help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Research Questions vs Hypothesis: Understanding the Difference Between Them

Author Image

by  Antony W

August 20, 2021

research questions vs hypothesis

You’ll need to come up with a research question or a hypothesis to guide your next research project. But what is a hypothesis in the first place? What is the perfect definition for a research question? And, what’s the difference between the two?

In this guide to research questions vs hypothesis, we’ll look at the definition of each component and the difference between the two.

We’ll also look at when a research question and a hypothesis may be useful and provide you with some tips that you can use to come up with hypothesis and research questions that will suit your research topic . 

Let’s get to it.

What’s a Research Question?

We define a research question as the exact question you want to answer on a given topic or research project. Good research questions should be clear and easy to understand, allow for the collection of necessary data, and be specific and relevant to your field of study.

Research questions are part of heuristic research methods, where researchers use personal experiences and observations to understand a research subject. By using such approaches to explore the question, you should be able to provide an analytical justification of why and how you should respond to the question. 

While it’s common for researchers to focus on one question at a time, more complex topics may require two or more questions to cover in-depth.

When is a Research Question Useful? 

A research question may be useful when and if: 

  • There isn’t enough previous research on the topic
  • You want to report a wider range out of outcome when doing your research project
  • You want to conduct a more open ended inquiries 

Perhaps the biggest drawback with research questions is that they tend to researchers in a position to “fish expectations” or excessively manipulate their findings.

Again, research questions sometimes tend to be less specific, and the reason is that there often no sufficient previous research on the questions.

What’s a Hypothesis? 

A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement.

Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption.

Researchers use the null approach for statements they can disapprove. They take a hypothesis and add a “not” to it to make it a working null hypothesis.

A null hypothesis is quite common in scientific methods. In this case, you have to formulate a hypothesis, and then conduct an investigation to disapprove the statement.

If you can disapprove the statement, you develop another hypothesis and then repeat the process until you can’t disapprove the statement.

In other words, if a hypothesis is true, then it must have been repeatedly tested and verified.

The consensus among researchers is that, like research questions, a hypothesis should not only be clear and easy to understand but also have a definite focus, answerable, and relevant to your field of study. 

When is a Hypothesis Useful?

A hypothesis may be useful when or if:

  • There’s enough previous research on the topic
  • You want to test a specific model or a particular theory
  • You anticipate a likely outcome in advance 

The drawback to hypothesis as a scientific method is that it can hinder flexibility, or possibly blind a researcher not to see unanticipated results.

Research Question vs Hypothesis: Which One Should Come First 

Researchers use scientific methods to hone on different theories. So if the purpose of the research project were to analyze a concept, a scientific method would be necessary.

Such a case requires coming up with a research question first, followed by a scientific method.

Since a hypothesis is part of a research method, it will come after the research question.

Research Question vs Hypothesis: What’s the Difference? 

The following are the differences between a research question and a hypothesis.

We look at the differences in purpose and structure, writing, as well as conclusion. 

Research Questions vs Hypothesis: Some Useful Advice 

As much as there are differences between hypothesis and research questions, you have to state either one in the introduction and then repeat the same in the conclusion of your research paper.

Whichever element you opt to use, you should clearly demonstrate that you understand your topic, have achieved the goal of your research project, and not swayed a bit in your research process.

If it helps, start and conclude every chapter of your research project by providing additional information on how you’ve or will address the hypothesis or research question.

You should also include the aims and objectives of coming up with the research question or formulating the hypothesis. Doing so will go a long way to demonstrate that you have a strong focus on the research issue at hand. 

Research Questions vs Hypothesis: Conclusion 

If you need help with coming up with research questions, formulating a hypothesis, and completing your research paper writing , feel free to talk to us. 

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

research hypotheses or questions

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
Feasible
Interesting
Novel
Ethical
Relevant
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

research hypotheses or questions

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Why professors love us
  • Rebels Blog (Free)
  • Why we are different
  • All Products
  • Coming Soon

Exploring Research Question and Hypothesis Examples: A Comprehensive Guide

Exploring Research Question and Hypothesis Examples: A Comprehensive Guide

This comprehensive guide explores the intricacies of formulating research questions and hypotheses across various academic disciplines. By delving into examples and methodological approaches, the article aims to provide scholars and researchers with the tools necessary to develop robust and effective research frameworks. Understanding and crafting well-formed research questions and hypotheses are pivotal in conducting meaningful research that can significantly contribute to knowledge within a field.

Key Takeaways

  • Understand the fundamental differences and connections between research questions and hypotheses.
  • Learn how to craft effective and precise research questions that guide the research process.
  • Explore various types of hypotheses and methods for testing and refining them.
  • Examine practical examples of research questions and hypotheses across multiple disciplines.
  • Gain insights into the impact of well-constructed research questions and hypotheses on research outcomes, academic publishing, and grant applications.

Understanding the Fundamentals of Research Questions and Hypotheses

Defining research questions.

Research questions are the backbone of any scholarly inquiry, guiding you through the exploration of your chosen topic. They help you focus your study and determine the direction of your research. A well-crafted research question should be clear, focused, and answerable within the constraints of your study.

Characteristics of a Strong Hypothesis

A strong hypothesis provides a specific, testable prediction about the expected outcomes of your research. It is not merely a guess but is grounded in existing literature and theory. To develop a robust hypothesis, consider the variables involved and ensure that it is feasible to test them within your study's design.

Interrelation Between Research Questions and Hypotheses

Understanding the interrelation between research questions and hypotheses is crucial for structuring your research effectively. Your hypothesis should directly address the gap in the literature highlighted by your research question, providing a clear pathway for investigation. This alignment ensures that your study can contribute valuable insights to your field.

Crafting Effective Research Questions

Identifying the purpose.

To craft an effective research question , you must first identify the purpose of your study. This involves understanding what you aim to discover or elucidate through your research. Ask yourself what the core of your inquiry is and what outcomes you hope to achieve. This clarity will guide your entire research process, ensuring that your question is not only relevant but also deeply rooted in your specific academic or practical goals.

Scope and Limitations

It's crucial to define the scope and limitations of your research early on. This helps in setting realistic boundaries and expectations for your study. Consider factors such as time, resources, and the breadth of the subject area. Narrowing down your focus to a manageable scope can prevent the common pitfall of an overly broad or vague question, which can dilute the impact of your findings.

Formulating Questions that Drive Inquiry

The final step in crafting your research question is formulating it in a way that drives inquiry. This means your question should be clear, concise, and structured to prompt detailed investigation and critical analysis. It should challenge existing knowledge and push the boundaries of what is already known. Utilizing strategies like the Thesis Dialogue Blueprint or the Research Proposal Compass can be instrumental in refining your question to ensure it is both innovative and feasible.

Developing Hypotheses in Research

From research questions to hypotheses.

When you transition from research questions to hypotheses, you are essentially moving from what you want to know to what you predict will happen. This shift involves formulating a specific, testable prediction that directly stems from your initial question. Ensure your hypothesis is directly linked to and derived from your research question to maintain a coherent research strategy.

Types of Hypotheses

There are several types of hypotheses you might encounter, including simple, complex, directional, nondirectional, associative, causal, null, and alternative. Each type serves a different purpose and is chosen based on the specifics of the research question and the nature of the study. For instance, a null hypothesis might be used to test the effectiveness of a new teaching method compared to the standard.

Testing and Refining Hypotheses

Testing your hypothesis is a critical step in the research process. This phase involves collecting data, conducting experiments, or utilizing other research methods to determine the validity of your hypothesis. After testing, you may find that your hypothesis needs refining or even reformation based on the outcomes. This iterative process is essential for narrowing down the most accurate explanation or prediction for your research question.

Examples of Research Questions in Various Disciplines

Humanities and social sciences.

In the realm of Humanities and Social Sciences, research questions often explore cultural, social, historical, or philosophical aspects. How does gender representation in 20th-century American literature reflect broader social changes? This question not only seeks to uncover specific literary trends but also ties them to societal shifts, offering a rich field for analysis.

Natural Sciences

Research questions in the Natural Sciences are typically aimed at understanding natural phenomena or solving specific scientific problems. A common question might be, What are the effects of plastic pollutants on marine biodiversity? This inquiry highlights the environmental concerns and seeks empirical data to understand the impact.

Applied Sciences

In Applied Sciences, the focus is often on improving technology or engineering solutions. A pertinent question could be, How can renewable energy sources be integrated into existing power grids? This question addresses the practical challenges and potential innovations in energy systems, crucial for advancing sustainable technologies.

Analyzing Hypothesis Examples Across Fields

Case studies in psychology.

In psychology, hypotheses often explore the causal relationships between cognitive functions and behaviors. Consider how a hypothesis might predict the impact of stress on memory recall . By examining various case studies, you can see how hypotheses are specifically tailored to address intricate psychological phenomena.

Experimental Research in Biology

Biology experiments frequently test hypotheses about physiological processes or genetic information. For instance, a hypothesis might propose that a specific gene influences plant growth rates. Through rigorous testing, these hypotheses contribute significantly to our understanding of biological systems.

Field Studies in Environmental Science

Field studies in environmental science provide a rich ground for testing hypotheses related to ecosystem dynamics and conservation strategies. A common hypothesis might explore the effects of human activity on biodiversity. These studies often involve complex data collection and analysis, highlighting the interrelation between empirical evidence and theoretical predictions.

Methodological Approaches to Formulating Hypotheses

Quantitative vs. qualitative research.

When you embark on hypothesis formulation, understanding the distinction between quantitative and qualitative research methodologies is crucial. Quantitative research focuses on numerical data and statistical analysis, ideal for hypotheses that require measurable evidence. In contrast, qualitative research delves into thematic and descriptive data, providing depth and context to hypotheses that explore behaviors, perceptions, and experiences.

The Role of Theoretical Frameworks

Theoretical frameworks serve as the backbone for developing robust hypotheses. They provide a structured way to align your hypothesis with existing knowledge. By integrating theories and models relevant to your study, you ensure that your hypothesis has a solid foundation and aligns with established academic thought.

Utilizing Existing Literature to Form Hypotheses

A thorough review of existing literature is indispensable for crafting a well-informed hypothesis. This process not only highlights gaps in current research but also allows you to build on the work of others. By synthesizing findings from previous studies, you can formulate hypotheses that are both innovative and grounded in academic precedent.

Evaluating the Impact of Well-Formed Research Questions and Hypotheses

On research outcomes.

Understanding the impact of well-formed research questions and hypotheses on research outcomes is crucial. Well-crafted questions and hypotheses serve as a framework that guides the entire research process , ensuring that the study remains focused and relevant. They help in defining the scope of the study and in identifying the variables that need to be measured, thus directly influencing the validity and reliability of the research findings.

In Academic Publishing

The role of well-defined research questions and hypotheses extends beyond the research process into the realm of academic publishing. A clear hypothesis provides a strong foundation for the research paper, enhancing its chances of acceptance in prestigious journals. The clarity and direction afforded by a solid hypothesis make the research more appealing to a scholarly audience, potentially increasing citation rates and academic recognition.

In Grant Applications

When applying for research grants, the clarity of your research questions and hypotheses can significantly impact the decision-making process of funding bodies. A well-articulated hypothesis demonstrates a clear vision and a structured approach to addressing a specific issue, which can be crucial in securing funding. Grant reviewers often look for proposals that promise substantial contributions to the field, and a strong hypothesis can be a key factor in showcasing the potential impact of your research.

In our latest article, 'Evaluating the Impact of Well-Formed Research Questions and Hypotheses,' we delve into the crucial role that precise questions and hypotheses play in academic research. Understanding this can significantly enhance your thesis writing process. For a deeper exploration and practical tools to apply these concepts, visit our website and discover how our Thesis Action Plan can transform your academic journey. Don't miss out on our special offers tailored just for you!

In this comprehensive guide, we have explored various examples of research questions and hypotheses, shedding light on their significance and application in academic research. Understanding the distinction between a research question and a hypothesis, as well as knowing how to effectively formulate them, is crucial for conducting methodical and impactful studies. By examining different scenarios and examples, this guide aims to equip researchers with the knowledge to craft well-defined research questions and hypotheses that can drive meaningful investigations and contribute to the broader field of knowledge. As we continue to delve into the intricacies of research design, it is our hope that this guide serves as a valuable resource for both novice and experienced researchers in their scholarly endeavors.

Frequently Asked Questions

What is a research question.

A research question is a clearly defined query that guides a scientific or academic study. It sets the scope and focus of the research by asking about a specific phenomenon or issue.

How does a hypothesis differ from a research question?

A hypothesis is a specific, testable prediction about what will happen in a study based on prior knowledge or theory, while a research question is an open query that guides the direction of the investigation.

What are the characteristics of a strong hypothesis?

A strong hypothesis is clear, testable, based on existing knowledge, and it states an expected relationship between variables.

How can research questions and hypotheses interrelate?

Research questions define the scope of inquiry, while hypotheses provide a specific prediction about the expected outcomes that can be tested through research methods.

What should be considered when formulating a research question?

When formulating a research question, consider clarity, focus, relevance, and the feasibility of answering the question through available research methods.

Why is it important to have a well-formed hypothesis?

A well-formed hypothesis directs the research process, allows for clear testing of assumptions, and helps in drawing meaningful conclusions that can contribute to the body of knowledge.

10 Effective Strategies for Research Question Help

How to Ask a Research Question: Crafting Inquiries that Matter

How to write a master thesis proposal: a comprehensive guide, how to write a proposal for a thesis: expert advice and techniques, what makes a good hypothesis: key elements and tips, how to prepare a thesis proposal: essential steps and strategies.

Avoiding Procrastination Pitfalls: Bachelor Thesis Progress and Weekend Celebrations

Avoiding Procrastination Pitfalls: Bachelor Thesis Progress and Weekend Celebrations

How Do You Write a Hypothesis for a Research Paper? Step-by-Step Guide

How Do You Write a Hypothesis for a Research Paper? Step-by-Step Guide

How to Write a Thesis Fast: Tips and Strategies for Success

How to Write a Thesis Fast: Tips and Strategies for Success

The Note-Taking Debate: Pros and Cons of Digital and Analog Methods

The Note-Taking Debate: Pros and Cons of Digital and Analog Methods

Maximize Your Academic Excellence with These 9 Evening Habits for Quality Sleep

Maximize Your Academic Excellence with These 9 Evening Habits for Quality Sleep

Comprehensive Thesis Guide

Thesis Action Plan

Research Proposal Compass

  • Rebels Blog
  • Blog Articles
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

research hypotheses or questions

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

research hypotheses or questions

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

research hypotheses or questions

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

research hypotheses or questions

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

research hypotheses or questions

Take Top AI Tools for Researchers for a Spin with the Editage All Access 7-Day Pass!

thesis defense

Thesis Defense: How to Ace this Crucial Step

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Writing Strong Research Questions | Criteria & Examples

Writing Strong Research Questions | Criteria & Examples

Published on October 26, 2022 by Shona McCombes . Revised on November 21, 2023.

A research question pinpoints exactly what you want to find out in your work. A good research question is essential to guide your research paper , dissertation , or thesis .

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Table of contents

How to write a research question, what makes a strong research question, using sub-questions to strengthen your main research question, research questions quiz, other interesting articles, frequently asked questions about research questions.

You can follow these steps to develop a strong research question:

  • Choose your topic
  • Do some preliminary reading about the current state of the field
  • Narrow your focus to a specific niche
  • Identify the research problem that you will address

The way you frame your question depends on what your research aims to achieve. The table below shows some examples of how you might formulate questions for different purposes.

Research question formulations
Describing and exploring
Explaining and testing
Evaluating and acting is X

Using your research problem to develop your research question

Example research problem Example research question(s)
Teachers at the school do not have the skills to recognize or properly guide gifted children in the classroom. What practical techniques can teachers use to better identify and guide gifted children?
Young people increasingly engage in the “gig economy,” rather than traditional full-time employment. However, it is unclear why they choose to do so. What are the main factors influencing young people’s decisions to engage in the gig economy?

Note that while most research questions can be answered with various types of research , the way you frame your question should help determine your choices.

Prevent plagiarism. Run a free check.

Research questions anchor your whole project, so it’s important to spend some time refining them. The criteria below can help you evaluate the strength of your research question.

Focused and researchable

Criteria Explanation
Focused on a single topic Your central research question should work together with your research problem to keep your work focused. If you have multiple questions, they should all clearly tie back to your central aim.
Answerable using Your question must be answerable using and/or , or by reading scholarly sources on the to develop your argument. If such data is impossible to access, you likely need to rethink your question.
Not based on value judgements Avoid subjective words like , , and . These do not give clear criteria for answering the question.

Feasible and specific

Criteria Explanation
Answerable within practical constraints Make sure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific.
Uses specific, well-defined concepts All the terms you use in the research question should have clear meanings. Avoid vague language, jargon, and too-broad ideas.

Does not demand a conclusive solution, policy, or course of action Research is about informing, not instructing. Even if your project is focused on a practical problem, it should aim to improve understanding rather than demand a ready-made solution.

If ready-made solutions are necessary, consider conducting instead. Action research is a research method that aims to simultaneously investigate an issue as it is solved. In other words, as its name suggests, action research conducts research and takes action at the same time.

Complex and arguable

Criteria Explanation
Cannot be answered with or Closed-ended, / questions are too simple to work as good research questions—they don’t provide enough for robust investigation and discussion.

Cannot be answered with easily-found facts If you can answer the question through a single Google search, book, or article, it is probably not complex enough. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation prior to providing an answer.

Relevant and original

Criteria Explanation
Addresses a relevant problem Your research question should be developed based on initial reading around your . It should focus on addressing a problem or gap in the existing knowledge in your field or discipline.
Contributes to a timely social or academic debate The question should aim to contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on.
Has not already been answered You don’t have to ask something that nobody has ever thought of before, but your question should have some aspect of originality. For example, you can focus on a specific location, or explore a new angle.

Chances are that your main research question likely can’t be answered all at once. That’s why sub-questions are important: they allow you to answer your main question in a step-by-step manner.

Good sub-questions should be:

  • Less complex than the main question
  • Focused only on 1 type of research
  • Presented in a logical order

Here are a few examples of descriptive and framing questions:

  • Descriptive: According to current government arguments, how should a European bank tax be implemented?
  • Descriptive: Which countries have a bank tax/levy on financial transactions?
  • Framing: How should a bank tax/levy on financial transactions look at a European level?

Keep in mind that sub-questions are by no means mandatory. They should only be asked if you need the findings to answer your main question. If your main question is simple enough to stand on its own, it’s okay to skip the sub-question part. As a rule of thumb, the more complex your subject, the more sub-questions you’ll need.

Try to limit yourself to 4 or 5 sub-questions, maximum. If you feel you need more than this, it may be indication that your main research question is not sufficiently specific. In this case, it’s is better to revisit your problem statement and try to tighten your main question up.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

As you cannot possibly read every source related to your topic, it’s important to evaluate sources to assess their relevance. Use preliminary evaluation to determine whether a source is worth examining in more depth.

This involves:

  • Reading abstracts , prefaces, introductions , and conclusions
  • Looking at the table of contents to determine the scope of the work
  • Consulting the index for key terms or the names of important scholars

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Writing Strong Research Questions

Formulating a main research question can be a difficult task. Overall, your question should contribute to solving the problem that you have defined in your problem statement .

However, it should also fulfill criteria in three main areas:

  • Researchability
  • Feasibility and specificity
  • Relevance and originality

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 21). Writing Strong Research Questions | Criteria & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/research-process/research-questions/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to define a research problem | ideas & examples, how to write a problem statement | guide & examples, 10 research question examples to guide your research project, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

How Does a Hypothesis Differ From a Research Question?

David Costello

To understand the difference between a hypothesis and a research question , we must first define the exact nature of scientific inquiry . Essentially, scientific inquiry represents a structured and systematic approach to exploration and discovery, grounded in empirical evidence and guided by the principles of logical reasoning and critical analysis. At the heart of scientific inquiry lies a fundamental commitment to unbiased observation and the rigorous assessment of information, a process that seeks to generate verifiable knowledge based on well-founded theories and methodological robustness.

A pivotal facet of successful scientific investigation is the appropriate framing of research, which serves to delineate the scope and direction of the scholarly endeavor. The meticulous articulation of research parameters not only guides investigators in the methodical exploration of a particular phenomenon but also ensures the reliability and validity of the findings derived from it. Correctly framing a research endeavor equips scholars with a clear framework, thereby preventing research ambiguities and facilitating a coherent and purposeful investigative journey.

Central to the framing of research are two interrelated yet distinct elements: the research question and the hypothesis. While the research question generally articulates the primary inquiry or set of inquiries to be addressed in a study, offering a focal point for the exploration, a hypothesis presents a tentative, testable prediction regarding the expected outcomes of the research. It is grounded in the existing literature and theoretical frameworks, serving as a provisional answer to the research question that is subject to empirical verification.

In essence, a research question seeks to identify and explore potential relationships, patterns, or trends, fostering a deep understanding of the underlying phenomena. In contrast, a hypothesis endeavors to affirm or refute predetermined assumptions through methodical testing and validation, aiming to substantiate or discredit specific theoretical postulates.

To correctly formulate and differentiate between research questions and hypotheses, let us investigate each one in further detail.

Understanding hypotheses

Crafting a well-defined hypothesis is a pivotal step in scholarly research. This task necessitates a profound grasp of the subject matter alongside a comprehensive awareness of existing scholarly dialogues and theories relevant to the topic. The hypothesis acts as a foundational pillar that directs the analytical pathways of the investigation, anchoring the exploration with grounded expectations based on existing knowledge.

In the formulation of a hypothesis, researchers must adhere to vital principles to ensure the creation of a substantial and verifiable statement. A robust hypothesis is delineated by several attributes, including precision, testability, and a congruent alignment with established research and theories. Moreover, it is formulated to facilitate empirical substantiation, aiming to either confirm or refute the established propositions through systematic investigation.

To deepen our comprehension of a hypothesis, let us examine some examples in different research contexts, illustrating how a hypothesis can shape and steer a study:

  • Individuals between the ages of 40 and 60 who engage in regular physical activity are less likely to develop heart diseases than those who do not.
  • Adolescents who experience traumatic events during the COVID-19 pandemic have a higher prevalence of mental health issues than those who do not.
  • Remote learning hampers the development of social skills in elementary school students more than traditional classroom learning does.
  • Implementing multicultural education strategies diminishes the achievement gap in multicultural classrooms.
  • Marine ecosystems that experience high levels of plastic pollution exhibit a substantial reduction in biodiversity.
  • Urbanization leads to a significant decrease in biodiversity in metropolitan areas due to habitat loss.
  • Voting behavior in urban communities is significantly influenced by the socioeconomic status of the individuals.
  • The prevalent use of social media significantly influences the formation of societal norms and behaviors in contemporary society.
  • The integration of artificial intelligence in manufacturing elevates efficiency and productivity.
  • An increased dependence on digital platforms compromises personal privacy and heightens the risk of data security breaches.

Each of these hypothesis examples is constructed to offer focused and testable propositions, rooted in contemporary concerns, creating a pathway for empirical verification and the generation of data-driven insights.

Understanding research questions

A critical first step in any research endeavor is the formulation of a research question, a task that requires a deep understanding of both the topic at hand and the existing scholarly landscape surrounding it. The research question serves as the beacon that guides the trajectory of the investigation, providing a focal point that centers the research activities and objectives.

In constructing a research question, scholars must be guided by certain key principles to ensure that their inquiry is both meaningful and fruitful. A well-framed research question is characterized by clarity, specificity, and a sensible alignment with existing research, which aids in building upon established foundations to foster novel insights within its scholarly domain.

To further understand the concept of research questions, let us consider some concrete examples from various fields that illustrate how a well-articulated research question can guide a research project:

  • How does lifestyle affect the risk of heart disease in adults aged 40-60?
  • What impact has the COVID-19 pandemic had on mental health outcomes in adolescents?
  • How does remote learning impact the academic performance and social skills of elementary school students?
  • What strategies can be employed to reduce the achievement gap in multicultural classrooms?
  • What are the effects of plastic waste on marine ecosystems?
  • How does urbanization impact biodiversity in metropolitan regions?
  • How do socioeconomic factors influence voting behavior in urban communities?
  • What role does social media play in shaping contemporary societal norms and behaviors?
  • How does the implementation of artificial intelligence in manufacturing enhance efficiency and productivity?
  • What are the implications of increasing reliance on digital platforms for personal privacy and data security?

Each of these research question examples not only maintains a clear focus on a specific topic but also stands grounded in current concerns, thereby paving the way for empirical exploration and data-driven conclusions.

Key differences between a hypothesis and a research question

In scholarly research, it is imperative to differentiate clearly between a hypothesis and a research question. The following table delineates the comparative aspects of both concepts:

AspectHypothesisResearch Question
DefinitionA testable statement based on existing knowledge and theories.A question that guides the research, aiming to explore a specific aspect of the study topic.
PurposeTo propose a possible explanation for a phenomenon that can be tested.To identify a topic or issue to be explored and analyzed.
FormationFormed based on literature review and theoretical understanding.Formed through a process of inquiry into the existing literature and identifying gaps or unanswered questions.
TestabilityIt should be testable through experimentation or analysis.It may not be directly testable but guides the research towards data collection and analysis.
ScopeGenerally narrower, focusing on a specific prediction or explanation.Can be broader, seeking to explore a topic deeply and from various angles.
Use in ResearchOften used in experimental, .Frequently utilized in to explore and understand phenomena in depth.
Outcome ExpectationSeeks to prove or disprove a specific statement.Aims to answer open-ended questions and does not seek to prove or disprove a statement.
FlexibilityGenerally fixed; alterations can significantly affect the research outcomes.Can be more flexible, allowing for refinements throughout the research process.
Structural ComplexityCan vary; generally seeks to maintain a level of simplicity to facilitate testing.May involve complex, multi-faceted questions to encourage broad exploration.
FoundationOften grounded in established theories and preliminary research.Can be grounded in a perceived gap in knowledge or arising from exploratory research.
Role in Deductive and Inductive ResearchCentral in deductive research where it guides testing and validation.More frequently used in inductive research where the goal is to develop a theory.

When to use which

The decision to use a hypothesis or a research question largely hinges on the nature and objectives of the study. Essentially, researchers delineate between exploratory and confirmatory research . The former seeks to explore new phenomena and generate new insights, while the latter aims to verify existing theories and hypotheses. Understanding the correct circumstance for employing either a research question or a hypothesis can significantly streamline the research process, directing it towards more targeted conclusions. Let's delve into the specific situations where one may be more appropriate over the other.

Situations where a hypothesis is more appropriate

  • Confirmatory Research: When the research is grounded in existing theories and seeks to validate or invalidate a specific claim or relationship.
  • Quantitative Studies: In research designs that predominantly involve statistical analysis of numerical data to address the research problem.
  • Experimental Research: Where controlled experiments are conducted to explore the causal relationships between different variables.
  • Deductive Approaches: When the research follows a deductive approach , deriving a specific prediction from a general theory.

Situations where a research question is more appropriate

  • Exploratory Research: In studies aiming to explore a new field or topic without much existing literature or established theories.
  • Qualitative Research: When the study involves analyzing non-numerical data such as texts, interviews, or observational data to garner insights.
  • Pilot Studies: Preliminary studies that aim to identify potential issues and refine research tools before a large-scale study.
  • Inductive Approaches: Research approaches that work from specific observations to broader generalizations, aiming to develop new theories.

The interrelation between hypotheses and research questions

Understanding how a research question can give rise to hypotheses.

In scholarly inquiries, the formation of a hypothesis often finds its genesis in a well-articulated research question. This dynamic represents a pivotal juncture in research methodology, facilitating a transition from questioning to hypothesizing and setting the stage for focused analytical scrutiny. Leveraging the exploratory nature of research questions can foster the formulation of grounded hypotheses, guiding the investigative trajectory towards evidence-based conclusions.

Indeed, a well-structured research question can give rise to a series of hypotheses, each presenting a plausible answer to the research question and serving as a focal point for systematic investigation. This correlation facilitates a scaffolded approach to exploration, where researchers can build a layered understanding through a structured inquiry process.

Can a hypothesis transform into a research question?

This iterative process we have described can be envisioned as a cyclic pathway rather than a linear trajectory, wherein hypotheses, once tested and analyzed, can refine or even reformulate the initial research questions. This reflexive relationship fosters a deepened understanding and a more nuanced exploration of the research topic at hand.

To illustrate, consider a research question in the field of healthcare: "What are the primary factors influencing sleep quality in adults?" From this question, a researcher might derive several hypotheses, such as "Adults who engage in regular physical activity experience better sleep quality than those who do not." Once this hypothesis is tested, the findings could lead to further questions, fine-tuning the initial research query to delve into specific age groups, lifestyle factors, or physiological aspects, thereby perpetuating a cycle of inquiry that propels the research into deeper and more focused directions.

Research questions serve as the launchpad for scientific exploration, fostering a direction and scope that steer investigations towards relevant and focused pathways. Conversely, hypotheses act as tentative answers to these research questions, laying a grounded foundation for systematic investigations and guiding the trajectory towards evidence-based conclusions.

Selecting the right approach—whether formulating a hypothesis or crafting a research question—is not merely a procedural choice; it is a strategic decision that significantly influences the outcome of the investigation. Recognizing the interdependent and reflexive relationship between the two can foster a more robust and nuanced approach to scientific inquiry.

By embracing the cyclic pathway that intertwines questioning with hypothesizing, researchers can unlock deeper levels of understanding, paving the way for profound discoveries enriched with insight. Remember, the quality of the answers we obtain is invariably linked to the quality of the questions we ask and the hypotheses we formulate.

Header image by Luke Tanis .

  • Academic Writing Advice
  • All Blog Posts
  • Writing Advice
  • Admissions Writing Advice
  • Book Writing Advice
  • Short Story Advice
  • Employment Writing Advice
  • Business Writing Advice
  • Web Content Advice
  • Article Writing Advice
  • Magazine Writing Advice
  • Grammar Advice
  • Dialect Advice
  • Editing Advice
  • Freelance Advice
  • Legal Writing Advice
  • Poetry Advice
  • Graphic Design Advice
  • Logo Design Advice
  • Translation Advice
  • Blog Reviews
  • Short Story Award Winners
  • Scholarship Winners

Advance your scientific manuscript with expert editing

Advance your scientific manuscript with expert editing

  • Privacy Policy

Research Method

Home » Research Questions – Types, Examples and Writing Guide

Research Questions – Types, Examples and Writing Guide

Table of Contents

Research Questions

Research Questions

Definition:

Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

Types of Research Questions

Types of Research Questions are as follows:

Descriptive Research Questions

These aim to describe a particular phenomenon, group, or situation. For example:

  • What are the characteristics of the target population?
  • What is the prevalence of a particular disease in a specific region?

Exploratory Research Questions

These aim to explore a new area of research or generate new ideas or hypotheses. For example:

  • What are the potential causes of a particular phenomenon?
  • What are the possible outcomes of a specific intervention?

Explanatory Research Questions

These aim to understand the relationship between two or more variables or to explain why a particular phenomenon occurs. For example:

  • What is the effect of a specific drug on the symptoms of a particular disease?
  • What are the factors that contribute to employee turnover in a particular industry?

Predictive Research Questions

These aim to predict a future outcome or trend based on existing data or trends. For example :

  • What will be the future demand for a particular product or service?
  • What will be the future prevalence of a particular disease?

Evaluative Research Questions

These aim to evaluate the effectiveness of a particular intervention or program. For example:

  • What is the impact of a specific educational program on student learning outcomes?
  • What is the effectiveness of a particular policy or program in achieving its intended goals?

How to Choose Research Questions

Choosing research questions is an essential part of the research process and involves careful consideration of the research problem, objectives, and design. Here are some steps to consider when choosing research questions:

  • Identify the research problem: Start by identifying the problem or issue that you want to study. This could be a gap in the literature, a social or economic issue, or a practical problem that needs to be addressed.
  • Conduct a literature review: Conducting a literature review can help you identify existing research in your area of interest and can help you formulate research questions that address gaps or limitations in the existing literature.
  • Define the research objectives : Clearly define the objectives of your research. What do you want to achieve with your study? What specific questions do you want to answer?
  • Consider the research design : Consider the research design that you plan to use. This will help you determine the appropriate types of research questions to ask. For example, if you plan to use a qualitative approach, you may want to focus on exploratory or descriptive research questions.
  • Ensure that the research questions are clear and answerable: Your research questions should be clear and specific, and should be answerable with the data that you plan to collect. Avoid asking questions that are too broad or vague.
  • Get feedback : Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, feasible, and meaningful.

How to Write Research Questions

Guide for Writing Research Questions:

  • Start with a clear statement of the research problem: Begin by stating the problem or issue that your research aims to address. This will help you to formulate focused research questions.
  • Use clear language : Write your research questions in clear and concise language that is easy to understand. Avoid using jargon or technical terms that may be unfamiliar to your readers.
  • Be specific: Your research questions should be specific and focused. Avoid broad questions that are difficult to answer. For example, instead of asking “What is the impact of climate change on the environment?” ask “What are the effects of rising sea levels on coastal ecosystems?”
  • Use appropriate question types: Choose the appropriate question types based on the research design and objectives. For example, if you are conducting a qualitative study, you may want to use open-ended questions that allow participants to provide detailed responses.
  • Consider the feasibility of your questions : Ensure that your research questions are feasible and can be answered with the resources available. Consider the data sources and methods of data collection when writing your questions.
  • Seek feedback: Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, appropriate, and meaningful.

Examples of Research Questions

Some Examples of Research Questions with Research Titles:

Research Title: The Impact of Social Media on Mental Health

  • Research Question : What is the relationship between social media use and mental health, and how does this impact individuals’ well-being?

Research Title: Factors Influencing Academic Success in High School

  • Research Question: What are the primary factors that influence academic success in high school, and how do they contribute to student achievement?

Research Title: The Effects of Exercise on Physical and Mental Health

  • Research Question: What is the relationship between exercise and physical and mental health, and how can exercise be used as a tool to improve overall well-being?

Research Title: Understanding the Factors that Influence Consumer Purchasing Decisions

  • Research Question : What are the key factors that influence consumer purchasing decisions, and how do these factors vary across different demographics and products?

Research Title: The Impact of Technology on Communication

  • Research Question : How has technology impacted communication patterns, and what are the effects of these changes on interpersonal relationships and society as a whole?

Research Title: Investigating the Relationship between Parenting Styles and Child Development

  • Research Question: What is the relationship between different parenting styles and child development outcomes, and how do these outcomes vary across different ages and developmental stages?

Research Title: The Effectiveness of Cognitive-Behavioral Therapy in Treating Anxiety Disorders

  • Research Question: How effective is cognitive-behavioral therapy in treating anxiety disorders, and what factors contribute to its success or failure in different patients?

Research Title: The Impact of Climate Change on Biodiversity

  • Research Question : How is climate change affecting global biodiversity, and what can be done to mitigate the negative effects on natural ecosystems?

Research Title: Exploring the Relationship between Cultural Diversity and Workplace Productivity

  • Research Question : How does cultural diversity impact workplace productivity, and what strategies can be employed to maximize the benefits of a diverse workforce?

Research Title: The Role of Artificial Intelligence in Healthcare

  • Research Question: How can artificial intelligence be leveraged to improve healthcare outcomes, and what are the potential risks and ethical concerns associated with its use?

Applications of Research Questions

Here are some of the key applications of research questions:

  • Defining the scope of the study : Research questions help researchers to narrow down the scope of their study and identify the specific issues they want to investigate.
  • Developing hypotheses: Research questions often lead to the development of hypotheses, which are testable predictions about the relationship between variables. Hypotheses provide a clear and focused direction for the study.
  • Designing the study : Research questions guide the design of the study, including the selection of participants, the collection of data, and the analysis of results.
  • Collecting data : Research questions inform the selection of appropriate methods for collecting data, such as surveys, interviews, or experiments.
  • Analyzing data : Research questions guide the analysis of data, including the selection of appropriate statistical tests and the interpretation of results.
  • Communicating results : Research questions help researchers to communicate the results of their study in a clear and concise manner. The research questions provide a framework for discussing the findings and drawing conclusions.

Characteristics of Research Questions

Characteristics of Research Questions are as follows:

  • Clear and Specific : A good research question should be clear and specific. It should clearly state what the research is trying to investigate and what kind of data is required.
  • Relevant : The research question should be relevant to the study and should address a current issue or problem in the field of research.
  • Testable : The research question should be testable through empirical evidence. It should be possible to collect data to answer the research question.
  • Concise : The research question should be concise and focused. It should not be too broad or too narrow.
  • Feasible : The research question should be feasible to answer within the constraints of the research design, time frame, and available resources.
  • Original : The research question should be original and should contribute to the existing knowledge in the field of research.
  • Significant : The research question should have significance and importance to the field of research. It should have the potential to provide new insights and knowledge to the field.
  • Ethical : The research question should be ethical and should not cause harm to any individuals or groups involved in the study.

Purpose of Research Questions

Research questions are the foundation of any research study as they guide the research process and provide a clear direction to the researcher. The purpose of research questions is to identify the scope and boundaries of the study, and to establish the goals and objectives of the research.

The main purpose of research questions is to help the researcher to focus on the specific area or problem that needs to be investigated. They enable the researcher to develop a research design, select the appropriate methods and tools for data collection and analysis, and to organize the results in a meaningful way.

Research questions also help to establish the relevance and significance of the study. They define the research problem, and determine the research methodology that will be used to address the problem. Research questions also help to determine the type of data that will be collected, and how it will be analyzed and interpreted.

Finally, research questions provide a framework for evaluating the results of the research. They help to establish the validity and reliability of the data, and provide a basis for drawing conclusions and making recommendations based on the findings of the study.

Advantages of Research Questions

There are several advantages of research questions in the research process, including:

  • Focus : Research questions help to focus the research by providing a clear direction for the study. They define the specific area of investigation and provide a framework for the research design.
  • Clarity : Research questions help to clarify the purpose and objectives of the study, which can make it easier for the researcher to communicate the research aims to others.
  • Relevance : Research questions help to ensure that the study is relevant and meaningful. By asking relevant and important questions, the researcher can ensure that the study will contribute to the existing body of knowledge and address important issues.
  • Consistency : Research questions help to ensure consistency in the research process by providing a framework for the development of the research design, data collection, and analysis.
  • Measurability : Research questions help to ensure that the study is measurable by defining the specific variables and outcomes that will be measured.
  • Replication : Research questions help to ensure that the study can be replicated by providing a clear and detailed description of the research aims, methods, and outcomes. This makes it easier for other researchers to replicate the study and verify the results.

Limitations of Research Questions

Limitations of Research Questions are as follows:

  • Subjectivity : Research questions are often subjective and can be influenced by personal biases and perspectives of the researcher. This can lead to a limited understanding of the research problem and may affect the validity and reliability of the study.
  • Inadequate scope : Research questions that are too narrow in scope may limit the breadth of the study, while questions that are too broad may make it difficult to focus on specific research objectives.
  • Unanswerable questions : Some research questions may not be answerable due to the lack of available data or limitations in research methods. In such cases, the research question may need to be rephrased or modified to make it more answerable.
  • Lack of clarity : Research questions that are poorly worded or ambiguous can lead to confusion and misinterpretation. This can result in incomplete or inaccurate data, which may compromise the validity of the study.
  • Difficulty in measuring variables : Some research questions may involve variables that are difficult to measure or quantify, making it challenging to draw meaningful conclusions from the data.
  • Lack of generalizability: Research questions that are too specific or limited in scope may not be generalizable to other contexts or populations. This can limit the applicability of the study’s findings and restrict its broader implications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Problem statement

Problem Statement – Writing Guide, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Delimitations

Delimitations in Research – Types, Examples and...

Research Techniques

Research Techniques – Methods, Types and Examples

Research Recommendations

Research Recommendations – Examples and Writing...

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic &amp; molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids &amp; bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals &amp; rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants &amp; mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition &amp; subtraction addition & subtraction, sciencing_icons_multiplication &amp; division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations &amp; expressions equations & expressions, sciencing_icons_ratios &amp; proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents &amp; logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅
  • Probability & Statistics

The Difference Between Research Questions & Hypothesis

Researchers use one or both of these tools to guide their research.

To Calculate Arcsine, What Buttons Do You Press on a Scientific ...

Research questions and hypothesis are tools used in similar ways for different research methods. Both hypothesis and research questions are written before research begins and are used to help guide the research. Hypothesis are used in deductive research, where researchers use logic and scientific findings to either prove or disprove assumptions. Heuristic research is based on experience, where researchers use observations to learn about the research subject.

Definitions

A hypothesis is defined as an educated guess, while a research question is simply the researcher wondering about the world. Hypothesis are part of the scientific research method. They are employed in research in science, sociology, mathematics and more. Research questions are part of heuristic research methods, and are also used in many fields including literature, and sociology.

As its name suggests, research questions are always written as questions. Hypothesis are written as statements preceded with the words "I predict." For example, a research question would ask, "What is the effect of heat on the effectiveness of bleach?" A hypothesis would state, "I predict heat will diminish the effectiveness of bleach."

Before Writing

Before writing a hypothesis, the researcher must determine what others have discovered about this subject. On the other hand, a research question requires less preparation, but focus and structure is critical.

For example, a researcher using a hypothesis would look up studies about bleach, information on the chemical properties of the chemical when heated and data about its effectiveness before writing the hypothesis. When using a research question, the researcher would think about how to phrase the question to ensure its scope is not too broad, too narrow or impossible to answer.

Writing Conclusions

When writing the conclusion for research conducted using a hypothesis, the researcher will write whether the hypothesis was correct or incorrect, followed by an explanation of the results of the research. The researcher using only a research question will write the answer to the question, followed by the findings of the research.

Related Articles

To calculate arcsine, what buttons do you press on..., what does data mean in a science fair project, how to test for acidity with litmus paper, how to write a hypothesis of magic milk for 5th grade, difference between proposition & hypothesis, what are the 8 steps in scientific research, how to write a summary on a science project, how to calculate a p-value, what is a quotient & dividend, how to calculate calibration curves, research methods in science, test your knowledge on middle school science, how to use log on a ti-83, how to calculate solubilities, how to calculate a standard score, science project ideas & the scientific method, how to convert pounds per square foot to psi, density vs. concentration, what is an engineering goal in a science project, what is the purpose of factor analysis.

  • The Research Assistant: The Relationship Between the Research Question, Hypotheses, Specific Aims, and Long-Term Goals of the Project

About the Author

Alane Michaelson began writing professionally in 2002. Her work has appeared in Michigan publications such as the "Detroit Free Press" and the "Flint Journal." Michaelson graduated from Oakland University in 2006, earning a Bachelor of Arts in journalism.

Photo Credits

Photos.com/liquidlibrary/Getty Images

Find Your Next Great Science Fair Project! GO

educational research techniques

Research techniques and education.

research hypotheses or questions

Research Purpose, Hypotheses, and Questions

Four key components to a research project are the purpose statement, research questions, hypotheses, and research objectives. In this post, we will define each of these.

Definitions

research hypotheses or questions

The purpose of this study is to examine the relationship between college completion and organizational commitment of undergraduate students in Thailand. 

Here is an example of a qualitative purpose statement.

The purpose of this study is to explore student experiences at a university in Thailand about completing their tertiary degree.

Both of these examples are short one-sentence responses to what the study will attempt to do. This is a critical first step in shaping the study.

Research Question

The research question(s) in a quantitative or qualitative study narrows the purpose down to a specific question(s) for the researcher to find answers. Below are examples from both the quantitative and qualitative perspective. We are continuing the research themes from the previous section on the purpose statement.

Quantitative

Does organizational commitment affect college completion of students?

Qualitative

What kinds of experiences have students had while completing their degree?

On closer examination, you may have noticed that the research questions sound a lot like the purpose statement. Research questions often split a part a long complex purpose statement into several questions. This is why questions sound so redundant when compared to the purpose statement. Despite this apparent problem, this thought process helps researchers to organize their thinking and proceed in a manner that is much more efficient.

The next two components only relate to quantitative research and they are the hypotheses and research objective(s). For this reason our illustration of qualitative concepts will stop at this point.

Hypotheses are statements a researcher makes about the potential outcome(s) of a study based on the examination of literature. Below is an example from the same theme as before.

Students who have a higher perception of organizational commitment will also have a higher likelihood of completing college.

Again, the wording of the research questions, hypotheses and purpose statement are similarly. The difference is only slightly and is due to context. Seeing these similarities quickly will help you to move faster in finishing a study. The difference between these elements is a matter of perspective rather than a strong difference, as they do sound awfully similar.

Research Objectives

Research objectives are the goals a researcher has for a study. This component is not always included in a study. Below is an example.

To examine the correlation between organizational commitment and the rate of college completion

Share this:

10 thoughts on “ research purpose, hypotheses, and questions ”.

' src=

This is the wrong use of the word, it should be “their” not “there”.

The purpose of this study is to explore student experiences at a university in Thailand about completing there tertiary degree.

' src=

Whoops, thanks for catching that

' src=

Thank you for this, very helpful 🙂

' src=

This has been helpful.

' src=

This was helpful. Thank you

Pingback: Developing a Data Analysis Plan | educational research techniques

' src=

This was helpful.

Glad to be of service

' src=

As an emerging researcher, my worry is that I have six objectives but five research questions and hypotheses. Am I correct or they must all be the same in times of numbers? Thank you

' src=

Thank you, this information helped me so much.

Leave a Reply Cancel reply

Discover more from educational research techniques.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

ThePhDHub

10 Significant Differences Between Research Question vs Research Hypothesis

Stating, developing and addressing a research question and developing & justifying the research hypothesis has vital significance in the research process. Both help researchers to approach PhD/research/ projects. 

“Research” is a word important for PhD which includes complex processes of finding new knowledge. A PhD candidate has to prepare a project & research proposal, identify a research gap , state a question, prepare a hypothesis and then do research. 

It includes tedious pre-preparation, lucrative research and frustrating post-preparations phases. So overall the research process though is inquisitive but can be managed by discipline and zero date planning. 

So to prepare for PhD, do it with ease and complete it joyfully; one has to understand every element correctly before starting their research. And for that tons and tons of articles and previous research must be read first. 

In addition, as we talked about, precisely identified research problem helps in stating an excellent research question or research hypothesis. Notwithstanding, students usually don’t understand what a research question or hypothesis is! 

The present blog content will focus on differences between research question and hypothesis and may let you understand what each term is. I hope this article will help you learn the PhD research process more accurately. 

Stay tuned,

Research question:  Does this article explain some common differences between a research question and a research hypothesis?
Research hypothesis:  This article explains the major differences between the research question and the research hypothesis. 

Example of research question: 

Some other examples of research questions are: , example of research hypothesis: , some of the examples of research hypotheses: , summary: research question vs hypothesis: , wrapping up: , what is a research question- simple explanation.

Put simply, a research question is a clear and concise question of the study that must be answered at the end. The answer usually is Yes/No type but clearly fills the gap. 

Let’s take an example, 

What are some common problems the LGBT community faces globally? 

Suppose, this one is one research question around which the researcher has to prepare its study. What can he or she do with this topic? 

  • Conduct gatherings of the community. 
  • Conduct one on one interviews. 
  • Conduct News sessions 
  • Study previous literature. 
  • Organize some Games and invite LGBT community people to take part. 

That’s it, Nothing else he or she can do.  

No statistical analysis is required and performed for this study so the outcome of this study possibly is “problems”. And it can be solved, perhaps. Note that in-depth mathematical models, statistical analysis and other scientific studies aren’t required here. 

  • What are the side effects of social media addiction on youth? 
  • What are the factors that negatively impact the mental health of US people? 
  • How effective carbon emission control strategies are? 

Now let’s understand the research hypothesis. 

What is a research hypothesis?- Simpler explanation

A research hypothesis is postulated in order to predict the results either negative or positive. Notedly is used so often in scientific, experimental and quantitative research.

The research hypothesis is a predictive model for getting results.  

Let’s take an example, 

The effect of time and temperature on biological sample transportation.

This study includes exclusive statistical analysis and data-driven studies to investigate the effect of various temperatures and times on biological specimen transportation. 

 Outcomes of the study will prove that at which temperature a biological sample can be safely transported. 

The outcomes are, 

  • Statistics 
  • The temperature which isn’t good 
  • The temperature which has is best
  • The tolerable zone for transportation

To interpret these kinds of results in-depth mathematical models, statistical analysis, scientific experiments and other biological studies are needed. 

  • The effect of time and temperature on biological sample transportation. 
  • Effect of various doses of antiviral Oseltamivir drug against viral pathogenicity. 
  • Various global warming agents and their impact.  

research hypotheses or questions

I think you get a brief idea about how each term is different. Some of the technical differences between the research question and hypothesis are explained here. 

Differences between research question and research hypothesis: 

A research question is developed depending upon the problem or gap identified while the hypothesis is prepared based on the existing knowledge. 

More than one research question is present in a single study, while the entire research is developed around a single hypothesis that is either proven or disproven at last. 

In-depth knowledge of the subject and huge data or research studies are required to state a research hypothesis; whereas the research question can be stated using a small group of research data or knowledge. 

This indicates that the relatedness among different variables is pretty uncertain for the research question while is highly related in the case of hypothesis. 

A research question is “brief” yet includes all the important information and is open to debate which typically gives an excellent varied degree of output. 

On the other hand, the research hypothesis is a kind of formal statement- (will be proved or disproved) which assumes the relatedness between two or more variables selected for the study. 

For example,

The number of patients, population size, sample type or method selected for the study. 

Both- qualitative and quantitative studies rely on the research question, however, the hypothesis can be postulated mostly for the quantitative or experimental studies. 

Depending upon the nature of the study, the research questions are of three various types which are casual, descriptive and comparative questions while the hypotheses are causal, null, directional or non-directional. 

A thesis question must be answered; A hypothesis must be tested. 

The research question is more an elaborative research term while the hypothesis is more scientific and predictive in nature. 

Henceforth, research questions are usually used in elaborate studies in subjects such as language, arts and literature. And as we said, that’s pretty straightforward. 

The impact of the “Macbeth play” on European people. 

On the other hand, the research hypothesis is based on possibilities and probabilities whose final results either or neither prove the study and therefore include a purely scientific explanation, mathematics, equations and statistical analysis. 

Studies in science, biology and sociology rely on hypotheses (that must be tested first). 

For example, the impact of temperature and time duration on sample transportation and storage. 

Definition A research question is an inquisitive query that must be answered through elaborative research.  A research hypothesis is a predictive problem statement that either approves or disapproves the research at the end. 
Nature Inquisitive/ straightforward  probability/prediction 
Structure Written as a question Written as a statement 
Example What is the impact of the water population on mankind? The possible impact of water pollutants on human health. 
Subjects Literature, arts or language Science, sociology, biology and other STEM subjects 
Outcomes Direct answer. Possible reasons for the answer.  
BackgroundStated when a little or small research or knowledge is available Stated when a significant amount of previous work in a relevant subject is available. 
ApplicationsUsed in qualitative and quantitative studies Used in quantitative, scientific and experimental studies.  

If you are designing scientific research for your PhD, perhaps stating a hypothesis may help you more, although you can raise a question as well to investigate the knowledge. 

Research, as I said, is a complex process, needs the experience to design. 

Early learning may pretty helpful for students to understand the thing well. And hence this article and series of articles on this blog are meant for PhD students. 

Dr Tushar Chauhan

Dr. Tushar Chauhan is a Scientist, Blogger and Scientific-writer. He has completed PhD in Genetics. Dr. Chauhan is a PhD coach and tutor.

Share this:

research hypotheses or questions

  • Share on Facebook
  • Share on Twitter
  • Share on Pinterest
  • Share on Linkedin
  • Share via Email

About The Author

' src=

Dr Tushar Chauhan

Related posts.

What is PhD?- History, Definition, Origin, Requirement, Fees, Duration and Process

What is PhD?- History, Definition, Origin, Requirement, Fees, Duration and Process

How to write a PhD thesis?

How to write a PhD thesis?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Notify me of follow-up comments by email.

Notify me of new posts by email.

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

research hypotheses or questions

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

research hypotheses or questions

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

39 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Juhaida

thank you so much, the explanation and examples are really helpful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Logo for University of Iowa Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Unit 7: Should you believe those…Methods?

26 research questions and hypotheses [you choose to ask].

Or possibly… the question that researcher chose to ask. After processing everything through their ologies, and through their paradigm – both through nature (research is a personal thing – for all of us!) and nurture (ways of doing things handed down through education – remember the p roblems with science discussion?). As you know (if you’ve been reading this text at all, and you’re here now reading, obviously, so I’m guessing that you know) the concepts and terms we’re discussing in the remaining units of this course are multi-pronged and interdependent. We’re going to start light – first, where do we even find the RQs and HYs? Step 1: Locate the central question. Turning it over to your student textbook authors:

Learning Objectives

Why are research questions and hypotheses important? Where are they located?

  • Research Questions and Hypotheses [you choose to ask]

Research questions and hypotheses (also known as RQs and HYs) are super important because they tell you what the researcher wants to answer! It could be “Why are the Cambus’s never on time?” or “Why is Catlett’s dining hall the most popular?” or “The presence of Spring Break improves student mood.”

To properly identify a research question and or hypothesis, you first need to know where you can find them.

There are three places:

  • The literature review (embedded or end)- Which is where the question is first stated.
  • The Results- Sometimes authors will re-state the research question in the results section in order to direct the reader to the answer to their original question.
  • Discussion- Where the study is discussed with other primary research. Sometimes authors will re-state or paraphrase their research question(s) and/or hypotheses when they compare what they found to previous research.

Links to articles reference in the video lecture:

Article 1: Kate Magsamen-Conrad, Jeanette Muhleman Dillon, China Billotte Verhoff & Claire Youngnyo Joa (2020) Toward a Theory of HealthIT Adoption Across the Lifespan: Findings from Five Years in the Community, Health Communication, 35:3, 308-321, DOI: 10.1080/10410236.2018.1563027

https://www.tandfonline.com/doi/abs/10.1080/10410236.2018.1563027

https://www.researchgate.net/publication/330460464_Toward_a_Theory_of_HealthIT_Adoption_Across_the_Lifespan_Findings_from_Five_Years_in_the_Community

Article 2: Kate Magsamen-Conrad, Maria K. Venetis, Maria G. Checton & Kathryn Greene (2019) The Role of Response Perceptions in Couples’ Ongoing Cancer-Related Disclosure, Health Communication, 34:9, 999-1009, DOI: 10.1080/10410236.2018.1452091

https://www.researchgate.net/publication/323953823_The_Role_of_Response_Perceptions_in_Couples’_Ongoing_Cancer-Related_Disclosure

https://www.tandfonline.com/doi/abs/10.1080/10410236.2018.1452091?journalCode=hhth20

https://pubmed.ncbi.nlm.nih.gov/29565693/

Why so many links, Doc? Click here to find out.

The literature review (embedded or end)

It is important to know that research questions and hypotheses, or RQs & HYs, can be embedded within the literature review or directly stated at the end.

DocMC again!: Ok, now. Once upon a time, one of your textbook authors told me that I didn’t need to hammer on some of these concepts (particularly in the experiments unit) because ya’ll learned about independent and dependent variables “in like the 5th grade.” Well, low and behold, 2020 hits and my child was in 100% online school and I have a new, deep, somewhat reluctant understanding of what ya’ll may have learned in 7th grade. And d@mned if she wasn’t right. So, for fun, I’ll sprinkle in questions periodically from one of my son Gabe’s 7th grade science class quizzes. They might look a little something like this:

research hypotheses or questions

Got ideas for questions to include on the exam?

Click this link to add them!

… Unit 1 … Unit 2 …. Unit 3 … Unit 4 … Unit 5 … Unit 6 … Unit 7 … Unit 8 … Unit 9 … Unit 10 … Unit 11 … Unit 12 … Unit 13 … Unit 14 … Unit 15 … Unit 16 …

  • Qualitative vs. Quantitative Research [brief overview]
  • You said it was called the What’s That Now? Article Navigation
  • Research Questions and Hypotheses [you choose to ask] – Breakout Section!

What a researcher aims to answer

Predicted outcome; not necessarily true

Introduction to Social Scientific Research Methods in Communication (3rd Edition) Copyright © 2023 by Kate Magsamen-Conrad. All Rights Reserved.

Share This Book

Examples

AI Generator

research hypotheses or questions

When doing a research action plan students in school would know that the first thing to do is to know your topic well enough. From expecting science projects to work based on your predictions and the results that may have been quite the opposite from how you depicted them. This also rings true in businesses. There is a term for that and it is often associated with the subject Science, but can also be associated with business . Scientific method  or a hypothesis.

What Is a Hypothesis?

A hypothesis is a scientific wild guess, a prediction in research . A wild guess, a say from someone without any known proof.  A hypothesis can also mean a scientific, educated guess that most scientists and researchers do before planning out or doing experiments to check if their guesses or their scientific ideas based on their topics are exact or correct.

Hypothesis Format

A well-structured hypothesis is crucial for guiding scientific research. Here’s a detailed format for writing a hypothesis, along with examples for each step:

1. Start with a Research Question

Before writing a hypothesis, begin with a clear and concise research question . This question identifies the focus of your study.

Example Research Question: Does the amount of daily exercise affect weight loss?

2. Identify the Variables

Identify the independent and dependent variables in your research question.

  • Independent Variable: The variable you manipulate (e.g., amount of daily exercise).
  • Dependent Variable: The variable you measure (e.g., weight loss).

3. Formulate the Hypothesis

Use the identified variables to create a testable statement . This statement should clearly express the expected relationship between the variables.

  • If [independent variable], then [dependent variable].
  • [Independent variable] will [effect] [dependent variable].

Directional vs. Non-Directional Hypothesis:

  • Specifies the direction of the expected relationship.
  • Does not specify the direction of the expected relationship, only that a relationship exists.

4. Example Hypotheses Using the Format

Research question: does caffeine affect cognitive performance, if-then statement:.

  • Example: If individuals consume caffeine, then their cognitive performance will improve.

Direct Statement:

  • Example: Caffeine consumption will improve cognitive performance.

Null Hypothesis (H0):

  • Example: There is no significant effect of caffeine consumption on cognitive performance.

Alternative Hypothesis (H1):

  • Example: There is a significant effect of caffeine consumption on cognitive performance.

Directional Hypothesis:

Non-directional hypothesis:.

  • Example: There is a relationship between caffeine consumption and cognitive performance.

5. Refining the Hypothesis

Ensure that your hypothesis is specific, measurable, and testable. Avoid vague terms and focus on a single independent and dependent variable.

Hypothesis Examples in Research

A hypothesis is a statement that predicts the relationship between variables. It serves as a foundation for research by providing a clear focus and direction for experiments and data analysis . Here are examples of hypotheses from various fields of research:

Research Question:

Does sunlight exposure affect plant growth?

Hypotheses:

  • Null Hypothesis (H0): There is no significant difference in plant growth between plants exposed to sunlight and those kept in the shade.
  • Alternative Hypothesis (H1): Plants exposed to sunlight grow taller than those kept in the shade.
  • Directional Hypothesis: Increased sunlight exposure will lead to increased plant growth.
  • If-Then Statement: If plants are exposed to more sunlight, then they will grow taller.

2. Psychology

Does sleep duration affect memory retention?

  • Null Hypothesis (H0): There is no significant difference in memory retention between individuals who sleep for 8 hours and those who sleep for 4 hours.
  • Alternative Hypothesis (H1): Individuals who sleep for 8 hours will have better memory retention than those who sleep for 4 hours.
  • Directional Hypothesis: Longer sleep duration will improve memory retention.
  • If-Then Statement: If individuals sleep for 8 hours, then their memory retention will improve compared to those who sleep for 4 hours.

3. Education

Do interactive teaching methods improve student engagement?

  • Null Hypothesis (H0): There is no significant difference in student engagement between interactive teaching methods and traditional lecture-based methods.
  • Alternative Hypothesis (H1): Interactive teaching methods result in higher student engagement compared to traditional lecture-based methods.
  • Directional Hypothesis: Interactive teaching methods will increase student engagement.
  • If-Then Statement: If teachers use interactive teaching methods, then student engagement will increase.

4. Medicine

Does a new drug reduce blood pressure more effectively than the standard medication?

  • Null Hypothesis (H0): There is no significant difference in blood pressure reduction between the new drug and the standard medication.
  • Alternative Hypothesis (H1): The new drug reduces blood pressure more effectively than the standard medication.
  • Directional Hypothesis: The new drug will reduce blood pressure more than the standard medication.
  • If-Then Statement: If patients take the new drug, then their blood pressure will decrease more than if they take the standard medication.

5. Sociology

Does socioeconomic status affect access to higher education?

  • Null Hypothesis (H0): There is no significant relationship between socioeconomic status and access to higher education.
  • Alternative Hypothesis (H1): Higher socioeconomic status is associated with greater access to higher education.
  • Directional Hypothesis: Individuals with higher socioeconomic status will have greater access to higher education.
  • If-Then Statement: If individuals have a higher socioeconomic status, then they will have greater access to higher education.

Hypothesis Examples in Psychology

Psychology research often explores the relationships between various cognitive, behavioral, and emotional variables. Here are some well-structured hypothesis examples in psychology:

1. Sleep Duration and Memory Retention

  • Non-Directional Hypothesis: There is a relationship between sleep duration and memory retention.

2. Exercise and Anxiety Levels

Does regular exercise reduce anxiety levels?

  • Null Hypothesis (H0): There is no significant difference in anxiety levels between individuals who exercise regularly and those who do not.
  • Alternative Hypothesis (H1): Individuals who exercise regularly will have lower anxiety levels than those who do not.
  • Directional Hypothesis: Regular exercise will decrease anxiety levels.
  • Non-Directional Hypothesis: There is a relationship between regular exercise and anxiety levels.
  • If-Then Statement: If individuals exercise regularly, then their anxiety levels will decrease.

3. Social Media Usage and Self-Esteem

Does social media usage affect self-esteem in teenagers?

  • Null Hypothesis (H0): There is no significant relationship between social media usage and self-esteem in teenagers.
  • Alternative Hypothesis (H1): High social media usage is associated with lower self-esteem in teenagers.
  • Directional Hypothesis: Increased social media usage will decrease self-esteem in teenagers.
  • Non-Directional Hypothesis: There is a relationship between social media usage and self-esteem in teenagers.
  • If-Then Statement: If teenagers spend more time on social media, then their self-esteem will decrease.

4. Cognitive Behavioral Therapy (CBT) and Depression

Is Cognitive Behavioral Therapy (CBT) effective in reducing symptoms of depression?

  • Null Hypothesis (H0): There is no significant difference in depression symptoms between individuals who undergo CBT and those who do not.
  • Alternative Hypothesis (H1): Individuals who undergo CBT will experience a greater reduction in depression symptoms than those who do not.
  • Directional Hypothesis: CBT will reduce symptoms of depression.
  • Non-Directional Hypothesis: There is a relationship between undergoing CBT and reduction in depression symptoms.
  • If-Then Statement: If individuals undergo CBT, then their symptoms of depression will decrease.

5. Parental Involvement and Academic Achievement

Does parental involvement influence academic achievement in children?

  • Null Hypothesis (H0): There is no significant relationship between parental involvement and academic achievement in children.
  • Alternative Hypothesis (H1): Higher levels of parental involvement are associated with higher academic achievement in children.
  • Directional Hypothesis: Increased parental involvement will improve academic achievement in children.
  • Non-Directional Hypothesis: There is a relationship between parental involvement and academic achievement in children.
  • If-Then Statement: If parents are more involved in their children’s education, then their children will achieve higher academic success.

Hypothesis Examples in Science

Scientific research often involves creating hypotheses to test the relationships between variables. Here are some well-structured hypothesis examples from various fields of science:

1. Biology: Sunlight and Plant Growth

  • Non-Directional Hypothesis: There is a relationship between sunlight exposure and plant growth.

2. Chemistry: Temperature and Reaction Rate

Does temperature affect the rate of a chemical reaction?

  • Null Hypothesis (H0): There is no significant difference in the reaction rate of a chemical reaction at different temperatures.
  • Alternative Hypothesis (H1): Increasing the temperature will increase the reaction rate.
  • Directional Hypothesis: Higher temperatures will increase the reaction rate.
  • Non-Directional Hypothesis: There is a relationship between temperature and the reaction rate.
  • If-Then Statement: If the temperature of a reaction increases, then the reaction rate will increase.

3. Physics: Mass and Free Fall Speed

Does the mass of an object affect its speed when falling?

  • Null Hypothesis (H0): There is no significant difference in the falling speed of objects with different masses.
  • Alternative Hypothesis (H1): Objects with greater mass fall faster than those with lesser mass.
  • Directional Hypothesis: Heavier objects will fall faster than lighter objects.
  • Non-Directional Hypothesis: There is a relationship between the mass of an object and its falling speed.
  • If-Then Statement: If an object’s mass increases, then its falling speed will increase.

4. Environmental Science: Fertilizers and Water Quality

Do chemical fertilizers affect water quality in nearby lakes?

  • Null Hypothesis (H0): There is no significant effect of chemical fertilizers on the water quality of nearby lakes.
  • Alternative Hypothesis (H1): Chemical fertilizers negatively affect the water quality of nearby lakes.
  • Directional Hypothesis: The use of chemical fertilizers will decrease the water quality of nearby lakes.
  • Non-Directional Hypothesis: There is a relationship between the use of chemical fertilizers and the water quality of nearby lakes.
  • If-Then Statement: If chemical fertilizers are used, then the water quality in nearby lakes will decrease.

5. Earth Science: Soil Composition and Erosion Rate

Does soil composition affect the rate of erosion?

  • Null Hypothesis (H0): There is no significant difference in the erosion rate of soils with different compositions.
  • Alternative Hypothesis (H1): Soil composition affects the rate of erosion.
  • Directional Hypothesis: Soils with higher clay content will erode more slowly than sandy soils.
  • Non-Directional Hypothesis: There is a relationship between soil composition and the rate of erosion.
  • If-Then Statement: If soil has a higher clay content, then its erosion rate will be lower compared to sandy soil.

Hypothesis Examples in Biology

In biology, hypotheses are used to explore relationships and effects within biological systems. Here are some well-structured hypothesis examples in various areas of biology:

1. Photosynthesis and Light Intensity

How does light intensity affect the rate of photosynthesis in plants?

  • Null Hypothesis (H0): Light intensity has no significant effect on the rate of photosynthesis in plants.
  • Alternative Hypothesis (H1): Light intensity significantly affects the rate of photosynthesis in plants.
  • Directional Hypothesis: Increased light intensity will increase the rate of photosynthesis in plants.
  • Non-Directional Hypothesis: There is a relationship between light intensity and the rate of photosynthesis in plants.
  • If-Then Statement: If light intensity increases, then the rate of photosynthesis in plants will increase.

2. Temperature and Enzyme Activity

How does temperature affect the activity of the enzyme amylase?

  • Null Hypothesis (H0): Temperature has no significant effect on the activity of the enzyme amylase.
  • Alternative Hypothesis (H1): Temperature significantly affects the activity of the enzyme amylase.
  • Directional Hypothesis: Increasing the temperature will increase the activity of the enzyme amylase up to an optimal point, after which activity will decrease.
  • Non-Directional Hypothesis: There is a relationship between temperature and the activity of the enzyme amylase.
  • If-Then Statement: If the temperature increases, then the activity of the enzyme amylase will increase up to an optimal temperature, after which it will decrease.

3. Nutrient Availability and Plant Growth

Does the availability of nutrients in soil affect the growth of plants?

  • Null Hypothesis (H0): Nutrient availability has no significant effect on the growth of plants.
  • Alternative Hypothesis (H1): Nutrient availability significantly affects the growth of plants.
  • Directional Hypothesis: Increased nutrient availability will enhance plant growth.
  • Non-Directional Hypothesis: There is a relationship between nutrient availability and plant growth.
  • If-Then Statement: If nutrient availability in the soil increases, then the growth of plants will be enhanced.

4. Genetic Variation and Disease Resistance

Does genetic variation in a population affect its resistance to diseases?

  • Null Hypothesis (H0): Genetic variation has no significant effect on disease resistance in a population.
  • Alternative Hypothesis (H1): Genetic variation significantly affects disease resistance in a population.
  • Directional Hypothesis: Populations with greater genetic variation will have higher resistance to diseases.
  • Non-Directional Hypothesis: There is a relationship between genetic variation and disease resistance in a population.
  • If-Then Statement: If a population has greater genetic variation, then its resistance to diseases will be higher.

5. Water pH and Aquatic Life Health

Does the pH level of water affect the health of aquatic life?

  • Null Hypothesis (H0): The pH level of water has no significant effect on the health of aquatic life.
  • Alternative Hypothesis (H1): The pH level of water significantly affects the health of aquatic life.
  • Directional Hypothesis: Extreme pH levels (both high and low) will negatively affect the health of aquatic life.
  • Non-Directional Hypothesis: There is a relationship between the pH level of water and the health of aquatic life.
  • If-Then Statement: If the pH level of water is too high or too low, then the health of aquatic life will be negatively affected.

Hypothesis Examples in Sociology

In sociology, hypotheses are used to explore and explain social phenomena, behaviors, and relationships within societies. Here are some well-structured hypothesis examples in various areas of sociology:

1. Education and Social Mobility

Does access to higher education affect social mobility?

  • Null Hypothesis (H0): Access to higher education has no significant effect on social mobility.
  • Alternative Hypothesis (H1): Access to higher education significantly affects social mobility.
  • Directional Hypothesis: Increased access to higher education will improve social mobility.
  • Non-Directional Hypothesis: There is a relationship between access to higher education and social mobility.
  • If-Then Statement: If individuals have increased access to higher education, then their social mobility will improve.

2. Income Inequality and Crime Rates

Does income inequality influence crime rates in urban areas?

  • Null Hypothesis (H0): Income inequality has no significant effect on crime rates in urban areas.
  • Alternative Hypothesis (H1): Income inequality significantly affects crime rates in urban areas.
  • Directional Hypothesis: Higher income inequality will lead to higher crime rates in urban areas.
  • Non-Directional Hypothesis: There is a relationship between income inequality and crime rates in urban areas.
  • If-Then Statement: If income inequality increases, then crime rates in urban areas will increase.

3. Social Media Use and Social Interaction

Does the use of social media affect face-to-face social interactions among teenagers?

  • Null Hypothesis (H0): The use of social media has no significant effect on face-to-face social interactions among teenagers.
  • Alternative Hypothesis (H1): The use of social media significantly affects face-to-face social interactions among teenagers.
  • Directional Hypothesis: Increased use of social media will decrease face-to-face social interactions among teenagers.
  • Non-Directional Hypothesis: There is a relationship between the use of social media and face-to-face social interactions among teenagers.
  • If-Then Statement: If teenagers use social media more frequently, then their face-to-face social interactions will decrease.

4. Gender Roles and Career Choices

Do traditional gender roles influence career choices among young adults?

  • Null Hypothesis (H0): Traditional gender roles have no significant effect on career choices among young adults.
  • Alternative Hypothesis (H1): Traditional gender roles significantly affect career choices among young adults.
  • Directional Hypothesis: Adherence to traditional gender roles will limit career choices among young adults.
  • Non-Directional Hypothesis: There is a relationship between traditional gender roles and career choices among young adults.
  • If-Then Statement: If young adults adhere to traditional gender roles, then their career choices will be limited.

5. Cultural Diversity and Workplace Productivity

Does cultural diversity in the workplace affect productivity levels?

  • Null Hypothesis (H0): Cultural diversity in the workplace has no significant effect on productivity levels.
  • Alternative Hypothesis (H1): Cultural diversity in the workplace significantly affects productivity levels.
  • Directional Hypothesis: Increased cultural diversity will improve productivity levels in the workplace.
  • Non-Directional Hypothesis: There is a relationship between cultural diversity in the workplace and productivity levels.
  • If-Then Statement: If the workplace has increased cultural diversity, then productivity levels will improve.

More Hypothesis Samples & Examples in PDF

1. research hypothesis.

Research Hypothesis

2. Education Hypothesis

Education Hypothesis

3. Basic Hypothesis

Basic Hypothesis

4. Hypothesis Statement Template

Hypothesis Statement Template

5. Hypothesis in PDF

Hypothesis in PDF

6. Hypothesis Format

Hypothesis Format

7. Hypothesis Examples

Hypothesis Examples

8. Simple Hypothesis

Simple Hypothesis

Types of Hypothesis

Types of Hypothesis

A hypothesis is a statement that can be tested and is often used in scientific research to propose a relationship between two or more variables. Understanding the different types of hypotheses is essential for conducting effective research. Below are the main types of hypotheses:

1. Null Hypothesis (H0)

The null hypothesis states that there is no relationship between the variables being studied. It assumes that any observed effect is due to chance. Researchers often aim to disprove the null hypothesis.

Example: There is no significant difference in test scores between students who study with music and those who study in silence.

2. Alternative Hypothesis (H1 or Ha)

The alternative hypothesis suggests that there is a relationship between the variables being studied. It is what researchers seek to prove.

Example: Students who study with music have higher test scores than those who study in silence.

3. Simple Hypothesis

A simple hypothesis predicts a relationship between a single independent variable and a single dependent variable.

Example: Increasing the amount of sunlight will increase the growth rate of plants.

4. Complex Hypothesis

A complex hypothesis predicts a relationship involving two or more independent variables and/or two or more dependent variables.

Example: Increasing sunlight and water will increase the growth rate and height of plants.

5. Directional Hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. It suggests whether the relationship is positive or negative.

Example: Students who study for more hours will score higher on exams.

6. Non-Directional Hypothesis

A non-directional hypothesis does not specify the direction of the relationship. It only states that a relationship exists.

Example: There is a difference in test scores between students who study with music and those who study in silence.

7. Statistical Hypothesis

A statistical hypothesis involves quantitative data and can be tested using statistical methods. It often includes both null and alternative hypotheses.

Example: The mean test scores of students who study with music are significantly different from those who study in silence.

8. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between variables. It suggests that one variable causes a change in another.

Example: Smoking causes lung cancer.

9. Associative Hypothesis

An associative hypothesis suggests that variables are related but does not imply causation.

Example: There is an association between physical activity levels and body weight.

10. Research Hypothesis

A research hypothesis is a broad statement that serves as the foundation for the research study. It is often the same as the alternative hypothesis.

Example: Implementing a new teaching strategy will improve student engagement and performance.

How To Use Hypothesis for Research?

A hypothesis is a critical component of the research process, providing a clear direction for the study and forming the basis for drawing conclusions. Here’s a step-by-step guide on how to use a hypothesis in research:

1. Identify the Research Problem

Before formulating a hypothesis, clearly define the research problem or question. This step involves understanding what you aim to investigate and why it is significant.

Example: You want to study the impact of sleep on academic performance among college students.

2. Review Existing Literature

Conduct a thorough review of existing literature to understand what is already known about the topic. This helps in identifying gaps in knowledge and forming a basis for your hypothesis.

Example: Previous studies suggest a positive correlation between sleep duration and academic performance but lack specific data on college students.

Based on the research problem and literature review, formulate a clear and testable hypothesis. Ensure it is specific and relates directly to the variables being studied.

Types of Hypotheses:

  • Null Hypothesis (H0): There is no significant relationship between sleep duration and academic performance among college students.
  • Alternative Hypothesis (H1): There is a significant relationship between sleep duration and academic performance among college students.

4. Define Variables

Clearly define the independent and dependent variables involved in the hypothesis.

  • Independent Variable: Sleep duration
  • Dependent Variable: Academic performance (e.g., GPA)

5. Design the Study

Choose an appropriate research design to test the hypothesis. This could be experimental, correlational, or observational, depending on the nature of your research question.

Example: Conduct a correlational study to examine the relationship between sleep duration and GPA among college students.

6. Collect Data

Gather data through surveys, experiments, or secondary data sources. Ensure the data collection methods are reliable and valid to accurately test the hypothesis.

Example: Use a questionnaire to collect data on students’ sleep duration and their GPAs.

7. Analyze the Data

Use appropriate statistical methods to analyze the data. This step involves testing the hypothesis to determine whether to accept or reject the null hypothesis.

Example: Perform a Pearson correlation analysis to examine the relationship between sleep duration and GPA.

8. Interpret the Results

Interpret the results of the statistical analysis. Determine if the data supports the alternative hypothesis or if the null hypothesis cannot be rejected.

Example: If the analysis shows a significant positive correlation, you can reject the null hypothesis and accept the alternative hypothesis that sleep duration is related to academic performance.

9. Draw Conclusions

Draw conclusions based on the results of the hypothesis testing. Discuss the implications of the findings and how they contribute to the existing body of knowledge.

Example: Conclude that longer sleep duration is associated with higher GPA among college students and discuss potential implications for student health and academic policies.

10. Report and Share Findings

Write a detailed report or research paper presenting the hypothesis, methodology, results, and conclusions. Share your findings with the academic community or relevant stakeholders.

Example: Publish the study in a peer-reviewed journal or present it at an academic conference.

How to Write a Hypothesis?

Writing a hypothesis is a crucial step in the scientific method. A well-constructed hypothesis guides your research, helping you design experiments and analyze results. Here’s a step-by-step guide on how to write an effective hypothesis:

1. Understand the Research Question

Start by clearly understanding the research question or problem you want to address. This helps in formulating a focused hypothesis.

Example: How does sunlight exposure affect plant growth?

2. Conduct Preliminary Research

Review existing literature related to your research question. This helps in understanding what is already known and identifying gaps in knowledge.

Example: Studies show that plants generally grow better with more sunlight, but the optimal amount varies.

3. Identify Variables

Determine the independent and dependent variables for your study.

  • Independent Variable: The factor you manipulate (e.g., sunlight exposure).
  • Dependent Variable: The factor you measure (e.g., plant growth).

4. Formulate a Simple Hypothesis

A simple hypothesis involves one independent and one dependent variable. Clearly state the expected relationship between these variables.

Example: Increasing sunlight exposure will increase plant growth.

5. Choose the Type of Hypothesis

Decide whether your hypothesis will be null or alternative, directional or non-directional.

  • Null Hypothesis (H0): There is no relationship between the variables.
  • Alternative Hypothesis (H1): There is a relationship between the variables.
  • Directional Hypothesis: Specifies the direction of the relationship.
  • Non-Directional Hypothesis: Does not specify the direction.

Example of Directional Hypothesis: Plants exposed to more sunlight will grow taller than those exposed to less sunlight.

6. Ensure Testability

Make sure your hypothesis can be tested through experiments or observations. It should be measurable and falsifiable.

Example: Plants will be grown under different levels of sunlight, and their growth will be measured over time.

7. Write the Hypothesis

Write your hypothesis in a clear, concise, and specific manner. It should include the variables and the expected relationship between them.

Example: If plants are exposed to increased sunlight, then they will grow taller compared to plants that receive less sunlight.

8. Refine the Hypothesis

Ensure that your hypothesis is specific and narrow enough to be testable but broad enough to cover the scope of your research.

Example: If tomato plants are exposed to 8 hours of sunlight per day, then they will grow taller and produce more fruit compared to tomato plants exposed to 4 hours of sunlight per day.

How Do You Formulate a Hypothesis?

To formulate a hypothesis, identify the research question, review existing literature, define variables, and create a testable statement predicting the relationship between the variables.

What Is the Difference Between Null and Alternative Hypotheses?

The null hypothesis (H0) states there is no effect or relationship, while the alternative hypothesis (H1) proposes that there is an effect or relationship.

Why Is a Hypothesis Important in Research?

A hypothesis provides a clear focus for the study, guiding the research design, data collection, and analysis, ultimately helping to draw meaningful conclusions.

Can a Hypothesis Be Proven True?

A hypothesis cannot be proven true; it can only be supported or refuted through experimentation and analysis. Even if supported, it remains open to further testing.

What Makes a Good Hypothesis?

A good hypothesis is clear, concise, specific, testable, and based on existing knowledge. It should predict a relationship between variables that can be measured.

How Is a Hypothesis Tested?

A hypothesis is tested through experiments or observations, collecting and analyzing data to determine if the results support or refute the hypothesis.

What Are the Types of Hypotheses?

Types of hypotheses include null, alternative, simple, complex, directional, non-directional, statistical, causal, and associative.

What Is a Directional Hypothesis?

A directional hypothesis specifies the expected direction of the relationship between variables, indicating whether the effect will be positive or negative.

What Is a Non-Directional Hypothesis?

A non-directional hypothesis states that a relationship exists between variables but does not specify the direction of the relationship.

How Do You Refine a Hypothesis?

Refine a hypothesis by ensuring it is specific, measurable, and testable. Remove any vague terms and focus on a single independent and dependent variable.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Clarifying the Research Questions or Hypotheses

  • First Online: 28 March 2017

Cite this chapter

research hypotheses or questions

  • Kenan Dikilitaş 3 &
  • Carol Griffiths 4  

1059 Accesses

This chapter deals with the important, but often neglected, issue of establishing research questions or hypotheses, whether this is done before or (in the “real world”) often after the study has been conducted. The point is made that, in fact, research questions tend to be more common than hypotheses in action research, and guidelines are suggested for delineating such questions and deciding on appropriate question types according to the research purpose. Some example questions are provided to stimulate ideas, and an example action research study which will proceed in stages throughout the book is begun here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and affiliations.

Faculty of Educational Sciences, Bahçeşehir University, Istanbul, Turkey

Kenan Dikilitaş

Freelance, Istanbul, Turkey

Carol Griffiths

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Dikilitaş, K., Griffiths, C. (2017). Clarifying the Research Questions or Hypotheses. In: Developing Language Teacher Autonomy through Action Research. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-50739-2_2

Download citation

DOI : https://doi.org/10.1007/978-3-319-50739-2_2

Published : 28 March 2017

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-319-50738-5

Online ISBN : 978-3-319-50739-2

eBook Packages : Social Sciences Social Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

bioRxiv

Short steps can take you far: Phylogenetic analysis of Australasian Cheilanthes distans reveals frequent shorter-range dispersal

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karla Sosa
  • For correspondence: [email protected]
  • Info/History
  • Supplementary material
  • Preview PDF

Biologists have long pondered species' geographical distributions and sought to understand what factors drive dispersal and determine species ranges. In considering plant species with large ranges, a question that has remained underexplored is whether large ranges are attained primarily through many instances of short scale dispersal or whether instead widespread ranges are attained by propagules with increased dispersal distances. Ferns provide an ideal system to explore this question as their propagules are very small spores, which have been theorised can be carried by wind to essentially anywhere on the planet. Unfortunately, population-level genetic data in ferns is relatively uncommon, limiting our ability to answer this and related questions. For this work, I focus on Cheilanthes distans (Pteridaceae) as a study system, a widespread fern with extensive spore variation that occurs over Australia and into New Zealand/Aotearoa, New Caledonia, and other Pacific islands. I sampled widely across the species' range, in addition to across Australasian Cheilanthes (as a robust tree for the genus does not exist), ultimately building a phylogeny based on the GoFlag 451 bait set. With these data, we can investigate additional questions, including whether reproductive mode, polyploidy, or lineage influence dispersal, as well as whether movement is occurring randomly or is instead asymmetrical. I explored the relationships between sexual and apomictic specimens to understand whether the former are the parental lineages to apomictic plants and whether we find evidence for apomictic plants dispersing out of a small parental range. I investigated how many times polyploid lineages have arisen in C. distans and whether they are each limited geographically, perhaps forming isolated ranges that collectively result in C. distans' larger range. Additionally, I generated estimates for ancestral ranges and dispersal between populations to understand whether certain lineages are limited to particular geographic regions, to explore the directionality of dispersal, and to assess whether most movement is happening over short or long distances. Particularly interestingly, I find that most dispersal in this species appears to occur over smaller steps rather than longer jumps, underscoring how short movement can nevertheless allow for establishment of large ranges; this dispersal is not limited phylogenetically and seems to occur equally for all lineages. What is more, I find evidence for asymmetrical dispersal directionality, apparently most frequently tracking trade winds. These findings demonstrate the importance of population-level data, and provide concrete results that add nuance to long-standing dispersibility hypotheses in the fern community that have, until now, lacked empirical data.

Competing Interest Statement

The authors have declared no competing interest.

https://doi.org/10.7910/DVN/BL7FMR

https://doi.org/10.7910/DVN/1TGMRV

https://doi.org/10.7910/DVN/AUHWGP

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
  • Animal Behavior and Cognition (5410)
  • Biochemistry (12210)
  • Bioengineering (9142)
  • Bioinformatics (30130)
  • Biophysics (15482)
  • Cancer Biology (12571)
  • Cell Biology (18064)
  • Clinical Trials (138)
  • Developmental Biology (9747)
  • Ecology (14610)
  • Epidemiology (2067)
  • Evolutionary Biology (18770)
  • Genetics (12543)
  • Genomics (17211)
  • Immunology (12305)
  • Microbiology (29030)
  • Molecular Biology (12047)
  • Neuroscience (63187)
  • Paleontology (463)
  • Pathology (1936)
  • Pharmacology and Toxicology (3366)
  • Physiology (5185)
  • Plant Biology (10802)
  • Scientific Communication and Education (1709)
  • Synthetic Biology (3006)
  • Systems Biology (7538)
  • Zoology (1692)

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. Research Questions vs Hypothesis: Understanding the Difference

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  4. Research Questions & Hypotheses

    However, both research questions and hypotheses serve different purposes and can be beneficial when used together. Research Questions Clarify the research's aim (Farrugia et al., 2010) Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.

  5. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  6. Research Question Vs Hypothesis

    Deductive. Both Research Questions and Hypotheses are essential elements of a research study, but they serve different purposes. Research questions guide the study and help researchers define its scope, while hypotheses are used to test specific cause-and-effect relationships between variables. The choice of which to use depends on the nature ...

  7. Exploring Research Question and Hypothesis Examples: A Comprehensive G

    Exploring Research Question and Hypothesis Examples: A Comprehensive Guide. This comprehensive guide explores the intricacies of formulating research questions and hypotheses across various academic disciplines. By delving into examples and methodological approaches, the article aims to provide scholars and researchers with the tools necessary ...

  8. What is a Research Hypothesis: How to Write it, Types, and Examples

    Creating a research hypothesis to answer a research problem is an iterative process. (Image by rawpixel.com on Freepik) Any research begins with a research question and a research hypothesis.A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis?

  9. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  10. Research questions, hypotheses and objectives

    Research questions, hypotheses and objectives. There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design.

  11. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  12. How Does a Hypothesis Differ From a Research Question?

    The decision to use a hypothesis or a research question largely hinges on the nature and objectives of the study. Essentially, researchers delineate between exploratory and confirmatory research. The former seeks to explore new phenomena and generate new insights, while the latter aims to verify existing theories and hypotheses.

  13. Research Questions

    Applications of Research Questions. Here are some of the key applications of research questions: Defining the scope of the study: Research questions help researchers to narrow down the scope of their study and identify the specific issues they want to investigate.; Developing hypotheses: Research questions often lead to the development of hypotheses, which are testable predictions about the ...

  14. PDF Research Questions and Hypotheses

    Guidelines for writing good quantitative research questions and hypotheses include the following. The use of variables in research questions or hypotheses is typically limited to three basic approaches. The researcher may compare groups on an independent variable to see its impact on a dependent variable.

  15. The Difference Between Research Questions & Hypothesis

    Definitions. A hypothesis is defined as an educated guess, while a research question is simply the researcher wondering about the world. Hypothesis are part of the scientific research method. They are employed in research in science, sociology, mathematics and more. Research questions are part of heuristic research methods, and are also used in ...

  16. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable. So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you'll not only have rock-solid ...

  17. Research Purpose, Hypotheses, and Questions

    Four key components to a research project are the purpose statement, research questions, hypotheses, and research objectives. In this post, we will define each of these. Definitions The purpose statement provides the reader with the overall focus and direction of a study. Both quantitative and qualitative research use purpose statements.

  18. 10 Significant Differences Between Research Question vs Research

    A thesis question must be answered; A hypothesis must be tested. The research question is more an elaborative research term while the hypothesis is more scientific and predictive in nature. Henceforth, research questions are usually used in elaborate studies in subjects such as language, arts and literature.

  19. Research Questions, Objectives & Aims (+ Examples)

    Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

  20. 26 Research Questions and Hypotheses [you choose to ask]

    26 Research Questions and Hypotheses [you choose to ask] . Or possibly… the question that researcher chose to ask. After processing everything through their ologies, and through their paradigm - both through nature (research is a personal thing - for all of us!) and nurture (ways of doing things handed down through education - remember the problems with science discussion?).

  21. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    HYPOTHESES & RESEARCH QUESTIONS. Qualitative Approach. The use of Research Questions as opposed to objectives or hypothesis, is more frequent. Characteristics Use of words- what or how. Specify whether the study: discovers, seeks to understand, explores or describes the experiences. Use of non-directional wording in the question.

  22. Research Questions and Hypotheses

    A hypothesis is a predictive statement about the relationship between 2 or more variables. Research questions are similar to hypotheses, but they are in question format. We expand on that general definition by splitting research questions into 3 basic types: difference questions, associational questions, and descriptive questions. For difference and associational questions, basic means that ...

  23. Hypothesis

    A hypothesis is a statement that predicts the relationship between variables. It serves as a foundation for research by providing a clear focus and direction for experiments and data analysis. Here are examples of hypotheses from various fields of research: 1. Biology.

  24. PDF Clarifying the Research Questions or Hypotheses

    2. arifying the Research Questions or HypothesesResearch is a systematic process of understandin. questions growing in the minds of researchers. It is the res. arch question that triggers one to do research. Selecting or identifying research questions is. he initial stage of developing a research plan. It is a critical process because the c ...

  25. Short steps can take you far: Phylogenetic analysis of ...

    Biologists have long pondered species' geographical distributions and sought to understand what factors drive dispersal and determine species ranges. In considering plant species with large ranges, a question that has remained underexplored is whether large ranges are attained primarily through many instances of short scale dispersal or whether instead widespread ranges are attained by ...