Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Independent and Dependent Variables Examples

The independent variable is the factor the researcher controls, while the dependent variable is the one that is measured.

The independent and dependent variables are key to any scientific experiment, but how do you tell them apart? Here are the definitions of independent and dependent variables, examples of each type, and tips for telling them apart and graphing them.

Independent Variable

The independent variable is the factor the researcher changes or controls in an experiment. It is called independent because it does not depend on any other variable. The independent variable may be called the “controlled variable” because it is the one that is changed or controlled. This is different from the “ control variable ,” which is variable that is held constant so it won’t influence the outcome of the experiment.

Dependent Variable

The dependent variable is the factor that changes in response to the independent variable. It is the variable that you measure in an experiment. The dependent variable may be called the “responding variable.”

Examples of Independent and Dependent Variables

Here are several examples of independent and dependent variables in experiments:

  • In a study to determine whether how long a student sleeps affects test scores, the independent variable is the length of time spent sleeping while the dependent variable is the test score.
  • You want to know which brand of fertilizer is best for your plants. The brand of fertilizer is the independent variable. The health of the plants (height, amount and size of flowers and fruit, color) is the dependent variable.
  • You want to compare brands of paper towels, to see which holds the most liquid. The independent variable is the brand of paper towel. The dependent variable is the volume of liquid absorbed by the paper towel.
  • You suspect the amount of television a person watches is related to their age. Age is the independent variable. How many minutes or hours of television a person watches is the dependent variable.
  • You think rising sea temperatures might affect the amount of algae in the water. The water temperature is the independent variable. The mass of algae is the dependent variable.
  • In an experiment to determine how far people can see into the infrared part of the spectrum, the wavelength of light is the independent variable and whether the light is observed is the dependent variable.
  • If you want to know whether caffeine affects your appetite, the presence/absence or amount of caffeine is the independent variable. Appetite is the dependent variable.
  • You want to know which brand of microwave popcorn pops the best. The brand of popcorn is the independent variable. The number of popped kernels is the dependent variable. Of course, you could also measure the number of unpopped kernels instead.
  • You want to determine whether a chemical is essential for rat nutrition, so you design an experiment. The presence/absence of the chemical is the independent variable. The health of the rat (whether it lives and reproduces) is the dependent variable. A follow-up experiment might determine how much of the chemical is needed. Here, the amount of chemical is the independent variable and the rat health is the dependent variable.

How to Tell the Independent and Dependent Variable Apart

If you’re having trouble identifying the independent and dependent variable, here are a few ways to tell them apart. First, remember the dependent variable depends on the independent variable. It helps to write out the variables as an if-then or cause-and-effect sentence that shows the independent variable causes an effect on the dependent variable. If you mix up the variables, the sentence won’t make sense. Example : The amount of eat (independent variable) affects how much you weigh (dependent variable).

This makes sense, but if you write the sentence the other way, you can tell it’s incorrect: Example : How much you weigh affects how much you eat. (Well, it could make sense, but you can see it’s an entirely different experiment.) If-then statements also work: Example : If you change the color of light (independent variable), then it affects plant growth (dependent variable). Switching the variables makes no sense: Example : If plant growth rate changes, then it affects the color of light. Sometimes you don’t control either variable, like when you gather data to see if there is a relationship between two factors. This can make identifying the variables a bit trickier, but establishing a logical cause and effect relationship helps: Example : If you increase age (independent variable), then average salary increases (dependent variable). If you switch them, the statement doesn’t make sense: Example : If you increase salary, then age increases.

How to Graph Independent and Dependent Variables

Plot or graph independent and dependent variables using the standard method. The independent variable is the x-axis, while the dependent variable is the y-axis. Remember the acronym DRY MIX to keep the variables straight: D = Dependent variable R = Responding variable/ Y = Graph on the y-axis or vertical axis M = Manipulated variable I = Independent variable X = Graph on the x-axis or horizontal axis

  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.) Wadsworth Publishing. ISBN 0-495-59841-0.
  • di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 978-0-521-29925-1.
  • Gauch, Hugh G. Jr. (2003). Scientific Method in Practice . Cambridge University Press. ISBN 978-0-521-01708-4.
  • Popper, Karl R. (2003). Conjectures and Refutations: The Growth of Scientific Knowledge . Routledge. ISBN 0-415-28594-1.

Related Posts

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology archive

Course: biology archive   >   unit 1.

  • The scientific method

Controlled experiments

  • The scientific method and experimental design

experiment two variables

Introduction

How are hypotheses tested.

  • One pot of seeds gets watered every afternoon.
  • The other pot of seeds doesn't get any water at all.

Control and experimental groups

Independent and dependent variables, independent variables, dependent variables, variability and repetition, controlled experiment case study: co 2 ‍   and coral bleaching.

  • What your control and experimental groups would be
  • What your independent and dependent variables would be
  • What results you would predict in each group

Experimental setup

  • Some corals were grown in tanks of normal seawater, which is not very acidic ( pH ‍   around 8.2 ‍   ). The corals in these tanks served as the control group .
  • Other corals were grown in tanks of seawater that were more acidic than usual due to addition of CO 2 ‍   . One set of tanks was medium-acidity ( pH ‍   about 7.9 ‍   ), while another set was high-acidity ( pH ‍   about 7.65 ‍   ). Both the medium-acidity and high-acidity groups were experimental groups .
  • In this experiment, the independent variable was the acidity ( pH ‍   ) of the seawater. The dependent variable was the degree of bleaching of the corals.
  • The researchers used a large sample size and repeated their experiment. Each tank held 5 ‍   fragments of coral, and there were 5 ‍   identical tanks for each group (control, medium-acidity, and high-acidity). Note: None of these tanks was "acidic" on an absolute scale. That is, the pH ‍   values were all above the neutral pH ‍   of 7.0 ‍   . However, the two groups of experimental tanks were moderately and highly acidic to the corals , that is, relative to their natural habitat of plain seawater.

Analyzing the results

Non-experimental hypothesis tests, case study: coral bleaching and temperature, attribution:, works cited:.

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching, and the future of the world's coral reefs. Mar. Freshwater Res. , 50 , 839-866. Retrieved from www.reef.edu.au/climate/Hoegh-Guldberg%201999.pdf.
  • Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS , 105 (45), 17442-17446. http://dx.doi.org/10.1073/pnas.0804478105 .
  • University of California Museum of Paleontology. (2016). Misconceptions about science. In Understanding science . Retrieved from http://undsci.berkeley.edu/teaching/misconceptions.php .
  • Hoegh-Guldberg, O. and Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper, 1797) and Seriatopora hystrix (Dana, 1846). J. Exp. Mar. Biol. Ecol. , 129 , 279-303. Retrieved from http://www.reef.edu.au/ohg/res-pic/HG%20papers/HG%20and%20Smith%201989%20BLEACH.pdf .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Types of Variables in Research | Definitions & Examples

Types of Variables in Research | Definitions & Examples

Published on 19 September 2022 by Rebecca Bevans . Revised on 28 November 2022.

In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design .

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

  • What type of data does the variable contain?
  • What part of the experiment does the variable represent?

Table of contents

Types of data: quantitative vs categorical variables, parts of the experiment: independent vs dependent variables, other common types of variables, frequently asked questions about variables.

Data is a specific measurement of a variable – it is the value you record in your data sheet. Data is generally divided into two categories:

  • Quantitative data represents amounts.
  • Categorical data represents groupings.

A variable that contains quantitative data is a quantitative variable ; a variable that contains categorical data is a categorical variable . Each of these types of variable can be broken down into further types.

Quantitative variables

When you collect quantitative data, the numbers you record represent real amounts that can be added, subtracted, divided, etc. There are two types of quantitative variables: discrete and continuous .

Discrete vs continuous variables
Type of variable What does the data represent? Examples
Discrete variables (aka integer variables) Counts of individual items or values.
Continuous variables (aka ratio variables) Measurements of continuous or non-finite values.

Categorical variables

Categorical variables represent groupings of some kind. They are sometimes recorded as numbers, but the numbers represent categories rather than actual amounts of things.

There are three types of categorical variables: binary , nominal , and ordinal variables.

Binary vs nominal vs ordinal variables
Type of variable What does the data represent? Examples
Binary variables (aka dichotomous variables) Yes/no outcomes.
Nominal variables Groups with no rank or order between them.
Ordinal variables Groups that are ranked in a specific order.

*Note that sometimes a variable can work as more than one type! An ordinal variable can also be used as a quantitative variable if the scale is numeric and doesn’t need to be kept as discrete integers. For example, star ratings on product reviews are ordinal (1 to 5 stars), but the average star rating is quantitative.

Example data sheet

To keep track of your salt-tolerance experiment, you make a data sheet where you record information about the variables in the experiment, like salt addition and plant health.

To gather information about plant responses over time, you can fill out the same data sheet every few days until the end of the experiment. This example sheet is colour-coded according to the type of variable: nominal , continuous , ordinal , and binary .

Example data sheet showing types of variables in a plant salt tolerance experiment

Prevent plagiarism, run a free check.

Experiments are usually designed to find out what effect one variable has on another – in our example, the effect of salt addition on plant growth.

You manipulate the independent variable (the one you think might be the cause ) and then measure the dependent variable (the one you think might be the effect ) to find out what this effect might be.

You will probably also have variables that you hold constant ( control variables ) in order to focus on your experimental treatment.

Independent vs dependent vs control variables
Type of variable Definition Example (salt tolerance experiment)
Independent variables (aka treatment variables) Variables you manipulate in order to affect the outcome of an experiment. The amount of salt added to each plant’s water.
Dependent variables (aka response variables) Variables that represent the outcome of the experiment. Any measurement of plant health and growth: in this case, plant height and wilting.
Control variables Variables that are held constant throughout the experiment. The temperature and light in the room the plants are kept in, and the volume of water given to each plant.

In this experiment, we have one independent and three dependent variables.

The other variables in the sheet can’t be classified as independent or dependent, but they do contain data that you will need in order to interpret your dependent and independent variables.

Example of a data sheet showing dependent and independent variables for a plant salt tolerance experiment.

What about correlational research?

When you do correlational research , the terms ‘dependent’ and ‘independent’ don’t apply, because you are not trying to establish a cause-and-effect relationship.

However, there might be cases where one variable clearly precedes the other (for example, rainfall leads to mud, rather than the other way around). In these cases, you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e., the mud) the outcome variable .

Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the correct statistical test .

But there are many other ways of describing variables that help with interpreting your results. Some useful types of variable are listed below.

Type of variable Definition Example (salt tolerance experiment)
A variable that hides the true effect of another variable in your experiment. This can happen when another variable is closely related to a variable you are interested in, but you haven’t controlled it in your experiment. Pot size and soil type might affect plant survival as much as or more than salt additions. In an experiment, you would control these potential confounders by holding them constant.
Latent variables A variable that can’t be directly measured, but that you represent via a proxy. Salt tolerance in plants cannot be measured directly, but can be inferred from measurements of plant health in our salt-addition experiment.
Composite variables A variable that is made by combining multiple variables in an experiment. These variables are created when you analyse data, not when you measure it. The three plant-health variables could be combined into a single plant-health score to make it easier to present your findings.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, November 28). Types of Variables in Research | Definitions & Examples. Scribbr. Retrieved 24 June 2024, from https://www.scribbr.co.uk/research-methods/variables-types/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, construct validity | definition, types, & examples.

Statology

Statistics Made Easy

A Complete Guide: The 2×2 Factorial Design

A 2×2 factorial design is a type of experimental design that allows researchers to understand the effects of two independent variables (each with two levels ) on a single dependent variable.

2x2 factorial design

For example, suppose a botanist wants to understand the effects of sunlight (low vs. high) and watering frequency (daily vs. weekly) on the growth of a certain species of plant.

Example of a 2x2 factorial design

This is an example of a 2×2 factorial design because there are two independent variables, each with two levels:

  • Levels: Low, High
  • Levels: Daily, Weekly

And there is one dependent variable: Plant growth.

The Purpose of a 2×2 Factorial Design

A 2×2 factorial design allows you to analyze the following effects:

Main Effects: These are the effects that just one independent variable has on the dependent variable.

For example, in our previous scenario we could analyze the following main effects:

  • We can find the mean plant growth of all plants that received low sunlight.
  • We can find the mean plant growth of all plants that received high sunlight.
  • We can find the mean plant growth of all plants that were watered daily.
  • We can find the mean plant growth of all plants that were watered weekly.

Interaction Effects: These occur when the effect that one independent variable has on the dependent variable depends on the level of the other independent variable.

For example, in our previous scenario we could analyze the following interaction effects:

  • Does the effect of sunlight on plant growth depend on watering frequency?
  • Does the effect of watering frequency on plant growth depend on the amount of sunlight?

Visualizing Main Effects & Interaction Effects

When we use a 2×2 factorial design, we often graph the means to gain a better understanding of the effects that the independent variables have on the dependent variable.

For example, consider the following plot:

experiment two variables

Here’s how to interpret the values in the plot:

  • The mean growth for plants that received high sunlight and daily watering was about 8.2 inches.
  • The mean growth for plants that received high sunlight and weekly watering was about 9.6 inches.
  • The mean growth for plants that received low sunlight and daily watering was about 5.3 inches.
  • The mean growth for plants that received low sunlight and weekly watering was about 5.8 inches.

To determine if there is an interaction effect between the two independent variables, we simply need to inspect whether or not the lines are parallel:

  • If the two lines in the plot are parallel, there is no interaction effect.
  • If the two lines in the plot are not parallel, there is an interaction effect.

In the previous plot, the two lines were roughly parallel so there is likely no interaction effect between watering frequency and sunlight exposure.

However, consider the following plot:

experiment two variables

The two lines are not parallel at all (in fact, they cross!), which indicates that there is likely an interaction effect between them.

For example, this means the effect that sunlight has on plant growth depends on the watering frequency.

In other words, sunlight and watering frequency do not affect plant growth independently. Rather, there is an interaction effect between the two independent variables.

How to Analyze a 2×2 Factorial Design

Plotting the means is a visualize way to inspect the effects that the independent variables have on the dependent variable.

However, we can also perform a two-way ANOVA to formally test whether or not the independent variables have a statistically significant relationship with the dependent variable.

For example, the following code shows how to perform a two-way ANOVA for our hypothetical plant scenario in R:

Here’s how to interpret the output of the ANOVA:

  • The p-value associated with sunlight is  .005 . Since this is less than .05, this means sunlight exposure has a statistically significant effect on plant growth.
  • The p-value associated with water is  .028 . Since this is less than .05, this means watering frequency also has a statistically significant effect on plant growth.
  • The p-value for the interaction between sunlight and water is  .156 . Since this is not less than .05, this means there is no interaction effect between sunlight and water.

Additional Resources

A Complete Guide: The 2×3 Factorial Design What Are Levels of an Independent Variable? Independent vs. Dependent Variables What is a Factorial ANOVA?

Featured Posts

experiment two variables

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

8 Replies to “A Complete Guide: The 2×2 Factorial Design”

Excellent explanation. very didactic and complete

How do you properly report this? H or L is fat content and C or I is fiber type. Main effect of fat content is p=0.2 Main effect of fiber type is p=0.01 Interaction term is p=0.15 Tukey’s post hoc reveals HI by HC p=0.12 LI by LC p=0.01

Please can you explain how to calculate sample size for this 2×2 factorial anova example

Thank you very much!

ok, now please tell me how do I calculate the potential risk ratio for the chance that my new girlfriend will cheat on me? and what factors do I have to considerate? From prior field research and previous data collection I feel im missing something… I will gladly share my research

How did you plot this? What was the code?

Very educating

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

Correlation in Psychology: Meaning, Types, Examples & coefficient

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Correlation means association – more precisely, it measures the extent to which two variables are related. There are three possible results of a correlational study: a positive correlation, a negative correlation, and no correlation.
  • A positive correlation is a relationship between two variables in which both variables move in the same direction. Therefore, one variable increases as the other variable increases, or one variable decreases while the other decreases. An example of a positive correlation would be height and weight. Taller people tend to be heavier.

positive correlation

  • A negative correlation is a relationship between two variables in which an increase in one variable is associated with a decrease in the other. An example of a negative correlation would be the height above sea level and temperature. As you climb the mountain (increase in height), it gets colder (decrease in temperature).

negative correlation

  • A zero correlation exists when there is no relationship between two variables. For example, there is no relationship between the amount of tea drunk and the level of intelligence.

zero correlation

Scatter Plots

A correlation can be expressed visually. This is done by drawing a scatter plot (also known as a scattergram, scatter graph, scatter chart, or scatter diagram).

A scatter plot is a graphical display that shows the relationships or associations between two numerical variables (or co-variables), which are represented as points (or dots) for each pair of scores.

A scatter plot indicates the strength and direction of the correlation between the co-variables.

Types of Correlations: Positive, Negative, and Zero

When you draw a scatter plot, it doesn’t matter which variable goes on the x-axis and which goes on the y-axis.

Remember, in correlations, we always deal with paired scores, so the values of the two variables taken together will be used to make the diagram.

Decide which variable goes on each axis and then simply put a cross at the point where the two values coincide.

Uses of Correlations

  • If there is a relationship between two variables, we can make predictions about one from another.
  • Concurrent validity (correlation between a new measure and an established measure).

Reliability

  • Test-retest reliability (are measures consistent?).
  • Inter-rater reliability (are observers consistent?).

Theory verification

  • Predictive validity.

Correlation Coefficients

Instead of drawing a scatter plot, a correlation can be expressed numerically as a coefficient, ranging from -1 to +1. When working with continuous variables, the correlation coefficient to use is Pearson’s r.

Correlation Coefficient Interpretation

The correlation coefficient ( r ) indicates the extent to which the pairs of numbers for these two variables lie on a straight line. Values over zero indicate a positive correlation, while values under zero indicate a negative correlation.

A correlation of –1 indicates a perfect negative correlation, meaning that as one variable goes up, the other goes down. A correlation of +1 indicates a perfect positive correlation, meaning that as one variable goes up, the other goes up.

There is no rule for determining what correlation size is considered strong, moderate, or weak. The interpretation of the coefficient depends on the topic of study.

When studying things that are difficult to measure, we should expect the correlation coefficients to be lower (e.g., above 0.4 to be relatively strong). When we are studying things that are easier to measure, such as socioeconomic status, we expect higher correlations (e.g., above 0.75 to be relatively strong).)

In these kinds of studies, we rarely see correlations above 0.6. For this kind of data, we generally consider correlations above 0.4 to be relatively strong; correlations between 0.2 and 0.4 are moderate, and those below 0.2 are considered weak.

When we are studying things that are more easily countable, we expect higher correlations. For example, with demographic data, we generally consider correlations above 0.75 to be relatively strong; correlations between 0.45 and 0.75 are moderate, and those below 0.45 are considered weak.

Correlation vs. Causation

Causation means that one variable (often called the predictor variable or independent variable) causes the other (often called the outcome variable or dependent variable).

Experiments can be conducted to establish causation. An experiment isolates and manipulates the independent variable to observe its effect on the dependent variable and controls the environment in order that extraneous variables may be eliminated.

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

causation correlationg graph

While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest.

Correlation does not always prove causation, as a third variable may be involved. For example, being a patient in a hospital is correlated with dying, but this does not mean that one event causes the other, as another third variable might be involved (such as diet and level of exercise).

“Correlation is not causation” means that just because two variables are related it does not necessarily mean that one causes the other.

A correlation identifies variables and looks for a relationship between them. An experiment tests the effect that an independent variable has upon a dependent variable but a correlation looks for a relationship between two variables.

This means that the experiment can predict cause and effect (causation) but a correlation can only predict a relationship, as another extraneous variable may be involved that it not known about.

1. Correlation allows the researcher to investigate naturally occurring variables that may be unethical or impractical to test experimentally. For example, it would be unethical to conduct an experiment on whether smoking causes lung cancer.

2 . Correlation allows the researcher to clearly and easily see if there is a relationship between variables. This can then be displayed in a graphical form.

Limitations

1 . Correlation is not and cannot be taken to imply causation. Even if there is a very strong association between two variables, we cannot assume that one causes the other.

For example, suppose we found a positive correlation between watching violence on T.V. and violent behavior in adolescence.

It could be that the cause of both these is a third (extraneous) variable – for example, growing up in a violent home – and that both the watching of T.V. and the violent behavior is the outcome of this.

2 . Correlation does not allow us to go beyond the given data. For example, suppose it was found that there was an association between time spent on homework (1/2 hour to 3 hours) and the number of G.C.S.E. passes (1 to 6).

It would not be legitimate to infer from this that spending 6 hours on homework would likely generate 12 G.C.S.E. passes.

How do you know if a study is correlational?

A study is considered correlational if it examines the relationship between two or more variables without manipulating them. In other words, the study does not involve the manipulation of an independent variable to see how it affects a dependent variable.

One way to identify a correlational study is to look for language that suggests a relationship between variables rather than cause and effect.

For example, the study may use phrases like “associated with,” “related to,” or “predicts” when describing the variables being studied.

Another way to identify a correlational study is to look for information about how the variables were measured. Correlational studies typically involve measuring variables using self-report surveys, questionnaires, or other measures of naturally occurring behavior.

Finally, a correlational study may include statistical analyses such as correlation coefficients or regression analyses to examine the strength and direction of the relationship between variables.

Why is a correlational study used?

Correlational studies are particularly useful when it is not possible or ethical to manipulate one of the variables.

For example, it would not be ethical to manipulate someone’s age or gender. However, researchers may still want to understand how these variables relate to outcomes such as health or behavior.

Additionally, correlational studies can be used to generate hypotheses and guide further research.

If a correlational study finds a significant relationship between two variables, this can suggest a possible causal relationship that can be further explored in future research.

What is the goal of correlational research?

The ultimate goal of correlational research is to increase our understanding of how different variables are related and to identify patterns in those relationships.

This information can then be used to generate hypotheses and guide further research aimed at establishing causality.

Print Friendly, PDF & Email

Related Articles

Mixed Methods Research

Research Methodology

Mixed Methods Research

Conversation Analysis

Conversation Analysis

Discourse Analysis

Discourse Analysis

Phenomenology In Qualitative Research

Phenomenology In Qualitative Research

Ethnography In Qualitative Research

Ethnography In Qualitative Research

Narrative Analysis In Qualitative Research

Narrative Analysis In Qualitative Research

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, independent and dependent variables: which is which.

author image

General Education

feature_variables.jpg

Independent and dependent variables are important for both math and science. If you don't understand what these two variables are and how they differ, you'll struggle to analyze an experiment or plot equations. Fortunately, we make learning these concepts easy!

In this guide, we break down what independent and dependent variables are , give examples of the variables in actual experiments, explain how to properly graph them, provide a quiz to test your skills, and discuss the one other important variable you need to know.

What Is an Independent Variable? What Is a Dependent Variable?

A variable is something you're trying to measure. It can be practically anything, such as objects, amounts of time, feelings, events, or ideas. If you're studying how people feel about different television shows, the variables in that experiment are television shows and feelings. If you're studying how different types of fertilizer affect how tall plants grow, the variables are type of fertilizer and plant height.

There are two key variables in every experiment: the independent variable and the dependent variable.

Independent variable: What the scientist changes or what changes on its own.

Dependent variable: What is being studied/measured.

The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected by any other variable in the experiment. Either the scientist has to change the independent variable herself or it changes on its own; nothing else in the experiment affects or changes it. Two examples of common independent variables are age and time. There's nothing you or anything else can do to speed up or slow down time or increase or decrease age. They're independent of everything else.

The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

An easy way to think of independent and dependent variables is, when you're conducting an experiment, the independent variable is what you change, and the dependent variable is what changes because of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

It can be a lot easier to understand the differences between these two variables with examples, so let's look at some sample experiments below.

body_change-4.jpg

Examples of Independent and Dependent Variables in Experiments

Below are overviews of three experiments, each with their independent and dependent variables identified.

Experiment 1: You want to figure out which brand of microwave popcorn pops the most kernels so you can get the most value for your money. You test different brands of popcorn to see which bag pops the most popcorn kernels.

  • Independent Variable: Brand of popcorn bag (It's the independent variable because you are actually deciding the popcorn bag brands)
  • Dependent Variable: Number of kernels popped (This is the dependent variable because it's what you measure for each popcorn brand)

Experiment 2 : You want to see which type of fertilizer helps plants grow fastest, so you add a different brand of fertilizer to each plant and see how tall they grow.

  • Independent Variable: Type of fertilizer given to the plant
  • Dependent Variable: Plant height

Experiment 3: You're interested in how rising sea temperatures impact algae life, so you design an experiment that measures the number of algae in a sample of water taken from a specific ocean site under varying temperatures.

  • Independent Variable: Ocean temperature
  • Dependent Variable: The number of algae in the sample

For each of the independent variables above, it's clear that they can't be changed by other variables in the experiment. You have to be the one to change the popcorn and fertilizer brands in Experiments 1 and 2, and the ocean temperature in Experiment 3 cannot be significantly changed by other factors. Changes to each of these independent variables cause the dependent variables to change in the experiments.

Where Do You Put Independent and Dependent Variables on Graphs?

Independent and dependent variables always go on the same places in a graph. This makes it easy for you to quickly see which variable is independent and which is dependent when looking at a graph or chart. The independent variable always goes on the x-axis, or the horizontal axis. The dependent variable goes on the y-axis, or vertical axis.

Here's an example:

body_graph-3.jpg

As you can see, this is a graph showing how the number of hours a student studies affects the score she got on an exam. From the graph, it looks like studying up to six hours helped her raise her score, but as she studied more than that her score dropped slightly.

The amount of time studied is the independent variable, because it's what she changed, so it's on the x-axis. The score she got on the exam is the dependent variable, because it's what changed as a result of the independent variable, and it's on the y-axis. It's common to put the units in parentheses next to the axis titles, which this graph does.

There are different ways to title a graph, but a common way is "[Independent Variable] vs. [Dependent Variable]" like this graph. Using a standard title like that also makes it easy for others to see what your independent and dependent variables are.

Are There Other Important Variables to Know?

Independent and dependent variables are the two most important variables to know and understand when conducting or studying an experiment, but there is one other type of variable that you should be aware of: constant variables.

Constant variables (also known as "constants") are simple to understand: they're what stay the same during the experiment. Most experiments usually only have one independent variable and one dependent variable, but they will all have multiple constant variables.

For example, in Experiment 2 above, some of the constant variables would be the type of plant being grown, the amount of fertilizer each plant is given, the amount of water each plant is given, when each plant is given fertilizer and water, the amount of sunlight the plants receive, the size of the container each plant is grown in, and more. The scientist is changing the type of fertilizer each plant gets which in turn changes how much each plant grows, but every other part of the experiment stays the same.

In experiments, you have to test one independent variable at a time in order to accurately understand how it impacts the dependent variable. Constant variables are important because they ensure that the dependent variable is changing because, and only because, of the independent variable so you can accurately measure the relationship between the dependent and independent variables.

If you didn't have any constant variables, you wouldn't be able to tell if the independent variable was what was really affecting the dependent variable. For example, in the example above, if there were no constants and you used different amounts of water, different types of plants, different amounts of fertilizer and put the plants in windows that got different amounts of sun, you wouldn't be able to say how fertilizer type affected plant growth because there would be so many other factors potentially affecting how the plants grew.

body_plants.jpg

3 Experiments to Help You Understand Independent and Dependent Variables

If you're still having a hard time understanding the relationship between independent and dependent variable, it might help to see them in action. Here are three experiments you can try at home.

Experiment 1: Plant Growth Rates

One simple way to explore independent and dependent variables is to construct a biology experiment with seeds. Try growing some sunflowers and see how different factors affect their growth. For example, say you have ten sunflower seedlings, and you decide to give each a different amount of water each day to see if that affects their growth. The independent variable here would be the amount of water you give the plants, and the dependent variable is how tall the sunflowers grow.

Experiment 2: Chemical Reactions

Explore a wide range of chemical reactions with this chemistry kit . It includes 100+ ideas for experiments—pick one that interests you and analyze what the different variables are in the experiment!

Experiment 3: Simple Machines

Build and test a range of simple and complex machines with this K'nex kit . How does increasing a vehicle's mass affect its velocity? Can you lift more with a fixed or movable pulley? Remember, the independent variable is what you control/change, and the dependent variable is what changes because of that.

Quiz: Test Your Variable Knowledge

Can you identify the independent and dependent variables for each of the four scenarios below? The answers are at the bottom of the guide for you to check your work.

Scenario 1: You buy your dog multiple brands of food to see which one is her favorite.

Scenario 2: Your friends invite you to a party, and you decide to attend, but you're worried that staying out too long will affect how well you do on your geometry test tomorrow morning.

Scenario 3: Your dentist appointment will take 30 minutes from start to finish, but that doesn't include waiting in the lounge before you're called in. The total amount of time you spend in the dentist's office is the amount of time you wait before your appointment, plus the 30 minutes of the actual appointment

Scenario 4: You regularly babysit your little cousin who always throws a tantrum when he's asked to eat his vegetables. Over the course of the week, you ask him to eat vegetables four times.

Summary: Independent vs Dependent Variable

Knowing the independent variable definition and dependent variable definition is key to understanding how experiments work. The independent variable is what you change, and the dependent variable is what changes as a result of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

When graphing these variables, the independent variable should go on the x-axis (the horizontal axis), and the dependent variable goes on the y-axis (vertical axis).

Constant variables are also important to understand. They are what stay the same throughout the experiment so you can accurately measure the impact of the independent variable on the dependent variable.

What's Next?

Independent and dependent variables are commonly taught in high school science classes. Read our guide to learn which science classes high school students should be taking.

Scoring well on standardized tests is an important part of having a strong college application. Check out our guides on the best study tips for the SAT and ACT.

Interested in science? Science Olympiad is a great extracurricular to include on your college applications, and it can help you win big scholarships. Check out our complete guide to winning Science Olympiad competitions.

Quiz Answers

1: Independent: dog food brands; Dependent: how much you dog eats

2: Independent: how long you spend at the party; Dependent: your exam score

3: Independent: Amount of time you spend waiting; Dependent: Total time you're at the dentist (the 30 minutes of appointment time is the constant)

4: Independent: Number of times your cousin is asked to eat vegetables; Dependent: number of tantrums

Want to improve your SAT score by 160 points or your ACT score by 4 points?   We've written a guide for each test about the top 5 strategies you must be using to have a shot at improving your score. Download them for free now:

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

Difference Between Independent and Dependent Variables

Independent vs. Dependent Variables

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate

The two main variables in a scientific experiment are the independent and dependent variables. An independent variable is changed or controlled in a scientific experiment to test the effects on another variable. This variable being tested and measured is called the dependent variable.

As its name suggests, the dependent variable is "dependent" on the independent variable. As the experimenter changes the independent variable, the effect on the dependent variable is observed and recorded.

Key Takeaways

  • There can be many variables in an experiment, but the two key variables that are always present are the independent and dependent variables.
  • The independent variable is the one the researcher intentionally changes or controls.
  • The dependent variable is the factor that the research measures. It changes in response to the independent variable; in other words, it depends on it.
  • Examples of Independent and Dependent Variables

Let's say a scientist wants to see if the brightness of light has any effect on a moth's attraction to the light. The brightness of the light is controlled by the scientist. This would be the independent variable . How the moth reacts to the different light levels (such as its distance to the light source) would be the dependent variable .

As another example, say you want to know whether eating breakfast affects student test scores. The factor under the experimenter's control is the presence or absence of breakfast, so you know it is the independent variable. The experiment measures test scores of students who ate breakfast versus those who did not. Theoretically, the test results depend on breakfast, so the test results are the dependent variable. Note that test scores are the dependent variable even if it turns out there is no relationship between scores and breakfast.

For another experiment, a scientist wants to determine whether one drug is more effective than another at controlling high blood pressure. The independent variable is the drug, while the patient's blood pressure is the dependent variable. In some ways, this experiment resembles the one with breakfast and test scores. However, when comparing two different treatments, such as drug A and drug B, it's usual to add another variable, called the control variable. The control variable , which in this case is a placebo that contains the same inactive ingredients as the drugs, makes it possible to tell whether either drug actually affects blood pressure.

How to Tell Independent and Dependent Variables Apart

The independent and dependent variables in an experiment may be viewed in terms of cause and effect. If the independent variable is changed, then an effect is seen, or measured, in the dependent variable. Remember, the values of both variables may change in an experiment and are recorded. The difference is that the value of the independent variable is controlled by the experimenter, while the value of the dependent variable only changes in response to the independent variable.

Remembering Variables and How to Plot Them

When results are plotted in graphs, the convention is to use the independent variable as the x-axis and the dependent variable as the y-axis. The DRY MIX acronym can help keep the variables straight:

D is the dependent variable R is the responding variable Y is the axis on which the dependent or responding variable is graphed (the vertical axis)

M is the manipulated variable or the one that is changed in an experiment I is the independent variable X is the axis on which the independent or manipulated variable is graphed (the horizontal axis)

  • Null Hypothesis Examples
  • What Is a Dependent Variable?
  • Random Error vs. Systematic Error
  • Popular Math Terms and Definitions
  • Independent Variable Definition and Examples
  • Dependent Variable Definition and Examples
  • Scientific Method Vocabulary Terms
  • Scientific Variable
  • DRY MIX Experiment Variables Acronym
  • What Is a Variable in Science?
  • The Difference Between Control Group and Experimental Group
  • What Is an Experiment? Definition and Design
  • The Differences Between Explanatory and Response Variables
  • Six Steps of the Scientific Method
  • Understanding Experimental Groups
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Types of Variables in Psychology Research

Examples of Independent and Dependent Variables

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

experiment two variables

 James Lacy, MLS, is a fact-checker and researcher.

experiment two variables

Dependent and Independent Variables

  • Intervening Variables
  • Extraneous Variables
  • Controlled Variables
  • Confounding Variables
  • Operationalizing Variables

Frequently Asked Questions

Variables in psychology are things that can be changed or altered, such as a characteristic or value. Variables are generally used in psychology experiments to determine if changes to one thing result in changes to another.

Variables in psychology play a critical role in the research process. By systematically changing some variables in an experiment and measuring what happens as a result, researchers are able to learn more about cause-and-effect relationships.

The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena.

This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when conducting experiments.

Students often report problems with identifying the independent and dependent variables in an experiment. While this task can become more difficult as the complexity of an experiment increases, in a psychology experiment:

  • The independent variable is the variable that is manipulated by the experimenter. An example of an independent variable in psychology: In an experiment on the impact of sleep deprivation on test performance, sleep deprivation would be the independent variable. The experimenters would have some of the study participants be sleep-deprived while others would be fully rested.
  • The dependent variable is the variable that is measured by the experimenter. In the previous example, the scores on the test performance measure would be the dependent variable.

So how do you differentiate between the independent and dependent variables? Start by asking yourself what the experimenter is manipulating. The things that change, either naturally or through direct manipulation from the experimenter, are generally the independent variables. What is being measured? The dependent variable is the one that the experimenter is measuring.

Intervening Variables in Psychology

Intervening variables, also sometimes called intermediate or mediator variables, are factors that play a role in the relationship between two other variables. In the previous example, sleep problems in university students are often influenced by factors such as stress. As a result, stress might be an intervening variable that plays a role in how much sleep people get, which may then influence how well they perform on exams.

Extraneous Variables in Psychology

Independent and dependent variables are not the only variables present in many experiments. In some cases, extraneous variables may also play a role. This type of variable is one that may have an impact on the relationship between the independent and dependent variables.

For example, in our previous example of an experiment on the effects of sleep deprivation on test performance, other factors such as age, gender, and academic background may have an impact on the results. In such cases, the experimenter will note the values of these extraneous variables so any impact can be controlled for.

There are two basic types of extraneous variables:

  • Participant variables : These extraneous variables are related to the individual characteristics of each study participant that may impact how they respond. These factors can include background differences, mood, anxiety, intelligence, awareness, and other characteristics that are unique to each person.
  • Situational variables : These extraneous variables are related to things in the environment that may impact how each participant responds. For example, if a participant is taking a test in a chilly room, the temperature would be considered an extraneous variable. Some participants may not be affected by the cold, but others might be distracted or annoyed by the temperature of the room.

Other extraneous variables include the following:

  • Demand characteristics : Clues in the environment that suggest how a participant should behave
  • Experimenter effects : When a researcher unintentionally suggests clues for how a participant should behave

Controlled Variables in Psychology

In many cases, extraneous variables are controlled for by the experimenter. A controlled variable is one that is held constant throughout an experiment.

In the case of participant variables, the experiment might select participants that are the same in background and temperament to ensure that these factors don't interfere with the results. Holding these variables constant is important for an experiment because it allows researchers to be sure that all other variables remain the same across all conditions.  

Using controlled variables means that when changes occur, the researchers can be sure that these changes are due to the manipulation of the independent variable and not caused by changes in other variables.

It is important to also note that a controlled variable is not the same thing as a control group . The control group in a study is the group of participants who do not receive the treatment or change in the independent variable.

All other variables between the control group and experimental group are held constant (i.e., they are controlled). The dependent variable being measured is then compared between the control group and experimental group to see what changes occurred because of the treatment.

Confounding Variables in Psychology

If a variable cannot be controlled for, it becomes what is known as a confounding variabl e. This type of variable can have an impact on the dependent variable, which can make it difficult to determine if the results are due to the influence of the independent variable, the confounding variable, or an interaction of the two.

Operationalizing Variables in Psychology

An operational definition describes how the variables are measured and defined in the study. Before conducting a psychology experiment , it is essential to create firm operational definitions for both the independent variable and dependent variables.

For example, in our imaginary experiment on the effects of sleep deprivation on test performance, we would need to create very specific operational definitions for our two variables. If our hypothesis is "Students who are sleep deprived will score significantly lower on a test," then we would have a few different concepts to define:

  • Students : First, what do we mean by "students?" In our example, let’s define students as participants enrolled in an introductory university-level psychology course.
  • Sleep deprivation : Next, we need to operationally define the "sleep deprivation" variable. In our example, let’s say that sleep deprivation refers to those participants who have had less than five hours of sleep the night before the test.
  • Test variable : Finally, we need to create an operational definition for the test variable. For this example, the test variable will be defined as a student’s score on a chapter exam in the introductory psychology course.

Once all the variables are operationalized, we're ready to conduct the experiment.

Variables play an important part in psychology research. Manipulating an independent variable and measuring the dependent variable allows researchers to determine if there is a cause-and-effect relationship between them.

A Word From Verywell

Understanding the different types of variables used in psychology research is important if you want to conduct your own psychology experiments. It is also helpful for people who want to better understand what the results of psychology research really mean and become more informed consumers of psychology information .

Independent and dependent variables are used in experimental research. Unlike some other types of research (such as correlational studies ), experiments allow researchers to evaluate cause-and-effect relationships between two variables.

Researchers can use statistical analyses to determine the strength of a relationship between two variables in an experiment. Two of the most common ways to do this are to calculate a p-value or a correlation. The p-value indicates if the results are statistically significant while the correlation can indicate the strength of the relationship.

In an experiment on how sugar affects short-term memory, sugar intake would be the independent variable and scores on a short-term memory task would be the independent variable.

In an experiment looking at how caffeine intake affects test anxiety, the amount of caffeine consumed before a test would be the independent variable and scores on a test anxiety assessment would be the dependent variable.

Just as with other types of research, the independent variable in a cognitive psychology study would be the variable that the researchers manipulate. The specific independent variable would vary depending on the specific study, but it might be focused on some aspect of thinking, memory, attention, language, or decision-making.

American Psychological Association. Operational definition . APA Dictionary of Psychology.

American Psychological Association. Mediator . APA Dictionary of Psychology.

Altun I, Cınar N, Dede C. The contributing factors to poor sleep experiences in according to the university students: A cross-sectional study .  J Res Med Sci . 2012;17(6):557-561. PMID:23626634

Skelly AC, Dettori JR, Brodt ED. Assessing bias: The importance of considering confounding .  Evid Based Spine Care J . 2012;3(1):9-12. doi:10.1055/s-0031-1298595

  • Evans, AN & Rooney, BJ. Methods in Psychological Research. Thousand Oaks, CA: SAGE Publications; 2014.
  • Kantowitz, BH, Roediger, HL, & Elmes, DG. Experimental Psychology. Stamfort, CT: Cengage Learning; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Prevent plagiarism. Run a free check.

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved June 27, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Chapter 6: Experimental Research

6.1 experiment basics, learning objectives.

  • Explain what an experiment is and recognize examples of studies that are experiments and studies that are not experiments.
  • Explain what internal validity is and why experiments are considered to be high in internal validity.
  • Explain what external validity is and evaluate studies in terms of their external validity.
  • Distinguish between the manipulation of the independent variable and control of extraneous variables and explain the importance of each.
  • Recognize examples of confounding variables and explain how they affect the internal validity of a study.

What Is an Experiment?

As we saw earlier in the book, an experiment is a type of study designed specifically to answer the question of whether there is a causal relationship between two variables. Do changes in an independent variable cause changes in a dependent variable? Experiments have two fundamental features. The first is that the researchers manipulate, or systematically vary, the level of the independent variable. The different levels of the independent variable are called conditions. For example, in Darley and Latané’s experiment, the independent variable was the number of witnesses that participants believed to be present. The researchers manipulated this independent variable by telling participants that there were either one, two, or five other students involved in the discussion, thereby creating three conditions. The second fundamental feature of an experiment is that the researcher controls, or minimizes the variability in, variables other than the independent and dependent variable. These other variables are called extraneous variables. Darley and Latané tested all their participants in the same room, exposed them to the same emergency situation, and so on. They also randomly assigned their participants to conditions so that the three groups would be similar to each other to begin with. Notice that although the words manipulation and control have similar meanings in everyday language, researchers make a clear distinction between them. They manipulate the independent variable by systematically changing its levels and control other variables by holding them constant.

Internal and External Validity

Internal validity.

Recall that the fact that two variables are statistically related does not necessarily mean that one causes the other. “Correlation does not imply causation.” For example, if it were the case that people who exercise regularly are happier than people who do not exercise regularly, this would not necessarily mean that exercising increases people’s happiness. It could mean instead that greater happiness causes people to exercise (the directionality problem) or that something like better physical health causes people to exercise and be happier (the third-variable problem).

The purpose of an experiment, however, is to show that two variables are statistically related and to do so in a way that supports the conclusion that the independent variable caused any observed differences in the dependent variable. The basic logic is this: If the researcher creates two or more highly similar conditions and then manipulates the independent variable to produce just one difference between them, then any later difference between the conditions must have been caused by the independent variable. For example, because the only difference between Darley and Latané’s conditions was the number of students that participants believed to be involved in the discussion, this must have been responsible for differences in helping between the conditions.

An empirical study is said to be high in internal validity if the way it was conducted supports the conclusion that the independent variable caused any observed differences in the dependent variable. Thus experiments are high in internal validity because the way they are conducted—with the manipulation of the independent variable and the control of extraneous variables—provides strong support for causal conclusions.

External Validity

At the same time, the way that experiments are conducted sometimes leads to a different kind of criticism. Specifically, the need to manipulate the independent variable and control extraneous variables means that experiments are often conducted under conditions that seem artificial or unlike “real life” (Stanovich, 2010). In many psychology experiments, the participants are all college undergraduates and come to a classroom or laboratory to fill out a series of paper-and-pencil questionnaires or to perform a carefully designed computerized task. Consider, for example, an experiment in which researcher Barbara Fredrickson and her colleagues had college students come to a laboratory on campus and complete a math test while wearing a swimsuit (Fredrickson, Roberts, Noll, Quinn, & Twenge, 1998). At first, this might seem silly. When will college students ever have to complete math tests in their swimsuits outside of this experiment?

The issue we are confronting is that of external validity. An empirical study is high in external validity if the way it was conducted supports generalizing the results to people and situations beyond those actually studied. As a general rule, studies are higher in external validity when the participants and the situation studied are similar to those that the researchers want to generalize to. Imagine, for example, that a group of researchers is interested in how shoppers in large grocery stores are affected by whether breakfast cereal is packaged in yellow or purple boxes. Their study would be high in external validity if they studied the decisions of ordinary people doing their weekly shopping in a real grocery store. If the shoppers bought much more cereal in purple boxes, the researchers would be fairly confident that this would be true for other shoppers in other stores. Their study would be relatively low in external validity, however, if they studied a sample of college students in a laboratory at a selective college who merely judged the appeal of various colors presented on a computer screen. If the students judged purple to be more appealing than yellow, the researchers would not be very confident that this is relevant to grocery shoppers’ cereal-buying decisions.

We should be careful, however, not to draw the blanket conclusion that experiments are low in external validity. One reason is that experiments need not seem artificial. Consider that Darley and Latané’s experiment provided a reasonably good simulation of a real emergency situation. Or consider field experiments that are conducted entirely outside the laboratory. In one such experiment, Robert Cialdini and his colleagues studied whether hotel guests choose to reuse their towels for a second day as opposed to having them washed as a way of conserving water and energy (Cialdini, 2005). These researchers manipulated the message on a card left in a large sample of hotel rooms. One version of the message emphasized showing respect for the environment, another emphasized that the hotel would donate a portion of their savings to an environmental cause, and a third emphasized that most hotel guests choose to reuse their towels. The result was that guests who received the message that most hotel guests choose to reuse their towels reused their own towels substantially more often than guests receiving either of the other two messages. Given the way they conducted their study, it seems very likely that their result would hold true for other guests in other hotels.

A second reason not to draw the blanket conclusion that experiments are low in external validity is that they are often conducted to learn about psychological processes that are likely to operate in a variety of people and situations. Let us return to the experiment by Fredrickson and colleagues. They found that the women in their study, but not the men, performed worse on the math test when they were wearing swimsuits. They argued that this was due to women’s greater tendency to objectify themselves—to think about themselves from the perspective of an outside observer—which diverts their attention away from other tasks. They argued, furthermore, that this process of self-objectification and its effect on attention is likely to operate in a variety of women and situations—even if none of them ever finds herself taking a math test in her swimsuit.

Manipulation of the Independent Variable

Again, to manipulate an independent variable means to change its level systematically so that different groups of participants are exposed to different levels of that variable, or the same group of participants is exposed to different levels at different times. For example, to see whether expressive writing affects people’s health, a researcher might instruct some participants to write about traumatic experiences and others to write about neutral experiences. The different levels of the independent variable are referred to as conditions , and researchers often give the conditions short descriptive names to make it easy to talk and write about them. In this case, the conditions might be called the “traumatic condition” and the “neutral condition.”

Notice that the manipulation of an independent variable must involve the active intervention of the researcher. Comparing groups of people who differ on the independent variable before the study begins is not the same as manipulating that variable. For example, a researcher who compares the health of people who already keep a journal with the health of people who do not keep a journal has not manipulated this variable and therefore not conducted an experiment. This is important because groups that already differ in one way at the beginning of a study are likely to differ in other ways too. For example, people who choose to keep journals might also be more conscientious, more introverted, or less stressed than people who do not. Therefore, any observed difference between the two groups in terms of their health might have been caused by whether or not they keep a journal, or it might have been caused by any of the other differences between people who do and do not keep journals. Thus the active manipulation of the independent variable is crucial for eliminating the third-variable problem.

Of course, there are many situations in which the independent variable cannot be manipulated for practical or ethical reasons and therefore an experiment is not possible. For example, whether or not people have a significant early illness experience cannot be manipulated, making it impossible to do an experiment on the effect of early illness experiences on the development of hypochondriasis. This does not mean it is impossible to study the relationship between early illness experiences and hypochondriasis—only that it must be done using nonexperimental approaches. We will discuss this in detail later in the book.

In many experiments, the independent variable is a construct that can only be manipulated indirectly. For example, a researcher might try to manipulate participants’ stress levels indirectly by telling some of them that they have five minutes to prepare a short speech that they will then have to give to an audience of other participants. In such situations, researchers often include a manipulation check in their procedure. A manipulation check is a separate measure of the construct the researcher is trying to manipulate. For example, researchers trying to manipulate participants’ stress levels might give them a paper-and-pencil stress questionnaire or take their blood pressure—perhaps right after the manipulation or at the end of the procedure—to verify that they successfully manipulated this variable.

Control of Extraneous Variables

An extraneous variable is anything that varies in the context of a study other than the independent and dependent variables. In an experiment on the effect of expressive writing on health, for example, extraneous variables would include participant variables (individual differences) such as their writing ability, their diet, and their shoe size. They would also include situation or task variables such as the time of day when participants write, whether they write by hand or on a computer, and the weather. Extraneous variables pose a problem because many of them are likely to have some effect on the dependent variable. For example, participants’ health will be affected by many things other than whether or not they engage in expressive writing. This can make it difficult to separate the effect of the independent variable from the effects of the extraneous variables, which is why it is important to control extraneous variables by holding them constant.

Extraneous Variables as “Noise”

Extraneous variables make it difficult to detect the effect of the independent variable in two ways. One is by adding variability or “noise” to the data. Imagine a simple experiment on the effect of mood (happy vs. sad) on the number of happy childhood events people are able to recall. Participants are put into a negative or positive mood (by showing them a happy or sad video clip) and then asked to recall as many happy childhood events as they can. The two leftmost columns of Table 6.1 “Hypothetical Noiseless Data and Realistic Noisy Data” show what the data might look like if there were no extraneous variables and the number of happy childhood events participants recalled was affected only by their moods. Every participant in the happy mood condition recalled exactly four happy childhood events, and every participant in the sad mood condition recalled exactly three. The effect of mood here is quite obvious. In reality, however, the data would probably look more like those in the two rightmost columns of Table 6.1 “Hypothetical Noiseless Data and Realistic Noisy Data” . Even in the happy mood condition, some participants would recall fewer happy memories because they have fewer to draw on, use less effective strategies, or are less motivated. And even in the sad mood condition, some participants would recall more happy childhood memories because they have more happy memories to draw on, they use more effective recall strategies, or they are more motivated. Although the mean difference between the two groups is the same as in the idealized data, this difference is much less obvious in the context of the greater variability in the data. Thus one reason researchers try to control extraneous variables is so their data look more like the idealized data in Table 6.1 “Hypothetical Noiseless Data and Realistic Noisy Data” , which makes the effect of the independent variable is easier to detect (although real data never look quite that good).

Table 6.1 Hypothetical Noiseless Data and Realistic Noisy Data

Idealized “noiseless” data Realistic “noisy” data
4 3 3 1
4 3 6 3
4 3 2 4
4 3 4 0
4 3 5 5
4 3 2 7
4 3 3 2
4 3 1 5
4 3 6 1
4 3 8 2
= 4 = 3 = 4 = 3

One way to control extraneous variables is to hold them constant. This can mean holding situation or task variables constant by testing all participants in the same location, giving them identical instructions, treating them in the same way, and so on. It can also mean holding participant variables constant. For example, many studies of language limit participants to right-handed people, who generally have their language areas isolated in their left cerebral hemispheres. Left-handed people are more likely to have their language areas isolated in their right cerebral hemispheres or distributed across both hemispheres, which can change the way they process language and thereby add noise to the data.

In principle, researchers can control extraneous variables by limiting participants to one very specific category of person, such as 20-year-old, straight, female, right-handed, sophomore psychology majors. The obvious downside to this approach is that it would lower the external validity of the study—in particular, the extent to which the results can be generalized beyond the people actually studied. For example, it might be unclear whether results obtained with a sample of younger straight women would apply to older gay men. In many situations, the advantages of a diverse sample outweigh the reduction in noise achieved by a homogeneous one.

Extraneous Variables as Confounding Variables

The second way that extraneous variables can make it difficult to detect the effect of the independent variable is by becoming confounding variables. A confounding variable is an extraneous variable that differs on average across levels of the independent variable. For example, in almost all experiments, participants’ intelligence quotients (IQs) will be an extraneous variable. But as long as there are participants with lower and higher IQs at each level of the independent variable so that the average IQ is roughly equal, then this variation is probably acceptable (and may even be desirable). What would be bad, however, would be for participants at one level of the independent variable to have substantially lower IQs on average and participants at another level to have substantially higher IQs on average. In this case, IQ would be a confounding variable.

To confound means to confuse, and this is exactly what confounding variables do. Because they differ across conditions—just like the independent variable—they provide an alternative explanation for any observed difference in the dependent variable. Figure 6.1 “Hypothetical Results From a Study on the Effect of Mood on Memory” shows the results of a hypothetical study, in which participants in a positive mood condition scored higher on a memory task than participants in a negative mood condition. But if IQ is a confounding variable—with participants in the positive mood condition having higher IQs on average than participants in the negative mood condition—then it is unclear whether it was the positive moods or the higher IQs that caused participants in the first condition to score higher. One way to avoid confounding variables is by holding extraneous variables constant. For example, one could prevent IQ from becoming a confounding variable by limiting participants only to those with IQs of exactly 100. But this approach is not always desirable for reasons we have already discussed. A second and much more general approach—random assignment to conditions—will be discussed in detail shortly.

Figure 6.1 Hypothetical Results From a Study on the Effect of Mood on Memory

Hypothetical Results From a Study on the Effect of Mood on Memory

Because IQ also differs across conditions, it is a confounding variable.

Key Takeaways

  • An experiment is a type of empirical study that features the manipulation of an independent variable, the measurement of a dependent variable, and control of extraneous variables.
  • Studies are high in internal validity to the extent that the way they are conducted supports the conclusion that the independent variable caused any observed differences in the dependent variable. Experiments are generally high in internal validity because of the manipulation of the independent variable and control of extraneous variables.
  • Studies are high in external validity to the extent that the result can be generalized to people and situations beyond those actually studied. Although experiments can seem “artificial”—and low in external validity—it is important to consider whether the psychological processes under study are likely to operate in other people and situations.
  • Practice: List five variables that can be manipulated by the researcher in an experiment. List five variables that cannot be manipulated by the researcher in an experiment.

Practice: For each of the following topics, decide whether that topic could be studied using an experimental research design and explain why or why not.

  • Effect of parietal lobe damage on people’s ability to do basic arithmetic.
  • Effect of being clinically depressed on the number of close friendships people have.
  • Effect of group training on the social skills of teenagers with Asperger’s syndrome.
  • Effect of paying people to take an IQ test on their performance on that test.

Cialdini, R. (2005, April). Don’t throw in the towel: Use social influence research. APS Observer . Retrieved from http://www.psychologicalscience.org/observer/getArticle.cfm?id=1762 .

Fredrickson, B. L., Roberts, T.-A., Noll, S. M., Quinn, D. M., & Twenge, J. M. (1998). The swimsuit becomes you: Sex differences in self-objectification, restrained eating, and math performance. Journal of Personality and Social Psychology, 75 , 269–284.

Stanovich, K. E. (2010). How to think straight about psychology (9th ed.). Boston, MA: Allyn & Bacon.

  • Research Methods in Psychology. Provided by : University of Minnesota Libraries Publishing. Located at : http://open.lib.umn.edu/psychologyresearchmethods . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Footer Logo Lumen Candela

Privacy Policy

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

experiment two variables

9 Great Ways to Teach Variables in Science Experiments

by Katrina | Feb 17, 2024 | Pedagogy , Science | 1 comment

Science is a journey of exploration and discovery, and at the heart of every scientific experiment lies the concept of variables. Variables in science experiments are the building blocks of experimentation, allowing scientists to manipulate and measure different elements to draw meaningful conclusions.

Teaching students about variables is crucial for developing their scientific inquiry skills and fostering a deeper understanding of the scientific method.

In this blog post, we’ll explore the importance of teaching variables in science experiments, delve into the distinctions between independent, dependent, and controlled variables, and provide creative ideas on how to effectively teach these variable types.

So grab a coffee, find a comfy seat, and relax while we explore fun ways to teach variables in science experiments! 

ways to teach variables in science experiments

The Importance of Teaching Variables in Science Experiments:

Foundation of Scientific Inquiry: Variables form the bedrock of the scientific method. Teaching students about variables helps them grasp the fundamental principles of scientific inquiry, enabling them to formulate hypotheses, design experiments, and draw valid conclusions.

Critical Thinking Skills: Understanding variables cultivates critical thinking skills in students. It encourages them to analyze the relationships between different factors, question assumptions, and think systematically when designing and conducting experiments.

Real-world Application: Variables are not confined to the laboratory; they exist in everyday life. Teaching students about variables equips them with the skills to critically assess and interpret the multitude of factors influencing phenomena in the real world, fostering a scientific mindset beyond the classroom.

In addition to the above, understanding scientific variables is crucial for designing an experiment and collecting valid results because variables are the building blocks of the scientific method.

A well-designed experiment involves the careful manipulation and measurement of variables to test hypotheses and draw meaningful conclusions about the relationships between different factors. Here are several reasons why a clear understanding of scientific variables is essential for the experimental process:

1. Precision and Accuracy: By identifying and defining variables, researchers can design experiments with precision and accuracy. This clarity helps ensure that the measurements and observations made during the experiment are relevant to the research question, reducing the likelihood of errors or misinterpretations.

2. Hypothesis Testing: Variables in science experiments are central to hypothesis formulation and testing. A hypothesis typically involves predicting the relationship between an independent variable (the one manipulated) and a dependent variable (the one measured). Understanding these variables is essential for constructing a hypothesis that can be tested through experimentation.

3. Controlled Experiments: Variables, especially controlled variables, enable researchers to conduct controlled experiments. By keeping certain factors constant (controlled variables) while manipulating others (independent variable), scientists can isolate the impact of the independent variable on the dependent variable. This control is essential for drawing valid conclusions about cause-and-effect relationships.

4. Reproducibility: Clear identification and understanding of variables enhance the reproducibility of experiments. When other researchers attempt to replicate an experiment, a detailed understanding of the variables involved ensures that they can accurately reproduce the conditions and obtain similar results.

5. Data Interpretation: Knowing the variables in science experiments allows for a more accurate interpretation of the collected data. Researchers can attribute changes in the dependent variable to the manipulation of the independent variable and rule out alternative explanations. This is crucial for drawing reliable conclusions from the experimental results.

6. Elimination of Confounding Factors: Without a proper understanding of variables, experiments are susceptible to confounding factors—unintended variables that may influence the results. Through careful consideration of all relevant variables, researchers can minimize the impact of confounding factors and increase the internal validity of their experiments.

7. Optimization of Experimental Design: Understanding variables in science experiments helps researchers optimize the design of their experiments. They can choose the most relevant and influential variables to manipulate and measure, ensuring that the experiment is focused on addressing the specific research question.

8. Applicability to Real-world Situations: A thorough understanding of variables enhances the applicability of experimental results to real-world situations. It allows researchers to draw connections between laboratory findings and broader phenomena, contributing to the advancement of scientific knowledge and its practical applications.

The Different Types of Variables in Science Experiments:

There are 3 main types of variables in science experiments; independent, dependent, and controlled variables.

1. Independent Variable:

The independent variable is the factor that is deliberately manipulated or changed in an experiment. The independent variable affects the dependent variable (the one being measured).

Example : In a plant growth experiment, the amount of sunlight the plants receive can be the independent variable. Researchers might expose one group of plants to more sunlight than another group.

2. Dependent Variable:

The dependent variable is the outcome or response that is measured in an experiment. It depends on the changes made to the independent variable.

Example : In the same plant growth experiment, the height of the plants would be the dependent variable. This is what researchers would measure to determine the effect of sunlight on plant growth.

3. Controlled Variable:

Controlled variables, also called constant variables, are the factors in an experiment that are kept constant to ensure that any observed changes in the dependent variable are a result of the manipulation of the independent variable. These are not to be confused with control groups.

In a scientific experiment in chemistry, a control group is a crucial element that serves as a baseline for comparison. The control group is designed to remain unchanged or unaffected by the independent variable, which is the variable being manipulated in the experiment.

The purpose of including a control group is to provide a reference point against which the experimental results can be compared, helping scientists determine whether the observed effects are a result of the independent variable or other external factors.

Example : In the plant growth experiment, factors like soil type, amount of water, type of plant and temperature would be control variables. Keeping these constant ensures that any differences in plant height can be attributed to changes in sunlight.

Science variables in science experiments

experiment two variables

Want a FREE digital escape room?

Enter your email address here and I'll send you a FREE no-prep digital escape room on the topic 'Scientific method & science equipment'.

You have successfully joined our subscriber list.

We will not send you spam. 

You can unsubscribe at any time.

Best resources for reviewing variables in science experiments:

If you’re short on time and would rather buy your resources, then I’ve compiled a list of my favorite resources for teaching and reviewing variables in science experiments below. While there is nothing better than actually doing science experiments, this isn’t feasible every lesson and these resources are great for consolidation of learning:

1. FREE Science Variables Posters : These are perfect as a visual aide in your classroom while also providing lab decorations! Print in A4 or A3 size to make an impact.

2. Variable scenarios worksheet printable : Get your students thinking about variable with these train your pet dragon themed scenarios. Students identify the independent variable, dependent variable and controlled variables in each scenario.

3. Variable Valentines scenarios worksheet printable : Get your students thinking about variables with these cupid Valentine’s Day scenarios. Students identify the independent variable, dependent variable and controlled variables in each scenario.

4. Variable Halloween scenarios worksheet printable : Spook your students with these Halloween themed scenarios. Students identify the independent variable, dependent variable and controlled variables in each scenario.

5. Scientific Method Digital Escape Room : Review all parts of the scientific method with this fun (zero prep) digital escape room! 

6. Scientific Method Stations Printable or Sub Lesson : The worst part of being a teacher? Having to still work when you are sick! This science sub lesson plan includes a fully editable lesson plan designed for a substitute teacher to take, including differentiated student worksheets and full teacher answers. This lesson involves learning about all parts of the scientific method, including variables.

lab equipment escape room

Digital Lab Equipment Escape Room Middle School Science

scientific method digital escape room

Scientific Method Digital Escape Room Science Middle School

science graphing skills escape room

Science Graphing Skills Escape Room Middle School

9 teaching strategies for variables in science experiments.

To help engage students in learning about the different types of scientific variables, it is important to include a range of activities and teaching strategies. Here are some suggestions:

1. Hands-on Experiments: Conducting hands-on experiments is one of the most effective ways to teach students about variables. Provide students with the opportunity to design and conduct their experiments, manipulating and measuring variables to observe outcomes.

Easy science experiments you could include might relate to student heart rate (e.g. before and after exercise), type of ball vs height it bounces, amount of sunlight on the growth of a plant, the strength of an electromagnet (copper wire around a nail) vs the number of coils.

Change things up by sometimes having students identify the independent variable, dependent variable and controlled variables before the experiment, or sometimes afterwards.

Consolidate by graphing results and reinforcing that the independent variable goes alone the x-axis while the dependent variable goes on the y-axis.

2. Teacher Demonstrations:

Use demonstrations to illustrate the concepts of independent, dependent, and controlled variables. For instance, use a simple chemical reaction where the amount of reactant (independent variable) influences the amount of product formed (dependent variable), with temperature and pressure controlled.

3. Case Studies:

Introduce case studies that highlight real-world applications of variables in science experiments. Discuss famous experiments or breakthroughs in science where variables played a crucial role. This approach helps students connect theoretical knowledge to practical situations.

4. Imaginary Situations:

Spark student curiosity and test their understanding of the concept of variables in science experiments by providing imaginary situations or contexts for students to apply their knowledge. Some of my favorites to use are this train your pet dragon and Halloween themed variables in science worksheets.

5. Variable Sorting Activities:

Engage students with sorting activities where they categorize different variables in science experiments into independent, dependent, and controlled variables. This hands-on approach encourages active learning and reinforces their understanding of variable types.

6. Visual Aids:

Utilize visual aids such as charts, graphs, and diagrams to visually represent the relationships between variables. Visualizations can make abstract concepts more tangible and aid in the comprehension of complex ideas.

7. Technology Integration:

Leverage technology to enhance variable teaching. Virtual simulations and interactive apps can provide a dynamic platform for students to manipulate variables in a controlled environment, fostering a deeper understanding of the cause-and-effect relationships.

Websites such as   Phet   are a great tool to use to model these types of scientific experiments and to identify and manipulate the different variables

8. Group Discussions:

Encourage group discussions where students can share their insights and experiences related to variables in science experiments. This collaborative approach promotes peer learning and allows students to learn from each other’s perspectives.

9. Digital Escape Rooms:

Reinforce learning by using a fun interactive activity like this scientific method digital escape room.

body systems worksheets bundle

Body Systems Worksheets, Stations and Activities Bundle

Musculoskeletal system worksheet stations

The Musculoskeletal System Worksheet Stations

cardiovascular system worksheet stations

Engaging Cardiovascular System Worksheet Stations

Teaching variables in science experiments is an essential component of science education, laying the groundwork for critical thinking, inquiry skills, and a lifelong appreciation for the scientific method.

By emphasizing the distinctions between independent, dependent, and controlled variables and employing creative teaching strategies, educators can inspire students to become curious, analytical, and scientifically literate individuals. 

What are your favorite ways to engage students in learning about the different types of variables in science experiments? Comment below!

Note: Always consult your school’s specific safety guidelines and policies, and seek guidance from experienced colleagues or administrators when in doubt about safety protocols. 

Teaching variables in science experiments

About the Author

the animated teacher photo logo

Katrina Harte is a multi-award winning educator from Sydney, Australia who specialises in creating resources that support teachers and engage students.

Station activities for middle school

Angel Westermark

Great web site you’ve got here.. It’s difficult to find excellent writing like yours nowadays. I truly appreciate individuals like you! Take care!!

Recent Posts

a group of glass beakers List of science differentiation strategies

Check out my best selling no-prep lesson activities!

experiment two variables

Journal of Applied Crystallography Journal of Applied
Crystallography

Journals Logo

1. Introduction

2. experimental, 3. simulations, 4. results and comments, 5. conclusion.

experiment two variables

Format BIBTeX
EndNote
RefMan
Refer
Medline
CIF
SGML
Plain Text
Text

experiment two variables

research papers \(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

JOURNAL OF
APPLIED
CRYSTALLOGRAPHY

Open Access

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q -range SANS diffractometer KWS-2 combining experiments and McStas simulations

a Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstraße 1, Garching, 85747, Germany * Correspondence e-mail: [email protected]

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δ λ / λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B , 350 , E735–E737] simulation of ideal experimental conditions at the instrument.

Keywords: small-angle neutron scattering ; SANS ; wide-angle neutron scattering ; WANS ; McStas simulations ; semi-crystalline materials .


Scattering patterns from silver behenate (AgBeh) and C60-fullerene obtained by XRD.

Scattering patterns from the fullerene-C60 powder sample obtained by TOF-SANS at KWS-2 for the following experimental conditions: λ = 2.8 Å and Δλ/λ = 14%, as delivered by the tilted velocity selector, = 1.25 m, = 98.24 Hz, Δφ = 25.72°, τ = 0.00072 s, Δλ/λ = 4.7% (central TOF channel), number of channels = 7.

Measured ( , ) and simulated ( , ) two-dimensional scattering patterns from the fullerene-C60 powder sample for λ = 3.0 Å and Δλ/λ = 22.7% ( , ) and λ = 2.8 Å and Δλ/λ = 4.7% ( , ).

Measured with an HRD ( ) and simulated ( ) two-dimensional scattering patterns from the fullerene-C60 powder sample for λ = 5.0 Å and Δλ/λ = 6.2%. The HRD was used in the TOF-WANS mode (see text). Panel ( ) shows the simulated data as a function of the scattering angle using the component.

Measured (symbols) and simulated (yellow curve) one-dimensional scattering patterns from the fullerene-C60 powder sample under different experimental conditions in SANS and WANS geometries, as explained in the legends, in parallel with the XRD pattern (green curve). For better comparison, the XRD data were normalized to the SANS peak intensity and elevated so that the baseline corresponds to the flat SANS background.

The resolution at KWS-2 for the SANS and WANS detectors under different experimental conditions ( , , λ and Δλ).

Acknowledgements

Help from Dr Ralf Engels and Dr Georg Brandl, both from Forschungszentrum Jülich, during the WANS test with the HRD at KWS-2 is gratefully acknowledged. Open access funding enabled and organized by Projekt DEAL.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence , which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Follow J. Appl. Cryst.

IMAGES

  1. [Solved]: The outcomes of two variables are (Low, Medium, H

    experiment two variables

  2. 8.2 Multiple Independent Variables

    experiment two variables

  3. EXPERIMENT DESIGN WITH TWO INDEPENDENT VARIABLES AND THREE DEPENDENT

    experiment two variables

  4. What Is A Variable In A Science Experiment

    experiment two variables

  5. 10 Examples Of How We Use Linear Equation In Two Variables In Real Life

    experiment two variables

  6. Condensation experiment conditions. (a) Major two variables of the

    experiment two variables

VIDEO

  1. Two Way ANOVA. Run analysis on 1 dependent variables and 2 fixed factors (2 independent variables)

  2. 2-way ANOVA (with p values) using IBM SPSS Statistics

  3. class 10|Maths 1|chapter 1|graphical method from problem set 1|graphical method 🔥

  4. #video #shorts #trending #height and distance 🤪🤪 experiment 👌👌👌

  5. PHYSICS PRACTICALS IN A COMPETENCY BASED CURRICULUM

  6. class 10|ch:1|Linear equation in two variables|practice set 1.1|MH Board 🔥

COMMENTS

  1. Types of Variables in Science Experiments

    The two key variables in science are the independent and dependent variable, but there are other types of variables that are important. In a science experiment, a variable is any factor, attribute, or value that describes an object or situation and is subject to change. An experiment uses the scientific method to test a hypothesis and establish whether or not there is a cause and effect ...

  2. Variables in Research: Breaking Down the Essentials of Experimental

    Independent and Dependent Variables . At the core of any scientific investigation are two primary types of variables: independent and dependent variables. These variables are crucial for defining the relationships between factors within an experiment or study and determining the cause-and-effect relationships that underpin scientific knowledge.

  3. Types of Variables in Research & Statistics

    Parts of the experiment: Independent vs dependent variables. Experiments are usually designed to find out what effect one variable has on another - in our example, the effect of salt addition on plant growth.. You manipulate the independent variable (the one you think might be the cause) and then measure the dependent variable (the one you think might be the effect) to find out what this ...

  4. Independent and Dependent Variables Examples

    Here are several examples of independent and dependent variables in experiments: In a study to determine whether how long a student sleeps affects test scores, the independent variable is the length of time spent sleeping while the dependent variable is the test score. You want to know which brand of fertilizer is best for your plants.

  5. Controlled experiments (article)

    A well-designed experiment with two independent variables can tell you whether the variables interact (modify each other's effects). However, experiments with more than one independent variable have to follow specific design guidelines, and the results must be analyzed using a special class of statistical tests to disentangle the effects of the ...

  6. What are Variables?

    There are three types of variables in a good experiment: independent variables, dependent variables, and controlled variables. What is an independent variable? ... If there is a connection between the two variables, it might mean that one thing causes the other. There can be more than one dependent variable in an experiment.

  7. What Is a Variable in Science? (Types of Variables)

    Variables are an important part of science projects and experiments. What is a variable? Basically, a variable is any factor that can be controlled, changed, or measured in an experiment. Scientific experiments have several types of variables. The independent and dependent variables are the ones usually plotted on a chart or graph, but there are other types of variables you may encounter.

  8. Variables

    During experiments, factors that can change are called variables. A variable is anything that can change and be measured. Two important types of variables are: Independent variables - the ...

  9. What are Variables?

    If there is a direct link between the two types of variables (independent and dependent) then you may be uncovering a cause and effect relationship. The number of dependent variables in an experiment varies, but there can be more than one. What is a Control Variable? Experiments also have controlled variables. Controlled variables are ...

  10. Types of Variables in Research

    Parts of the experiment: Independent vs dependent variables. Experiments are usually designed to find out what effect one variable has on another - in our example, the effect of salt addition on plant growth. ... Discrete and continuous variables are two types of quantitative variables: Discrete variables represent counts (e.g., ...

  11. A Complete Guide: The 2x2 Factorial Design

    A Complete Guide: The 2×2 Factorial Design. by Zach Bobbitt May 13, 2021. A 2×2 factorial design is a type of experimental design that allows researchers to understand the effects of two independent variables (each with two levels) on a single dependent variable. For example, suppose a botanist wants to understand the effects of sunlight (low ...

  12. Correlation: Meaning, Types, Examples & Coefficient

    An experiment tests the effect that an independent variable has upon a dependent variable but a correlation looks for a relationship between two variables. This means that the experiment can predict cause and effect (causation) but a correlation can only predict a relationship, as another extraneous variable may be involved that it not known about.

  13. Types of Variables in Science Experiments

    All types of variables can affect your science experiment. Get information about independent, dependent, control, intervening, and extraneous variables.

  14. Independent and Dependent Variables: Which Is Which?

    There are two key variables in every experiment: the independent variable and the dependent variable. Independent variable: What the scientist changes or what changes on its own. Dependent variable: What is being studied/measured. The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected ...

  15. 9 Types of Experiment Variables

    An experiment designed to determinate the effect of a fertilizer on plant growth has the following variables:Independent VariablesFertilizerDependent VariablesPlant height, plant weight, number of leavesExtraneous VariablesPlant type, sunlight, water, temperature, air quality, windSituational VariablesSunlight, water, temperature, air quality ...

  16. Difference Between Independent and Dependent Variables

    The independent variable is the drug, while the patient's blood pressure is the dependent variable. In some ways, this experiment resembles the one with breakfast and test scores. However, when comparing two different treatments, such as drug A and drug B, it's usual to add another variable, called the control variable.

  17. Types of Variables in Psychology Research

    By systematically changing some variables in an experiment and measuring what happens as a result, researchers are able to learn more about cause-and-effect relationships. The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about ...

  18. Independent vs. Dependent Variables

    Experimental variables. In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ. You can apply just two levels in order to find out if an independent variable has an effect at all.

  19. 6.1 Experiment Basics

    Experiments have two fundamental features. The first is that the researchers manipulate, or systematically vary, the level of the independent variable. The different levels of the independent variable are called conditions. For example, in Darley and Latané's experiment, the independent variable was the number of witnesses that participants ...

  20. Variables in Research

    A moment ago, we discussed the two variables in our experiment - hunger and throwing a ball. But, they are both better defined by the terms 'dependent' or 'independent' variable.

  21. Independent and Dependent Variables, Explained With Examples

    Independent and Dependent Variables, Explained With Examples. Written by MasterClass. Last updated: Mar 21, 2022 • 4 min read. In experiments that test cause and effect, two types of variables come into play. One is an independent variable and the other is a dependent variable, and together they play an integral role in research design.

  22. 9 Great Ways to Teach Variables in Science Experiments

    1. Precision and Accuracy: By identifying and defining variables, researchers can design experiments with precision and accuracy. This clarity helps ensure that the measurements and observations made during the experiment are relevant to the research question, reducing the likelihood of errors or misinterpretations. 2.

  23. CHM 144 experiment 9 Flashcards

    Study with Quizlet and memorize flashcards containing terms like objectives, For each of the four gas law experiments, two variables must be held constant, while a third variable, the independent variable, is manipulated, and the fourth variable, the dependent variable is measured. For Experiment I, Charles' Law, the independent variable is _____ and the dependent variable is _____.

  24. Remembering the other fellow: experimental insights into prosocial

    2 Levitt and List (Citation 2007) provide a comprehensive review of the experimental literature and results from meta-analysis on prosocial preferences elicited in the lab and field.They summarize typical findings discovered by many researchers who used traditional undergraduates in their experimental games; some of these studies were even from the 1980s and yet, they still showed consistent ...

  25. (IUCr) Quality assessment of the wide-angle detection option planned at

    4. Results and comments. AgBeh is a wavelength calibrant used in SAXS and SANS, as reported by Ilavsky et al. (2018) and Houston et al. (2018).The Bragg spacing of AgBeh is known to be d AgBeh = 58.38 Å (Okabe et al., 2007).However, the crystalline scattering pattern of AgBeh in the wide-angle scattering regime, up to Q max = 2.0 Å −1, is characterized by a large number of peaks (Tan et al ...