal to the significance level.

Consider what would happen if you have two different p-values: 0.049 and 0.051.

In essence, these two p-values represent two very similar probabilities (4.9% vs. 5.1%) and very similar levels of evidence against the null hypothesis. However, when we make our decision based on our threshold, we would make two different decisions (reject and fail to reject, respectively). Should this decision really be so simplistic? I would argue that the difference shouldn't be so severe when the sample statistics are likely very similar. For this reason, I (and many other experts) strongly recommend using the p-value as a measure of evidence and including it with your conclusion.

Putting too much emphasis on the decision (and having a significant result) has created a culture of misusing p-values. For this reason, understanding your p-value itself is crucial.

Searching for p-values

The other concern with setting a definitive threshold of 0.05 is that some researchers will begin performing multiple tests until finding a p-value that is small enough. However, with a p-value of 0.05, we know that we will have a p-value less than 0.05 1 time out of every 20 times, even when the null hypothesis is true.

This means that if researchers start hunting for p-values that are small (sometimes called p-hacking), then they are likely to identify a small p-value every once in a while by chance alone. Researchers might then publish that result, even though the result is actually not informative. For this reason, it is recommended that researchers write a definitive analysis plan to prevent performing multiple tests in search of a result that occurs by chance alone.

Best Practices

With all of this in mind, what should we do when we have our p-value? How can we prevent or reduce misuse of a p-value?

  • Report the p-value along with the conclusion
  • Specify the effect size (the value of the statistic)
  • Define an analysis plan before looking at the data
  • Interpret the p-value clearly to specify what it indicates
  • Consider using an alternate statistical approach, the confidence interval, discussed next, when appropriate

Logo for University of Missouri System

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Chapter 7: Introduction to Hypothesis Testing

alternative hypothesis

critical value

effect size

null hypothesis

probability value

rejection region

significance level

statistical power

statistical significance

test statistic

Type I error

Type II error

This chapter lays out the basic logic and process of hypothesis testing. We will perform z  tests, which use the z  score formula from Chapter 6 and data from a sample mean to make an inference about a population.

Logic and Purpose of Hypothesis Testing

A hypothesis is a prediction that is tested in a research study. The statistician R. A. Fisher explained the concept of hypothesis testing with a story of a lady tasting tea. Here we will present an example based on James Bond who insisted that martinis should be shaken rather than stirred. Let’s consider a hypothetical experiment to determine whether Mr. Bond can tell the difference between a shaken martini and a stirred martini. Suppose we gave Mr. Bond a series of 16 taste tests. In each test, we flipped a fair coin to determine whether to stir or shake the martini. Then we presented the martini to Mr. Bond and asked him to decide whether it was shaken or stirred. Let’s say Mr. Bond was correct on 13 of the 16 taste tests. Does this prove that Mr. Bond has at least some ability to tell whether the martini was shaken or stirred?

This result does not prove that he does; it could be he was just lucky and guessed right 13 out of 16 times. But how plausible is the explanation that he was just lucky? To assess its plausibility, we determine the probability that someone who was just guessing would be correct 13/16 times or more. This probability can be computed to be .0106. This is a pretty low probability, and therefore someone would have to be very lucky to be correct 13 or more times out of 16 if they were just guessing. So either Mr. Bond was very lucky, or he can tell whether the drink was shaken or stirred. The hypothesis that he was guessing is not proven false, but considerable doubt is cast on it. Therefore, there is strong evidence that Mr. Bond can tell whether a drink was shaken or stirred.

Let’s consider another example. The case study Physicians’ Reactions sought to determine whether physicians spend less time with obese patients. Physicians were sampled randomly and each was shown a chart of a patient complaining of a migraine headache. They were then asked to estimate how long they would spend with the patient. The charts were identical except that for half the charts, the patient was obese and for the other half, the patient was of average weight. The chart a particular physician viewed was determined randomly. Thirty-three physicians viewed charts of average-weight patients and 38 physicians viewed charts of obese patients.

The mean time physicians reported that they would spend with obese patients was 24.7 minutes as compared to a mean of 31.4 minutes for normal-weight patients. How might this difference between means have occurred? One possibility is that physicians were influenced by the weight of the patients. On the other hand, perhaps by chance, the physicians who viewed charts of the obese patients tend to see patients for less time than the other physicians. Random assignment of charts does not ensure that the groups will be equal in all respects other than the chart they viewed. In fact, it is certain the groups differed in many ways by chance. The two groups could not have exactly the same mean age (if measured precisely enough such as in days). Perhaps a physician’s age affects how long the physician sees patients. There are innumerable differences between the groups that could affect how long they view patients. With this in mind, is it plausible that these chance differences are responsible for the difference in times?

To assess the plausibility of the hypothesis that the difference in mean times is due to chance, we compute the probability of getting a difference as large or larger than the observed difference (31.4 − 24.7 = 6.7 minutes) if the difference were, in fact, due solely to chance. Using methods presented in later chapters, this probability can be computed to be .0057. Since this is such a low probability, we have confidence that the difference in times is due to the patient’s weight and is not due to chance.

The Probability Value

It is very important to understand precisely what the probability values mean. In the James Bond example, the computed probability of .0106 is the probability he would be correct on 13 or more taste tests (out of 16) if he were just guessing. It is easy to mistake this probability of .0106 as the probability he cannot tell the difference. This is not at all what it means.

The probability of .0106 is the probability of a certain outcome (13 or more out of 16) assuming a certain state of the world (James Bond was only guessing). It is not the probability that a state of the world is true. Although this might seem like a distinction without a difference, consider the following example. An animal trainer claims that a trained bird can determine whether or not numbers are evenly divisible by 7. In an experiment assessing this claim, the bird is given a series of 16 test trials. On each trial, a number is displayed on a screen and the bird pecks at one of two keys to indicate its choice. The numbers are chosen in such a way that the probability of any number being evenly divisible by 7 is .50. The bird is correct on 9/16 choices. We can compute that the probability of being correct nine or more times out of 16 if one is only guessing is .40. Since a bird who is only guessing would do this well 40% of the time, these data do not provide convincing evidence that the bird can tell the difference between the two types of numbers. As a scientist, you would be very skeptical that the bird had this ability. Would you conclude that there is a .40 probability that the bird can tell the difference? Certainly not! You would think the probability is much lower than .0001.

To reiterate, the probability value is the probability of an outcome (9/16 or better) and not the probability of a particular state of the world (the bird was only guessing). In statistics, it is conventional to refer to possible states of the world as hypotheses since they are hypothesized states of the world. Using this terminology, the probability value is the probability of an outcome given the hypothesis. It is not the probability of the hypothesis given the outcome.

This is not to say that we ignore the probability of the hypothesis. If the probability of the outcome given the hypothesis is sufficiently low, we have evidence that the hypothesis is false. However, we do not compute the probability that the hypothesis is false. In the James Bond example, the hypothesis is that he cannot tell the difference between shaken and stirred martinis. The probability value is low (.0106), thus providing evidence that he can tell the difference. However, we have not computed the probability that he can tell the difference.

The Null Hypothesis

The hypothesis that an apparent effect is due to chance is called the null hypothesis , written H 0 (“ H -naught”). In the Physicians’ Reactions example, the null hypothesis is that in the population of physicians, the mean time expected to be spent with obese patients is equal to the mean time expected to be spent with average-weight patients. This null hypothesis can be written as:

7 steps in hypothesis testing

The null hypothesis in a correlational study of the relationship between high school grades and college grades would typically be that the population correlation is 0. This can be written as

7 steps in hypothesis testing

Although the null hypothesis is usually that the value of a parameter is 0, there are occasions in which the null hypothesis is a value other than 0. For example, if we are working with mothers in the U.S. whose children are at risk of low birth weight, we can use 7.47 pounds, the average birth weight in the U.S., as our null value and test for differences against that.

For now, we will focus on testing a value of a single mean against what we expect from the population. Using birth weight as an example, our null hypothesis takes the form:

7 steps in hypothesis testing

Keep in mind that the null hypothesis is typically the opposite of the researcher’s hypothesis. In the Physicians’ Reactions study, the researchers hypothesized that physicians would expect to spend less time with obese patients. The null hypothesis that the two types of patients are treated identically is put forward with the hope that it can be discredited and therefore rejected. If the null hypothesis were true, a difference as large as or larger than the sample difference of 6.7 minutes would be very unlikely to occur. Therefore, the researchers rejected the null hypothesis of no difference and concluded that in the population, physicians intend to spend less time with obese patients.

In general, the null hypothesis is the idea that nothing is going on: there is no effect of our treatment, no relationship between our variables, and no difference in our sample mean from what we expected about the population mean. This is always our baseline starting assumption, and it is what we seek to reject. If we are trying to treat depression, we want to find a difference in average symptoms between our treatment and control groups. If we are trying to predict job performance, we want to find a relationship between conscientiousness and evaluation scores. However, until we have evidence against it, we must use the null hypothesis as our starting point.

The Alternative Hypothesis

If the null hypothesis is rejected, then we will need some other explanation, which we call the alternative hypothesis, H A or H 1 . The alternative hypothesis is simply the reverse of the null hypothesis, and there are three options, depending on where we expect the difference to lie. Thus, our alternative hypothesis is the mathematical way of stating our research question. If we expect our obtained sample mean to be above or below the null hypothesis value, which we call a directional hypothesis, then our alternative hypothesis takes the form

7 steps in hypothesis testing

based on the research question itself. We should only use a directional hypothesis if we have good reason, based on prior observations or research, to suspect a particular direction. When we do not know the direction, such as when we are entering a new area of research, we use a non-directional alternative:

7 steps in hypothesis testing

We will set different criteria for rejecting the null hypothesis based on the directionality (greater than, less than, or not equal to) of the alternative. To understand why, we need to see where our criteria come from and how they relate to z  scores and distributions.

Critical Values, p Values, and Significance Level

alpha

The significance level is a threshold we set before collecting data in order to determine whether or not we should reject the null hypothesis. We set this value beforehand to avoid biasing ourselves by viewing our results and then determining what criteria we should use. If our data produce values that meet or exceed this threshold, then we have sufficient evidence to reject the null hypothesis; if not, we fail to reject the null (we never “accept” the null).

Figure 7.1. The rejection region for a one-tailed test. (“ Rejection Region for One-Tailed Test ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

The rejection region is bounded by a specific z  value, as is any area under the curve. In hypothesis testing, the value corresponding to a specific rejection region is called the critical value , z crit  (“ z  crit”), or z * (hence the other name “critical region”). Finding the critical value works exactly the same as finding the z  score corresponding to any area under the curve as we did in Unit 1 . If we go to the normal table, we will find that the z  score corresponding to 5% of the area under the curve is equal to 1.645 ( z = 1.64 corresponds to .0505 and z = 1.65 corresponds to .0495, so .05 is exactly in between them) if we go to the right and −1.645 if we go to the left. The direction must be determined by your alternative hypothesis, and drawing and shading the distribution is helpful for keeping directionality straight.

Suppose, however, that we want to do a non-directional test. We need to put the critical region in both tails, but we don’t want to increase the overall size of the rejection region (for reasons we will see later). To do this, we simply split it in half so that an equal proportion of the area under the curve falls in each tail’s rejection region. For a = .05, this means 2.5% of the area is in each tail, which, based on the z  table, corresponds to critical values of z * = ±1.96. This is shown in Figure 7.2 .

Figure 7.2. Two-tailed rejection region. (“ Rejection Region for Two-Tailed Test ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

Thus, any z  score falling outside ±1.96 (greater than 1.96 in absolute value) falls in the rejection region. When we use z  scores in this way, the obtained value of z (sometimes called z  obtained and abbreviated z obt ) is something known as a test statistic , which is simply an inferential statistic used to test a null hypothesis. The formula for our z  statistic has not changed:

7 steps in hypothesis testing

Figure 7.3. Relationship between a , z obt , and p . (“ Relationship between alpha, z-obt, and p ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

When the null hypothesis is rejected, the effect is said to have statistical significance , or be statistically significant. For example, in the Physicians’ Reactions case study, the probability value is .0057. Therefore, the effect of obesity is statistically significant and the null hypothesis that obesity makes no difference is rejected. It is important to keep in mind that statistical significance means only that the null hypothesis of exactly no effect is rejected; it does not mean that the effect is important, which is what “significant” usually means. When an effect is significant, you can have confidence the effect is not exactly zero. Finding that an effect is significant does not tell you about how large or important the effect is.

Do not confuse statistical significance with practical significance. A small effect can be highly significant if the sample size is large enough.

Why does the word “significant” in the phrase “statistically significant” mean something so different from other uses of the word? Interestingly, this is because the meaning of “significant” in everyday language has changed. It turns out that when the procedures for hypothesis testing were developed, something was “significant” if it signified something. Thus, finding that an effect is statistically significant signifies that the effect is real and not due to chance. Over the years, the meaning of “significant” changed, leading to the potential misinterpretation.

The Hypothesis Testing Process

A four-step procedure.

The process of testing hypotheses follows a simple four-step procedure. This process will be what we use for the remainder of the textbook and course, and although the hypothesis and statistics we use will change, this process will not.

Step 1: State the Hypotheses

Your hypotheses are the first thing you need to lay out. Otherwise, there is nothing to test! You have to state the null hypothesis (which is what we test) and the alternative hypothesis (which is what we expect). These should be stated mathematically as they were presented above and in words, explaining in normal English what each one means in terms of the research question.

Step 2: Find the Critical Values

Step 3: calculate the test statistic and effect size.

Once we have our hypotheses and the standards we use to test them, we can collect data and calculate our test statistic—in this case z . This step is where the vast majority of differences in future chapters will arise: different tests used for different data are calculated in different ways, but the way we use and interpret them remains the same. As part of this step, we will also calculate effect size to better quantify the magnitude of the difference between our groups. Although effect size is not considered part of hypothesis testing, reporting it as part of the results is approved convention.

Step 4: Make the Decision

Finally, once we have our obtained test statistic, we can compare it to our critical value and decide whether we should reject or fail to reject the null hypothesis. When we do this, we must interpret the decision in relation to our research question, stating what we concluded, what we based our conclusion on, and the specific statistics we obtained.

Example A Movie Popcorn

Our manager is looking for a difference in the mean weight of popcorn bags compared to the population mean of 8. We will need both a null and an alternative hypothesis written both mathematically and in words. We’ll always start with the null hypothesis:

7 steps in hypothesis testing

In this case, we don’t know if the bags will be too full or not full enough, so we do a two-tailed alternative hypothesis that there is a difference.

Our critical values are based on two things: the directionality of the test and the level of significance. We decided in Step 1 that a two-tailed test is the appropriate directionality. We were given no information about the level of significance, so we assume that a = .05 is what we will use. As stated earlier in the chapter, the critical values for a two-tailed z  test at a = .05 are z * = ±1.96. This will be the criteria we use to test our hypothesis. We can now draw out our distribution, as shown in Figure 7.4 , so we can visualize the rejection region and make sure it makes sense.

Figure 7.4. Rejection region for z * = ±1.96. (“ Rejection Region z+-1.96 ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

Now we come to our formal calculations. Let’s say that the manager collects data and finds that the average weight of this employee’s popcorn bags is M = 7.75 cups. We can now plug this value, along with the values presented in the original problem, into our equation for z :

7 steps in hypothesis testing

So our test statistic is z = −2.50, which we can draw onto our rejection region distribution as shown in Figure 7.5 .

Figure 7.5. Test statistic location. (“ Test Statistic Location z-2.50 ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

Effect Size

When we reject the null hypothesis, we are stating that the difference we found was statistically significant, but we have mentioned several times that this tells us nothing about practical significance. To get an idea of the actual size of what we found, we can compute a new statistic called an effect size. Effect size gives us an idea of how large, important, or meaningful a statistically significant effect is. For mean differences like we calculated here, our effect size is Cohen’s d :

7 steps in hypothesis testing

This is very similar to our formula for z , but we no longer take into account the sample size (since overly large samples can make it too easy to reject the null). Cohen’s d is interpreted in units of standard deviations, just like z . For our example:

7 steps in hypothesis testing

Cohen’s d is interpreted as small, moderate, or large. Specifically, d = 0.20 is small, d = 0.50 is moderate, and d = 0.80 is large. Obviously, values can fall in between these guidelines, so we should use our best judgment and the context of the problem to make our final interpretation of size. Our effect size happens to be exactly equal to one of these, so we say that there is a moderate effect.

Effect sizes are incredibly useful and provide important information and clarification that overcomes some of the weakness of hypothesis testing. Any time you perform a hypothesis test, whether statistically significant or not, you should always calculate and report effect size.

Looking at Figure 7.5 , we can see that our obtained z  statistic falls in the rejection region. We can also directly compare it to our critical value: in terms of absolute value, −2.50 > −1.96, so we reject the null hypothesis. We can now write our conclusion:

Reject H 0 . Based on the sample of 25 bags, we can conclude that the average popcorn bag from this employee is smaller ( M = 7.75 cups) than the average weight of popcorn bags at this movie theater, and the effect size was moderate, z = −2.50, p < .05, d = 0.50.

Example B Office Temperature

Let’s do another example to solidify our understanding. Let’s say that the office building you work in is supposed to be kept at 74 degrees Fahrenheit during the summer months but is allowed to vary by 1 degree in either direction. You suspect that, as a cost saving measure, the temperature was secretly set higher. You set up a formal way to test your hypothesis.

You start by laying out the null hypothesis:

7 steps in hypothesis testing

Next you state the alternative hypothesis. You have reason to suspect a specific direction of change, so you make a one-tailed test:

7 steps in hypothesis testing

You know that the most common level of significance is a  = .05, so you keep that the same and know that the critical value for a one-tailed z  test is z * = 1.645. To keep track of the directionality of the test and rejection region, you draw out your distribution as shown in Figure 7.6 .

Figure 7.6. Rejection region. (“ Rejection Region z1.645 ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

Now that you have everything set up, you spend one week collecting temperature data:

Day

Temp

Monday

77

Tuesday

76

Wednesday

74

Thursday

78

Friday

78

7 steps in hypothesis testing

This value falls so far into the tail that it cannot even be plotted on the distribution ( Figure 7.7 )! Because the result is significant, you also calculate an effect size:

7 steps in hypothesis testing

The effect size you calculate is definitely large, meaning someone has some explaining to do!

Figure 7.7. Obtained z statistic. (“ Obtained z5.77 ” by Judy Schmitt is licensed under CC BY-NC-SA 4.0 .)

7 steps in hypothesis testing

You compare your obtained z  statistic, z = 5.77, to the critical value, z * = 1.645, and find that z > z *. Therefore you reject the null hypothesis, concluding:

Reject H 0 . Based on 5 observations, the average temperature ( M = 76.6 degrees) is statistically significantly higher than it is supposed to be, and the effect size was large, z = 5.77, p < .05, d = 2.60.

Example C Different Significance Level

Finally, let’s take a look at an example phrased in generic terms, rather than in the context of a specific research question, to see the individual pieces one more time. This time, however, we will use a stricter significance level, a = .01, to test the hypothesis.

We will use 60 as an arbitrary null hypothesis value:

7 steps in hypothesis testing

We will assume a two-tailed test:

7 steps in hypothesis testing

We have seen the critical values for z  tests at a = .05 levels of significance several times. To find the values for a = .01, we will go to the Standard Normal Distribution Table and find the z  score cutting off .005 (.01 divided by 2 for a two-tailed test) of the area in the tail, which is z * = ±2.575. Notice that this cutoff is much higher than it was for a = .05. This is because we need much less of the area in the tail, so we need to go very far out to find the cutoff. As a result, this will require a much larger effect or much larger sample size in order to reject the null hypothesis.

We can now calculate our test statistic. We will use s = 10 as our known population standard deviation and the following data to calculate our sample mean:

7 steps in hypothesis testing

The average of these scores is M = 60.40. From this we calculate our z  statistic as:

7 steps in hypothesis testing

The Cohen’s d effect size calculation is:

7 steps in hypothesis testing

Our obtained z  statistic, z = 0.13, is very small. It is much less than our critical value of 2.575. Thus, this time, we fail to reject the null hypothesis. Our conclusion would look something like:

Fail to reject H 0 . Based on the sample of 10 scores, we cannot conclude that there is an effect causing the mean ( M  = 60.40) to be statistically significantly different from 60.00, z = 0.13, p > .01, d = 0.04, and the effect size supports this interpretation.

Other Considerations in Hypothesis Testing

There are several other considerations we need to keep in mind when performing hypothesis testing.

Errors in Hypothesis Testing

In the Physicians’ Reactions case study, the probability value associated with the significance test is .0057. Therefore, the null hypothesis was rejected, and it was concluded that physicians intend to spend less time with obese patients. Despite the low probability value, it is possible that the null hypothesis of no true difference between obese and average-weight patients is true and that the large difference between sample means occurred by chance. If this is the case, then the conclusion that physicians intend to spend less time with obese patients is in error. This type of error is called a Type I error. More generally, a Type I error occurs when a significance test results in the rejection of a true null hypothesis.

The second type of error that can be made in significance testing is failing to reject a false null hypothesis. This kind of error is called a Type II error . Unlike a Type I error, a Type II error is not really an error. When a statistical test is not significant, it means that the data do not provide strong evidence that the null hypothesis is false. Lack of significance does not support the conclusion that the null hypothesis is true. Therefore, a researcher should not make the mistake of incorrectly concluding that the null hypothesis is true when a statistical test was not significant. Instead, the researcher should consider the test inconclusive. Contrast this with a Type I error in which the researcher erroneously concludes that the null hypothesis is false when, in fact, it is true.

A Type II error can only occur if the null hypothesis is false. If the null hypothesis is false, then the probability of a Type II error is called b (“beta”). The probability of correctly rejecting a false null hypothesis equals 1 − b and is called statistical power . Power is simply our ability to correctly detect an effect that exists. It is influenced by the size of the effect (larger effects are easier to detect), the significance level we set (making it easier to reject the null makes it easier to detect an effect, but increases the likelihood of a Type I error), and the sample size used (larger samples make it easier to reject the null).

Misconceptions in Hypothesis Testing

Misconceptions about significance testing are common. This section lists three important ones.

  • Misconception: The probability value ( p value) is the probability that the null hypothesis is false. Proper interpretation: The probability value ( p value) is the probability of a result as extreme or more extreme given that the null hypothesis is true. It is the probability of the data given the null hypothesis. It is not the probability that the null hypothesis is false.
  • Misconception: A low probability value indicates a large effect. Proper interpretation: A low probability value indicates that the sample outcome (or an outcome more extreme) would be very unlikely if the null hypothesis were true. A low probability value can occur with small effect sizes, particularly if the sample size is large.
  • Misconception: A non-significant outcome means that the null hypothesis is probably true. Proper interpretation: A non-significant outcome means that the data do not conclusively demonstrate that the null hypothesis is false.
  • In your own words, explain what the null hypothesis is.
  • What are Type I and Type II errors?
  • Why do we phrase null and alternative hypotheses with population parameters and not sample means?
  • Why do we state our hypotheses and decision criteria before we collect our data?
  • Why do you calculate an effect size?
  • z = 1.99, two-tailed test at a = .05
  • z = 0.34, z * = 1.645
  • p = .03, a = .05
  • p = .015, a = .01

Answers to Odd-Numbered Exercises

Your answer should include mention of the baseline assumption of no difference between the sample and the population.

Alpha is the significance level. It is the criterion we use when deciding to reject or fail to reject the null hypothesis, corresponding to a given proportion of the area under the normal distribution and a probability of finding extreme scores assuming the null hypothesis is true.

We always calculate an effect size to see if our research is practically meaningful or important. NHST (null hypothesis significance testing) is influenced by sample size but effect size is not; therefore, they provide complimentary information.

7 steps in hypothesis testing

“ Null Hypothesis ” by Randall Munroe/xkcd.com is licensed under CC BY-NC 2.5 .)

7 steps in hypothesis testing

Introduction to Statistics in the Psychological Sciences Copyright © 2021 by Linda R. Cote Ph.D.; Rupa G. Gordon Ph.D.; Chrislyn E. Randell Ph.D.; Judy Schmitt; and Helena Marvin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Stats without Tears Seven Steps of Hypothesis Tests

Updated 3 Nov 2020 ( What’s New? ) Copyright © 2010–2024 by Stan Brown, BrownMath.com

Advice : Always number your steps. That helps others find the key features of your test, and you don’t forget any steps.

See also: Inferential Statistics: Basic Cases Top 10 Mistakes of Hypothesis Tests

Step 1. Hypotheses

Following are patterns for your hypotheses in the cases covered in the text. With Cases 1 through 5, if you can say anything meaningful about the consequences if each hypothesis is true, add that.

Bad example (adds little or nothing to the symbols):

H 0 : μ = 67.6, average 2-liter bottle contains 67.6 fl oz

H 1 : μ < 67.6, average 2-liter bottle contains less than 67.6 fl oz

Good example (explains the implications):

H 0 : μ = 67.6, average bottle filled properly

H 1 : μ < 67.6, average bottle is underfilled

In Cases 1 through 5, a test for < or > is called a one-tailed test, and a test for ≠ is called a two-tailed test. Please see One-Tailed or Two-Tailed? for advice on choosing between them.

Case 1: (Testing mean of one population against a number called μ o ) H 0 : μ = number H 1 : μ <  number   or   μ ≠  number   or   μ >  number

Case 2: (Testing proportion in one population against a number called p o ) H 0 : p = number H 1 : p  <  number   or   p  ≠  number   or   p  >  number

Case 3: (Testing mean difference (paired data)) d = _____ − _____ H 0 : μ d = 0 H 1 : μ d  < 0   or   μ d  ≠ 0   or   μ d  > 0

Case 4: (Testing difference of independent means) pop. 1 = _____, pop. 2 = _____ H 0 : μ 1 = μ 2 H 1 : μ 1  < μ 2   or   μ 1  ≠ μ 2   or   μ 1  > μ 2

Case 5: (Testing difference of population proportions) pop. 1 = _____, pop. 2 = _____ H 0 : p 1 = p 2 H 1 : p 1  <  p 2   or   p 1  ≠  p 2   or   p 1  >  p 2

Case 6: (Testing goodness of fit) H 0 : The _____ model is consistent with the data. H 1 : The model is not consistent with the data.

Case 7: (Testing independence) H 0 : _____ and _____ are independent. H 1 : _____ and _____ are dependent.

Case 7: (Testing homogeneity) H 0 : The proportions are all equal. H 1 : Some proportions are different from others.

Step 2. Significance Level

Short and sweet:

α = _____

Step RC. Requirements Check

Please see Inferential Statistics: Basic Cases for specific requirements. For Cases 6 and 7 , it’s easier to check requirements if you move this step after Steps 3/4.

Steps 3/4. Computations

Show screen name. Example: T-Test . You don’t need to write down keystrokes, such as “STAT TESTS 2”.

Show all inputs.

Show new outputs, meaning any that weren’t on the input screen.

Step 5. Conclusion (Statistics Language)

No room for creativity here. Write down whichever one of these applies:

p < α. Reject H 0 and accept H 1 .

p > α. Fail to reject H 0 .

Step 6. Conclusion (English)

Here you have a lot of latitude as long as you state the correct conclusion in English and give the significance level or p-value, or both.

If you rejected H 0 , state H 1 without doubting words like may or could . Examples:

At the 0.05 significance level, the average 2-liter bottle contains less than 67.6 fl oz. Drinkems is underfilling the bottles.

The average 2-liter bottle contains less than 67.6 fl oz. Drinkems is underfilling the bottles ( p  = 0.0246).

If you failed to reject H 0 , state your non-conclusion in neutral language, using phrases like can’t determine whether or it’s impossible to say whether . Examples:

At the 0.05 significance level, we can’t tell whether Drinkems is underfilling the bottles or not.

We can’t tell whether Drinkems is underfilling the bottles or not ( p  = 0.1045 ).

What’s New?

  • 3 Nov 2021 : In the last example in step 6, changed p-value in the fail-to-reject outcome, so that failing to reject makes sense against the 0.05 significance level.
  • (intervening changes suppressed)
  • 30 June 2013 : New article, formed by just the reference material from the old “Hypothesis Tests: Six Steps (Plus One)”, which was written in 2010.

Updates and new info: https://BrownMath.com/swt/

Site Map | Searches | Home Page | Contact

Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

1.
2.
3.
4.
5.
6.
7.
8.

What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

  • z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
  • t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
  • \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

  • One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
  • Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

  • One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
  • Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Right Tail Hypothesis Testing

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

Left Tail Hypothesis Testing

Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

Two Tail Hypothesis Testing

Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

  • Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
  • Step 2: Set up the alternative hypothesis.
  • Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
  • Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
  • Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

  • Probability and Statistics
  • Data Handling

Important Notes on Hypothesis Testing

  • Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
  • It involves the setting up of a null hypothesis and an alternate hypothesis.
  • There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
  • Hypothesis testing can be classified as right tail, left tail, and two tail tests.

Examples on Hypothesis Testing

  • Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
  • Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
  • Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

7 steps in hypothesis testing

Book a Free Trial Class

FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

  • Search Search Please fill out this field.

What Is Hypothesis Testing?

  • How It Works

4 Step Process

The bottom line.

  • Fundamental Analysis

Hypothesis Testing: 4 Steps and Example

7 steps in hypothesis testing

Hypothesis testing, sometimes called significance testing, is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis.

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data. Such data may come from a larger population or a data-generating process. The word "population" will be used for both of these cases in the following descriptions.

Key Takeaways

  • Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data.
  • The test provides evidence concerning the plausibility of the hypothesis, given the data.
  • Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed.
  • The four steps of hypothesis testing include stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

How Hypothesis Testing Works

In hypothesis testing, an  analyst  tests a statistical sample, intending to provide evidence on the plausibility of the null hypothesis. Statistical analysts measure and examine a random sample of the population being analyzed. All analysts use a random population sample to test two different hypotheses: the null hypothesis and the alternative hypothesis.

The null hypothesis is usually a hypothesis of equality between population parameters; e.g., a null hypothesis may state that the population mean return is equal to zero. The alternative hypothesis is effectively the opposite of a null hypothesis. Thus, they are mutually exclusive , and only one can be true. However, one of the two hypotheses will always be true.

The null hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be true.

  • State the hypotheses.
  • Formulate an analysis plan, which outlines how the data will be evaluated.
  • Carry out the plan and analyze the sample data.
  • Analyze the results and either reject the null hypothesis, or state that the null hypothesis is plausible, given the data.

Example of Hypothesis Testing

If an individual wants to test that a penny has exactly a 50% chance of landing on heads, the null hypothesis would be that 50% is correct, and the alternative hypothesis would be that 50% is not correct. Mathematically, the null hypothesis is represented as Ho: P = 0.5. The alternative hypothesis is shown as "Ha" and is identical to the null hypothesis, except with the equal sign struck-through, meaning that it does not equal 50%.

A random sample of 100 coin flips is taken, and the null hypothesis is tested. If it is found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst would assume that a penny does not have a 50% chance of landing on heads and would reject the null hypothesis and accept the alternative hypothesis.

If there were 48 heads and 52 tails, then it is plausible that the coin could be fair and still produce such a result. In cases such as this where the null hypothesis is "accepted," the analyst states that the difference between the expected results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is "explainable by chance alone."

When Did Hypothesis Testing Begin?

Some statisticians attribute the first hypothesis tests to satirical writer John Arbuthnot in 1710, who studied male and female births in England after observing that in nearly every year, male births exceeded female births by a slight proportion. Arbuthnot calculated that the probability of this happening by chance was small, and therefore it was due to “divine providence.”

What are the Benefits of Hypothesis Testing?

Hypothesis testing helps assess the accuracy of new ideas or theories by testing them against data. This allows researchers to determine whether the evidence supports their hypothesis, helping to avoid false claims and conclusions. Hypothesis testing also provides a framework for decision-making based on data rather than personal opinions or biases. By relying on statistical analysis, hypothesis testing helps to reduce the effects of chance and confounding variables, providing a robust framework for making informed conclusions.

What are the Limitations of Hypothesis Testing?

Hypothesis testing relies exclusively on data and doesn’t provide a comprehensive understanding of the subject being studied. Additionally, the accuracy of the results depends on the quality of the available data and the statistical methods used. Inaccurate data or inappropriate hypothesis formulation may lead to incorrect conclusions or failed tests. Hypothesis testing can also lead to errors, such as analysts either accepting or rejecting a null hypothesis when they shouldn’t have. These errors may result in false conclusions or missed opportunities to identify significant patterns or relationships in the data.

Hypothesis testing refers to a statistical process that helps researchers determine the reliability of a study. By using a well-formulated hypothesis and set of statistical tests, individuals or businesses can make inferences about the population that they are studying and draw conclusions based on the data presented. All hypothesis testing methods have the same four-step process, which includes stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

Sage. " Introduction to Hypothesis Testing ," Page 4.

Elder Research. " Who Invented the Null Hypothesis? "

Formplus. " Hypothesis Testing: Definition, Uses, Limitations and Examples ."

7 steps in hypothesis testing

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

10.2 - steps used in a hypothesis test.

Regardless of the type of hypothesis being considered, the process of carrying out a significance test is the same and relies on four basic steps:

State the null and alternative hypotheses (see section 10.1 ) Also think about the type 1 error (rejecting a true null) and type 2 error (declaring the plausibility of a false null) possibilities at this time and how serious each mistake would be in terms of the problem.

Collect and summarize the data so that a test statistic can be calculated. A test statistic is a summary of the data that measures the difference between what is seen in the data and what would be expected if the null hypothesis were true. It is typically standardized so that a p -value can be obtained from a reference distribution like the normal curve.

Use the test statistic to find the p -value. The p -value represents the likelihood of getting our test statistic or any test statistic more extreme if, in fact, the null hypothesis is true.

  • For a one-sided "greater than" alternative hypothesis, the "more extreme" part of the interpretation refers to test statistic values larger than the test statistic given.
  • For a one-sided "less than" alternative hypothesis, the "more extreme" part of the interpretation refers to test statistic values smaller than the test statistic given.
  • For a two-sided "not equal to" alternative hypothesis, the "more extreme" part of the interpretation refers to test statistic values that are farther away from the null hypothesis that the test statistic given at either the upper end or lower end of the reference distribution (both "tails").

Interpret what the p -value is telling you and make a decision using the p -value. Does the null hypothesis provide a reasonable explanation of the data or not? If not it is statistically significant and we have evidence favoring the alternative. State a conclusion in terms of the problem.

Common Decision Rules seen in the literature

  • If the p -value ≤ .05 , we often see scientists declare their data to be "significant."
  • If the p -value ≤ .01 , we often see scientists declare their data to be "highly significant".
  • If the p -value > .05 , we often see scientists declare their data to be "not significant".

Example 10.9: Left Handed Artists: (continuation of example 10.2) Section  

About 10% of the human population is left-handed. A researcher at Penn State speculates that students in the College of Arts and Architecture are more likely to be left-handed that people in the general population. A random sample of 100 students in the College of Arts and Architecture is obtained and 18 of these students were found to be left-handed.

Research Question : Are artists more likely to be left-handed than people in the general population?

  • Null Hypothesis : Population proportion of left-handed students in the College of Art and Architecture = 0.10 ( p = 0.10).
  • Alternative Hypothesis : Population proportion of left-handed students in the College of Art and Architecture > 0.10 ( p > 0.10).

Now that you know the null and alternative hypothesis, did you think about what the type 1 and type 2 errors are? It is important to note that Step 1 is before we even collect data. Identifying these errors helps to improve the design of your research study. Let's write them out:

  • Type 1 error : Claim artists are more likely to be left-handed than people in the general population when in truth they are not more likely.
  • Type 2 error : Fail to claim artists are more likely to be left-handed than people in the general population when they are in fact more likely.

In this case, the consequences of these two errors are fairly similar (e.g. installing more or fewer left-handed desks in classrooms that are needed).

In the sample of 100 students listed above, the sample proportion is 18 / 100 = 0.18. The hypothesis test will determine whether or not the null hypothesis that p = 0.1 provides a plausible explanation for the data. If not we will see this as evidence that the proportion of left-handed Art & Architecture students is greater than 0.10.

If the null hypothesis is true then the standard error of the sample proportion would be \(\sqrt{\frac{0.1(1-0.1)}{100}} = 0.03\) and the sample proportion would follow the normal curve. Thus, we can use the standard score z = (0.18-0.10) / 0.03 = 2.67 as our test statistic.

Using the normal curve table for the Z -value of 2.67 we find the p -value to be about 0.004. Notice that the one-sided alternative hypothesis says to watch out for large values so we look at the percentage of the normal curve above 2.67 to get the p -value.

Interpretation of the p -value. The likelihood of getting our test statistic of 2.67 or any higher value, if in fact, the null hypothesis is true, is 0.004.

Since the p -value of 0.004 is so small, the null hypothesis provides a very poor explanation of the data. We find good evidence that the population proportion of left-handed students in the College of Art and Architecture exceeds 0.10.

Now that we have made our decision, we are only at risk of making a type 1 error. It is not possible at this point to make a type 2 error because we rejected the null hypothesis.

Example 10.10: The Weight of McDonald's French Fries in Japan Section  

french fries

After receiving complaints from McDonald's customers in Japan about the amount of french fries being served, the online news magazine "Rocket News" decided to test the actual of the fries served at a particular Japanese McDonald's restaurant. According to the Rocket News article, the official weight standard set by McDonald's of Japan is for a medium-sized fries to weigh 135 grams. The publication weighed the fries from ten different medium fries they purchased and found the average weight of the fries in their sample to be 130 grams with a standard deviation of 9 grams.

Research Question : Does the data suggest that the medium fries from this McDonald's in Japan are underpacked?

  • Null Hypothesis : Population mean weight of medium fries = 135 grams
  • Alternative Hypothesis : Population mean weight of medium fries < 135 grams

The sample mean weight was 130 grams. Also, the sample standard deviation was 9 grams so the standard error of the mean is found to be \(\frac{9}{\sqrt{10}} = 2.85\) grams. The test statistic would be the standardized value (130-135) / 2.85 = -1.76.

Since the sample size is only 10, the sample standard deviation would be an unreliable estimate of the population standard deviation so the normal curve would not be appropriate to use as the reference distribution to find the p -value. In this case, the t curve would be used instead and it turns out that the percentage of a t -curve below -1.76 when you have a sample size of 10 is about 6%.

Interpretation of the p -value. The likelihood of getting our test statistic of -1.76 or any smaller value, if in fact, the null hypothesis is true, is about 6%.

Since the p -value is around 6% we are near the border of what people often use as a cutoff for declaring a significant result. Given the amount of variability from one package of fries to the next, there is a reasonable chance that we would see a sample average like this even if the restaurant met the official standard weight on average.

It is important to remember in carrying out the mechanics of a significance test that you are only doing a probability calculation assuming the null hypothesis is true . Because the calculation is done under that assumption, it cannot say anything about the chances that the null hypothesis or the alternative hypothesis are true.

Value Hypothesis Fundamentals: A Complete Guide

Last updated on Fri Aug 23 2024

Imagine spending months or even years developing a new feature only to find out it doesn’t resonate with your users, argh! This kind of situation could be any worst Product manager’s nightmare.

There's a way to fix this problem called the Value Hypothesis . This idea helps builders to validate whether the ideas they’re working on are worth pursuing and useful to the people they want to sell to.

This guide will teach you what you need to know about Value Hypothesis and a step-by-step process on how to create a strong one. At the end of this post, you’ll learn how to create a product that satisfies your users.

Are you ready? Let’s get to it!

How a Value Hypothesis Helps Product Managers

Scrutinizing this hypothesis helps you as a developer to come up with a product that your customers like and love to use.

Product managers use the Value Hypothesis as a north star, ensuring focus on client needs and avoiding wasted resources. For more on this, read about the product management process .

Definition and Scope of Value Hypothesis

Let's get into the step-by-step process, but first, we need to understand the basics of the Value Hypothesis:

What Is a Value Hypothesis?

A Value Hypothesis is like a smart guess you can test to see if your product truly solves a problem for your customers. It’s your way of predicting how well your product will address a particular issue for the people you’re trying to help.

You need to know what a Value Hypothesis is, what it covers, and its key parts before you use it. To learn more about finding out what customers need, take a look at our guide on discovering features .

The Value Hypothesis does more than just help with the initial launch, it guides the whole development process. This keeps teams focused on what their users care about helping them choose features that their audience will like.

Critical Components of a Value Hypothesis

Critical Components of a Value Hypothesis

A strong Value Hypothesis rests on three key components:

Value Proposition: The Value Proposition spells out the main advantage your product gives to customers. It explains the "what" and "why" of your product showing how it eases a particular pain point.

This proposition targets a specific group of consumers. To learn more, check out our guide on roadmapping .

Customer Segmentation: Knowing and grasping your target audience is essential. This involves studying their demographics, needs, behaviors, and problems. By dividing your market, you can shape your value proposition to address the unique needs of each group.

Customer feedback surveys can prove priceless in this process. Find out more about this in our customer feedback surveys guide.

Problem Statement : The Problem Statement defines the exact issue your product aims to fix. It should zero in on a real fixable pain point your target users face. For hands-on applications, see our product launch communication plan .

Here are some key questions to guide you:

What are the primary challenges and obstacles faced by your target users?

What existing solutions are available, and where do they fall short?

What unmet needs or desires does your target audience have?

For a structured approach to prioritizing features based on customer needs, consider using a feature prioritization matrix .

Crafting a Strong Value Hypothesis

Crafting a Strong Value Hypothesis

Now that we've covered the basics, let's look at how to build a convincing Value Hypothesis. Here's a two-step method, along with value hypothesis templates, to point you in the right direction:

1. Research and Analysis

To start with, you need to carry out market research. By carrying out proper market research, you will have an understanding of existing solutions and identify areas in which customers' needs are yet to be met. This is integral to effective idea tracking .

Next, use customer interviews, surveys, and support data to understand your target audience's problems and what they want. Check out our list of tools for getting customer feedback to help with this.

2. Finding Out What Customers Need

Once you've completed your research, it's crucial to identify your customers' needs. By merging insights from market research with direct user feedback, you can pinpoint the key requirements of your customers.

Here are some key questions to think about:

What are the most significant challenges that your target users encounter daily?

Which current solutions are available to them, and how do these solutions fail to fully address their needs?

What specific pain points are your target users struggling with that aren't being resolved?

Are there any gaps or shortcomings in the existing products or services that your customers use?

What unfulfilled needs or desires does your target audience express that aren't currently met by the market?

To prioritize features based on customer needs in a structured way, think about using a feature prioritization matrix .

Validating the Value Hypothesis

Once you've created your Value Hypothesis with a template, you need to check if it holds up. Here's how you can do this:

MVP Testing

Build a minimum viable product (MVP)—a basic version of your product with essential functions. This lets you test your value proposition with actual users and get feedback without spending too much. To achieve the best outcomes, look into the best practices for customer feedback software .

Prototyping

Build mock-ups to show your product idea. Use these mock-ups to get user input on the user experience and overall value offer.

Metrics for Evaluation

After you've gathered data about your hypothesis, it's time to examine it. Here are some metrics you can use:

User Engagement : Monitor stats like time on the platform, feature use, and return visits to see how much users interact with your MVP or mock-up.

Conversion Rates : Check conversion rates for key actions like sign-ups, buys, or feature adoption. These numbers help you judge if your value offer clicks with users. To learn more, read our article on SaaS growth benchmarks .

Iterative Improvement of Value Hypothesis

The Value Hypothesis framework shines because you can keep making it better. Here's how to fine-tune your hypothesis:

Set up an ongoing system to gather user data as you develop your product.

Look at what users say to spot areas that need work then update your value proposition based on what you learn.

Read about managing product updates to keep your hypotheses current.

Adaptation to Market Changes

The market keeps changing, and your Value Hypothesis should too. Stay up to date on what's happening in your industry and watch how users' habits change. Tweak your value proposition to stay useful and ahead of the competition.

Here are some ways to keep your Value Hypothesis fresh:

Do market research often to keep up with what's happening in your industry and what your competitors are up to.

Keep an eye on what users are saying to spot new problems or things they need but don't have yet.

Try out different value statements and features to see which ones your audience likes best.

To keep your guesses up-to-date, check out our guide on handling product changes .

Common Mistakes to Avoid

While the Value Hypothesis approach is powerful, it's key to steer clear of these common traps:

Avoid Confirmation Bias : People tend to focus on data that backs up their initial guesses. But it's key to look at feedback that goes against your ideas and stay open to different views.

Watch out for Shiny Object Syndrome : Don't let the newest fads sway you unless they solve a main customer problem. Your value proposition should fix actual issues for your users.

Don't Cling to Your First Hypothesis : As the market changes, your value proposition should too. Be ready to shift your hypothesis when new evidence and user feedback comes in.

Don't Mix Up Busywork with Real Progress : Getting user feedback is key, but making sense of it brings real value. Look at the data to find useful insights that can shape your product. To learn more about this, check out our guide on handling customer feedback .

Value Hypothesis: Action Points

To build a product that succeeds, you need to know your target users inside out and understand how you help them. The Value Hypothesis framework gives you a step-by-step way to do this.

If you follow the steps in this guide, you can create a strong value proposition, check if it works, and keep improving it to ensure your product stays useful and important to your customers.

Keep in mind, a good Value Hypothesis changes as your product and market change. When you use data and put customers first, you're on the right track to create a product that works.

Want to put the Value Hypothesis framework into action? Check out our top templates for creating product roadmaps to streamline your process. Think about using featureOS to manage customer feedback. This tool makes it easier to collect, examine, and put user feedback to work.

Announcements

Privacy Policy

Terms of use

Competitor Comparisons

Canny vs Frill

Beamer vs Frill

Hello Next vs Frill

Our Roadmap

© 2024 Frill – Independent & Bootstrapped.

7 steps in hypothesis testing

IMAGES

  1. Infographic Chart About Solving Problems In Hypothesis Testing

    7 steps in hypothesis testing

  2. Hypothesis Testing Steps & Examples

    7 steps in hypothesis testing

  3. PPT

    7 steps in hypothesis testing

  4. PPT

    7 steps in hypothesis testing

  5. Hypothesis testing Infographics by: Mariz Turdanes

    7 steps in hypothesis testing

  6. PPT

    7 steps in hypothesis testing

VIDEO

  1. Statistics Chapter 5 Hypothesis Testing Step 1 [Speak Khmer]ជំហានទី១

  2. Hypothesis Testing: Two Sample Pooled T Test

  3. Statistics Refresher 2

  4. HYPOTHESIS TESTING (2)

  5. Babies and Hypothesis Testing

  6. 7.1 Hypotheses

COMMENTS

  1. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  2. 1.2: The 7-Step Process of Statistical Hypothesis Testing

    Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated F \calculated from the data is larger than the Fα F α, then you are in the rejection region and you can reject the null hypothesis with (1 − α) ( 1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p p -value.

  3. Hypothesis Testing: Uses, Steps & Example

    5 Steps of Significance Testing. Hypothesis testing involves five key steps, each critical to validating a research hypothesis using statistical methods: Formulate the Hypotheses: Write your research hypotheses as a null hypothesis (H 0) and an alternative hypothesis (H A). Data Collection: Gather data specifically aimed at testing the ...

  4. 6a.2

    In hypothesis testing, there are certain steps one must follow. Below these are summarized into six such steps to conducting a test of a hypothesis. Set up the hypotheses and check conditions: Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as \(H_0 \), which is a statement of a particular ...

  5. 11.7: Steps in Hypothesis Testing

    This page titled 11.7: Steps in Hypothesis Testing is shared under a Public Domain license and was authored, remixed, and/or curated by David Lane via source content that was edited to the style and standards of the LibreTexts platform.

  6. 7.1: Basics of Hypothesis Testing

    Test Statistic: z = x¯¯¯ −μo σ/ n−−√ z = x ¯ − μ o σ / n since it is calculated as part of the testing of the hypothesis. Definition 7.1.4 7.1. 4. p - value: probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true. It is the probability ...

  7. Hypothesis Testing

    Enter hypothesis testing. 2. Steps in Hypothesis Testing. Set up Hypotheses: Begin with a null hypothesis (H0) and an alternative hypothesis (Ha). Choose a Significance Level (α): Typically 0.05, this is the probability of rejecting the null hypothesis when it's actually true. Think of it as the chance of accusing an innocent person.

  8. 7.6: Steps of the Hypothesis Testing Process

    This page titled 7.6: Steps of the Hypothesis Testing Process is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Foster et al. (University of Missouri's Affordable and Open Access Educational Resources Initiative) via source content that was edited to the style and standards of the LibreTexts platform.

  9. Hypothesis Testing Framework

    The formal framework and steps for hypothesis testing are as follows: Identify and define the parameter of interest; Define the competing hypotheses to test; Set the evidence threshold, formally called the significance level; Generate or use theory to specify the sampling distribution and check conditions;

  10. Introduction to Hypothesis Testing

    A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.

  11. Chapter 7: Introduction to Hypothesis Testing

    This chapter lays out the basic logic and process of hypothesis testing. We will perform z tests, which use the z score formula from Chapter 6 and data from a sample mean to make an inference about a population.. Logic and Purpose of Hypothesis Testing. A hypothesis is a prediction that is tested in a research study. The statistician R. A. Fisher explained the concept of hypothesis testing ...

  12. 1.2

    Step 7: Based on Steps 5 and 6, draw a conclusion about H 0. If F calculated is larger than F α, then you are in the rejection region and you can reject the null hypothesis with ( 1 − α) level of confidence. Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting ...

  13. Mastering Hypothesis Testing: A Comprehensive Guide for ...

    Hypothesis testing is a systematic process involving several key steps. By following these steps, researchers can make informed decisions based on statistical evidence. 1.

  14. Seven Steps of Hypothesis Tests / SWT

    For Cases 6 and 7, it's easier to check requirements if you move this step after Steps 3/4. Steps 3/4. Computations. Show screen name. Example: T-Test. You don't need to write down keystrokes, such as "STAT TESTS 2". Show all inputs. Show new outputs, meaning any that weren't on the input screen. Step 5. Conclusion (Statistics Language)

  15. 8.1: Steps in Hypothesis Testing

    Figure 8.1.1 8.1. 1: You can use a hypothesis test to decide if a dog breeder's claim that every Dalmatian has 35 spots is statistically sound. (Credit: Robert Neff) A statistician will make a decision about these claims. This process is called "hypothesis testing." A hypothesis test involves collecting data from a sample and evaluating the data.

  16. PDF Seven steps of hypothesis testing

    Let us perform hypothesis testing through the following 7 steps of the procedure: Step 1 : Specify the null hypothesis and the alternative hypothesis Step 2 : What level of significance? ... (7-1) or 6 degrees of freedom for n = 7 replicates. Step 6 : Use the test statistic to make a decision When we compare the result of step 5 to the decision ...

  17. Hypothesis Testing

    The basic steps to perform hypothesis testing are as follows: Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing. Step 2: Set up the alternative hypothesis. Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.

  18. PDF Steps to Hypothesis Testing

    the conditions are not met, then the results of the test are not valid. 4. Calculate the Test Statistic The test statistic varies depending on the test performed, see statistical tests handouts for details. 5. Calculate the P-value P-value = the probability of getting the observed test statistic or something more extreme when 𝐻𝑜 is true.

  19. 1.2

    Step 7: Based on Steps 5 and 6, draw a conclusion about H 0. If F calculated is larger than F α, then you are in the rejection region and you can reject the null hypothesis with ( 1 − α) level of confidence. Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting ...

  20. 8.6: Steps of the Hypothesis Testing Process

    The process of testing hypotheses follows a simple four-step procedure. This process will be what we use for the remainder of the textbook and course, and though the hypothesis and statistics we use will change, this process will not. Step 1: State the Hypotheses. Your hypotheses are the first thing you need to lay out.

  21. Hypothesis Testing: 4 Steps and Example

    4 Step Process. State the hypotheses. Formulate an analysis plan, which outlines how the data will be evaluated. Carry out the plan and analyze the sample data. Analyze the results and either ...

  22. 10.2

    Step 1: State Null and Alternative Hypotheses. Null Hypothesis: Population mean weight of medium fries = 135 grams. Alternative Hypothesis: Population mean weight of medium fries < 135 grams. Step 2: Collect and summarize the data so that a test statistic can be calculated. The sample mean weight was 130 grams.

  23. Value Hypothesis Fundamentals: A Complete Guide

    The Value Hypothesis framework gives you a step-by-step way to do this. If you follow the steps in this guide, you can create a strong value proposition, check if it works, and keep improving it to ensure your product stays useful and important to your customers. Keep in mind, a good Value Hypothesis changes as your product and market change.