An official website of the United States government
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
- Publications
- Account settings
- Advanced Search
- Journal List
Redefining Critical Thinking: Teaching Students to Think like Scientists
Rodney m schmaltz, erik jansen, nicole wenckowski.
- Author information
- Article notes
- Copyright and License information
Edited by: Lynne D. Roberts, Curtin University, Australia
Reviewed by: E. Michael Nussbaum, University of Nevada, Las Vegas, USA
*Correspondence: Rodney M. Schmaltz [email protected]
This article was submitted to Educational Psychology, a section of the journal Frontiers in Psychology
Received 2016 Dec 13; Accepted 2017 Mar 13; Collection date 2017.
Keywords: scientific thinking, critical thinking, teaching resources, skepticism, education policy
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
From primary to post-secondary school, critical thinking (CT) is an oft cited focus or key competency (e.g., DeAngelo et al., 2009 ; California Department of Education, 2014 ; Alberta Education, 2015 ; Australian Curriculum Assessment and Reporting Authority, n.d. ). Unfortunately, the definition of CT has become so broad that it can encompass nearly anything and everything (e.g., Hatcher, 2000 ; Johnson and Hamby, 2015 ). From discussion of Foucault, critique and the self (Foucault, 1984 ) to Lawson's ( 1999 ) definition of CT as the ability to evaluate claims using psychological science, the term critical thinking has come to refer to an ever-widening range of skills and abilities. We propose that educators need to clearly define CT, and that in addition to teaching CT, a strong focus should be placed on teaching students how to think like scientists. Scientific thinking is the ability to generate, test, and evaluate claims, data, and theories (e.g., Bullock et al., 2009 ; Koerber et al., 2015 ). Simply stated, the basic tenets of scientific thinking provide students with the tools to distinguish good information from bad. Students have access to nearly limitless information, and the skills to understand what is misinformation or a questionable scientific claim is crucially important (Smith, 2011 ), and these skills may not necessarily be included in the general teaching of critical thinking (Wright, 2001 ).
This is an issue of more than semantics. While some definitions of CT include key elements of the scientific method (e.g., Lawson, 1999 ; Lawson et al., 2015 ), this emphasis is not consistent across all interpretations of CT (Huber and Kuncel, 2016 ). In an attempt to provide a comprehensive, detailed definition of CT, the American Philosophical Association (APA), outlined six CT skills, 16 subskills, and 19 dispositions (Facione, 1990 ). Skills include interpretation, analysis, and inference; dispositions include inquisitiveness and open-mindedness. 1 From our perspective, definitions of CT such as those provided by the APA or operationally defined by researchers in the context of a scholarly article (e.g., Forawi, 2016 ) are not problematic—the authors clearly define what they are referring to as CT. Potential problems arise when educators are using different definitions of CT, or when the banner of CT is applied to nearly any topic or pedagogical activity. Definitions such as those provided by the APA provide a comprehensive framework for understanding the multi-faceted nature of CT, however the definition is complex and may be difficult to work with at a policy level for educators, especially those who work primarily with younger students.
The need to develop scientific thinking skills is evident in studies showing that 55% of undergraduate students believe that a full moon causes people to behave oddly, and an estimated 67% of students believe creatures such as Bigfoot and Chupacabra exist, despite the lack of scientific evidence supporting these claims (Lobato et al., 2014 ). Additionally, despite overwhelming evidence supporting the existence of anthropogenic climate change, and the dire need to mitigate its effects, many people still remain skeptical of climate change and its impact (Feygina et al., 2010 ; Lewandowsky et al., 2013 ). One of the goals of education is to help students foster the skills necessary to be informed consumers of information (DeAngelo et al., 2009 ), and providing students with the tools to think scientifically is a crucial component of reaching this goal. By focusing on scientific thinking in conjunction with CT, educators may be better able design specific policies that aim to facilitate the necessary skills students should have when they enter post-secondary training or the workforce. In other words, students should leave secondary school with the ability to rule out rival hypotheses, understand that correlation does not equal causation, the importance of falsifiability and replicability, the ability to recognize extraordinary claims, and use the principle of parsimony (e.g., Lett, 1990 ; Bartz, 2002 ).
Teaching scientific thinking is challenging, as people are vulnerable to trusting their intuitions and subjective observations and tend to prioritize them over objective scientific findings (e.g., Lilienfeld et al., 2012 ). Students and the public at large are prone to naïve realism, or the tendency to believe that our experiences and observations constitute objective reality (Ross and Ward, 1996 ), when in fact our experiences and observations are subjective and prone to error (e.g., Kahneman, 2011 ). Educators at the post-secondary level tend to prioritize scientific thinking (Lilienfeld, 2010 ), however many students do not continue on to a post-secondary program after they have completed high school. Further, students who are told they are learning critical thinking may believe they possess the skills to accurately assess the world around them. However, if they are not taught the specific skills needed to be scientifically literate, they may still fall prey to logical fallacies and biases. People tend to underestimate or not understand fallacies that can prevent them from making sound decisions (Lilienfeld et al., 2001 ; Pronin et al., 2004 ; Lilienfeld, 2010 ). Thus, it is reasonable to think that a person who has not been adequately trained in scientific thinking would nonetheless consider themselves a strong critical thinker, and therefore would be even less likely consider his or her own personal biases. Another concern is that when teaching scientific thinking there is always the risk that students become overly critical or cynical (e.g., Mercier et al., 2017 ). By this, a student may be skeptical of nearly all findings, regardless of the supporting evidence. By incorporating and focusing on cognitive biases, instructors can help students understand their own biases, and demonstrate how the rigor of the scientific method can, at least partially, control for these biases.
Teaching CT remains controversial and confusing for many instructors (Bensley and Murtagh, 2012 ). This is partly due to the lack of clarity in the definition of CT and the wide range of methods proposed to best teach CT (Abrami et al., 2008 ; Bensley and Murtagh, 2012 ). For instance, Bensley and Spero ( 2014 ) found evidence for the effectiveness of direct approaches to teaching CT, a claim echoed in earlier research (Abrami et al., 2008 ; Marin and Halpern, 2011 ). Despite their positive findings, some studies have failed to find support for measures of CT (Burke et al., 2014 ) and others have found variable, yet positive, support for instructional methods (Dochy et al., 2003 ). Unfortunately, there is a lack of research demonstrating the best pedagogical approaches to teaching scientific thinking at different grade levels. More research is needed to provide an empirically grounded approach to teach scientific thinking, and there is also a need to develop evidence based measures of scientific thinking that are grade and age appropriate. One approach to teaching scientific thinking may be to frame the topic in its simplest terms—the ability to “detect baloney” (Sagan, 1995 ).
Sagan ( 1995 ) has promoted the tools necessary to recognize poor arguments, fallacies to avoid, and how to approach claims using the scientific method. The basic tenets of Sagan's argument apply to most claims, and have the potential to be an effective teaching tool across a range of abilities and ages. Sagan discusses the idea of a baloney detection kit, which contains the “tools” for skeptical thinking. The development of “baloney detection kits” which include age-appropriate scientific thinking skills may be an effective approach to teaching scientific thinking. These kits could include the style of exercises that are typically found under the banner of CT training (e.g., group discussions, evaluations of arguments) with a focus on teaching scientific thinking. An empirically validated kit does not yet exist, though there is much to draw from in the literature on pedagogical approaches to correcting cognitive biases, combatting pseudoscience, and teaching methodology (e.g., Smith, 2011 ). Further research is needed in this area to ensure that the correct, and age-appropriate, tools are part of any baloney detection kit.
Teaching Sagan's idea of baloney detection in conjunction with CT provides educators with a clear focus—to employ a pedagogical approach that helps students create sound and cogent arguments while avoiding falling prey to “baloney”. This is not to say that all of the information taught under the current banner of “critical thinking” is without value. In fact, many of the topics taught under the current approach of CT are important, even though they would not fit within the framework of some definitions of critical thinking. If educators want to ensure that students have the ability to be accurate consumers of information, a focus should be placed on including scientific thinking as a component of the science curriculum, as well as part of the broader teaching of CT.
Educators need to be provided with evidence-based approaches to teach the principles of scientific thinking. These principles should be taught in conjunction with evidence-based methods that mitigate the potential for fallacious reasoning and false beliefs. At a minimum, when students first learn about science, there should also be an introduction to the basics tenets of scientific thinking. Courses dedicated to promoting scientific thinking may also be effective. A course focused on cognitive biases, logical fallacies, and the hallmarks of scientific thinking adapted for each grade level may provide students with the foundation of solid scientific thinking skills to produce and evaluate arguments, and allow expansion of scientific thinking into other scholastic areas and classes. Evaluations of the efficacy of these courses would be essential, along with research to determine the best approach to incorporate scientific thinking into the curriculum.
If instructors know that students have at least some familiarity with the fundamental tenets of scientific thinking, the ability to expand and build upon these ideas in a variety of subject specific areas would further foster and promote these skills. For example, when discussing climate change, an instructor could add a brief discussion of why some people reject the science of climate change by relating this back to the information students will be familiar with from their scientific thinking courses. In terms of an issue like climate change, many students may have heard in political debates or popular culture that global warming trends are not real, or a “hoax” (Lewandowsky et al., 2013 ). In this case, only teaching the data and facts may not be sufficient to change a student's mind about the reality of climate change (Lewandowsky et al., 2012 ). Instructors would have more success by presenting students with the data on global warming trends as well as information on the biases that could lead some people reject the data (Kowalski and Taylor, 2009 ; Lewandowsky et al., 2012 ). This type of instruction helps educators create informed citizens who are better able to guide future decision making and ensure that students enter the job market with the skills needed to be valuable members of the workforce and society as a whole.
By promoting scientific thinking, educators can ensure that students are at least exposed to the basic tenets of what makes a good argument, how to create their own arguments, recognize their own biases and those of others, and how to think like a scientist. There is still work to be done, as there is a need to put in place educational programs built on empirical evidence, as well as research investigating specific techniques to promote scientific thinking for children in earlier grade levels and develop measures to test if students have acquired the necessary scientific thinking skills. By using an evidence based approach to implement strategies to promote scientific thinking, and encouraging researchers to further explore the ideal methods for doing so, educators can better serve their students. When students are provided with the core ideas of how to detect baloney, and provided with examples of how baloney detection relates to the real world (e.g., Schmaltz and Lilienfeld, 2014 ), we are confident that they will be better able to navigate through the oceans of information available and choose the right path when deciding if information is valid.
Author contribution
RS was the lead author and this paper, and both EJ and NW contributed equally.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
1 There is some debate about the role of dispositional factors in the ability for a person to engage in critical thinking, specifically that dispositional factors may mitigate any attempt to learn CT. The general consensus is that while dispositional traits may play a role in the ability to think critically, the general skills to be a critical thinker can be taught (Niu et al., 2013 ; Abrami et al., 2015 ).
- Abrami P. C., Bernard R. M., Borokhovski E., Waddington D. I., Wade C. A., Persson T. (2015). Strategies for teaching students to think critically a meta-analysis. Rev. Educ. Res. 85, 275–314. 10.3102/0034654308326084 [ DOI ] [ Google Scholar ]
- Abrami P. C., Bernard R. M., Borokhovski E., Wade A., Surkes M. A., Tamim R., et al. (2008). Instructional interventions affecting critical thinking skills and dispositions: a stage 1 meta-analysis. Rev. Educ. Res. 78, 1102–1134. 10.3102/0034654308326084 [ DOI ] [ Google Scholar ]
- Alberta Education (2015). Ministerial Order on Student Learning. Available online at: https://education.alberta.ca/policies-and-standards/student-learning/everyone/ministerial-order-on-student-learning-pdf/
- Australian Curriculum Assessment and Reporting Authority (n.d.). Available online at: http://www.australiancurriculum.edu.au
- Bartz W. R. (2002). Teaching skepticism via the CRITIC acronym and the skeptical inquirer. Skeptical Inquirer 17, 42–44. [ Google Scholar ]
- Bensley D. A., Murtagh M. P. (2012). Guidelines for a scientific approach to critical thinking assessment. Teach. Psychol. 39, 5–16. 10.1177/0098628311430642 [ DOI ] [ Google Scholar ]
- Bensley D. A., Spero R. A. (2014). Improving critical thinking skills and metacognitive monitoring through direct infusion. Think. Skills Creativ. 12, 55–68. 10.1016/j.tsc.2014.02.001 [ DOI ] [ Google Scholar ]
- Bullock M., Sodian B., Koerber S. (2009). Doing experiments and understanding science: development of scientific reasoning from childhood to adulthood, in Human Development from Early Childhood to Early Adulthood: Findings from a 20 Year Longitudinal Study, eds Schneider W., Bullock M. (New York, NY: Psychology Press; ), 173–197. [ Google Scholar ]
- Burke B. L., Sears S. R., Kraus S., Roberts-Cady S. (2014). Critical analysis: a comparison of critical thinking changes in psychology and philosophy classes. Teach. Psychol. 41, 28–36. 10.1177/0098628313514175 [ DOI ] [ Google Scholar ]
- California Department of Education (2014). Standard for Career Ready Practice. Available online at: http://www.cde.ca.gov/nr/ne/yr14/yr14rel22.asp
- DeAngelo L., Hurtado S., Pryor J. H., Kelly K. R., Santos J. L., Korn W. S. (2009). The American College Teacher: National Norms for the 2007-2008 HERI Faculty Survey. Los Angeles, CA: Higher Education Research Institute. [ Google Scholar ]
- Dochy F., Segers M., Van den Bossche P., Gijbels D. (2003). Effects of problem-based learning: a meta-analysis. Learn. Instruct. 13, 533–568. 10.1016/S0959-4752(02)00025-7 [ DOI ] [ Google Scholar ]
- Facione P. A. (1990). Critical thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction. Research Findings and Recommendations. Newark, DE: American Philosophical Association. [ Google Scholar ]
- Feygina I., Jost J. T., Goldsmith R. E. (2010). System justification, the denial of global warming, and the possibility of ‘system-sanctioned change’. Pers. Soc. Psychol. Bull. 36, 326–338. 10.1177/0146167209351435 [ DOI ] [ PubMed ] [ Google Scholar ]
- Forawi S. A. (2016). Standard-based science education and critical thinking. Think. Skills Creativ. 20, 52–62. 10.1016/j.tsc.2016.02.005 [ DOI ] [ Google Scholar ]
- Foucault M. (1984). The Foucault Reader. New York, NY: Pantheon. [ Google Scholar ]
- Hatcher D. L. (2000). Arguments for another definition of critical thinking. Inquiry 20, 3–8. 10.5840/inquiryctnews20002016 [ DOI ] [ Google Scholar ]
- Huber C. R., Kuncel N. R. (2016). Does college teach critical thinking? A meta-analysis. Rev. Educ. Res. 86, 431–468. 10.3102/0034654315605917 [ DOI ] [ Google Scholar ]
- Johnson R. H., Hamby B. (2015). A meta-level approach to the problem of defining “Critical Thinking”. Argumentation 29, 417–430. 10.1007/s10503-015-9356-4 [ DOI ] [ Google Scholar ]
- Kahneman D. (2011). Thinking, Fast and Slow. New York, NY: Farrar, Straus and Giroux. [ Google Scholar ]
- Koerber S., Mayer D., Osterhaus C., Schwippert K., Sodian B. (2015). The development of scientific thinking in elementary school: a comprehensive inventory. Child Dev. 86, 327–336. 10.1111/cdev.12298 [ DOI ] [ PubMed ] [ Google Scholar ]
- Kowalski P., Taylor A. K. (2009). The effect of refuting misconceptions in the introductory psychology class. Teach. Psychol. 36, 153–159. 10.1080/00986280902959986 [ DOI ] [ Google Scholar ]
- Lawson T. J. (1999). Assessing psychological critical thinking as a learning outcome for psychology majors. Teach. Psychol. 26, 207–209. 10.1207/S15328023TOP260311 [ DOI ] [ Google Scholar ]
- Lawson T. J., Jordan-Fleming M. K., Bodle J. H. (2015). Measuring psychological critical thinking: an update. Teach. Psychol. 42, 248–253. 10.1177/0098628315587624 [ DOI ] [ Google Scholar ]
- Lett J. (1990). A field guide to critical thinking. Skeptical Inquirer, 14, 153–160. [ Google Scholar ]
- Lewandowsky S., Ecker U. H., Seifert C. M., Schwarz N., Cook J. (2012). Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Public Interest 13, 106–131. 10.1177/1529100612451018 [ DOI ] [ PubMed ] [ Google Scholar ]
- Lewandowsky S., Oberauer K., Gignac G. E. (2013). NASA faked the moon landing—therefore, (climate) science is a hoax: an anatomy of the motivated rejection of science. Psychol. Sci. 24, 622–633. 10.1177/0956797612457686 [ DOI ] [ PubMed ] [ Google Scholar ]
- Lilienfeld S. O. (2010). Can psychology become a science? Pers. Individ. Dif. 49, 281–288. 10.1016/j.paid.2010.01.024 [ DOI ] [ Google Scholar ]
- Lilienfeld S. O., Ammirati R., David M. (2012). Distinguishing science from pseudoscience in school psychology: science and scientific thinking as safeguards against human error. J. Sch. Psychol. 50, 7–36. 10.1016/j.jsp.2011.09.006 [ DOI ] [ PubMed ] [ Google Scholar ]
- Lilienfeld S. O., Lohr J. M., Morier D. (2001). The teaching of courses in the science and pseudoscience of psychology: useful resources. Teach. Psychol. 28, 182–191. 10.1207/S15328023TOP2803_03 [ DOI ] [ Google Scholar ]
- Lobato E., Mendoza J., Sims V., Chin M. (2014). Examining the relationship between conspiracy theories, paranormal beliefs, and pseudoscience acceptance among a university population. Appl. Cogn. Psychol. 28, 617–625. 10.1002/acp.3042 [ DOI ] [ Google Scholar ]
- Marin L. M., Halpern D. F. (2011). Pedagogy for developing critical thinking in adolescents: explicit instruction produces greatest gains. Think. Skills Creativ. 6, 1–13. 10.1016/j.tsc.2010.08.002 [ DOI ] [ Google Scholar ]
- Mercier H., Boudry M., Paglieri F., Trouche E. (2017). Natural-born arguers: teaching how to make the best of our reasoning abilities. Educ. Psychol. 52, 1–16. 10.1080/00461520.2016.1207537 [ DOI ] [ Google Scholar ]
- Niu L., Behar-Horenstein L. S., Garvan C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis. Educ. Res. Rev. 9, 114–128. 10.1016/j.edurev.2012.12.002 [ DOI ] [ Google Scholar ]
- Pronin E., Gilovich T., Ross L. (2004). Objectivity in the eye of the beholder: divergent perceptions of bias in self versus others. Psychol. Rev. 111, 781–799. 10.1037/0033-295X.111.3.781 [ DOI ] [ PubMed ] [ Google Scholar ]
- Ross L., Ward A. (1996). Naive realism in everyday life: implications for social conflict and misunderstanding, in Values and Knowledge, eds Reed E. S., Turiel E., Brown T., Reed E. S., Turiel E., Brown T. (Hillsdale, NJ: Lawrence Erlbaum Associates Inc.), 103–135. [ Google Scholar ]
- Sagan C. (1995). Demon-Haunted World: Science as a Candle in the Dark. New York, NY: Random House. [ Google Scholar ]
- Schmaltz R., Lilienfeld S. O. (2014). Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking. Front. Psychol. 5:336. 10.3389/fpsyg.2014.00336 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Smith J. C. (2011). Pseudoscience and Extraordinary Claims of the Paranormal: A Critical Thinker's Toolkit. New York, NY: John Wiley and Sons. [ Google Scholar ]
- Wright I. (2001). Critical thinking in the schools: why doesn't much happen? Inform. Logic 22, 137–154. 10.22329/il.v22i2.2579 [ DOI ] [ Google Scholar ]
- View on publisher site
- PDF (239.4 KB)
- Collections
Similar articles
Cited by other articles, links to ncbi databases.
- Download .nbib .nbib
- Format: AMA APA MLA NLM
Add to Collections
Advertisement
Scientific Thinking and Critical Thinking in Science Education
Two Distinct but Symbiotically Related Intellectual Processes
- Open access
- Published: 05 September 2023
Cite this article
You have full access to this open access article
- Antonio García-Carmona ORCID: orcid.org/0000-0001-5952-0340 1
10k Accesses
4 Citations
Explore all metrics
Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one or the other indistinctly to refer to the same cognitive and metacognitive skills, usually leaving unclear what are their differences and what are their common aspects. The present work therefore was aimed at elucidating what the differences and relationships between these two types of thinking are. The conclusion reached was that, while they differ in regard to the purposes of their application and some skills or processes, they also share others and are related symbiotically in a metaphorical sense; i.e., each one makes sense or develops appropriately when it is nourished or enriched by the other. Finally, an orientative proposal is presented for an integrated development of the two types of thinking in science classes.
Similar content being viewed by others
Philosophical Inquiry and Critical Thinking in Primary and Secondary Science Education
Fostering scientific literacy and critical thinking in elementary science education.
Enhancing Scientific Thinking Through the Development of Critical Thinking in Higher Education
Avoid common mistakes on your manuscript.
Education is not the learning of facts, but the training of the mind to think. Albert Einstein
1 Introduction
In consulting technical reports, theoretical frameworks, research, and curricular reforms related to science education, one commonly finds appeals to scientific thinking and critical thinking as essential educational processes or objectives. This is confirmed in some studies that include exhaustive reviews of the literature in this regard such as those of Bailin ( 2002 ), Costa et al. ( 2020 ), and Santos ( 2017 ) on critical thinking, and of Klarh et al. ( 2019 ) and Lehrer and Schauble ( 2006 ) on scientific thinking. However, conceptualizing and differentiating between both types of thinking based on the above-mentioned documents of science education are generally difficult. In many cases, they are referred to without defining them, or they are used interchangeably to represent virtually the same thing. Thus, for example, the document A Framework for K-12 Science Education points out that “Critical thinking is required, whether in developing and refining an idea (an explanation or design) or in conducting an investigation” (National Research Council (NRC), 2012 , p. 46). The same document also refers to scientific thinking when it suggests that basic scientific education should “provide students with opportunities for a range of scientific activities and scientific thinking , including, but not limited to inquiry and investigation, collection and analysis of evidence, logical reasoning, and communication and application of information” (NRC, 2012 , p. 251).
A few years earlier, the report Science Teaching in Schools in Europe: Policies and Research (European Commission/Eurydice, 2006 ) included the dimension “scientific thinking” as part of standardized national science tests in European countries. This dimension consisted of three basic abilities: (i) to solve problems formulated in theoretical terms , (ii) to frame a problem in scientific terms , and (iii) to formulate scientific hypotheses . In contrast, critical thinking was not even mentioned in such a report. However, in subsequent similar reports by the European Commission/Eurydice ( 2011 , 2022 ), there are some references to the fact that the development of critical thinking should be a basic objective of science teaching, although these reports do not define it at any point.
The ENCIENDE report on early-year science education in Spain also includes an explicit allusion to critical thinking among its recommendations: “Providing students with learning tools means helping them to develop critical thinking , to form their own opinions, to distinguish between knowledge founded on the evidence available at a certain moment (evidence which can change) and unfounded beliefs” (Confederation of Scientific Societies in Spain (COSCE), 2011 , p. 62). However, the report makes no explicit mention to scientific thinking. More recently, the document “ Enseñando ciencia con ciencia ” (Teaching science with science) (Couso et al., 2020 ), sponsored by Spain’s Ministry of Education, also addresses critical thinking:
(…) with the teaching approach through guided inquiry students learn scientific content, learn to do science (procedures), learn what science is and how it is built, and this (...) helps to develop critical thinking , that is, to question any statement that is not supported by evidence. (Couso et al., 2020 , p. 54)
On the other hand, in referring to what is practically the same thing, the European report Science Education for Responsible Citizenship speaks of scientific thinking when it establishes that one of the challenges of scientific education should be: “To promote a culture of scientific thinking and inspire citizens to use evidence-based reasoning for decision making” (European Commission, 2015 , p. 14). However, the Pisa 2024 Strategic Vision and Direction for Science report does not mention scientific thinking but does mention critical thinking in noting that “More generally, (students) should be able to recognize the limitations of scientific inquiry and apply critical thinking when engaging with its results” (Organization for Economic Co-operation and Development (OECD), 2020 , p. 9).
The new Spanish science curriculum for basic education (Royal Decree 217/ 2022 ) does make explicit reference to scientific thinking. For example, one of the STEM (Science, Technology, Engineering, and Mathematics) competency descriptors for compulsory secondary education reads:
Use scientific thinking to understand and explain the phenomena that occur around them, trusting in knowledge as a motor for development, asking questions and checking hypotheses through experimentation and inquiry (...) showing a critical attitude about the scope and limitations of science. (p. 41,599)
Furthermore, when developing the curriculum for the subjects of physics and chemistry, the same provision clarifies that “The essence of scientific thinking is to understand what are the reasons for the phenomena that occur in the natural environment to then try to explain them through the appropriate laws of physics and chemistry” (Royal Decree 217/ 2022 , p. 41,659). However, within the science subjects (i.e., Biology and Geology, and Physics and Chemistry), critical thinking is not mentioned as such. Footnote 1 It is only more or less directly alluded to with such expressions as “critical analysis”, “critical assessment”, “critical reflection”, “critical attitude”, and “critical spirit”, with no attempt to conceptualize it as is done with regard to scientific thinking.
The above is just a small sample of the concepts of scientific thinking and critical thinking only being differentiated in some cases, while in others they are presented as interchangeable, using one or the other indistinctly to talk about the same cognitive/metacognitive processes or practices. In fairness, however, it has to be acknowledged—as said at the beginning—that it is far from easy to conceptualize these two types of thinking (Bailin, 2002 ; Dwyer et al., 2014 ; Ennis, 2018 ; Lehrer & Schauble, 2006 ; Kuhn, 1993 , 1999 ) since they feed back on each other, partially overlap, and share certain features (Cáceres et al., 2020 ; Vázquez-Alonso & Manassero-Mas, 2018 ). Neither is there unanimity in the literature on how to characterize each of them, and rarely have they been analyzed comparatively (e.g., Hyytinen et al., 2019 ). For these reasons, I believed it necessary to address this issue with the present work in order to offer some guidelines for science teachers interested in deepening into these two intellectual processes to promote them in their classes.
2 An Attempt to Delimit Scientific Thinking in Science Education
For many years, cognitive science has been interested in studying what scientific thinking is and how it can be taught in order to improve students’ science learning (Klarh et al., 2019 ; Zimmerman & Klarh, 2018 ). To this end, Kuhn et al. propose taking a characterization of science as argument (Kuhn, 1993 ; Kuhn et al., 2008 ). They argue that this is a suitable way of linking the activity of how scientists think with that of the students and of the public in general, since science is a social activity which is subject to ongoing debate, in which the construction of arguments plays a key role. Lehrer and Schauble ( 2006 ) link scientific thinking with scientific literacy, paying especial attention to the different images of science. According to those authors, these images would guide the development of the said literacy in class. The images of science that Leherer and Schauble highlight as characterizing scientific thinking are: (i) science-as-logical reasoning (role of domain-general forms of scientific reasoning, including formal logic, heuristic, and strategies applied in different fields of science), (ii) science-as-theory change (science is subject to permanent revision and change), and (iii) science-as-practice (scientific knowledge and reasoning are components of a larger set of activities that include rules of participation, procedural skills, epistemological knowledge, etc.).
Based on a literature review, Jirout ( 2020 ) defines scientific thinking as an intellectual process whose purpose is the intentional search for information about a phenomenon or facts by formulating questions, checking hypotheses, carrying out observations, recognizing patterns, and making inferences (a detailed description of all these scientific practices or competencies can be found, for example, in NRC, 2012 ; OECD, 2019 ). Therefore, for Jirout, the development of scientific thinking would involve bringing into play the basic science skills/practices common to the inquiry-based approach to learning science (García-Carmona, 2020 ; Harlen, 2014 ). For other authors, scientific thinking would include a whole spectrum of scientific reasoning competencies (Krell et al., 2022 ; Moore, 2019 ; Tytler & Peterson, 2004 ). However, these competences usually cover the same science skills/practices mentioned above. Indeed, a conceptual overlap between scientific thinking, scientific reasoning, and scientific inquiry is often found in science education goals (Krell et al., 2022 ). Although, according to Leherer and Schauble ( 2006 ), scientific thinking is a broader construct that encompasses the other two.
It could be said that scientific thinking is a particular way of searching for information using science practices Footnote 2 (Klarh et al., 2019 ; Zimmerman & Klarh, 2018 ; Vázquez-Alonso & Manassero-Mas, 2018 ). This intellectual process provides the individual with the ability to evaluate the robustness of evidence for or against a certain idea, in order to explain a phenomenon (Clouse, 2017 ). But the development of scientific thinking also requires metacognition processes. According to what Kuhn ( 2022 ) argues, metacognition is fundamental to the permanent control or revision of what an individual thinks and knows, as well as that of the other individuals with whom it interacts, when engaging in scientific practices. In short, scientific thinking demands a good connection between reasoning and metacognition (Kuhn, 2022 ). Footnote 3
From that perspective, Zimmerman and Klarh ( 2018 ) have synthesized a taxonomy categorizing scientific thinking, relating cognitive processes with the corresponding science practices (Table 1 ). It has to be noted that this taxonomy was prepared in line with the categorization of scientific practices proposed in the document A Framework for K-12 Science Education (NRC, 2012 ). This is why one needs to understand that, for example, the cognitive process of elaboration and refinement of hypotheses is not explicitly associated with the scientific practice of hypothesizing but only with the formulation of questions. Indeed, the K-12 Framework document does not establish hypothesis formulation as a basic scientific practice. Lederman et al. ( 2014 ) justify it by arguing that not all scientific research necessarily allows or requires the verification of hypotheses, for example, in cases of exploratory or descriptive research. However, the aforementioned document (NRC, 2012 , p. 50) does refer to hypotheses when describing the practice of developing and using models , appealing to the fact that they facilitate the testing of hypothetical explanations .
In the literature, there are also other interesting taxonomies characterizing scientific thinking for educational purposes. One of them is that of Vázquez-Alonso and Manassero-Mas ( 2018 ) who, instead of science practices, refer to skills associated with scientific thinking . Their characterization basically consists of breaking down into greater detail the content of those science practices that would be related to the different cognitive and metacognitive processes of scientific thinking. Also, unlike Zimmerman and Klarh’s ( 2018 ) proposal, Vázquez-Alonso and Manassero-Mas’s ( 2018 ) proposal explicitly mentions metacognition as one of the aspects of scientific thinking, which they call meta-process . In my opinion, the proposal of the latter authors, which shells out scientific thinking into a broader range of skills/practices, can be more conducive in order to favor its approach in science classes, as teachers would have more options to choose from to address components of this intellectual process depending on their teaching interests, the educational needs of their students and/or the learning objectives pursued. Table 2 presents an adapted characterization of the Vázquez-Alonso and Manassero-Mas’s ( 2018 ) proposal to address scientific thinking in science education.
3 Contextualization of Critical Thinking in Science Education
Theorization and research about critical thinking also has a long tradition in the field of the psychology of learning (Ennis, 2018 ; Kuhn, 1999 ), and its application extends far beyond science education (Dwyer et al., 2014 ). Indeed, the development of critical thinking is commonly accepted as being an essential goal of people’s overall education (Ennis, 2018 ; Hitchcock, 2017 ; Kuhn, 1999 ; Willingham, 2008 ). However, its conceptualization is not simple and there is no unanimous position taken on it in the literature (Costa et al., 2020 ; Dwyer et al., 2014 ); especially when trying to relate it to scientific thinking. Thus, while Tena-Sánchez and León-Medina ( 2022 ) Footnote 4 and McBain et al. ( 2020 ) consider critical thinking to be the basis of or forms part of scientific thinking, Dowd et al. ( 2018 ) understand scientific thinking to be just a subset of critical thinking. However, Vázquez-Alonso and Manassero-Mas ( 2018 ) do not seek to determine whether critical thinking encompasses scientific thinking or vice versa. They consider that both types of knowledge share numerous skills/practices and the progressive development of one fosters the development of the other as a virtuous circle of improvement. Other authors, such as Schafersman ( 1991 ), even go so far as to say that critical thinking and scientific thinking are the same thing. In addition, some views on the relationship between critical thinking and scientific thinking seem to be context-dependent. For example, Hyytine et al. ( 2019 ) point out that in the perspective of scientific thinking as a component of critical thinking, the former is often used to designate evidence-based thinking in the sciences, although this view tends to dominate in Europe but not in the USA context. Perhaps because of this lack of consensus, the two types of thinking are often confused, overlapping, or conceived as interchangeable in education.
Even with such a lack of unanimous or consensus vision, there are some interesting theoretical frameworks and definitions for the development of critical thinking in education. One of the most popular definitions of critical thinking is that proposed by The National Council for Excellence in Critical Thinking (1987, cited in Inter-American Teacher Education Network, 2015 , p. 6). This conceives of it as “the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action”. In other words, critical thinking can be regarded as a reflective and reasonable class of thinking that provides people with the ability to evaluate multiple statements or positions that are defensible to then decide which is the most defensible (Clouse, 2017 ; Ennis, 2018 ). It thus requires, in addition to a basic scientific competency, notions about epistemology (Kuhn, 1999 ) to understand how knowledge is constructed. Similarly, it requires skills for metacognition (Hyytine et al., 2019 ; Kuhn, 1999 ; Magno, 2010 ) since critical thinking “entails awareness of one’s own thinking and reflection on the thinking of self and others as objects of cognition” (Dean & Kuhn, 2003 , p. 3).
In science education, one of the most suitable scenarios or resources, but not the only one, Footnote 5 to address all these aspects of critical thinking is through the analysis of socioscientific issues (SSI) (Taylor et al., 2006 ; Zeidler & Nichols, 2009 ). Without wishing to expand on this here, I will only say that interesting works can be found in the literature that have analyzed how the discussion of SSIs can favor the development of critical thinking skills (see, e.g., López-Fernández et al., 2022 ; Solbes et al., 2018 ). For example, López-Fernández et al. ( 2022 ) focused their teaching-learning sequence on the following critical thinking skills: information analysis, argumentation, decision making, and communication of decisions. Even some authors add the nature of science (NOS) to this framework (i.e., SSI-NOS-critical thinking), as, for example, Yacoubian and Khishfe ( 2018 ) in order to develop critical thinking and how this can also favor the understanding of NOS (Yacoubian, 2020 ). In effect, as I argued in another work on the COVID-19 pandemic as an SSI, in which special emphasis was placed on critical thinking, an informed understanding of how science works would have helped the public understand why scientists were changing their criteria to face the pandemic in the light of new data and its reinterpretations, or that it was not possible to go faster to get an effective and secure medical treatment for the disease (García-Carmona, 2021b ).
In the recent literature, there have also been some proposals intended to characterize critical thinking in the context of science education. Table 3 presents two of these by way of example. As can be seen, both proposals share various components for the development of critical thinking (respect for evidence, critically analyzing/assessing the validity/reliability of information, adoption of independent opinions/decisions, participation, etc.), but that of Blanco et al. ( 2017 ) is more clearly contextualized in science education. Likewise, that of these authors includes some more aspects (or at least does so more explicitly), such as developing epistemological Footnote 6 knowledge of science (vision of science…) and on its interactions with technology, society, and environment (STSA relationships), and communication skills. Therefore, it offers a wider range of options for choosing critical thinking skills/processes to promote it in science classes. However, neither proposal refers to metacognitive skills, which are also essential for developing critical thinking (Kuhn, 1999 ).
3.1 Critical thinking vs. scientific thinking in science education: differences and similarities
In accordance with the above, it could be said that scientific thinking is nourished by critical thinking, especially when deciding between several possible interpretations and explanations of the same phenomenon since this generally takes place in a context of debate in the scientific community (Acevedo-Díaz & García-Carmona, 2017 ). Thus, the scientific attitude that is perhaps most clearly linked to critical thinking is the skepticism with which scientists tend to welcome new ideas (Normand, 2008 ; Sagan, 1987 ; Tena-Sánchez and León-Medina, 2022 ), especially if they are contrary to well-established scientific knowledge (Bell, 2009 ). A good example of this was the OPERA experiment (García-Carmona & Acevedo-Díaz, 2016a ), which initially seemed to find that neutrinos could move faster than the speed of light. This finding was supposed to invalidate Albert Einstein’s theory of relativity (the finding was later proved wrong). In response, Nobel laureate in physics Sheldon L. Glashow went so far as to state that:
the result obtained by the OPERA collaboration cannot be correct. If it were, we would have to give up so many things, it would be such a huge sacrifice... But if it is, I am officially announcing it: I will shout to Mother Nature: I’m giving up! And I will give up Physics. (BBVA Foundation, 2011 )
Indeed, scientific thinking is ultimately focused on getting evidence that may support an idea or explanation about a phenomenon, and consequently allow others that are less convincing or precise to be discarded. Therefore when, with the evidence available, science has more than one equally defensible position with respect to a problem, the investigation is considered inconclusive (Clouse, 2017 ). In certain cases, this gives rise to scientific controversies (Acevedo-Díaz & García-Carmona, 2017 ) which are not always resolved based exclusively on epistemic or rational factors (Elliott & McKaughan, 2014 ; Vallverdú, 2005 ). Hence, it is also necessary to integrate non-epistemic practices into the framework of scientific thinking (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ), practices that transcend the purely rational or cognitive processes, including, for example, those related to emotional or affective issues (Sinatra & Hofer, 2021 ). From an educational point of view, this suggests that for students to become more authentically immersed in the way of working or thinking scientifically, they should also learn to feel as scientists do when they carry out their work (Davidson et al., 2020 ). Davidson et al. ( 2020 ) call it epistemic affect , and they suggest that it could be approach in science classes by teaching students to manage their frustrations when they fail to achieve the expected results; Footnote 7 or, for example, to moderate their enthusiasm with favorable results in a scientific inquiry by activating a certain skepticism that encourages them to do more testing. And, as mentioned above, for some authors, having a skeptical attitude is one of the actions that best visualize the application of critical thinking in the framework of scientific thinking (Normand, 2008 ; Sagan, 1987 ; Tena-Sánchez and León-Medina, 2022 ).
On the other hand, critical thinking also draws on many of the skills or practices of scientific thinking, as discussed above. However, in contrast to scientific thinking, the coexistence of two or more defensible ideas is not, in principle, a problem for critical thinking since its purpose is not so much to invalidate some ideas or explanations with respect to others, but rather to provide the individual with the foundations on which to position themself with the idea/argument they find most defensible among several that are possible (Ennis, 2018 ). For example, science with its methods has managed to explain the greenhouse effect, the phenomenon of the tides, or the transmission mechanism of the coronavirus. For this, it had to discard other possible explanations as they were less valid in the investigations carried out. These are therefore issues resolved by the scientific community which create hardly any discussion at the present time. However, taking a position for or against the production of energy in nuclear power plants transcends the scope of scientific thinking since both positions are, in principle, equally defensible. Indeed, within the scientific community itself there are supporters and detractors of the two positions, based on the same scientific knowledge. Consequently, it is critical thinking, which requires the management of knowledge and scientific skills, a basic understanding of epistemic (rational or cognitive) and non-epistemic (social, ethical/moral, economic, psychological, cultural, ...) aspects of the nature of science, as well as metacognitive skills, which helps the individual forge a personal foundation on which to position themself in one place or another, or maintain an uncertain, undecided opinion.
In view of the above, one can summarize that scientific thinking and critical thinking are two different intellectual processes in terms of purpose, but are related symbiotically (i.e., one would make no sense without the other or both feed on each other) and that, in their performance, they share a fair number of features, actions, or mental skills. According to Cáceres et al. ( 2020 ) and Hyytine et al. ( 2019 ), the intellectual skills that are most clearly common to both types of thinking would be searching for relationships between evidence and explanations , as well as investigating and logical thinking to make inferences . To this common space, I would also add skills for metacognition in accordance with what has been discussed about both types of knowledge (Khun, 1999 , 2022 ).
In order to compile in a compact way all that has been argued so far, in Table 4 , I present my overview of the relationship between scientific thinking and critical thinking. I would like to point out that I do not intend to be extremely extensive in the compilation, in the sense that possibly more elements could be added in the different sections, but rather to represent above all the aspects that distinguish and share them, as well as the mutual enrichment (or symbiosis) between them.
4 A Proposal for the Integrated Development of Critical Thinking and Scientific Thinking in Science Classes
Once the differences, common aspects, and relationships between critical thinking and scientific thinking have been discussed, it would be relevant to establish some type of specific proposal to foster them in science classes. Table 5 includes a possible script to address various skills or processes of both types of thinking in an integrated manner. However, before giving guidance on how such skills/processes could be approached, I would like to clarify that while all of them could be dealt within the context of a single school activity, I will not do so in this way. First, because I think that it can give the impression that the proposal is only valid if it is applied all at once in a specific learning situation, which can also discourage science teachers from implementing it in class due to lack of time or training to do so. Second, I think it can be more interesting to conceive the proposal as a set of thinking skills or actions that can be dealt with throughout the different science contents, selecting only (if so decided) some of them, according to educational needs or characteristics of the learning situation posed in each case. Therefore, in the orientations for each point of the script or grouping of these, I will use different examples and/or contexts. Likewise, these orientations in the form of comments, although founded in the literature, should be considered only as possibilities to do so, among many others possible.
Motivation and predisposition to reflect and discuss (point i ) demands, on the one hand, that issues are chosen which are attractive for the students. This can be achieved, for example, by asking the students directly what current issues, related to science and its impact or repercussions, they would like to learn about, and then decide on which issue to focus on (García-Carmona, 2008 ). Or the teacher puts forward the issue directly in class, trying for it be current, to be present in the media, social networks, etc., or what they think may be of interest to their students based on their teaching experience. In this way, each student is encouraged to feel questioned or concerned as a citizen because of the issue that is going to be addressed (García-Carmona, 2008 ). Also of possible interest is the analysis of contemporary, as yet unresolved socioscientific affairs (Solbes et al., 2018 ), such as climate change, science and social justice, transgenic foods, homeopathy, and alcohol and drug use in society. But also, everyday questions can be investigated which demand a decision to be made, such as “What car to buy?” (Moreno-Fontiveros et al., 2022 ), or “How can we prevent the arrival of another pandemic?” (Ushola & Puig, 2023 ).
On the other hand, it is essential that the discussion about the chosen issue is planned through an instructional process that generates an environment conducive to reflection and debate, with a view to engaging the students’ participation in it. This can be achieved, for example, by setting up a role-play game (Blanco-López et al., 2017 ), especially if the issue is socioscientific, or by critical and reflective reading of advertisements with scientific content (Campanario et al., 2001 ) or of science-related news in the daily media (García-Carmona, 2014 , 2021a ; Guerrero-Márquez & García-Carmona, 2020 ; Oliveras et al., 2013 ), etc., for subsequent discussion—all this, in a collaborative learning setting and with a clear democratic spirit.
Respect for scientific evidence (point ii ) should be the indispensable condition in any analysis and discussion from the prisms of scientific and of critical thinking (Erduran, 2021 ). Although scientific knowledge may be impregnated with subjectivity during its construction and is revisable in the light of new evidence ( tentativeness of scientific knowledge), when it is accepted by the scientific community it is as objective as possible (García-Carmona & Acevedo-Díaz, 2016b ). Therefore, promoting trust and respect for scientific evidence should be one of the primary educational challenges to combating pseudoscientists and science deniers (Díaz & Cabrera, 2022 ), whose arguments are based on false beliefs and assumptions, anecdotes, and conspiracy theories (Normand, 2008 ). Nevertheless, it is no simple task to achieve the promotion or respect for scientific evidence (Fackler, 2021 ) since science deniers, for example, consider that science is unreliable because it is imperfect (McIntyre, 2021 ). Hence the need to promote a basic understanding of NOS (point iii ) as a fundamental pillar for the development of both scientific thinking and critical thinking. A good way to do this would be through explicit and reflective discussion about controversies from the history of science (Acevedo-Díaz & García-Carmona, 2017 ) or contemporary controversies (García-Carmona, 2021b ; García-Carmona & Acevedo-Díaz, 2016a ).
Also, with respect to point iii of the proposal, it is necessary to manage basic scientific knowledge in the development of scientific and critical thinking skills (Willingham, 2008 ). Without this, it will be impossible to develop a minimally serious and convincing argument on the issue being analyzed. For example, if one does not know the transmission mechanism of a certain disease, it is likely to be very difficult to understand or justify certain patterns of social behavior when faced with it. In general, possessing appropriate scientific knowledge on the issue in question helps to make the best interpretation of the data and evidence available on this issue (OECD, 2019 ).
The search for information from reliable sources, together with its analysis and interpretation (points iv to vi ), are essential practices both in purely scientific contexts (e.g., learning about the behavior of a given physical phenomenon from literature or through enquiry) and in the application of critical thinking (e.g., when one wishes to take a personal, but informed, position on a particular socio-scientific issue). With regard to determining the credibility of information with scientific content on the Internet, Osborne et al. ( 2022 ) propose, among other strategies, to check whether the source is free of conflicts of interest, i.e., whether or not it is biased by ideological, political or economic motives. Also, it should be checked whether the source and the author(s) of the information are sufficiently reputable.
Regarding the interpretation of data and evidence, several studies have shown the difficulties that students often have with this practice in the context of enquiry activities (e.g., Gobert et al., 2018 ; Kanari & Millar, 2004 ; Pols et al., 2021 ), or when analyzing science news in the press (Norris et al., 2003 ). It is also found that they have significant difficulties in choosing the most appropriate data to support their arguments in causal analyses (Kuhn & Modrek, 2022 ). However, it must be recognized that making interpretations or inferences from data is not a simple task; among other reasons, because their construction is influenced by multiple factors, both epistemic (prior knowledge, experimental designs, etc.) and non-epistemic (personal expectations, ideology, sociopolitical context, etc.), which means that such interpretations are not always the same for all scientists (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ). For this reason, the performance of this scientific practice constitutes one of the phases or processes that generate the most debate or discussion in a scientific community, as long as no consensus is reached. In order to improve the practice of making inferences among students, Kuhn and Lerman ( 2021 ) propose activities that help them develop their own epistemological norms to connect causally their statements with the available evidence.
Point vii refers, on the one hand, to an essential scientific practice: the elaboration of evidence-based scientific explanations which generally, in a reasoned way, account for the causality, properties, and/or behavior of the phenomena (Brigandt, 2016 ). In addition, point vii concerns the practice of argumentation . Unlike scientific explanations, argumentation tries to justify an idea, explanation, or position with the clear purpose of persuading those who defend other different ones (Osborne & Patterson, 2011 ). As noted above, the complexity of most socioscientific issues implies that they have no unique valid solution or response. Therefore, the content of the arguments used to defend one position or another are not always based solely on purely rational factors such as data and scientific evidence. Some authors defend the need to also deal with non-epistemic aspects of the nature of science when teaching it (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ) since many scientific and socioscientific controversies are resolved by different factors or go beyond just the epistemic (Vallverdú, 2005 ).
To defend an idea or position taken on an issue, it is not enough to have scientific evidence that supports it. It is also essential to have skills for the communication and discussion of ideas (point viii ). The history of science shows how the difficulties some scientists had in communicating their ideas scientifically led to those ideas not being accepted at the time. A good example for students to become aware of this is the historical case of Semmelweis and puerperal fever (Aragón-Méndez et al., 2019 ). Its reflective reading makes it possible to conclude that the proposal of this doctor that gynecologists disinfect their hands, when passing from one parturient to another to avoid contagions that provoked the fever, was rejected by the medical community not only for epistemic reasons, but also for the difficulties that he had to communicate his idea. The history of science also reveals that some scientific interpretations were imposed on others at certain historical moments due to the rhetorical skills of their proponents although none of the explanations would convincingly explain the phenomenon studied. An example is the case of the controversy between Pasteur and Liebig about the phenomenon of fermentation (García-Carmona & Acevedo-Díaz, 2017 ), whose reading and discussion in science class would also be recommended in this context of this critical and scientific thinking skill. With the COVID-19 pandemic, for example, the arguments of some charlatans in the media and on social networks managed to gain a certain influence in the population, even though scientifically they were muddled nonsense (García-Carmona, 2021b ). Therefore, the reflective reading of news on current SSIs such as this also constitutes a good resource for the same educational purpose. In general, according to Spektor-Levy et al. ( 2009 ), scientific communication skills should be addressed explicitly in class, in a progressive and continuous manner, including tasks of information seeking, reading, scientific writing, representation of information, and representation of the knowledge acquired.
Finally (point ix ), a good scientific/critical thinker must be aware of what they know, of what they have doubts about or do not know, to this end continuously practicing metacognitive exercises (Dean & Kuhn, 2003 ; Hyytine et al., 2019 ; Magno, 2010 ; Willingham, 2008 ). At the same time, they must recognize the weaknesses and strengths of the arguments of their peers in the debate in order to be self-critical if necessary, as well as to revising their own ideas and arguments to improve and reorient them, etc. ( self-regulation ). I see one of the keys of both scientific and critical thinking being the capacity or willingness to change one’s mind, without it being frowned upon. Indeed, quite the opposite since one assumes it to occur thanks to the arguments being enriched and more solidly founded. In other words, scientific and critical thinking and arrogance or haughtiness towards the rectification of ideas or opinions do not stick well together.
5 Final Remarks
For decades, scientific thinking and critical thinking have received particular attention from different disciplines such as psychology, philosophy, pedagogy, and specific areas of this last such as science education. The two types of knowledge represent intellectual processes whose development in students, and in society in general, is considered indispensable for the exercise of responsible citizenship in accord with the demands of today’s society (European Commission, 2006 , 2015 ; NRC, 2012 ; OECD, 2020 ). As has been shown however, the task of their conceptualization is complex, and teaching students to think scientifically and critically is a difficult educational challenge (Willingham, 2008 ).
Aware of this, and after many years dedicated to science education, I felt the need to organize my ideas regarding the aforementioned two types of thinking. In consulting the literature about these, I found that, in many publications, scientific thinking and critical thinking are presented or perceived as being interchangeable or indistinguishable; a conclusion also shared by Hyytine et al. ( 2019 ). Rarely have their differences, relationships, or common features been explicitly studied. So, I considered that it was a matter needing to be addressed because, in science education, the development of scientific thinking is an inherent objective, but, when critical thinking is added to the learning objectives, there arise more than reasonable doubts about when one or the other would be used, or both at the same time. The present work came about motivated by this, with the intention of making a particular contribution, but based on the relevant literature, to advance in the question raised. This converges in conceiving scientific thinking and critical thinking as two intellectual processes that overlap and feed into each other in many aspects but are different with respect to certain cognitive skills and in terms of their purpose. Thus, in the case of scientific thinking, the aim is to choose the best possible explanation of a phenomenon based on the available evidence, and it therefore involves the rejection of alternative explanatory proposals that are shown to be less coherent or convincing. Whereas, from the perspective of critical thinking, the purpose is to choose the most defensible idea/option among others that are also defensible, using both scientific and extra-scientific (i.e., moral, ethical, political, etc.) arguments. With this in mind, I have described a proposal to guide their development in the classroom, integrating them under a conception that I have called, metaphorically, a symbiotic relationship between two modes of thinking.
Critical thinking is mentioned literally in other of the curricular provisions’ subjects such as in Education in Civics and Ethical Values or in Geography and History (Royal Decree 217/2022).
García-Carmona ( 2021a ) conceives of them as activities that require the comprehensive application of procedural skills, cognitive and metacognitive processes, and both scientific knowledge and knowledge of the nature of scientific practice .
Kuhn ( 2021 ) argues that the relationship between scientific reasoning and metacognition is especially fostered by what she calls inhibitory control , which basically consists of breaking down the whole of a thought into parts in such a way that attention is inhibited on some of those parts to allow a focused examination of the intended mental content.
Specifically, Tena-Sánchez and León-Medina (2020) assume that critical thinking is at the basis of rational or scientific skepticism that leads to questioning any claim that does not have empirical support.
As discussed in the introduction, the inquiry-based approach is also considered conducive to addressing critical thinking in science education (Couso et al., 2020 ; NRC, 2012 ).
Epistemic skills should not be confused with epistemological knowledge (García-Carmona, 2021a ). The former refers to skills to construct, evaluate, and use knowledge, and the latter to understanding about the origin, nature, scope, and limits of scientific knowledge.
For this purpose, it can be very useful to address in class, with the help of the history and philosophy of science, that scientists get more wrong than right in their research, and that error is always an opportunity to learn (García-Carmona & Acevedo-Díaz, 2018 ).
Acevedo-Díaz, J. A., & García-Carmona, A. (2017). Controversias en la historia de la ciencia y cultura científica [Controversies in the history of science and scientific culture]. Los Libros de la Catarata.
Aragón-Méndez, M. D. M., Acevedo-Díaz, J. A., & García-Carmona, A. (2019). Prospective biology teachers’ understanding of the nature of science through an analysis of the historical case of Semmelweis and childbed fever. Cultural Studies of Science Education , 14 (3), 525–555. https://doi.org/10.1007/s11422-018-9868-y
Bailin, S. (2002). Critical thinking and science education. Science & Education, 11 (4), 361–375. https://doi.org/10.1023/A:1016042608621
Article Google Scholar
BBVA Foundation (2011). El Nobel de Física Sheldon L. Glashow no cree que los neutrinos viajen más rápido que la luz [Physics Nobel laureate Sheldon L. Glashow does not believe neutrinos travel faster than light.]. https://www.fbbva.es/noticias/nobel-fisica-sheldon-l-glashow-no-cree-los-neutrinos-viajen-mas-rapido-la-luz/ . Accessed 5 Februray 2023.
Bell, R. L. (2009). Teaching the nature of science: Three critical questions. In Best Practices in Science Education . National Geographic School Publishing.
Google Scholar
Blanco-López, A., España-Ramos, E., & Franco-Mariscal, A. J. (2017). Estrategias didácticas para el desarrollo del pensamiento crítico en el aula de ciencias [Teaching strategies for the development of critical thinking in the teaching of science]. Ápice. Revista de Educación Científica, 1 (1), 107–115. https://doi.org/10.17979/arec.2017.1.1.2004
Brigandt, I. (2016). Why the difference between explanation and argument matters to science education. Science & Education, 25 (3-4), 251–275. https://doi.org/10.1007/s11191-016-9826-6
Cáceres, M., Nussbaum, M., & Ortiz, J. (2020). Integrating critical thinking into the classroom: A teacher’s perspective. Thinking Skills and Creativity, 37 , 100674. https://doi.org/10.1016/j.tsc.2020.100674
Campanario, J. M., Moya, A., & Otero, J. (2001). Invocaciones y usos inadecuados de la ciencia en la publicidad [Invocations and misuses of science in advertising]. Enseñanza de las Ciencias, 19 (1), 45–56. https://doi.org/10.5565/rev/ensciencias.4013
Clouse, S. (2017). Scientific thinking is not critical thinking. https://medium.com/extra-extra/scientific-thinking-is-not-critical-thinking-b1ea9ebd8b31
Confederacion de Sociedades Cientificas de Espana [COSCE]. (2011). Informe ENCIENDE: Enseñanza de las ciencias en la didáctica escolar para edades tempranas en España [ENCIENDE report: Science education for early-year in Spain] . COSCE.
Costa, S. L. R., Obara, C. E., & Broietti, F. C. D. (2020). Critical thinking in science education publications: the research contexts. International Journal of Development Research, 10 (8), 39438. https://doi.org/10.37118/ijdr.19437.08.2020
Couso, D., Jiménez-Liso, M.R., Refojo, C. & Sacristán, J.A. (coords.) (2020). Enseñando ciencia con ciencia [Teaching science with science]. FECYT & Fundacion Lilly / Penguin Random House
Davidson, S. G., Jaber, L. Z., & Southerland, S. A. (2020). Emotions in the doing of science: Exploring epistemic affect in elementary teachers' science research experiences. Science Education, 104 (6), 1008–1040. https://doi.org/10.1002/sce.21596
Dean, D., & Kuhn, D. (2003). Metacognition and critical thinking. ERIC document. Reproduction No. ED477930 . https://files.eric.ed.gov/fulltext/ED477930.pdf
Díaz, C., & Cabrera, C. (2022). Desinformación científica en España . FECYT/IBERIFIER https://www.fecyt.es/es/publicacion/desinformacion-cientifica-en-espana
Dowd, J. E., Thompson, R. J., Jr., Schiff, L. A., & Reynolds, J. A. (2018). Understanding the complex relationship between critical thinking and science reasoning among undergraduate thesis writers. CBE—Life Sciences . Education, 17 (1), ar4. https://doi.org/10.1187/cbe.17-03-0052
Dwyer, C. P., Hogan, M. J., & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills and Creativity, 12 , 43–52. https://doi.org/10.1016/j.tsc.2013.12.004
Elliott, K. C., & McKaughan, D. J. (2014). Non-epistemic values and the multiple goals of science. Philosophy of Science, 81 (1), 1–21. https://doi.org/10.1086/674345
Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. Topoi, 37 (1), 165–184. https://doi.org/10.1007/s11245-016-9401-4
Erduran, S. (2021). Respect for evidence: Can science education deliver it? Science & Education, 30 (3), 441–444. https://doi.org/10.1007/s11191-021-00245-8
European Commission. (2015). Science education for responsible citizenship . Publications Office https://op.europa.eu/en/publication-detail/-/publication/a1d14fa0-8dbe-11e5-b8b7-01aa75ed71a1
European Commission / Eurydice. (2011). Science education in Europe: National policies, practices and research . Publications Office. https://op.europa.eu/en/publication-detail/-/publication/bae53054-c26c-4c9f-8366-5f95e2187634
European Commission / Eurydice. (2022). Increasing achievement and motivation in mathematics and science learning in schools . Publications Office. https://eurydice.eacea.ec.europa.eu/publications/mathematics-and-science-learning-schools-2022
European Commission/Eurydice. (2006). Science teaching in schools in Europe. Policies and research . Publications Office. https://op.europa.eu/en/publication-detail/-/publication/1dc3df34-acdf-479e-bbbf-c404fa3bee8b
Fackler, A. (2021). When science denial meets epistemic understanding. Science & Education, 30 (3), 445–461. https://doi.org/10.1007/s11191-021-00198-y
García-Carmona, A. (2008). Relaciones CTS en la educación científica básica. II. Investigando los problemas del mundo [STS relationships in basic science education II. Researching the world problems]. Enseñanza de las Ciencias, 26 (3), 389–402. https://doi.org/10.5565/rev/ensciencias.3750
García-Carmona, A. (2014). Naturaleza de la ciencia en noticias científicas de la prensa: Análisis del contenido y potencialidades didácticas [Nature of science in press articles about science: Content analysis and pedagogical potential]. Enseñanza de las Ciencias, 32 (3), 493–509. https://doi.org/10.5565/rev/ensciencias.1307
García-Carmona, A., & Acevedo-Díaz, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content. Science & Education, 25 (5–6), 523–546. https://doi.org/10.1007/s11191-016-9831-9
García-Carmona, A., & Acevedo-Díaz, J. A. (2016b). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo [Preservice elementary teachers' conceptions of the nature of science: a diagnostic evaluation based on team reflections]. Revista Mexicana de Investigación Educativa, 21 (69), 583–610. https://www.redalyc.org/articulo.oa?id=14045395010
García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26 (1–2), 65–91. https://doi.org/10.1007/s11191-017-9876-4
García-Carmona, A., & Acevedo-Díaz, J. A. (2018). The nature of scientific practice and science education. Science & Education, 27 (5–6), 435–455. https://doi.org/10.1007/s11191-018-9984-9
García-Carmona, A. (2020). From inquiry-based science education to the approach based on scientific practices. Science & Education, 29 (2), 443–463. https://doi.org/10.1007/s11191-020-00108-8
García-Carmona, A. (2021a). Prácticas no-epistémicas: ampliando la mirada en el enfoque didáctico basado en prácticas científicas [Non-epistemic practices: extending the view in the didactic approach based on scientific practices]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18 (1), 1108. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1108
García-Carmona, A. (2021b). Learning about the nature of science through the critical and reflective reading of news on the COVID-19 pandemic. Cultural Studies of Science Education, 16 (4), 1015–1028. https://doi.org/10.1007/s11422-021-10092-2
Guerrero-Márquez, I., & García-Carmona, A. (2020). La energía y su impacto socioambiental en la prensa digital: temáticas y potencialidades didácticas para una educación CTS [Energy and its socio-environmental impact in the digital press: issues and didactic potentialities for STS education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(3), 3301. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i3.3301
Gobert, J. D., Moussavi, R., Li, H., Sao Pedro, M., & Dickler, R. (2018). Real-time scaffolding of students’ online data interpretation during inquiry with Inq-ITS using educational data mining. In M. E. Auer, A. K. M. Azad, A. Edwards, & T. de Jong (Eds.), Cyber-physical laboratories in engineering and science education (pp. 191–217). Springer.
Chapter Google Scholar
Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1 (1), 5–19. https://ipsejournal.files.wordpress.com/2015/03/3-ipse-volume-1-no-1-wynne-harlen-p-5-19.pdf
Hitchcock, D. (2017). Critical thinking as an educational ideal. In On reasoning and argument (pp. 477–497). Springer.
Hyytinen, H., Toom, A., & Shavelson, R. J. (2019). Enhancing scientific thinking through the development of critical thinking in higher education. In M. Murtonen & K. Balloo (Eds.), Redefining scientific thinking for higher education . Palgrave Macmillan.
Jiménez-Aleixandre, M. P., & Puig, B. (2022). Educating critical citizens to face post-truth: the time is now. In B. Puig & M. P. Jiménez-Aleixandre (Eds.), Critical thinking in biology and environmental education, Contributions from biology education research (pp. 3–19). Springer.
Jirout, J. J. (2020). Supporting early scientific thinking through curiosity. Frontiers in Psychology, 11 , 1717. https://doi.org/10.3389/fpsyg.2020.01717
Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41 (7), 748–769. https://doi.org/10.1002/tea.20020
Klahr, D., Zimmerman, C., & Matlen, B. J. (2019). Improving students’ scientific thinking. In J. Dunlosky & K. A. Rawson (Eds.), The Cambridge handbook of cognition and education (pp. 67–99). Cambridge University Press.
Krell, M., Vorholzer, A., & Nehring, A. (2022). Scientific reasoning in science education: from global measures to fine-grained descriptions of students’ competencies. Education Sciences, 12 , 97. https://doi.org/10.3390/educsci12020097
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science education, 77 (3), 319–337. https://doi.org/10.1002/sce.3730770306
Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28 (2), 16–46. https://doi.org/10.3102/0013189X028002016
Kuhn, D. (2022). Metacognition matters in many ways. Educational Psychologist, 57 (2), 73–86. https://doi.org/10.1080/00461520.2021.1988603
Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23 (4), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006
Kuhn, D., & Lerman, D. (2021). Yes but: Developing a critical stance toward evidence. International Journal of Science Education, 43 (7), 1036–1053. https://doi.org/10.1080/09500693.2021.1897897
Kuhn, D., & Modrek, A. S. (2022). Choose your evidence: Scientific thinking where it may most count. Science & Education, 31 (1), 21–31. https://doi.org/10.1007/s11191-021-00209-y
Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51 (1), 65–83. https://doi.org/10.1002/tea.21125
Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In K. A. Renninger, I. E. Sigel, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Child psychology in practice (pp. 153–196). John Wiley & Sons, Inc.
López-Fernández, M. D. M., González-García, F., & Franco-Mariscal, A. J. (2022). How can socio-scientific issues help develop critical thinking in chemistry education? A reflection on the problem of plastics. Journal of Chemical Education, 99 (10), 3435–3442. https://doi.org/10.1021/acs.jchemed.2c00223
Magno, C. (2010). The role of metacognitive skills in developing critical thinking. Metacognition and Learning, 5 , 137–156. https://doi.org/10.1007/s11409-010-9054-4
McBain, B., Yardy, A., Martin, F., Phelan, L., van Altena, I., McKeowen, J., Pembertond, C., Tosec, H., Fratuse, L., & Bowyer, M. (2020). Teaching science students how to think. International Journal of Innovation in Science and Mathematics Education, 28 (2), 28–35. https://openjournals.library.sydney.edu.au/CAL/article/view/14809/13480
McIntyre, L. (2021). Talking to science deniers and sceptics is not hopeless. Nature, 596 (7871), 165–165. https://doi.org/10.1038/d41586-021-02152-y
Moore, C. (2019). Teaching science thinking. Using scientific reasoning in the classroom . Routledge.
Moreno-Fontiveros, G., Cebrián-Robles, D., Blanco-López, A., & y España-Ramos, E. (2022). Decisiones de estudiantes de 14/15 años en una propuesta didáctica sobre la compra de un coche [Fourteen/fifteen-year-old students’ decisions in a teaching proposal on the buying of a car]. Enseñanza de las Ciencias, 40 (1), 199–219. https://doi.org/10.5565/rev/ensciencias.3292
National Research Council [NRC]. (2012). A framework for K-12 science education . National Academies Press.
Network, I.-A. T. E. (2015). Critical thinking toolkit . OAS/ITEN.
Normand, M. P. (2008). Science, skepticism, and applied behavior analysis. Behavior Analysis in Practice, 1 (2), 42–49. https://doi.org/10.1007/BF03391727
Norris, S. P., Phillips, L. M., & Korpan, C. A. (2003). University students’ interpretation of media reports of science and its relationship to background knowledge, interest, and reading difficulty. Public Understanding of Science, 12 (2), 123–145. https://doi.org/10.1177/09636625030122001
Oliveras, B., Márquez, C., & Sanmartí, N. (2013). The use of newspaper articles as a tool to develop critical thinking in science classes. International Journal of Science Education, 35 (6), 885–905. https://doi.org/10.1080/09500693.2011.586736
Organisation for Economic Co-operation and Development [OECD]. (2019). PISA 2018. Assessment and Analytical Framework . OECD Publishing. https://doi.org/10.1787/b25efab8-en
Book Google Scholar
Organisation for Economic Co-operation and Development [OECD]. (2020). PISA 2024: Strategic Vision and Direction for Science. https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf
Osborne, J., Pimentel, D., Alberts, B., Allchin, D., Barzilai, S., Bergstrom, C., Coffey, J., Donovan, B., Kivinen, K., Kozyreva, A., & Wineburg, S. (2022). Science Education in an Age of Misinformation . Stanford University.
Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95 (4), 627–638. https://doi.org/10.1002/sce.20438
Pols, C. F. J., Dekkers, P. J. J. M., & De Vries, M. J. (2021). What do they know? Investigating students’ ability to analyse experimental data in secondary physics education. International Journal of Science Education, 43 (2), 274–297. https://doi.org/10.1080/09500693.2020.1865588
Royal Decree 217/2022. (2022). of 29 March, which establishes the organisation and minimum teaching of Compulsory Secondary Education (Vol. 76 , pp. 41571–41789). Spanish Official State Gazette. https://www.boe.es/eli/es/rd/2022/03/29/217
Sagan, C. (1987). The burden of skepticism. Skeptical Inquirer, 12 (1), 38–46. https://skepticalinquirer.org/1987/10/the-burden-of-skepticism/
Santos, L. F. (2017). The role of critical thinking in science education. Journal of Education and Practice, 8 (20), 160–173. https://eric.ed.gov/?id=ED575667
Schafersman, S. D. (1991). An introduction to critical thinking. https://facultycenter.ischool.syr.edu/wp-content/uploads/2012/02/Critical-Thinking.pdf . Accessed 10 May 2023.
Sinatra, G. M., & Hofer, B. K. (2021). How do emotions and attitudes influence science understanding? In Science denial: why it happens and what to do about it (pp. 142–180). Oxford Academic.
Solbes, J., Torres, N., & Traver, M. (2018). Use of socio-scientific issues in order to improve critical thinking competences. Asia-Pacific Forum on Science Learning & Teaching, 19 (1), 1–22. https://www.eduhk.hk/apfslt/
Spektor-Levy, O., Eylon, B. S., & Scherz, Z. (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7 (5), 875–903. https://doi.org/10.1007/s10763-009-9150-6
Taylor, P., Lee, S. H., & Tal, T. (2006). Toward socio-scientific participation: changing culture in the science classroom and much more: Setting the stage. Cultural Studies of Science Education, 1 (4), 645–656. https://doi.org/10.1007/s11422-006-9028-7
Tena-Sánchez, J., & León-Medina, F. J. (2022). Y aún más al fondo del “bullshit”: El papel de la falsificación de preferencias en la difusión del oscurantismo en la teoría social y en la sociedad [And even deeper into “bullshit”: The role of preference falsification in the difussion of obscurantism in social theory and in society]. Scio, 22 , 209–233. https://doi.org/10.46583/scio_2022.22.949
Tytler, R., & Peterson, S. (2004). From “try it and see” to strategic exploration: Characterizing young children's scientific reasoning. Journal of Research in Science Teaching, 41 (1), 94–118. https://doi.org/10.1002/tea.10126
Uskola, A., & Puig, B. (2023). Development of systems and futures thinking skills by primary pre-service teachers for addressing epidemics. Research in Science Education , 1–17. https://doi.org/10.1007/s11165-023-10097-7
Vallverdú, J. (2005). ¿Cómo finalizan las controversias? Un nuevo modelo de análisis: la controvertida historia de la sacarina [How does controversies finish? A new model of analysis: the controversial history of saccharin]. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 2 (5), 19–50. http://www.revistacts.net/wp-content/uploads/2020/01/vol2-nro5-art01.pdf
Vázquez-Alonso, A., & Manassero-Mas, M. A. (2018). Más allá de la comprensión científica: educación científica para desarrollar el pensamiento [Beyond understanding of science: science education for teaching fair thinking]. Revista Electrónica de Enseñanza de las Ciencias, 17 (2), 309–336. http://reec.uvigo.es/volumenes/volumen17/REEC_17_2_02_ex1065.pdf
Willingham, D. T. (2008). Critical thinking: Why is it so hard to teach? Arts Education Policy Review, 109 (4), 21–32. https://doi.org/10.3200/AEPR.109.4.21-32
Yacoubian, H. A. (2020). Teaching nature of science through a critical thinking approach. In W. F. McComas (Ed.), Nature of Science in Science Instruction (pp. 199–212). Springer.
Yacoubian, H. A., & Khishfe, R. (2018). Argumentation, critical thinking, nature of science and socioscientific issues: a dialogue between two researchers. International Journal of Science Education, 40 (7), 796–807. https://doi.org/10.1080/09500693.2018.1449986
Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of elementary science education, 21 (2), 49–58. https://doi.org/10.1007/BF03173684
Zimmerman, C., & Klahr, D. (2018). Development of scientific thinking. In J. T. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (Vol. 4 , pp. 1–25). John Wiley & Sons, Inc..
Download references
Conflict of Interest
The author declares no conflict of interest.
Funding for open access publishing: Universidad de Sevilla/CBUA
Author information
Authors and affiliations.
Departamento de Didáctica de las Ciencias Experimentales y Sociales, Universidad de Sevilla, Seville, Spain
Antonio García-Carmona
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Antonio García-Carmona .
Additional information
Publisher’s note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .
Reprints and permissions
About this article
García-Carmona, A. Scientific Thinking and Critical Thinking in Science Education . Sci & Educ (2023). https://doi.org/10.1007/s11191-023-00460-5
Download citation
Accepted : 30 July 2023
Published : 05 September 2023
DOI : https://doi.org/10.1007/s11191-023-00460-5
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Cognitive skills
- Critical thinking
- Metacognitive skills
- Science education
- Scientific thinking
- Find a journal
- Publish with us
- Track your research
IMAGES
VIDEO