Check Out the New Website Shop!

Teaching with a Mountain View

Novels & Picture Books

what is critical thinking in mathematics

Anchor Charts

Classroom

  • Critical Thinking

How To Encourage Critical Thinking in Math

By Mary Montero

Share This Post:

  • Facebook Share
  • Twitter Share
  • Pinterest Share
  • Email Share

Critical thinking in math helps students learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different strategies.

Critical thinking is more than just a buzzword… It’s an essential skill that helps students develop problem-solving abilities and make logical connections between different concepts. By encouraging critical thinking in math, students learn to approach problems more thoughtfully, they learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different strategies for finding the solution. Critical thinking also involves a great deal of persistence. Those are critical life skills!

When you think about it, students are typically asked to solve math problems and find the answer. Showing their work is frequently stressed too, which is important, but not the end. Instead, students need to be able to look at math in different ways in order to truly grasp a complete understanding of math concepts. Mathematics requires logical reasoning, problem-solving, and abstract thinking.

Critical thinking in math helps students learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different strategies.

What Does Critical Thinking in Math Look Like?

When I think about critical thinking in math, I focus on:

  • Solving problems through logical thinking . Students learn how to break down complex problems, analyze the different parts, and understand how they fit together logically.
  • Identifying patterns and making connections. Students learn how to identify patterns across different math concepts, make connections between seemingly unrelated topics, and develop a more in-depth understanding of how math works.
  • Evaluating and comparing solutions. Students learn to evaluate which solution is best for a given problem and identify any flaws in their reasoning or others’ reasoning when looking at different solutions

Mathematician Posters

These FREE Marvelous Mathematician posters have been a staple in my classroom for the last 8+ years! I first started using a version from MissMathDork and adapted them for my classroom over the years. 

free marvelous mathematician posters

I print, laminate, and add magnetic stickers on the back. At the beginning of the year, I only put one or two up at a time depending on our area of focus. Now, they are all hanging on my board, and I’ll pull out different ones depending on our area of focus. They are so empowering to my mathematicians and help them stay on track!

A Marvelous Mathematician:

  • knows that quicker doesn’t mean better
  • looks for patterns
  • knows mistakes happen and keeps going
  • makes sense of the most important details
  • embraces challenges and works through frustrations
  • uses proper math vocabulary to explain their thinking
  • shows their work and models their thinking
  • discusses solutions and evaluates reasonableness
  • gives context by labeling answers
  • applies mathematical knowledge to similar situations
  • checks for errors (computational and conceptual)

Critical Thinking Math Activities

Here are a few of my favorite critical thinking activities. 

Square Of Numbers

I love to incorporate challenge problems (use Nrich and Openmiddle to get started) because they teach my students so much more than how to solve a math problem. They learn important lessons in teamwork, persistence, resiliency, and growth mindset. We talk about strategies for tackling difficult problems and the importance of not giving up when things get hard.

This square of numbers challenge was a hit!

ALL kids need to feel and learn to embrace challenge. Oftentimes, kids I see have rarely faced an academic challenge. Things have just come easy to them, so when it doesn’t, they can lack strategies that will help them. In fact, they will often give up before they even get started.

I tell them it’s my job to make sure I’m helping them stretch and grow their brain by giving them challenges. They don’t love it at first, but they eventually do! 

This domino challenge was another one from Nrich . I’m always on the hunt for problems like this!!  How would you guide students toward an answer??

Nrich domino challenge math puzzler for critical thinking in math

Fifteen Cards

This is a well-loved math puzzle with my students, and it’s amazing for encouraging students to consider all options when solving a math problem.

fifteen cards Nrich math puzzler for critical thinking in math

We have number cards 1-15 (one of each number) and only seven are laid out. With the given clues, students need to figure out which seven cards should be put out and in what order. My students love these, and after they’ve done a few, they enjoy creating their own, too! Use products, differences, and quotients to increase the challenge.

This is also adapted from Nrich, which is an AMAZING resource for math enrichment!

This is one of my favorite fraction lessons that I’ve done for years! Huge shout out to Meg from The Teacher Studio for this one. I give each child a slip of paper with this figure and they have to silently write their answer and justification. Then I tally up the answers and have students take a side and DEBATE with their reasoning! It’s an AMAZING conversation, and I highly recommend trying it with your students. 

Sometimes we leave it hanging overnight and work on visual models to make some proofs. 

fourths math puzzler

Logic Puzzles

Logic puzzles are always a hit too! You can enrich and extend your math lessons with these ‘Math Mystery’ logic puzzles that are the perfect challenge for 4th, 5th, and 6th grades. The puzzles are skills-based, so they integrate well with almost ANY math lesson. You can use them to supplement instruction or challenge your fast-finishers and gifted students… all while encouraging critical thinking about important math skills!

 math logic puzzles for critical thinking in math

Three levels are included, so they’re perfect to use for differentiation.

  • Introductory logic puzzles are great for beginners (4th grade and up!)
  • Advanced logic puzzles are great for students needing an extra challenge
  • Extra Advanced logic puzzles are perfect for expert solvers… we dare you to figure these puzzles out! 

Do you have a group of students who are ready for more of a fraction challenge? My well-loved fraction puzzlers are absolutely perfect for fraction enrichment. They’ll motivate your students to excel at even the most challenging tasks! 

fraction math puzzlers for critical thinking

Math Projects

Math projects are another way to differentiation while building critical thinking skills. Math projects hold so much learning power with their real-world connections, differentiation options, collaborative learning opportunities, and numerous avenues for cross curricular learning too. 

If you’re new to math projects, I shared my best tips and tricks for using math projects in this blog post . They’re perfect for cumulative review, seasonal practice, centers, early finisher work, and more.

math projects upper elementary

I use both concept-based math projects to focus on specific standards and seasonal math projects that integrate several skills.

Place Value Detectives Lay 804151 2642763 1

Error Analysis

Finally, error analysis is always a challenging way to encourage critical thinking. When we use error analysis, we encourage students to analyze their own mistakes to prevent making the same mistakes in the future.

For my gifted students, I use error analysis tasks as an assessment when they have shown mastery of a unit during other tasks. For students in the regular classroom needing enrichment, I usually have them complete the tasks in a center or with a partner.

For students needing extra support, we complete error analysis in small groups.  We go step-by-step through the concept and they are always able to eventually identify what the error is. It is so empowering to students when they finally figure out the error AND it helps prevent them from making the same error in the future!

My FREE addition error analysis is a good place to start, no matter the grade level. I show them the process of walking through the problem and how best to complete an error analysis task.

When you’re ready for more, this bundle of error analysis tasks contains more than 240 tasks to engage and enrich your students in critical thinking practice.

Division Strategies Error AnalysisIMG 0763 3512378 6647195 jpg

If you want to dig even deeper, visit this conceptual vs computational error analysis post to learn more about using error analysis in the classroom. 

analyzing errors anchor chart for error analysis

Related Critical Thinking Posts

  • How to Increase Critical Thinking and Creativity in Your “Spare” Time
  • More Tips to Increase Critical Thinking

Critical thinking is essential for students to develop a deeper understanding of math concepts, problem-solving skills, and a stronger ability to reason logically. When you learn how to encourage critical thinking in math, you’re setting your students up for success not only in more advanced math subjects they’ll encounter, but also in life. 

How do you integrate critical thinking in your classroom? Come share your ideas with us in our FREE Inspired In Upper Elementary Facebook group .

facebook group promo 3

Mary Montero

I’m so glad you are here. I’m a current gifted and talented teacher in a small town in Colorado, and I’ve been in education since 2009. My passion (other than my family and cookies) is for making teachers’ lives easier and classrooms more engaging.

You might also like…

Setting2BHigh2BAcademic2BStandards2B252812529

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

One Comment

Mary Thankyou for your inspirational activities. I have just read and loved the morning talk activities. I do have meetings with my students but usually at end of day. What time do you

what is critical thinking in mathematics

©2023 Teaching With a Mountain View . All Rights Reserved | Designed by Ashley Hughes

Username or Email Address

Remember Me

Lost your password?

Review Cart

No products in the cart.

Engaging Maths

Dr catherine attard, promoting creative and critical thinking in mathematics and numeracy.

  • by cattard2017
  • Posted on June 25, 2017

What is critical and creative thinking, and why is it so important in mathematics and numeracy education?

Numeracy is often defined as the ability to apply mathematics in the context of day to day life. However, the term ‘critical numeracy’ implies much more. One of the most basic reasons for learning mathematics is to be able to apply mathematical skills and knowledge to solve both simple and complex problems, and, more than just allowing us to navigate our lives through a mathematical lens, being numerate allows us to make our world a better place.

The mathematics curriculum in Australia provides teachers with the perfect opportunity to teach mathematics through critical and creative thinking. In fact, it’s mandated. Consider the core processes of the curriculum. The Australian Curriculum (ACARA, 2017), requires teachers to address four proficiencies : Problem Solving, Reasoning, Fluency, and Understanding. Problem solving and reasoning require critical and creative thinking (). This requirement is emphasised more heavily in New South wales, through the graphical representation of the mathematics syllabus content , which strategically places Working Mathematically (the proficiencies in NSW) and problem solving, at its core. Alongside the mathematics curriculum, we also have the General Capabilities , one of which is Critical and Creative Thinking – there’s no excuse!

Critical and creative thinking need to be embedded in every mathematics lesson . Why? When we embed critical and creative thinking, we transform learning from disjointed, memorisation of facts, to sense-making mathematics. Learning becomes more meaningful and purposeful for students.

How and when do we embed critical and creative thinking?

There are many tools and many methods of promoting thinking. Using a range of problem solving activities is a good place to start, but you might want to also use some shorter activities and some extended activities. Open-ended tasks are easy to implement, allow all learners the opportunity to achieve success, and allow for critical thinking and creativity. Tools such as Bloom’s Taxonomy and Thinkers Keys  are also very worthwhile tasks. For good mathematical problems go to the nrich website . For more extended mathematical investigations and a wonderful array of rich tasks, my favourite resource is Maths300   (this is subscription based, but well worth the money). All of the above activities can be used in class and/or for homework, as lesson starters or within the body of a lesson.

Screen Shot 2017-06-25 at 5.40.37 pm

Will critical and creative thinking take time away from teaching basic concepts?

No, we need to teach mathematics in a way that has meaning and relevance, rather than through isolated topics. Therefore, teaching through problem-solving rather than for problem-solving. A classroom that promotes and critical and creative thinking provides opportunities for:

  • higher-level thinking within authentic and meaningful contexts;
  • complex problem solving;
  • open-ended responses; and
  • substantive dialogue and interaction.

Who should be engaging in critical and creative thinking?

Is it just for students? No! There are lots of reasons that teachers should be engaged with critical and creative thinking. First, it’s important that we model this type of thinking for our students. Often students see mathematics as black or white, right or wrong. They need to learn to question, to be critical, and to be creative. They need to feel they have permission to engage in exploration and investigation. They need to move from consumers to producers of mathematics.

Secondly, teachers need to think critically and creatively about their practice as teachers of mathematics. We need to be reflective practitioners who constantly evaluate our work, questioning curriculum and practice, including assessment, student grouping, the use of technology, and our beliefs of how children best learn mathematics.

Critical and creative thinking is something we cannot ignore if we want our students to be prepared for a workforce and world that is constantly changing. Not only does it equip then for the future, it promotes higher levels of student engagement, and makes mathematics more relevant and meaningful.

How will you and your students engage in critical and creative thinking?

Share this:

  • Pingback: Critical Thinking, Mathematics, and McDonald’s | Engaging Maths
  • Pingback: Beach Towels and Pencil Cases: Interesting, Inquiry-based Mathematical Investigations | Engaging Maths

Leave a comment Cancel reply

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

  • Math Resources Links
  • Math in the Real World
  • Differentiated Math Unlocked
  • Math in the Real World Workshop

20 Math Critical Thinking Questions to Ask in Class Tomorrow

chaput.caroline

  • November 20, 2023

give intentional and effective feedback for students with 10 critical thinking prompts for algebra 1

The level of apathy towards math is only increasing as each year passes and it’s up to us as teachers to make math class more meaningful . This list of math critical thinking questions will give you a quick starting point for getting your students to think deeper about any concept or problem. 

Since artificial intelligence has basically changed schooling as we once knew it, I’ve seen a lot of districts and teachers looking for ways to lean into AI rather than run from it.

The idea of memorizing formulas and regurgitating information for a test is becoming more obsolete. We can now teach our students how to use their resources to make educated decisions and solve more complex problems.

With that in mind, teachers have more opportunities to get their students thinking about the why rather than the how.

Table of Contents

Looking for more about critical thinking skills? Check out these blog posts:

  • Why You Need to Be Teaching Writing in Math Class Today
  • How to Teach Problem Solving for Mathematics
  • Turn the Bloom’s Taxonomy Verbs into Engaging Math Activities

critical thinking questions for any math class

What skills do we actually want to teach our students?

As professionals, we talk a lot about transferable skills that can be valuable in multiple jobs, such as leadership, event planning, or effective communication. The same can be said for high school students. 

It’s important to think about the skills that we want them to have before they are catapulted into the adult world. 

Do you want them to be able to collaborate and communicate effectively with their peers? Maybe you would prefer that they can articulate their thoughts in a way that makes sense to someone who knows nothing about the topic.

Whatever you decide are the most essential skills your students should learn, make sure to add them into your lesson objectives.

algebra 1 critical thinking questions. 10 topics. 190+ prompts. click to learn more

When should I ask these math critical thinking questions?

Critical thinking doesn’t have to be complex or fill an entire lesson. There are simple ways that you can start adding these types of questions into your lessons daily!

Start small

Add specific math critical thinking questions to your warm up or exit ticket routine. This is a great way to start or end your class because your students will be able to quickly show you what they understand. 

Asking deeper questions at the beginning of your class can end up leading to really great discussions and get your students talking about math.

what is critical thinking in mathematics

Add critical thinking questions to word problems

Word problems and real-life applications are the perfect place to add in critical thinking questions. Real-world applications offer a more choose-your-own-adventure style assignment where your students can expand on their thought processes. 

They also allow your students to get creative and think outside of the box. These problem-solving skills play a critical role in helping your students develop critical thinking abilities.

connect algebra concepts to geometry applications

Keep reading for math critical thinking questions that can be applied to any subject or topic!

When you want your students to defend their answers.

  • Explain the steps you took to solve this problem
  • How do you know that your answer is correct?
  • Draw a diagram to prove your solution.
  • Is there a different way to solve this problem besides the one you used?
  • How would you explain _______________ to a student in the grade below you?
  • Why does this strategy work?
  • Use evidence from the problem/data to defend your answer in complete sentences.

When you want your students to justify their opinions

  • What do you think will happen when ______?
  • Do you agree/disagree with _______?
  • What are the similarities and differences between ________ and __________?
  • What suggestions would you give to this student?
  • What is the most efficient way to solve this problem?
  • How did you decide on your first step for solving this problem?

what is critical thinking in mathematics

When you want your students to think outside of the box

  • How can ______________ be used in the real world?
  • What might be a common error that a student could make when solving this problem?
  • How is _____________ topic similar to _______________ (previous topic)?
  • What examples can you think of that would not work with this problem solving method?
  • What would happen if __________ changed?
  • Create your own problem that would give a solution of ______________.
  • What other math skills did you need to use to solve this problem?

Let’s Recap:

  • Rather than running from AI, help your students use it as a tool to expand their thinking.
  • Identify a few transferable skills that you want your students to learn and make a goal for how you can help them develop these skills.
  • Add critical thinking questions to your daily warm ups or exit tickets.
  • Ask your students to explain their thinking when solving a word problem.
  • Get a free sample of my Algebra 1 critical thinking questions ↓

10 free math critical thinking writing prompts for algebra 1 and algebra 2

8 thoughts on “20 Math Critical Thinking Questions to Ask in Class Tomorrow”

' src=

I would love to see your free math writing prompts, but there is no place for me to sign up. thank you

' src=

Ahh sorry about that! I just updated the button link!

Pingback:  How to Teach Problem Solving for Mathematics -

Pingback:  5 Ways Teaching Collaboration Can Transform Your Math Classroom

Pingback:  3 Ways Math Rubrics Will Revitalize Your Summative Assessments

Pingback:  How to Use Math Stations to Teach Problem Solving Skills

Pingback:  How to Seamlessly Add Critical Thinking Questions to Any Math Assessment

Pingback:  13 Math Posters and Math Classroom Ideas for High School

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

what is critical thinking in mathematics

  • For Individuals
  • For Businesses
  • For Universities
  • For Governments
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

  • Chat with a Live Advisor Live Chat
  • 1-800-NAT-UNIV (628-8648)
  • Bachelor of Arts Degree in Early Childhood Education (BAECE)
  • Bachelor of Arts in Early Childhood Development with an Inspired Teaching and Learning Preliminary Multiple Subject Teaching Credential (California)
  • Bachelor of Arts in English
  • Bachelor of Arts in History
  • Master of Arts in Social Emotional Learning
  • Master of Education in Inspired Teaching and Learning with a Preliminary Multiple and Single Subject Teaching Credential and Intern Option (CA)
  • Master of Arts in Education
  • Master of Early Childhood Education
  • Education Specialist
  • Doctor of Education
  • Doctor of Philosophy in Education
  • Doctor of Education in Educational Leadership
  • Ed.D. in Organizational Innovation
  • Certificate in Online Teaching (COT) Program
  • Online Medical Coding Program
  • Building Our Team Through Community Policing
  • Inspired Teaching and Learning with a Preliminary Single Subject Teaching Credential
  • Inspired Teaching and Learning with a Preliminary Multiple Subject Teaching Credential and Internship Option (California)
  • Preliminary Administrative Services Credential (CA Option)
  • Preliminary Education Specialist Credential: Mild/Moderate with Internship Option (CA)
  • All Teaching & Education
  • Associate of Science in Business
  • Bachelor of Business Administration
  • Bachelor of Science in Healthcare Administration
  • Bachelor of Arts in Management
  • Master of Business Administration (MBA)
  • Master of Public Health (MPH)
  • Master of Science in Data Science
  • Master of Public Administration
  • Doctor of Criminal Justice
  • Doctor of Philosophy in Organizational Leadership
  • Doctor of Business Administration
  • Doctor of Philosophy in Business Administration
  • Post-Baccalaureate Certificate in Business
  • Post-Master's Certificate in Business
  • Graduate Certificate in Banking
  • Certificate in Agile Project Management
  • All Business & Marketing
  • Bachelor of Science in Nursing (BSN) (California)
  • Bachelor of Science in Nursing (BSN) Second Bachelor Degree (California)
  • Bachelor of Science in Clinical Laboratory Science
  • Bachelor of Science in Public Health
  • Master of Science in Nursing
  • Master of Science in Health Informatics
  • Master of Healthcare Administration
  • Doctor of Nurse Anesthesia Practice (DNAP)
  • Doctor of Health Administration
  • Doctor of Nursing Practice in Executive Leadership
  • LVN to RN 30 Unit Option Certificate
  • Psychiatric Mental Health Nurse Practitioner Certificate
  • Family Nurse Practitioner Certificate
  • Emergency Medical Technician Certificate
  • All Healthcare & Nursing
  • Bachelor of Arts in Psychology
  • Bachelor of Arts in Integrative Psychology
  • Bachelor of Science in Criminal Justice Administration
  • Bachelor of Arts in Sociology
  • Master of Science in Applied Behavioral Analysis Degree
  • Master of Arts Degree in Counseling Psychology
  • Master of Arts in Consciousness, Psychology, and Transformation
  • Doctor of Clinical Psychology (PsyD) Program
  • Doctor of Philosophy in Marriage and Family Therapy
  • Doctor of Philosophy in Psychology
  • Doctorate of Marriage and Family Therapy
  • Graduate Certificate in Trauma Studies
  • Post-Master's Certificate in Psychology
  • Post-Baccalaureate Certificate in Applied Behavior Analysis
  • Pupil Personnel Services Credential School Counseling (PPSC)
  • University Internship Credential Program for Pupil Personnel Services School Counseling (California Only)
  • All Social Sciences & Psychology
  • Bachelor of Science in Cybersecurity
  • Bachelor of Science in Electrical and Computer Engineering
  • Bachelor of Science in Computer Science
  • Bachelor of Science in Construction Management
  • Master of Science in Cybersecurity
  • Master of Science in Computer Science
  • Master of Science in Engineering Management
  • Doctor of Philosophy in Data Science
  • Doctor of Philosophy in Computer Science
  • Doctor of Philosophy in Technology Management
  • Doctor of Philosophy in Cybersecurity
  • All Engineering & Technology
  • Associate of Arts in General Education
  • Bachelor of Arts in Digital Media Design
  • Bachelor of Arts in General Studies
  • Master of Arts in English
  • Master of Arts in Strategic Communication
  • Foreign Credential Bridge Program
  • All Arts & Humanities
  • Graduate Certificate in Forensic and Crime Scene Investigations
  • Bachelor of Public Administration
  • Bachelor of Science in Homeland Security and Emergency Management
  • Minor in Business Law
  • Master of Criminal Justice Leadership
  • Master of Forensic Sciences
  • Master of Science in Homeland Security and Emergency Management
  • Doctor of Public Administration
  • All Criminal Justice & Public Service
  • Paralegal Specialist Certificate Corporations
  • Paralegal Specialist Certificate Criminal Law
  • Paralegal Specialist Certificate Litigation
  • Associate of Science in Paralegal Studies
  • Bachelor of Arts in Pre-Law Studies
  • Bachelor of Science in Paralegal Studies
  • Juris Doctor
  • Associate of Science in Human Biology
  • Associate of Science in General Education
  • Bachelor of Science in Biology

Bachelor of Science in Mathematics

  • All Science & Math
  • Program Finder
  • Undergraduate Admissions
  • Graduate Program Admissions
  • Military Admissions
  • Early College
  • Credential & Certificate Programs
  • Transfer Information
  • Speak to an Advisor
  • How to Pay for College
  • Financial Aid
  • Scholarships
  • Tuition & Fees
  • NU offers a variety of scholarships to help students reduce their financial burden while focusing on achieving their goals. Explore Scholarships
  • Office of the President
  • Board of Trustees
  • Accreditation
  • Course Catalog
  • Workforce and Community Education
  • Academic Schools/Colleges
  • Academies at NU
  • NU Foundation
  • President’s Circle
  • Military & Veterans
  • Coast Guard
  • Space Force
  • National Guard & Reservist
  • Military Spouses & Dependents
  • Military Resources
  • NU proudly serves active duty and Veteran students from all branches of the military — at home, on base, and abroad. Military Admissions
  • Online Degrees & Programs
  • Consumer Information
  • Student Login
  • Graduation Events
  • Student Portal
  • Student Bookstore
  • Student Resources
  • Dissertation Boot Camp
  • Show your NU pride and shop our online store for the latest and greatest NU apparel and accessories! Shop Now
  • Request Info
  • Our Programs

what is critical thinking in mathematics

  • Math & Science

Inspiring Minds: The Role of Mathematics in Critical Thinking

Join us for an enlightening conversation with Dr. Igor Subbotin, an esteemed mathematician and educator, as we explore the essential role mathematics plays in our world. Throughout our discussion, we uncover the profound impact that mathematics has on developing critical thinking and problem-solving skills, vital for the 21st-century landscape. Dr. Subbotin, with his extensive background in algebra and passion for the subject, shares his insights on how mathematics serves as both the queen and servant of the sciences, simplifying complex ideas and fostering analytical minds.

Listen in as we delve into the significance of mathematics within the educational sphere, particularly at National University. We emphasize the necessity for inspiring teachers who can ignite a lifelong appreciation for mathematics, crucial in dispelling the common apprehension surrounding the subject. Our journey through the history of algebra reveals its rich tapestry, from ancient civilizations to the Islamic Golden Age, demonstrating the subject's evolution and the collaborative nature of its growth, transcending cultural and geographic divides.

Wrapping up our discussion, Dr. Subbotin shares personal anecdotes from his academic path, influenced by renowned mathematicians like Sergei Chernikov. He highlights the emergence of braces theory, a fascinating new branch of algebra, illustrating the interconnectedness of mathematics and physics. This narrative not only showcases the collaborative spirit within the mathematical community but also reinforces the notion that abstract mathematical theories can significantly influence various scientific fields. Tune in to discover the boundless universe of mathematics, where equations speak the language of nature, and every human activity is interwoven with numerical threads.

  • 0:04:04 - The Importance of Mathematics in Science (105 Seconds)
  • 0:08:56 - Discovering Mathematics (104 Seconds)
  • 0:11:50 - Universal Application of Mathematical Concepts (85 Seconds)
  • 0:21:12 - Global Influence of Mathematics (173 Seconds)
  • 0:33:38 - Tragic End of Evariste Galois (55 Seconds)
  • 0:38:29 - Otto Schmidt (165 Seconds)
  • 0:42:52 - The Impact of Group Theory (108 Seconds)
  • 0:51:47 - Studying Properties of Young-Baxter Equations (100 Seconds)
  • 0:56:16 - Language and Mathematics Similarities and Differences (102 Seconds)
  • 1:00:49 - Mathematics and Language Connection (117 Seconds)

Dr. Igor Subbotin

0:00:01 - Announcer

You are listening to the National University Podcast. 

0:00:10 - Kimberly King

Hello, I'm Kimberly King. Welcome to the National University Podcast, where we offer a holistic approach to student support, well-being and success- the whole human education. We put passion into practice by offering accessible, achievable higher education to lifelong learners. Today we are talking about the power of mathematics and, according to a recent article in the New York Times, learning mathematics is both crucial to the learning development of the 21st century students. So as not to be imposed upon learners too heavily. So, learning mathematics develops problem-solving skills which combine logic and reasoning in students as they grow. 

We're going to be having a great conversation about the power of mathematics coming up on today's show. On today's episode, we're talking about the power of mathematics, and joining us is National University's Dr. Igor Subbotin, and he earned his PhD in mathematics at the Mathematics Institute of the National Academy of Sciences of Ukraine. Before joining National University, he taught mathematics at the most prestigious university in Ukraine, Kiev Polytech Institute. At National University, Dr. Subbotin regularly teaches different mathematics classes and supervises mathematics courses. Dr. Subbotin's main area of research is algebra. His list of publications include more than 170 research articles in algebra published in major mathematics journals around the globe, and he has had the privilege to collaborate with several world-class mathematicians from different countries. He also authored more than 50 articles in mathematics education, dedicated mostly to the theoretical base of some topics of high school and college mathematics, and he's published several books. We welcome you to the podcast, Dr. Subbotin. How are you? 

0:02:07 - Igor Subbotin

I'm fine. Thank you very much for inviting me. I'm really happy to be with you, thank you. 

0:02:13 - Kimberly King

Thank you. Why don't you fill our audience in a little bit on your mission and your work before we get to today's show topic? 

0:02:22 - Igor Subbotin

It's very easy to talk about things that you love it. I love mathematics and felt a love in mathematics a long time ago. I continue loving it, the same kind of, let's say, powers that used to be when I was very young and I love my students and the love to my students even grows. Comparison that I was young, because I got experience and understand people better. I love my university and I have been working for National University for 30 years already and university growth- I looked, I was part of the university development and growth. It was small at that time when I came and now it's a big university with some traditions, prestige, some kind of place in the American higher education and I'm happy to work with this and I'm happy to continue development of the mathematics education in our country, in different countries, and Europe, that I participated in many different collaborations with many different scientists and promote some mathematics- new ideas and also disseminate these ideas, which is extremely important. Thank you for inviting me. 

0:03:51 - Kimberly King

Absolutely. I love more than anything, I can hear your passion for teaching and really helping your students understand the joy that you have for mathematics, and so today we're talking about the power of mathematics. And so, Doctor, why is mathematics so useful? 

0:04:10 - Igor Subbotin

I will answer for this just bringing the citation from Joseph Louis LaGrange, one of the bright stars on the mathematics horizon. He was born in the middle of the 18th century, I mean, started to work in the middle of the 18th century in Turin, Italy, but he is a French mathematician actually, after all, and he was a key figure in many different mathematics development of that time- special calculus, differential equations. It was a time very in, and he said like that, mathematics as the queen and the servant of all sciences. Mathematics is a queen and the servant. 

I know that some other people say that mathematics, that science, became a science only if the science used mathematics. Start to use mathematics, it's number one. And also I would like to repeat the word attributed to Galileo Galilei, who said that mathematics is a language in which God speaks to us. God could be just changed to nature, but the meaning is the same. Our nature, our God, will speak to us through the mathematics language, mathematics language. And why mathematics is so remarkably useful in every single human activity, not only in science, not only in physics, everywhere, everywhere. Number one, philosophically talking about everything. Every single event has some kind of qualities. How can we assess this quality? How we will talk about that? 

First of all, we try to measure this in some way- qualitative measurement- also appeals to quantitative measurement. There is no quality without quantity. There is no quantity without quality. There are two structures that inter-influence each other. It's number one. Why mathematics has so much power and why it's so useful? Because the main idea of mathematics is to strip off the second line, details, to look at the stems, not on the leaf and the stems ignoring by some details. When you start to study some physics or chemistry, some kind of events or what happened with them in this specific event, you just miss so many details, so many details- you don't know to what you need to concentrate your attention. In this case, mathematics helps you to strip off of this mail by focusing on the most essential aspects. 

Mathematic enables a comprehensive understanding of complex natural processes. It distills vast amounts of information, stripping away irrelevant details to emphasize what truly matters, what truly matters. So mathematics is not a calculation. Mathematics is not only geometry. Mathematics is a way of thinking. This is exactly what we call critical thinking of the highest level of development. That's why mathematics is so powerful. And this mathematics is powerful not only in science. It's powerful in any kind of human activity. And I will tell you what is mathematics' role in this human activity. This is the main thing. 

0:08:20 - Kimberly King

Well, I love that you explain mathematics as a language and again your passion comes through. In fact, last time I interviewed you I kept saying, as soon as we were through- I wish you were my mathematics professor, because you share such a passion and you make it easy for others to understand, and that is truly a gift. So thank you. Why is mathematics so universal? 

0:08:50 - Igor Subbotin

The idea of universality of mathematics- it belongs to its own structure. What is mathematics study? What is mathematics study? The main process in every single thing, event, and you know, sometime it always amazed me and not only me, maybe, it's amazed many different people for sure, that when some science or some human activity thing face some needs of mathematical analysis, which means qualitative or quantitative analysis, the appropriate corresponding series already exists. You don't have to create something new, it's already there. What does it mean philosophically? For me, it means that this is some kind of answer for the very deep questions that everybody who is doing mathematics asks themselves. What we are doing? Creating new mathematical ideas? Or we are discovering this mathematics world, like a known country? So maybe all this idea exists already and we are just discovering them, like in physics, like in chemistry, like in any other thing, or we are creating these ideas. I believe it's my opinion and not everybody shares this opinion that everything already exists. We are just not inventing, we are exploring these ideas. So what does it mean? So, for example, when we are talking we'll talk today a lot about my favorite area of mathematic- algebra. This is not the same algebra that we are talking about during high school mathematics. No, it's a totally different subject. I will talk about this today. 

But the power of algebra based on the idea of isomorphism. Isomorphism, what is that? It means if you have two different structures consisting of two of different subjects, objects of different objects, and you find out some kind of one-to-one relations between these two structures, in which it doesn't matter what you're doing in one subject, in one object, work with the same kind of result for the second object. It's in the isomorphism. You can start to study one area and after that, all the rules that you will come to will work for another way. This is the power of mathematics. Simple examples- you can use the same kind of linear equation to describe many different things, many different things. In mechanic, in accounting, in, let's say, the different disciplines that are directed to the, for example, structural things, some like concrete structures and so on. 

It's a very simple example. Idea of isomorphism this is algebraic ideas that just came to our attention, I believe, not so long time ago, maybe 200 years ago, no more. But mathematics, mathematics use it for long period of time, many, many, many years, without understanding what is that. I believe that algebra, which is the most abstract subject in mathematics, could be a wonderful illustration how this idea works. The idea of isomorphism is crucial in explaining how mathematical concepts can be applied across diverse fields. For instance, in algebra, the same equation can be used to solve problem various areas, showcasing the universality of mathematical principles. So we will talk about this today. 

0:13:13 - Kimberly King

So interesting- yeah, go ahead. 

0:13:16 - Igor Subbotin

Let me add a little bit about your remark about the study of mathematics, how the teacher role is important in that. I would like to assure our future students, or some people, that we have right now at National University, that main idea for selecting faculty for mathematics department for classes, staffing them to the classes, is the idea how these people really feel about the subject, if they're really motivated to bring their knowledge and their passion in the classroom and they really understand with whom they're dealing with. Because it's a very different approach in our study when we come to the class of the elementary teacher future elementary teacher or to some art designers, all of us are very passionate about the subject. All of us understand our role at the university and how to treat students in the right way. 

I believe not only me, it's statistical knowledge that most of the hate to mathematics born in the elementary school classrooms, where some teachers hate it and don't understand it enough. That's why our mission, our mission- and we teach elementary teachers also- to bring the light of mathematics understanding to them, to build up the respect to the subject, respect to the teaching. And that's why I believe that major, I would say almost all our students are successful, not because we are not keeping rigor. We are keeping high rigor in our classes, our classes. But we are doing our best not only to fill out students like a job but to light them as a torch in mathematics. Sorry for interruption, but it's an important point that I would like to mention, answering for your remark.

0:15:38 - Kimberly King

I'm glad you did, because it is true that when we're learning, I mean it's almost like now you're playing catch up to get these students to love and have that affair- a love affair- with mathematics and that understanding, and it really does need to start at a younger level, just so that you know we can continue to move forward and grow. So thank you for taking that moment out to explain that, because it really does truly show, and I think we're doing a disservice, you know, for those teachers that are in place and either don't have that love, that understanding, that passion, and then they're, you know, not necessarily bringing up our kids, our children, to love it like you do. So it's good, thank you. Can you discuss abstract algebra and how it's stated and its applications? 

0:16:31 - Igor Subbotin

Most of our students who are not math majors, they will not study abstract algebra in the university course. They will just, I believe, will be starting studying, some of them, calculus. Some of them will study just college algebra. Some of them will study linear algebra at most, like computer science people. Abstract algebra, this is only for math majors and this is very interesting to trace the genesis of algebra, how it became totally different from other areas of mathematic language, developed language, develop understanding and what is the most important- at the end I will show this- how this may be one of the most abstract, without any, sometimes, visualization ability, subject became the most useful and most applied. It's interesting. So if I will start about talking about algebra, you immediately just come to the original. 

Algebra can be found in the mathematics of ancient civilizations, particularly Babylonian people and ancient Greece, of course, with Euclid, with his famous book Elements. Do you know that the book Elements of Euclid was it's about 2,300 years ago published? by Euclid, and Euclid is a very mystical figure in mathematics because there is not any portrait of Euclid that exists. Most of the mathematician portraits we have it came to us from the anthropology but not Euclid’s picture and according to his, let's say his in quotation input, in mathematics it's too much for one person to be so educated and so powerful. So there is some hypothesis that Euclid this is just, let's say, like nickname for the group of mathematicians of that time they put together their knowledge in the group of elements, elements. It's had in the group of elements. You now that the book elements is the second book by the amount of publications after Bible, only one book that was published more than Euclid. Why? Because during 2000 years, it has been the maybe only textbook for mathematics for our civilization, for 2000 years almost. So, Euclid, ancient Greece, so who started developing equation solving procedure and manipulating symbols to depict mathematical relationships. 

After that we jump to the golden age of Islamic, that next significant advancement which was made possible by the writing of academic-like Al-Khwarizmi. Al-Khwarizmi - listen, algorithm. Al-Khwarizmi- [laughs] it’s the same, it's the same. Algorithm come from Al-Khwarizmi name. This is some golden age of the Islamic age, something 15th, 14th, 15th century, when this very famous author wrote the book. I will read the book- “al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah”- translating is going to be the Comprehensive Book on Calculation, Completion and Balancing- Al-Jabr. Al-Jabr, this is a book we named. It was brought to Europe by mathematicians from Middle Eastern countries. So what is interesting? Definitely, this book is not absolutely just created by people from Islamic countries. It was a lot of roots in China, a lot of roots come to India and so on. 

Let me remind you my favorite words from brilliant mathematician David Gilbert, who was one of the most prominent, if not most prominent mathematicians in the world in the end of the 19th, beginning of 20th century up to the middle of 20th century. He said that for mathematics, there is no boundary in culture and race. Mathematics considered the entire intellectual world as one country. If you take mathematics, you will not find any other science that would be so internationally developed, internationally developed. And now we have many different countries that work in mathematic development. It was maybe something like 19th century. 

The most influential was French mathematics. Before it was Newton, English, England mathematics. At the same time it was German mathematics. After that, again, German mathematics became prevalent. After that, Soviet Union mathematical school became a golden, when it was golden age. It's the most powerful and most developed school. 

American mathematics. American mathematics became very, very influential and powerful, but it's mostly after 40 years of the previous century, 20th century, and I will bring you many other examples like that. Every Chinese, Chinese school. Look at China now. How many prominent fields, medal holders and mathematicians we have in China. What a genius was born in India. What a great development. 

In my own experience and seeing how the Middle East developed mathematics, about 30, 40 years ago they didn't talk about, for example, abstract algebra. Now they have a few, a few journals in the Middle East, especially in Iranian people. It doesn't matter what kind of relation we have with Iran. Mathematics is unity, it's all people work together and we develop the same subject and we work on the same field, which is extremely important. That's why mathematics is so influential. Why we are doing it? This is the reason, because everybody needs it. Everybody needs it, not only for developing some kind of new technical idea, but also for understanding the world. 

So after this Islamic time, symbolic notation was developed by a mathematician during the Renaissance time, European mathematicians during the Renaissance time. What happens at that time? People can solve quadratic equations. Long time ago, linear equation was not a problem at all, but quadratic equation long time ago. But when people face equation of the power 3, power 3 with one variable, it was a big problem. Sooner or later it was solved. Also, what does it mean solving equation? It means to get a formula that will express the solution, the roots of the equation, expressing them through the main algebraic operation addition, subtraction, multiplication, division and so on, and radicals and so on, in one formulas through the coefficient, coefficient- number of this equation, using this equation. So for cube roots it could be huge formula. After that, for four roots, people were successful. They got it. 

After they got it, I believe that the creator of this was a mathematician who was nicknamed Tartaglia. Tartaglia mean people with some kind of empire of speaking, Tartaglia in Italy. This, it was a very strange person. He was very- He was not, he didn't have really nice personality, he was, let's say, some kind of gloomy and always not happy guy. But he, according to what I read, he was the person who solved the equation of the power of four. At the same time. Cardano, Federico Cardano, who is a physicist, great physician, great engineer and great mathematician of the time, very big person at the time, star number one in Italy, have heard that Tartaglia has some formula for solving equation of the force power, certain force power. 

Why it was so important? At that time, to get position to have some money for doing mathematics was a very difficult thing. It was a very difficult thing. It was very limited opportunity, for example, to be some kind of the mathematician in the court of some kind of prince or king or duke or something like that. So people just applying for this position, they're supposed to go through the competition. Competition looks like that that the persons who would like to apply for the position, two weeks before the meeting, send to each other the list of the problems that they would like that their counterpart solved. A counterpart solved Okay, if you have a formula that nobody knows, you are a winner. It's a big chance that you solve the problems that this person sent to you. But there is no chance that somebody will solve the problem if they don't know the formula. So it was a huge privilege, it was a huge, huge benefit to having the formula. It was a big secret. Nobody knows. 

Cardano, who was a huge guy, a huge star at that time, came to this unknown guy, Tartaglia, and asked him tell me please about the formula I have heard you have it. Tell me please. And Tartaglia said okay, but don't tell anybody. For Tartaglia it was a big, big how to say honor to meet a guy like that and he told him the formula. What Cardano did- from the point of view of nowadays, he did a very honest and great thing. He published a book and the end of the book published the appendix and he said this formula was given to me by my esteemed great colleagues Tartaglia. So he didn't try to cheat, he didn't try to get his Tartaglia let's say, copyright, like we said right now. But from point of view of nowadays you can say it was a huge support to the people, to the Tartaglia from the big, big star. 

No, guys, that time it was totally different. Tartaglia lost his power to win in competition by publishing this formula. So, change time, change the vision, change the vision. So this time now the formula calls like usually called, usually called something that if you create in mathematics it's always a different person name. Coming to the history, it's Cardano formula, but definitely it was Tertaglia. In mathematics there are some kind of buyer rule that most of the invention in mathematics are called by the name of the people who didn't do this. It's even said like that Bayer rules, okay. 

So what happened after that? People started to study the equation of power of five. Next fifth power no success, no success. This way, that way, no success. Nobody can do this, anything. And until October 25, 1811, a brilliant, very unusual, mathematic star was born- Evariste Galois. Evariste Galois, French mathematician. He was born, again, in 1811. He created his main idea and write his main idea in written when he was 16 years old. 16 years old and he was killed when he was 20. Only 70 years after his death, Camille Jordan published his work in his book about matrices, and this is the beginning of modern algebra, beginning of modern algebra. 

Do you know what the Evariste Galois finds out? He finds out that any equation, polynomial equation with one variable, with a power greater than four, like five, six, 7, and so on, has no formula at all in general, cannot be found. But partial cases, please. To find some approximate solution, please, but not general. There is no, and never going to happen. It's mathematical power. You see, he proves that it and never going to happen, it's mathematical power. You see, he proves that it's never going to happen that anybody with the hugest star in the world there is no formula in general, case like that. Moreover, he finds out when, in some partial cases, this formula exists and when not. What's the condition for this. This is what. 16 years old how to say, teenager, 16 years old. 

He of course tried to find out the opinion of the people who was in power in mathematics that time. He sent his manuscript to Augustin-Louis Cauchy. If you will study calculus- I'm talking to our future audience- you will find Cauchy's name every I mean tens, dozens of times in different theorems and calculus. He was a huge star at that time it was the first quarter maybe, of the 19th century right and he published a lot of different works. He was a genius and he is a genius. And Galois sent him a manuscript and after some time asked what do you think about that? And Augustin-Louis Cauchy said all right to him, I lost it. I don't know if it was true or not. Some people said that after that, the publication of Augustin-Louis Cauchy has some influence on this paper. So it's again, humans are humans everywhere, not only in the economics and history, but also in science, even such straight science like mathematics. Human is human. 

So what can we say about this situation? And Evariste Galois continued to promote his idea. He organized special seminars for people who wanted to come there. But he also participated in the revolutionary activity and he was very active in this, and the police decided to say too active, too much active, the police in French, and they sent to him the killer. He just sent him invitation to duel because of some woman. Sorry but it's true and he just came to the duel and before the night of the duel he continued to work on mathematics and he was killed in the duel. It was a main idea. It was political kill, definitely, but he was 20. He was 20 at that time. So you know, teenagers create a new huge area of mathematics. 

It started with a name, like Galois theory and we studied Galois theory. But this is a partial idea. The idea was to study, not the numbers, not the equation- operations, operations. This is the power of abstract algebra. This is the power when the abstract algebra was born. Study operation. 

I will give you a very simple example that everybody will understand about operations and so on. You know that entire world knows chess game. In different countries we have different names, different names for the checkboard names. We have different names for the figures. We have different names for the different language, for the combinations that we consider. But we have great masters from different countries. They play the same game. They cannot speak common language, but they know the rules and the rules are the same rules. It's operations, how to operate with this special figure in this special situation. This is a rule. So algebra, abstract algebra, they don't deal with the equations, specifically. They don't deal with the numbers. They can deal with the matrices, which are big tables. They can deal with the transformation of the space of the plane, doesn't matter the idea how this object behaves under the operations. 

Under the operations. 

0:36:20 - Igor Subbotin

It's a huge step. It became a very abstract subject, a very abstract subject and it's very interesting to say the algebra started with the ideals of Galois and the idea of Galois leads us to the group theory. This group, the algebra subject, without operation group is the most possible. Group theory. But group theory was long time stay long time as a group theory of permutations. It's a special object in algebra. Only in 1920s, 1920s, great mathematician, Otto Yulyevich Schmidt. Otto Schmidt, it's a Soviet Union mathematician, Russian but definitely with the German roots. Schmidt, it's German name. Otto Yulyevich Otto, also German name. It's also another kind of brilliant guy and I'm his scientific grandson. 

0:37:26 - Kimberly King

Perfect yes. 

0:37:30 - Igor Subbotin

Why you will be amazed in a different way. In our department we have biologists, people who study biology. We have now a department called Mathematics and Natural Science. One of these professors is a prominent researcher in biology who uses a lot of statistics, and his dissertation also was supervised by the statistician mathematician statistician, because to study biology you need statistics, you need to watch. Okay, so what is interesting? When we together came four steps back, we will find out that our roots both of us, came to Carl Friedrich Gauss. I am grand-grand-grandson and he is grand-grand-grandson to Carl Friedrich Gauss. 

0:38:23 - Kimberly King

Wow, that is fascinating. My goodness Wow. 

0:38:27 - Igor Subbotin

The world is unique, it's one. So Otto Yulyevich Schmidt, Otto Schmidt was not only mathematician, with the he, by the way, first wrote the book which called Abstract Group Theory. When this object, in the group object, elements of this set, absolutely abstract, doesn't matter what the nature, only operation is important. Otto Schmitt was the one and is the one of the most famous geodesists about the science of the Earth, and he is well known also as a creator of the first scientific theory how our solar system was born. This is his name. Also, he was a guy who was the, who was the how to say director of the expedition to the North Pole on the ship Chelyuskin, and that time, in 1930s, it was the most like today, let's say, a trip to the moon. It was the same kind of importance for the entire human race. And so, by the way, some of them article in group theory and algebra written in the Chelyuskin during this expedition, written in the Chelyuskin during this expedition and signed up like ships Chelyuskin, whereas it was written Chips Chelyuskin. So he was there in the North Pole and write the book, and write the book and write the article in mathematics, people like that is a brilliant our human civilization topics. Okay. So algebra became very abstract. Nobody expected that algebra became really, really applicable, right. So because I have been working in algebra for some time, I see it in my own eye when the group theory subject just transformed to the new abstract algebra. Of course I was not born in 1920s when it came, but in 1970s I see the most peak of development on the infinite group theory, and now I see that some other subject was developed like that. Let me continue with the history and I will tell you a very exciting thing about how algebra, so abstract, became so useful and became so applicable. 

Next step was German mathematicians, like we are supposed to mention David Hilbert and his school, and also the biggest star in mathematics for all times, Emmy Noether. Emmy Noether, this is not only you know, of course. Everybody knows about Sofia Kovalevskaya. Sofia Kovalevskaya or Gepardia Alexandriyevskaya, some other woman who brings their huge input in mathematics, but Emmy Noether is number one. She was a German mathematician. In 1938, she immigrated, like many other people, from Nazi Germany to the United States and I believe she was a professor in Bryn Maur College after her death. She developed the main idea of investigating some algebraic structure like rings, fields, groups and so on, the idea of chains. I'm not going to proceed with this too far, but she gave us the instruments, the tools to open these fields of investigation. Everybody up to now work on that, everybody up to now work on this and will continue, because this is only one, let's say by now, useful tool to study infinite structure, algebraic structures. So it's very important to mention that again. 

That algebra abstract algebra, I would like to underline this was created by many different people but having their definitely first step and the most important input by the genius Evariste Galois and in particular, group theory, has made great progress in the sphere of new ideas and theorems. Many different mathematicians brought their attention and now this is a very well-developed part of algebra that have their application in physics, in cosmology, in painting, in art, in crystallography, everywhere where we have symmetry, symmetry. You know everybody what now? What's the tool to study symmetry, group theory. So it was created for solving equations, but find their application in any science that dealing with the symmetry, any kind of symmetry, geometrical symmetry or some other kind of symmetry, elementary particle symmetry, cosmology, and so on and so on. But I would like to finish with the development of how it was developed and I'm ready for your next question because I will continue this forever, definitely. 

0:44:26 - Kimberly King

It's really fascinating, though, to hear the history and to hear all of the countries that have been involved with the very beginning, the establishment and the beginning of mathematics. So this is quite fascinating. We do have to take a quick break, doctor, if you don't mind, and we'll be right back with you in just a moment. Don't go away and hold onto those thoughts, stay with us. You Thank you. And now back to our interview with National University's math professor, Dr. Igor Subbotin, and we're discussing the power of mathematics and, doctor, this has been so interesting, just hearing the history of it and how it is all the nations working together, as we were just discussing, without a particular agenda other than the love of mathematics. The answers, we say numbers don't lie, and so, with everybody working together, it is universal. Can you talk about the bridge between high abstraction and realm? 

0:46:14 - Igor Subbotin

I would be happy to do it. I will give you some kind of examples that I faced myself lately. 

Okay, this is again for our future students. It's very important that the people who will teach you the subject be active in this subject, be professional in this subject, not just read the book and explain book to you, but do something by their hands in order to develop and to bring very modest input, but input in the object. I will give you some interesting story about that that based on my own experience lately, I have a very old friend not old person, old friend to me which we are friends, we have our friendship, for you cannot believe more than 50 years and we keep our collaboration, maybe the same amount of years because we are from the same school. Our supervisor was a brilliant star who was one of the founders of Infinite Group Theory, Sergei Chernikov. He is a huge international star and we are proud to be his students. I was lucky to work under his supervision and in his seminar since 1967 to 1987 when he passed away. I was lucky and my friends that I'm talking about, I can give you his name. Somebody can go to Google to look and find out who is it. It's Leonid Kurdachenko. It's Ukrainian mathematician, very, very, very famous mathematician in our area, abstract algebra, distinguished professor, and so on and so on and my close friends. We worked together for many years and we both have our roots in working in abstract algebra, in group theory, and we've been witnesses and we are witnesses about the time when the group theory and pheningo theory was very powerful in new development field and so on. But lately we found out, by some different reasons, some people came to work in so-called braces theory. Braces, not the stomatological braces, not the braces that you use like parentheses, some kind of parentheses. Algebra brace is totally different. It's algebraic structure, new algebraic structure. What is it about? Taking example from physical algebraic equation, we have behavior of particles and waves which make possible to predict what will happen next, to explain nature of phenomena. Again, this is about symmetry, for example, biological sign, complete genetic interaction, dynamics and so on. Algebra is resonant also to artistic work, but lately it's happened like that. Let me give you the exact what I would like to say. The theory of braces, the theory of braces is very young, very young, it's just right now. 

It has its roots in addressing the Young-Baxter equation, a fundamental concept with profound amplification in both pure mathematics and physics. It originated from the groundbreaking work of the Nobel Prize winner, physicist Young, of the Nobel Prize winner, physicist Young, in the realm of statistical mechanics and, independently, in the contribution of Baxter to the 8-vertex model. It came from the knot theory and came from the statistical mechanics, its quantum theory. This theory holds substantial significance across diverse domains such as knot theory, braid theory, operator theory, hoppe, algebra, quantum groups, Tremont Foyle and monodromy of the differential equation. This is a fundamental equation in mathematics and physics that arises in the study of central algebraic structure, arises the study of central algebraic structure and it came to our attention thanks to the works in some first time in 1960s. But about the theory itself is thanks to the work of other mathematician, is became popular since 2008,9. 

Many people just came to study this because it has huge application. What is it about? It's about to find the properties of the solution of this equation. Solution of this equation is not numbers, it's matrices. It's matrices, different kinds of matrices, special subjects in algebra. We don't have a general formula or a general approach to solving this equation. We don't have it, but it's very important to us not waiting until maybe we'll never have it, who knows? 

I gave you today an example of a various Galois equation. There is no formula for the solution of the fifth power equation. There is no formula. We are doing this approximately. We have many methods to solve approximately, which is enough for us. For the Young-Baxter equation. We have some situation, but study the properties of solutions as very, very important for many different disciplines and the people start to study this kind of equation, study the properties of this equation, even though we don't have these solutions. We don't have solutions, but we study properties of the solution and they find out that this just could be studied with the approach of abstract algebra. The properties of this solution could be described with the help of the new algebraic structure, old algebraic structure groups, fields, rings and so on. It's classical structures already. This is absolutely young, absolutely young and new. This is braces. Braces like a fusion of two groups together. It's very difficult to describe on the fingers but it's very important. 

Solution of the Young-Baxter equation, known as the Young-Baxter matrices or R matrices, have found numerous applications beyond their original context. People start to study this. My friend, Leonid Kordachenko, just tried to apply the ideas that we had developed in the group theory, not we. Saying we, I mean all mathematics community, not myself, separate, okay. And he was so kind, he involved me to this and we together started to work on some specific points of it me to this and we together start to work on some specific points of it and find out that, you know, the idea of group theory works there. Works there, not different results different, the same approach, the same approach, the same idea how to mine this, but totally different results. Totally different results. But its results are natural and ideas natural. So we start to work on this and let's say we work with success and we are doing this for the last two years and we published already a few articles about that and we also developed some and delivered some talks in different conferences and was very welcome in the community of the people who work in this area and very famous and algebraic for there. Why? Because of applications. 

But what is interesting, even though this is absolutely new structure in algebra, not like we used to study and we will study in our algebra course in our university- New structure, absolutely new. The approaches that we use, the approaches work there in the same way. So the ideas work there. So what I would like to say- It exists. When physicists need it, mathematicians said welcome, we have it. We have it. We were just a little bit adjusted and the lock will be open. It's the power of mathematics. That's why we need to study that. That's why everybody likes to study mathematics around the globe. That's why there's no difference to us, to our colleagues, whoever, wherever they live, whether it's race, whether it's nationality, whether it's language, we don't care. We are one community. We united the globe, we united the human nation together like nobody else. 

0:56:03 - Kimberly King

Well, I love that and I wish that we can continue to just be united as a nation and not get politics involved in everything. Mathematics, there is a universal answer and that's just beautiful. And speaking of the language, how are language and mathematics alike and what are the differences? I know you've been talking a little bit about this, but I just I really do love that you've talked about the history of it in a universal manner, but talk about the reasons why mathematics and language are alike and different. 

0:56:36 - Igor Subbotin

Mathematics and language. You know, English is not my native language, as you may have already seen, and my third language that I use, and analyzing my experience in writing mathematics and analyzing my experience in writing mathematics in Russian, in Ukrainian, in English, I can find out some very interesting things of the cross influence of the language and mathematics. As I told you before, mathematics is a language, Mathematics is a language. So, in my my opinion, it looks like that we have a box which called mathematics. On the input, we have a regular language. We translate this language in mathematics language using symbols, place this in the box and forget about everything. Forget about the, what we are dealing with. We are just using the rules automatically, like in algebra, solving equation. We don't care what the A, what the B, what the C. We have a formula. We substitute number to the formula, get the result, go back, output and translate the solution to the common language. This is how it works, right In reality. But it's very interesting that English, in my opinion. 

I am not a polyglot. I don't have too many languages in my, let's say, possession, but I'm really good at Russian and I'm not bad at Ukrainian. I can express myself in English, but English is a very interesting language. It's totally different than the language that I started to use before. English is a beautiful language because it's close to mathematics nature. It's a very straightforward language. Everything is structural. For example, a Russian can say something like this is a beautiful girl and this girl is beautiful. I can say beautiful, this girl in Russian. It will be the same meaning In English. No, in the order in the sentence. It's very, very important. So it became English, close to mathematics. 

Also, I find out when I translate my articles. For example, I need to write an abstract. For some international journal, it's going to be in two languages, for example Russian and English. I look in English. I have, let's say, 75% of the amount of sentences written in Russian words. It's shorter, straightforward. Also, in English we prefer something like short sentences. In Russia, for example, in Leo Tolstoy, War and Peace, you will find War and Peace. You will find something like two pages languages by the same Charles Dickens. I found out that the same in Charles Dickens' writing huge sentences. But for mathematics, English- English maybe the most, in my experience, the most close to express their idea, knowledge, very easy to understand, very easy to write, mathematics, much easier to write in any other languages, it's number one. So language and mathematics, while seemingly distant, share common futures and serve as conveyors of thoughts, ideas and concepts. 

Symbolic system, use words and structure to represent ideas, allowing for the exchange of information without requiring a deep understanding of the subject matter, which never happened in mathematics. Language, much more rich structure. You can explain something that you don't understand for yourself. For example, I talked today about Young-Baxter equation. I don't want to pretend that I understand this equation absolutely clearly like physicists no way. I look at this from one part, from the algebraic approach, and also I'm not far to be a full understanding of this. Okay, but I can express my opinion about, I can express my opinion about, I can express my approach and so on. 

It's a language, mathematics. You cannot do it. It's only one subject that always answers for the question why, why? And this is very important. That's why I love mathematics. But definitely language and mathematics have a lot in common, because there is no mathematics without language and I believe that we cannot express any of our thoughts without language. Mathematics is a kind of shortness and compact. It's some kind of observations that they make, that when you have an information, some piece of information and you just really study this. It became very small in your brain and take only one small cell. When you need to go back, you just open it up again in the big structure. Mathematics does the same in language so-called word problems. It's interesting. 

1:02:13 - Kimberly King

It is so interesting also the way you have explained that English has mathematical you know, and when you compare it to Russian or Ukrainian, I mean I can't even imagine. I have heard that English is one of the hardest languages to speak and to learn, which I don't believe. That, because I think Russian would be just off the top. I can't even imagine. So kudos to you for being so proficient and putting this all together. I think it's so fascinating and I love interviewing you every time we have you on. So thank you for your time today. This has been wonderful that you've shared your knowledge today. This has been wonderful that you've shared your knowledge, and if you want more information, you can visit National University's website. It's nu.edu. Thank you, doctor, so very much for your time. 

1:03:01 - Igor Subbotin

Thank you, Kimberly. I really appreciate it. I'm always happy to meet with you and I was happy to work with you as a one team to promote my favorite subject mathematics. 

1:03:15 - Kimberly King

We need mathematicians. Thank you so much. 

1:03:17 - Igor Subbotin

Thank you, thank you. 

1:03:22 - Kimberly King

You've been listening to the National University Podcast. For updates on future or past guests, visit us at nu.edu. You can also follow us on social media. Thanks for listening.

Show Quotables

Search the site

Modal window with site-search and helpful links

Featured Programs

  • Business and Management
  • Computer Science
  • Teaching and Credentials

Helpful Links

  • Admissions & Application Information
  • Online College Degrees & Programs
  • Student Services
  • Request Your Transcripts

Terms & Conditions

By submitting your information to National University as my electronic signature and submitting this form by clicking the Request Info button above, I provide my express written consent to representatives of National University and National University affiliates (including City University of Seattle) to contact me about educational opportunities. This includes the use of automated technology, such as an automatic dialing system and pre-recorded or artificial voice messages, text messages, and mail, both electronic and physical, to the phone numbers (including cellular) and e-mail address(es) I have provided. I confirm that the information provided on this form is accurate and complete. I also understand that certain degree programs may not be available in all states. Message and data rates may apply. Message frequency may vary.

I understand that consent is not a condition to purchase any goods, services or property, and that I may withdraw my consent at any time by sending an email to [email protected] . I understand that if I am submitting my personal data from outside of the United States, I am consenting to the transfer of my personal data to, and its storage in, the United States, and I understand that my personal data will be subject to processing in accordance with U.S. laws, unless stated otherwise in our privacy policy . Please review our privacy policy for more details or contact us at [email protected] .

By submitting my information, I acknowledge that I have read and reviewed the Accessibility Statement . 

By submitting my information, I acknowledge that I have read and reviewed the Student Code of Conduct located in the Catalog .

National University

Chat Options

Accessibility Links

  • Skip to content
  • Skip to search IOPscience
  • Skip to Journals list
  • Accessibility help
  • Accessibility Help

Click here to close this panel.

Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.

Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.

We are proudly declaring that science is our only shareholder.

Spirit of Mathematics Critical Thinking Skills (CTS)

S Syafril 1 , N R Aini 1 , Netriwati 1 , A Pahrudin 1 , N E Yaumas 1 and Engkizar 2

Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series , Volume 1467 , Young Scholar Symposium on Science Education and Environment 2019 4-5 November 2019, Lampung, Indonesia Citation S Syafril et al 2020 J. Phys.: Conf. Ser. 1467 012069 DOI 10.1088/1742-6596/1467/1/012069

Article metrics

2213 Total downloads

Share this article

Author e-mails.

[email protected]

Author affiliations

1 Universitas Islam Negeri Raden Intan Lampung, Indonesia

2 Universitas Negeri Padang, Indonesia

Buy this article in print

The mathematical critical-thinking skill is a process of thinking systematically to develop logical and critical thinking on mathematical problems, which characterize and demand to learn in the 21st century. This conceptual paper aims to analyze the spirit of critical thinking skill, and various approaches that can be applied in mathematics learning. Based on the analysis of several theories and research findings from various countries in the world, it can be concluded that the mathematical critical-thinking skill is very important for students, too; (i) help rational thinking in making decisions to express an idea, (ii) dare to make conclusions with alternative logical thinking, and (iii) able to examine and disregard various complex problems in learning Mathematics. Indeed, mathematics learning does not occur, if the learning process has not demonstrated the spirit of developing mathematical critical thinking skills.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Course Contents

What is critical thinking, critical thinking.

Thinking comes naturally. You don’t have to make it happen—it just does. But you can make it happen in different ways. For example, you can think positively or negatively. You can think with “heart” and you can think with rational judgment. You can also think strategically and analytically, and mathematically and scientifically. These are a few of multiple ways in which the mind can process thought.

What are some forms of thinking you use? When do you use them, and why?

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s a “domain-general” thinking skill—not a thinking skill that’s reserved for a one subject alone or restricted to a particular subject area.

Great leaders have highly attuned critical thinking skills, and you can, too. In fact, you probably have a lot of these skills already. Of all your thinking skills, critical thinking may have the greatest value.

What Is Critical Thinking?

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read.

Who are critical thinkers, and what characteristics do they have in common? Critical thinkers are usually curious and reflective people. They like to explore and probe new areas and seek knowledge, clarification, and new solutions. They ask pertinent questions, evaluate statements and arguments, and they distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. They are open to changing their mind. Perhaps most of all, they actively enjoy learning, and seeking new knowledge is a lifelong pursuit.

This may well be you!

Critical Thinking IS Critical Thinking is NOT
Skepticism Memorizing
Examining assumptions Group thinking
Challenging reasoning Blind acceptance of authority
Uncovering biases

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

Critical Thinking and Logic

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination for the purpose of logically constructing reasoned perspectives.

Questions of Logic in Critical Thinking

Let’s use a simple example of applying logic to a critical-thinking situation. In this hypothetical scenario, a man has a PhD in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community. The man is now running for political office. Are his credentials and experience sufficient for entering public office? Will he be effective in the political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him. In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant. What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

The following questions are ones you may apply to formulating a logical, reasoned perspective in the above scenario or any other situation:

  • What’s happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

Problem-Solving with Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution.

Problem-Solving Action Checklist

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

STRATEGIES ACTION CHECKLIST
1 Define the problem
2 Identify available solutions
3 Select your solution

Critical Thinking, Problem Solving, and Math

In previous math courses, you’ve no doubt run into the infamous “word problems.” Unfortunately, these problems rarely resemble the type of problems we actually encounter in everyday life. In math books, you usually are told exactly which formula or procedure to use, and are given exactly the information you need to answer the question. In real life, problem solving requires identifying an appropriate formula or procedure, and determining what information you will need (and won’t need) to answer the question.

  • "Student Success-Thinking Critically In Class and Online."  Critical Thinking Gateway . St Petersburg College, n.d. Web. 16 Feb 2016. ↵
  • Critical Thinking Skills. Authored by : Linda Bruce. Provided by : Lumen Learning. Located at : https://courses.lumenlearning.com/collegesuccess-lumen/chapter/critical-thinking-skills/ . Project : College Success. License : CC BY: Attribution
  • Critical Thinking. Authored by : Critical and Creative Thinking Program. Located at : http://cct.wikispaces.umb.edu/Critical+Thinking . License : CC BY: Attribution
  • Thinking Critically. Authored by : UBC Learning Commons. Provided by : The University of British Columbia, Vancouver Campus. Located at : http://www.oercommons.org/courses/learning-toolkit-critical-thinking/view . License : CC BY: Attribution
  • Problem Solving. Authored by : David Lippman. Located at : http://www.opentextbookstore.com/mathinsociety/ . Project : Math in Society. License : CC BY-SA: Attribution-ShareAlike
  • Critical Thinking.wmv. . Authored by : Lawrence Bland. Located at : https://youtu.be/WiSklIGUblo . License : All Rights Reserved . License Terms : Standard YouTube License
  • Our Mission

5 Ways to Stop Thinking for Your Students

Too often math students lean on teachers to think for them, but there are some simple ways to guide them to think for themselves.

Photo of middle school student doing math on board

Who is doing the thinking in your classroom? If you asked me that question a few years ago, I would have replied, “My kids are doing the thinking, of course!” But I was wrong. As I reflect back to my teaching style before I read Building Thinking Classrooms by Peter Liljedahl (an era in my career I like to call “pre-thinking classroom”), I now see that I was encouraging my students to mimic rather than think .

My lessons followed a formula that I knew from my own school experience as a student and what I had learned in college as a pre-service teacher. It looked like this: Students faced me stationed at the board; I demonstrated a few problems while students copied what I wrote in their notes. I would throw out a few questions to the class to assess understanding. If a few kids answered correctly, I felt confident that the lesson had gone well. Some educators might call this “ I do, we do, you do .”

What’s wrong with this formula? When it was time for them to work independently, which usually meant a homework assignment because I used most of class time for direct instruction, the students would come back to class and say, “The homework was so hard. I don’t get it. Can you go over questions 1–20?” Exhausted and frustrated, I would wonder, “But I taught it—why didn’t they get it?”

Now in the “peri-thinking classroom” era of my career, my students are often working at the whiteboards in random groups as outlined in Liljedahl’s book. The pendulum has shifted from the teacher doing the thinking to the students doing the thinking. Do they still say, “I don’t get it!”? Yes, of course! But I use the following strategies to put the thinking back onto them.

5 Ways to Get Your Students to Think

1. Answer questions with a refocus on the students’ point of view. Liljedahl found in his research that students ask three types of questions: “(1) proximity questions—asked when the teacher is close; (2) stop thinking questions—most often of the form ‘is this right’ or ‘will this be on the test’; and (3) keep thinking questions—questions that students ask so they can get back to work.” He suggests that teachers acknowledge “proximity” and “stop thinking questions” but not answer them.

Try these responses to questions that students ask to keep working:

  • “What have you done so far?” 
  • “Where did you get that number?” 
  • “What information is given in the problem?” 
  • “Does that number seem reasonable in this situation?”  

2. Don’t carry a pencil or marker. This is a hard rule to follow; however, if you hold the writing utensil, you’ll be tempted to write for them . Use verbal nudges and hints, but avoid writing out an explanation. If you need to refer to a visual, find a group that has worked out the problem, and point out their steps. Hearing and viewing other students’ work is more powerful .

3. We instead of I . When I assign a handful of problems for groups to work on at the whiteboards, they are tempted to divvy up the task. “You do #30, and I’ll do #31.” This becomes an issue when they get stuck. I inevitably hear, “Can you help me with #30? I forgot how to start.”

I now require questions to use “we” instead of “I.” This works wonders. As soon as they start to ask a question with “I,” they pause and ask their group mates. Then they can legitimately say, “ We tried #30, and we are stumped.” But, in reality, once they loop in their group mates, the struggling student becomes unstuck, and everyone in the group has to engage with the problem.

4. Stall your answer. If I hear a basic computation question such as, “What is 3 divided by 5?” I act like I am busy helping another student: “Hold on, I need to help Marisela. I’ll be right back.” By the time I return to them, they are way past their question. They will ask a classmate, work it out, or look it up. If the teacher is not available to think for them, they learn to find alternative resources.

5. Set boundaries. As mentioned before, students ask “proximity” questions because I am close to them. I might reply with “Are you asking me a thinking question? I’m glad to give you a hint or nudge, but I cannot take away your opportunity to think.” This type of response acknowledges that you are there to help them but not to do their thinking for them.

When you set boundaries of what questions will be answered, the students begin to more carefully craft their questions. At this point of the year, I am starting to hear questions such as, “We have tried solving this system by substitution, but we are getting an unreasonable solution. Can you look at our steps?” Yes!

Shifting the focus to students doing the thinking not only enhances their learning but can also have the effect of less frustration and fatigue for the teacher. As the class becomes student-centered, the teacher role shifts to guide or facilitator and away from “sage on the stage.”

As another added benefit, when you serve as guide or facilitator, the students are getting differentiated instruction and assessment. Maybe only a few students need assistance with adding fractions, while a few students need assistance on an entirely different concept. At first, you might feel like your head is spinning trying to address so many different requests; however, as you carefully sift through the types of questions you hear, you will soon be comfortable only answering the “keep thinking” questions.

Wonder Math

How to Improve Problem-Solving Skills: Mathematics and Critical Thinking

how-to-improve-problem-solving-skills

In today’s rapidly changing world, problem-solving has become a quintessential skill. When we discuss the topic, it’s natural to ask, “What is problem-solving?” and “How can we enhance this skill, particularly in children?” The discipline of mathematics offers a rich platform to explore these questions. Through math, not only do we delve into numbers and equations, but we also explore how to improve problem-solving skills and how to develop critical thinking skills in math. Let’s embark on this enlightening journey together.

What is Problem-Solving?

At its core, problem-solving involves identifying a challenge and finding a solution. But it’s not always as straightforward as it sounds. So, what is problem-solving? True problem-solving requires a combination of creative thinking and logical reasoning. Mathematics, in many ways, embodies this blend. When a student approaches a math problem, they must discern the issue at hand, consider various methods to tackle it, and then systematically execute their chosen strategy.

But what is problem-solving in a broader context? It’s a life skill. Whether we’re deciding the best route to a destination, determining how to save for a big purchase, or even figuring out how to fix a broken appliance, we’re using problem-solving.

How to Develop Critical Thinking Skills in Math

Critical thinking goes hand in hand with problem-solving. But exactly how to develop critical thinking skills in math might not be immediately obvious. Here are a few strategies:

  • Contextual Learning: Teaching math within a story or real-life scenario makes it relevant. When students see math as a tool to navigate the world around them, they naturally begin to think critically about solutions.
  • Open-ended Questions: Instead of merely seeking the “right” answer, encourage students to explain their thought processes. This nudges them to think deeply about their approach.
  • Group Discussions: Collaborative learning can foster different perspectives, prompting students to consider multiple ways to solve a problem.
  • Challenging Problems: Occasionally introducing problems that are a bit beyond a student’s current skill level can stimulate critical thinking. They will have to stretch their understanding and think outside the box.

What are the Six Basic Steps of the Problem-Solving Process?

Understanding how to improve problem-solving skills often comes down to familiarizing oneself with the systematic approach to challenges. So, what are the six basic steps of the problem-solving process?

  • Identification: Recognize and define the problem.
  • Analysis: Understand the problem’s intricacies and nuances.
  • Generation of Alternatives: Think of different ways to approach the challenge.
  • Decision Making: Choose the most suitable method to address the problem.
  • Implementation: Put the chosen solution into action.
  • Evaluation: Reflect on the solution’s effectiveness and learn from the outcome.

By embedding these steps into mathematical education, we provide students with a structured framework. When they wonder about how to improve problem-solving skills or how to develop critical thinking skills in math, they can revert to this process, refining their approach with each new challenge.

Making Math Fun and Relevant

At Wonder Math, we believe that the key to developing robust problem-solving skills lies in making math enjoyable and pertinent. When students see math not just as numbers on a page but as a captivating story or a real-world problem to be solved, their engagement skyrockets. And with heightened engagement comes enhanced understanding.

As educators and parents, it’s crucial to continuously ask ourselves: how can we demonstrate to our children what problem-solving is? How can we best teach them how to develop critical thinking skills in math? And how can we instill in them an understanding of the six basic steps of the problem-solving process?

The answer, we believe, lies in active learning, contextual teaching, and a genuine passion for the beauty of mathematics.

The Underlying Beauty of Mathematics

Often, people perceive mathematics as a rigid discipline confined to numbers and formulas. However, this is a limited view. Math, in essence, is a language that describes patterns, relationships, and structures. It’s a medium through which we can communicate complex ideas, describe our universe, and solve intricate problems. Understanding this deeper beauty of math can further emphasize how to develop critical thinking skills in math.

Why Mathematics is the Ideal Playground for Problem-Solving

Math provides endless opportunities for problem-solving. From basic arithmetic puzzles to advanced calculus challenges, every math problem offers a chance to hone our problem-solving skills. But why is mathematics so effective in this regard?

  • Structured Challenges: Mathematics presents problems in a structured manner, allowing learners to systematically break them down. This format mimics real-world scenarios where understanding the structure of a challenge can be half the battle.
  • Multiple Approaches: Most math problems can be approached in various ways . This teaches learners flexibility in thinking and the ability to view a single issue from multiple angles.
  • Immediate Feedback: Unlike many real-world problems where solutions might take time to show results, in math, students often get immediate feedback. They can quickly gauge if their approach works or if they need to rethink their strategy.

Enhancing the Learning Environment

To genuinely harness the power of mathematics in developing problem-solving skills, the learning environment plays a crucial role. A student who is afraid of making mistakes will hesitate to try out different approaches, stunting their critical thinking growth.

However, in a nurturing, supportive environment where mistakes are seen as learning opportunities, students thrive. They become more willing to take risks, try unconventional solutions, and learn from missteps. This mindset, where failure is not feared but embraced as a part of the learning journey, is pivotal for developing robust problem-solving skills.

Incorporating Technology

In our digital age, technology offers innovative ways to explore math. Interactive apps and online platforms can provide dynamic problem-solving scenarios, making the process even more engaging. These tools can simulate real-world challenges, allowing students to apply their math skills in diverse contexts, further answering the question of how to improve problem-solving skills.

More than Numbers 

In summary, mathematics is more than just numbers and formulas—it’s a world filled with challenges, patterns, and beauty. By understanding its depth and leveraging its structured nature, we can provide learners with the perfect platform to develop critical thinking and problem-solving skills. The key lies in blending traditional techniques with modern tools, creating a holistic learning environment that fosters growth, curiosity, and a lifelong love for learning.

Join us on this transformative journey at Wonder Math. Let’s make math an adventure, teaching our children not just numbers and equations, but also how to improve problem-solving skills and navigate the world with confidence. Enroll your child today and witness the magic of mathematics unfold before your eyes!

FAQ: Mathematics and Critical Thinking

1. what is problem-solving in the context of mathematics.

Problem-solving in mathematics refers to the process of identifying a mathematical challenge and systematically working through methods and strategies to find a solution.

2. Why is math considered a good avenue for developing problem-solving skills?

Mathematics provides structured challenges and allows for multiple approaches to find solutions. This promotes flexibility in thinking and encourages learners to view problems from various angles.

3. How does contextual learning enhance problem-solving abilities?

By teaching math within a story or real-life scenario, it becomes more relevant for the learner. This helps them see math as a tool to navigate real-world challenges , thereby promoting critical thinking.

4. What are the six basic steps of the problem-solving process in math?

The six steps are: Identification, Analysis, Generation of Alternatives, Decision Making, Implementation, and Evaluation.

5. How can parents support their children in developing mathematical problem-solving skills?

Parents can provide real-life contexts for math problems , encourage open discussions about different methods, and ensure a supportive environment where mistakes are seen as learning opportunities.

6. Are there any tools or apps that can help in enhancing problem-solving skills in math?

Yes, there are various interactive apps and online platforms designed specifically for math learning. These tools provide dynamic problem-solving scenarios and simulate real-world challenges, making the learning process engaging.

7. How does group discussion foster critical thinking in math?

Group discussions allow students to hear different perspectives and approaches to a problem. This can challenge their own understanding and push them to think about alternative methods.

8. Is it necessary to always follow the six steps of the problem-solving process sequentially?

While the six steps provide a structured approach, real-life problem-solving can sometimes be more fluid. It’s beneficial to know the steps, but adaptability and responsiveness to the situation are also crucial.

9. How does Wonder Math incorporate active learning in teaching mathematics?

Wonder Math integrates mathematics within engaging stories and real-world scenarios, making it fun and relevant. This active learning approach ensures that students are not just passive recipients but active participants in the learning process.

10. What if my child finds a math problem too challenging and becomes demotivated?

It’s essential to create a supportive environment where challenges are seen as growth opportunities. Remind them that every problem is a chance to learn, and it’s okay to seek help or approach it differently.

Related posts

Summer Math Programs: How They Can Prevent Learning Loss in Young Students

Summer Math Programs: How They Can Prevent Learning Loss in Young Students

As summer approaches, parents and educators alike turn their attention to how they can support young learners during the break. Summer is a time for relaxation, fun, and travel, yet it’s also a critical period when learning loss can occur. This phenomenon, often referred to as the “summer slide,” impacts students’ progress, especially in foundational subjects like mathematics. It’s reported…

I

Math Programs 101: What Every Parent Should Know When Looking For A Math Program

  As a parent, you know that a solid foundation in mathematics is crucial for your child’s success, both in school and in life. But with so many math programs and math help services out there, how do you choose the right one? Whether you’re considering Outschool classes, searching for “math tutoring near me,” or exploring tutoring services online, understanding…

what is critical thinking in mathematics

Welcome to AubreeTeaches. I share my tips, tricks, and resources for being an educator that does things differently!

Happy Teaching!

Aubree Teaches

Jun 30 Critical Thinking in Mathematics: Designing High Cognitive Demand Math Tasks

Oh hey, here we are again, talking about my favorite topic: making kids THINK. Let’s get into it.

At the heart of thinking tasks lie the mathematical process skills, including reasoning, problem solving, communicating, conjecturing, and representing. These skills empower students to think critically, analyze information, communicate their ideas effectively, and explore the intricacies of mathematical concepts. Moreover, they go hand in hand with general good thinking skills, such as collaborating, listening actively, sharing ideas, and reflecting on one's own thought processes.

One effective strategy for designing thinking tasks is to take existing activities and transform them into opportunities for deep thinking. By flipping traditional activities, we can infuse them with elements of open-ended exploration, encouraging students to delve into rich problem-solving experiences.

Let's consider a traditional numeracy task where students practice multiplication using flashcards or worksheets. To design a thinking task, we can flip it by presenting students with a numerical pattern and asking them to identify the rule or equation that generates the pattern. This task encourages students to think critically, make observations, and identify mathematical relationships. It goes beyond simple memorization of multiplication facts and invites students to actively engage in problem-solving and pattern recognition. By providing students with opportunities to uncover patterns and think flexibly, we foster their mathematical reasoning skills and promote a deeper understanding of multiplication concepts.

My first year of teaching was with kindergartners. During small group time, I decided to try out a new activity with them. I drew an "open equation" on the table and had them use blocks to make the equation true. Some students had ___ + ___ = 6, others had ___ + ___ + ___ = 10, or even ___ + ___ - ___ = 10. To my surprise, this activity quickly became their favorite during small group sessions. It not only engaged them but also showcased their remarkable ability to think deeply about mathematical concepts. It was a powerful reminder that even our youngest students are capable of high cognitive thinking and can thrive when given the opportunity to engage in meaningful tasks.

Screenshot 2023-06-26 at 9.42.38 PM.png

When first introducing thinking tasks, it is essential to start with tasks that are slightly lower in complexity and not directly tied to specific content or math standards. This approach allows students to experience success, build confidence, and develop their thinking skills without feeling overwhelmed. By emphasizing the importance of the thinking process rather than the final answer, we create a supportive environment that nurtures students' intellectual growth and fosters a love for learning.

Here are some examples of good thinking tasks that aren't necessarily math-content related:

Provide students with a list of unrelated words or objects (e.g., banana, shoe, cloud, clock). Challenge them to come up with as many unique and imaginative ways these items could be connected or combined.

Present students with logic puzzles or tasks that require them to deduce information based on given clues. For example:

Mary is older than Jane. Jane is older than Sarah. Who is the youngest among them?

There are five houses in a row, each painted a different color. The red house is to the left of the blue house. The green house is next to the yellow house. Which color house is in the middle?

Offer students puzzles that involve visual patterns, rotations, or transformations. For example, ask students to determine the missing piece in a sequence of shapes or to identify the next shape in a pattern.

what is critical thinking in mathematics

These tasks are designed to facilitate that mindset shift for students. They allow time for students to start working on those thinking skills as well as collaboration.

After students have started shifting their mindset and are comfortable with the routine, you can incorporate tasks related to your current concept. Take a look at your curriculum or unit plans and ask yourself, "What is the concept here?" and "What is the math students need to be doing?" Then you can look for or create tasks that address the mathematical skills alongside sense-making.

Let's say you are working on a unit on area and perimeter. Traditionally, you might want students to solve the area and perimeter of many different shapes. You may even let them work in groups or play a game. But how could we still have them working on the concepts of area and perimeter and using deep thinking skills?

Consider providing tasks like these:

You have a length of fencing material that is 30 feet long. Your task is to create as many different rectangular enclosures as possible using the entire length of the fencing material.

Imagine you are designing the floor plan for your dream house or an amusement park. Create a floor plan that includes different rooms or attractions. Calculate the area of each room or attraction and consider how you can optimize the use of space. Be creative and make sure to label your dimensions.

Crystal decides that she wants fringe put all the way around the rug. If the rug maker puts fringe around the rugs, how much fringe will he need for each rug? Use pictures, equations, or words to model your thinking.

Jana is designing a daycare center for small dogs. She wants to design different rectangular pens for her dogs to play. Each pen must have a total area between 49 and 100 square feet.

What is the biggest perimeter you can make with a rectangle that has an area of 24?

You can see that some of these tasks are perfect for the beginning of the unit, and some are great for after students have been taught some vocabulary. The beauty is that the point of these tasks isn't just the mathematical thinking but the process skills they practice.

Similarly, when teaching a unit on place value, you could have students work on problems where they fill in the hundreds, tens, and ones of certain numbers. But what if you had them try these tasks:

Dylan has 634 cubes in a pile. How many groups of a hundred could he make? Any left over? How many groups of ten could he make? Any left over?

Pencils come in cases of 100, packs of 10, or as single pencils. Show me what an order of 283 would look like.

Designing tasks doesn't always have to be laborious or difficult. It can be as simple as flipping your task from asking for a solution to asking for a question. For example, in a unit on rounding, instead of asking what 83 rounds to, try asking students to make a list of numbers that are close to 83 and far from 83. Be sure to have them defend and explain their thinking.

what is critical thinking in mathematics

AUBREETEACHES.COM

By incorporating these different types of thinking tasks into your teaching, you can create a dynamic and engaging learning environment that promotes critical thinking, problem-solving, and mathematical reasoning. These tasks not only help students develop their thinking skills but also foster a love for learning and a deeper understanding of mathematical concepts. So, embrace the power of thinking tasks and unlock the potential of your students' minds!

Happy math-ing!

Lions, Tigers, and WORD PROBLEMS - OH MY!

Jul 5 Lions, Tigers, and WORD PROBLEMS - OH MY!

Supercharge Your Math Stations with Choice Boards

Jun 26 Supercharge Your Math Stations with Choice Boards

Related posts.

high cognitive demand math tasks

Aug 8 high cognitive demand math tasks

B.O.Y. Math Interviews/Diagnostic Assessments

Jun 21 B.O.Y. Math Interviews/Diagnostic Assessments

TC2 The Critical Thinking Consortium logo

  • Welcome, Guest
  •   Ideas and issues Featured resources News Special Offers   Home
  • Working with TC²

Celebrating 25 years

Working with us, sessions and programs, ongoing support, lessons, units and courses, source materials, professional resources, sharing existing materials, commissioned resources, collaborative research.

what is critical thinking in mathematics

NEW! We're delighted to introduce Summer Math Tips: A Guide for Families —a valuable resource designed to help families combat the "summer slide" and keep their children engaged in math over the summer. This guide offers practical tips and strategies that integrate math into everyday life, helping children maintain and enhance their math competency. By incorporating these tips, families can boost their children's confidence, perseverance, and enthusiasm for math, ensuring they are ready and excited for learning in the new school year. These tips will nurture a love of learning, deepen understanding, and strengthen abilities to use mathematical thinking both in and out of school.

Critical Thinking in Math: A Focus on Mathematical Reasoning Competencies

Critical Thinking in Math

TC²’s approach to math embraces the idea that sustained quality mathematical thinking, or reasoning, is the key to the success of current and future generations of math students.

What Is Mathematical Reasoning?

A mathematical reasoning approach optimizes the learning opportunities for every student in the classroom. It empowers students with the capacity to independently detect the need for, and to use, a wide range of math reasoning abilities.

  • a strong understanding of foundational math concepts and content, and
  • the capacity to reason soundly about and with these concepts and content.
  • deeply understand
  • appropriately act on, and
  • effectively communicate using those concepts.

What Are Mathematical Reasoning Competencies?

Eight key mathematical reasoning competencies underpin all math learning and are needed for student success in math. These are presented in A Math Pedagogy Designed to Empower Learners [PDF].

Competency Definition

Sound thinking or reasoning

Reasoning about the quality of one’s thinking

Reflective reasoning

Reasoning about the quality of one’s understanding, actions, and communication

Conceptual reasoning

Reasoning about what makes a concept what it is and how to recognize that concept

Detail-minded reasoning

Reasoning about which mathematical details to use and how to use them effectively

Connective reasoning

Reasoning about how to effectively connect ideas

Problem-managing reasoning

Reasoning about how to effectively identify and solve math problems (including how to effectively select, organize, and use mathematical strategies, tools, and resources)

Representational reasoning

Reasoning about how to effectively represent ideas

Language reasoning

Reasoning about how to effectively use the language of mathematics including its structure and symbols

"To provide each and every student equitable opportunities to improve their learning success in math, students need to learn how to reason soundly in a variety of ways through the application of critical thinking. —Laura Gini Newman (2020) A Math Pedagogy Designed to Empower Learners

Math Resources Survey

Let us know how we can best support the implementation of a mathematical reasoning approach in your classroom(s) or school(s). Complete our short survey and receive 10% off our publications!

To learn more about critical thinking in math with TC² check out: Classroom Ready Materials Professional Learning Resources What Teachers Are Saying Professional Learning

Classroom Ready Materials

Online learning.

Describing Trends in Data: Which data set should be considered linear in the trends it presents? In this lesson, students learn how to use lines (curves) of best fit to help them effectively describe mathematical trends in data. Most suitable for grades 8–10.

Intermediate (7–9)

Grade 9 Student Lessons These lessons were developed in partnership with the Matawa Education and Care Centre.

What is the best way to represent information to help you make financial decisions: a table or a graph? [PDF] In this lesson, students compare different ways of organizing information to create a budget that will help them make the best financial decision.

Which best describes the trend in the data: a line of best fit or a curve of best fit? [PDF] In this lesson, students consider different patterns in the data that describes the relationship between fish and seafood consumption and the year. They then make the most accurate prediction about fish and seafood consumption for the year 2030.

How well does an equation match a line of best fit, a table, and a description in words? [PDF] In this lesson, students explain how well an equation given to them describes the line of best fit and the trend in the data. They then use the equation to make a prediction.

Elementary (K–6)

Coming Soon!

Secondary (10–12)

Back to Top ^

Professional Learning Resources

Books, articles, & discussions.

NEW! Assessing Mathematical Thinking: A Focus on Reasoning Competencies This new title in our Quick Guides to Thinking Classrooms series presents a framework for effectively assessing and evaluating thinking in math. It shows how building math assessment practices on a foundation of essential mathematical reasoning competencies provides a clearly defined, manageable, and consistent way to focus assessments.

A Math Pedagogy Designed to Empower Learners [PDF] Laura Gini-Newman outlines a new pedagogical approach to the teaching and learning of mathematics that is focused on building student capacity to reason mathematically through critical inquiry.

Critical Inquiry in Math Class During TC²’s 25 th Anniversary celebration, each month explored a different focus. April focussed on how we can bring critical thinking into math. This webpage introduces the focus and explores ways to enrich your classroom with critical inquiry in math.

Videos and Presentations

An Introduction to the Why, What, How, When, and Who of Assessing Mathematical Thinking Listen to TC² math consultant Laura Gini-Newman as she explains why your assessments should focus on mathematical reasoning and offers a few tips on the why, what, how, when, and who of doing so.

OAME Talks Listen to TC² math consultant Laura Gini-Newman as she shares her thoughts on Assessing Mathematical Thinking: Who, What, When, and How on the OAME Talks podcast (Season 5, Talk 41)

What Teachers Are Saying

Critical Thinking in Math-Teachers

How Thinking Mathematically Changed My Teaching Jocelynn Foxon talks about her experience completing the Math Lead Teacher Certification Program (MLTCP) offered by TC², and the work she did with teachers and students in supporting the implementation of this approach in the math classroom.

Helping My Students Take Ownership of Their Own Learning Shamima Basrai talks about her experience embedding critical thinking in mathematics in her Grade 3/4 classroom.

The Perfect Fit for the Meandering but Wonderful Thinking Process of the Grade 4 Student David Markus talks about his experience shifting to a critical thinking framework with his Grade 4 math students.

Generating Enthusiasm in the Math Classroom Nina Perreault-Primeau talks about the transformation in her math classroom when she planned lessons focussing on student interest, creating authentic learning opportunities accompanied by sound critical inquiry questions.

But will it also work in math? [PDF] Sarah Sommers describes what happened when she and her teaching partner took a critical inquiry approach with their Grade 5 students during a math patterning unit.

Basics vs Inquiry in Math? A critical inquiry approach can achieve both Chris Achong talks about his experience with his Grade 9 math team implementing this approach to math learning—a comprehensive and balanced approach that improves the quality of every student’s capacity to think mathematically.

Professional Learning

Math Lead Teacher Certification This program supports teacher development of a rich understanding of the diverse role of critical thinking in math classrooms through 18 hours of personalized coaching and 10 hours of implementation support. Available as face-to-face and online sessions or a combination of both.

Book Professional Learning in Math Learn how we can help you plan affordable professional learning in math facilitated by our experienced team. We consult and collaborate with you to develop custom, focused, and engaging face-to-face and online sessions to meet your math specific needs and grade level requirements.

Contact Victoria Campoli to learn more.

The Critical Thinking Consortium

4th Floor, 1580 West Broadway Vancouver, BC V6J 5K8, Canada (604) 639-6325

  • Shipping and returns
  • Privacy policy
  • Terms and conditions

Logo

Critical Thinking—What Is It? *

  • eTOC Alerts
  • Get Permissions

What is critical thinking ? Can we mathematics teachers tell what we mean by the phrase? Do mathematics teachers mean the same by critical thinking as do the teachers of the social studies or the logician or the psychologist?

Contributor Notes

* A summary of a paper presented to the Mathematics Section of the Illinois Education Association, Lake Shore Division, October 20 and 23, 1950.

Cover The Mathematics Teacher

Article Information

Google scholar.

  • Article by Robert E. Pingry

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 289 55 5
Full Text Views 45 7 0
PDF Downloads 45 9 0
EPUB Downloads 0 0 0

NCTM

© 2024 National Council of Teachers of Mathematics (NCTM)

Powered by: PubFactory

  • [162.248.224.4]
  • 162.248.224.4

Character limit 500 /500

Using critical incidents as a tool for promoting prospective teachers’ noticing during reflective discussions in a fieldwork-based university course

  • Published: 25 June 2024

Cite this article

what is critical thinking in mathematics

  • Sigal-Hava Rotem   ORCID: orcid.org/0000-0001-5657-9793 1 ,
  • Despina Potari   ORCID: orcid.org/0000-0002-7599-5052 1 &
  • Giorgos Psycharis   ORCID: orcid.org/0000-0003-0319-0092 1  

21 Accesses

Explore all metrics

Preparing prospective mathematics teachers to become teachers who recognize and respond to students’ mathematical needs is challenging. In this study, we use the construct of critical incident as a tool to support prospective mathematics teachers’ reflection on their authentic fieldwork activities, notice students’ thinking, and link it to the complexity of mathematics teaching. Particularly, we aim to explore the characteristics and evolution of prospective mathematics teachers’ noticing of students’ mathematical thinking when critical incidents trigger reflective discussions. Critical incidents are moments in which students’ mathematical thinking becomes apparent and can provide teachers with opportunities to delve more deeply into the mathematics discussed in the lesson. In the study, twenty-two prospective mathematics teachers participated in fieldwork activities that included observing and teaching secondary school classrooms. The prospective teachers identified critical incidents from their observations and teaching, which were the foci for reflective discussion in university sessions. By characterizing the prospective teachers’ reflective talk in these discussions, we demonstrate the discussion’s evolution. In it, participants questioned learning and teaching mathematics and suggested alternate explanations. This characterization also shows that using critical incidents in the university discussions enabled the prospective teachers to link students’ thinking with the teacher’s teaching practices while supporting their reflection using classroom evidence. We emphasize the importance of descriptive talk in the discussion, which allows for deepening the prospective teachers’ reflections. Further, we explore the teacher educator’s contributions in those discussions, showing that the teacher educator mainly maintained the reflective talk by contextualizing the critical incidents and pressing the participants to explain further issues they raised in the discussions. Implications for mathematics teacher education are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA) Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

what is critical thinking in mathematics

Similar content being viewed by others

what is critical thinking in mathematics

Using Critical Incidents to Reflect on Teacher Educator Practice

what is critical thinking in mathematics

Prospective Mathematics Teacher Argumentation While Interpreting Classroom Incidents

what is critical thinking in mathematics

How narratives about the secondary-tertiary transition shape undergraduate tutors’ sense-making of their teaching

Data availability.

Unfortunately, in order to protect the privacy of the study’s participant, our data cannot be shared openly.

Note: All PT names are pseudonyms.

Amador, J. M. (2022). Mathematics teacher educator noticing: examining interpretations and evidence of students’ thinking. Journal of Mathematics Teacher Education , 25 (2), 163–189. https://doi.org/10.1007/s10857-020-09483-z

Article   Google Scholar  

Amador, J. M., Bragelman, J., & Superfine, A. C. (2021). Prospective teachers’ noticing: A literature review of methodological approaches to support and analyze noticing. Teaching and Teacher Education , 99 , 1–16. https://doi.org/10.1016/j.tate.2020.103256

Amador, J. M., Wallin, A., Keehr, J., & Chilton, C. (2021). Collective noticing: teachers’ experiences and reflection on a mathematics video club. Mathematics Education Research Journal , 1–26. https://doi.org/10.1007/s13394-021-00403-9

Ball, L. D., & Forzani, F. M. (2009). The work of teaching and the challenge for teacher education. Journal of Teacher Education , 60 (5), 497–511. https://doi.org/10.1177/0022487109348479

Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers' ability to attend, analyze and respond to student thinking. Teaching and Teacher Education , 45 , 83–93. https://doi.org/10.1016/j.tate.2014.09.005

Borko, H., Koellner, K., & Jacobs, J. (2014). Examining novice teacher leaders’ facilitation of mathematics professional development. The Journal of Mathematical Behavior , 33 , 149–167. https://doi.org/10.1016/j.jmathb.2013.11.003

Bragelman, J., Amador, J. M., & Superfine, A. C. (2021). Micro-analysis of noticing: A lens on prospective teachers’ trajectories of learning to notice. ZDM–Mathematics Education , 53 (1), 215–230. https://doi.org/10.1007/s11858-021-01230-9

Carpenter, T. P., Fennema, E., Franke, M. L., & Empson, S. B. (1999). Children's mathematics: Cognitively guided instruction . Heineman.

Google Scholar  

Coles, A. (2013). Using video for professional development: the role of the discussion facilitator. Journal of Mathematics Teacher Education , 16 , 165–184. https://doi.org/10.1007/s10857-012-9225-0

Dyer, E. B., & Sherin, M. G. (2016). Instructional reasoning about interpretations of student thinking that supports responsive teaching in secondary mathematics. ZDM–Mathematics Education , 48 (1), 69–82. https://doi.org/10.1007/s11858-015-0740-1

Gibbons, L. K., Lewis, R. M., Nieman, H., & Resnick, A. F. (2021). Conceptualizing the work of facilitating practice-embedded teacher learning. Teaching and Teacher Education , 101 , 103304. https://doi.org/10.1016/j.tate.2021.103304

Goodwin, C. (1994). Professional vision. American Anthropologist , 96 (3), 606–633. https://doi.org/10.1525/aa.1994.96.3.02a00100

Grossman, P., Hammerness, K., & McDonald, M. (2009). Redefining teaching, re-imagining teacher education. Teachers and Teaching: Theory and Practice , 15 (2), 273–289. https://doi.org/10.1080/13540600902875340

Hiebert, J., Berk, D., Miller, E., Gallivan, H., & Meikle, E. (2019). Relationships between opportunity to learn mathematics in teacher preparation and graduates’ knowledge for teaching mathematics. Journal for Research in Mathematics Education , 50 (1), 23–50. https://doi.org/10.5951/jresematheduc.50.1.0023

Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education , 41 (2), 169–202. https://doi.org/10.5951/jresematheduc.41.2.0169

Jacobs, J., Seago, N., & Koellner, K. (2017). Preparing facilitators to use and adapt mathematics professional development materials productively. International Journal of STEM Education , 4 (1), 1–14. https://doi.org/10.1186/s40594-017-0089-9

Jaworski, B. (2006). Theory and practice in mathematics teaching development: Critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education , 9 (2), 187–211. https://doi.org/10.1007/s10857-005-1223-z

Jaworski, B., & Potari, D. (2009). Bridging the macro-and micro-divide: Using an activity theory model to capture socio-cultural complexity in mathematics teaching and its development. Educational Studies in Mathematics , 72 (2), 219–236. https://doi.org/10.1007/s10649-009-9190-4

Karsenty, R., & Arcavi, A. (2017). Mathematics, lenses and videotapes: A framework and a language for developing reflective practices of teaching. Journal of Mathematics Teacher Education , 20 , 433–455. https://doi.org/10.1007/s10857-017-9379-x

König, J., Santagata, R., Scheiner, T., Adleff, A. K., Yang, X., & Kaiser, G. (2022). Teacher noticing: A systematic literature review of conceptualizations, research designs, and findings on learning to notice. Educational Research Review , 36 , 100453. https://doi.org/10.1016/j.edurev.2022.100453

Leikin, R. (2008). Teams of prospective mathematics teachers: Multiple problems and multiple solutions. In T. Wood & K. Krainer (Eds.), International handbook of mathematics teacher education: Vol. 3. Participants in mathematics teacher education: individuals, teams, communities, and networks (pp. 63–88). Sense Publishers.

Lincoln, Y. S. (1995). Emerging criteria for quality in qualitative and interpretive research. Qualitative Inquiry , 1 (3), 275–289.

Mason, J. (2002). Researching your own practice: The discipline of noticing . Routledge. https://doi.org/10.4324/9780203471876

Book   Google Scholar  

Nemirovsky, R., & Galvis, A. (2004). Facilitating grounded online interactions in video-case-based teacher professional development. Journal of Science Education and Technology , 13 (1), 67–79. https://doi.org/10.1023/B:JOST.0000019639.06127.67

Op’t Eynde, P., Corte, E. D., & Verschaffel, L. (2006). “Accepting emotional complexity”: A socio-constructivist perspective on the role of emotions in the mathematics classroom. Educational Studies in Mathematics , 63 (2), 193–207. https://doi.org/10.1007/s10649-006-9034-4

Phelps-Gregory, C. M., & Spitzer, S. M. (2021). Prospective teachers’ analysis of a mathematics lesson: Examining their claims and supporting evidence. Journal of Mathematics Teacher Education , 24 (5), 481–505. https://doi.org/10.1007/s10857-020-09469-x

Potari, D., & Psycharis, G. (2018). Prospective mathematics teacher argumentation while interpreting classroom incidents. In M. E. Strutchens, R. Huang, D. Potari, & L. Losano (Eds.),  Educating Prospective Secondary Mathematics Teachers, ICME-13 Monographs.    https://doi.org/10.1007/978-3-319-91059-8_10

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM–Mathematics Education , 40 (2), 165–178. https://doi.org/10.1007/s11858-008-0086-z

Rezat, S., & Sträßer, R. (2012). From the didactical triangle to the socio-didactical tetrahedron: artifacts as fundamental constituents of the didactical situation. ZDM–Mathematics Education , 44 (5), 641–651. https://doi.org/10.1007/s11858-012-0448-4

Rotem, S. H., & Ayalon, M. (2022). Building a model for characterizing critical events: Noticing classroom situations using multiple dimensions. The Journal of Mathematical Behavior , 66 , 100947. https://doi.org/10.1016/j.jmathb.2022.100947

Rotem, S. H., & Ayalon, M. (2023). Constructing coherency levels to understand connections among the noticing skills of pre-service mathematics teachers. Journal of Mathematics Teacher Education , 1–27. https://doi.org/10.1007/s10857-023-09574-7

Roth McDuffie, A., Foote, M. Q., Bolson, C., Turner, E. E., Aguirre, J. M., Bartell, T. G., … Land, T. (2014). Using video analysis to support prospective K-8 teachers’ noticing of students’ multiple mathematical knowledge bases. Journal of Mathematics Teacher Education , 17 (3), 245–270. https://doi.org/10.1007/s10857-013-9257-0

Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service teacher education: An empirical investigation of teacher learning from a virtual video-based field experience. Journal of Mathematics Teacher Education , 10 (2), 123–140. https://doi.org/10.1007/s10857-007-9029-9

Schack, E. O., Fisher, M. H., Thomas, J. N., Eisenhardt, S., Tassell, J., & Yoder, M. (2013). Prospective elementary school teachers’ professional noticing of children’s early numeracy. Journal of Mathematics Teacher Education , 16 (5), 379–397. https://doi.org/10.1007/s10857-013-9240-9

Scheiner, T. (2021). Towards a more comprehensive model of teacher noticing. ZDM–Mathematics Education , 53 (1), 85–94. https://doi.org/10.1007/s11858-020-01202-5

Scheiner, T., & Kaiser, G. (2023). Establishing and emerging theoretical perspectives on teacher noticing. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel, & M. Tabach (Eds.),  Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education  (Vol. 1, pp. 104–108). PME 46.

Schwarts, G., Pöhler, B., Elbaum-Cohen, A., Karsenty, R., Arcavi, A., & Prediger, S. (2021). Novice facilitators’ changes in practices: From launching to managing discussions about mathematics teaching. The Journal of Mathematical Behavior , 64 , 100901. https://doi.org/10.1016/j.jmathb.2021.100901

Sherin, B., & Star, J. R. (2011). Reflections on the study of teacher noticing. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 66–78) . Routledge. https://doi.org/10.4324/9780203832714

Chapter   Google Scholar  

Star, J. R., & Strickland, S. K. (2008). Learning to observe: Using video to improve preservice mathematics teachers’ ability to notice. Journal of Mathematics Teacher Education , 11 (2), 107–125. https://doi.org/10.1007/s10857-007-9063-7

Tekkumru-Kisa, M., & Stein, M. K. (2017). A framework for planning and facilitating video-based professional development. International Journal of STEM education , 4 (28), 1–18. https://doi.org/10.1186/s40594-017-0086-z

Thanheiser, E., Melhuish, K., Sugimoto, A., Rosencrans, B., & Heaton, R. (2021). Networking frameworks: A method for analyzing the complexities of classroom cultures focusing on justifying. Educational Studies in Mathematics , 107 , 285–314. https://doi.org/10.1007/s10649-021-10026-3

van Es, E. A. (2011). A framework for learning to notice student thinking. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 164–181). Routledge. https://doi.org/10.4324/9780203832714

van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10 (4), 571–596.

van Es, E. A., & Sherin, M. G. (2021). Expanding on prior conceptualizations of teacher noticing. ZDM–Mathematics Education , 53 (1), 17–27. https://doi.org/10.1007/s11858-020-01211-4

van Es, E. A., Tunney, J., Goldsmith, L. T., & Seago, N. (2014). A framework for the facilitation of teachers’ analysis of video. Journal of Teacher Education, 65 (4), 340–356. https://doi.org/10.1177/0022487114534266

Warshauer, H. K., Starkey, C., Herrera, C. A., & Smith, S. (2021). Developing prospective teachers’ noticing and notions of productive struggle with video analysis in a mathematics content course. Journal of Mathematics Teacher Education , 24 (1), 89–121. https://doi.org/10.1007/s10857-019-09451-2

Wenger, E. (1998). Communities of practice: Learning as a social system. Systems Thinker , 9 (5), 2–3.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education , 27 (4), 458–477. https://doi.org/10.5951/jresematheduc.27.4.0458

Yang, Y., & Ricks, T. E. (2012). How crucial incidents analysis support Chinese lesson study. International Journal for Lesson and Learning Studies , 1 (1), 41–48. https://doi.org/10.1108/20468251211179696

Zeichner, K. (2012). The turn once again toward practice-based teacher education. Journal of Teacher Education , 63 (5), 376–382. https://doi.org/10.1177/0022487112445789

Download references

Author information

Authors and affiliations.

Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece

Sigal-Hava Rotem, Despina Potari & Giorgos Psycharis

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sigal-Hava Rotem .

Ethics declarations

Competing interest.

The authors declare no competing interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1.1 Examples of data analysis

Here we use an example to illustrate phase 2 data of the analysis process. We exemplify this using Katia’s and the TE’s turns taken from extract 4 used as an example in Section 4 . Figure 9 shows turns 7–10 of the extract.

figure 9

Turns 7–10 from extract 4

We coded the complete turn 7 as quality-interpretive , links-teaching practice , and sources-classroom evidence . We demonstrate how we coded this turn, using the schemes presented in Tables 4 and 5 . For convenience, we segmented Katia’s words with numbers in brackets. Nevertheless, in the analysis, it was treated as a single unit.

In this turn, Katia tries to explain the diversity of student answers to the task. In segments [1], [3], and [4], she reasons why this could happen: the students worked hard during the lesson [1]; they worked freely, without guidance [4] which allowed them to calculate the areas of the two figures in different ways. Katia links what the students did to her teaching practice. She claims that the reason for the students’ diverse approaches is because she gave the time to work [2] without guidance [6]. Further, she supports her reflection with evidence from the classroom. She articulates different student approaches [7] and says she provided only a ruler as evidence that she did not guide them [5].

Then in turns 8 and 10 the TE contextualizes (Table 6 in Section 3.3 and Table 11 ) Katia’s interpretation by suggesting additional information about when things happened in Katia’s CI. Table 11 depicts van Es et al.’s ( 2014 ) framework as we refined it with further examples from our data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Rotem, SH., Potari, D. & Psycharis, G. Using critical incidents as a tool for promoting prospective teachers’ noticing during reflective discussions in a fieldwork-based university course. Educ Stud Math (2024). https://doi.org/10.1007/s10649-024-10336-2

Download citation

Accepted : 16 May 2024

Published : 25 June 2024

DOI : https://doi.org/10.1007/s10649-024-10336-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical events
  • Teacher noticing
  • Field-based teacher preparation program
  • Secondary school mathematics
  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. How To Encourage Critical Thinking in Math

    Critical thinking is more than just a buzzword… It's an essential skill that helps students develop problem-solving abilities and make logical connections between different concepts. By encouraging critical thinking in math, students learn to approach problems more thoughtfully, they learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different ...

  2. Promoting Creative and Critical thinking in Mathematics and Numeracy

    The mathematics curriculum in Australia provides teachers with the perfect opportunity to teach mathematics through critical and creative thinking. In fact, it's mandated. Consider the core processes of the curriculum. The Australian Curriculum (ACARA, 2017), requires teachers to address four proficiencies: Problem Solving, Reasoning, Fluency ...

  3. Critical Thinking in Mathematics Education

    Critical Thinking and Mathematical Reasoning. Mathematical argumentation features prominently as an example of disciplined reasoning based on clear and concise language, questioning of assumptions, and appreciation of logical inference for deriving conclusions. These features of mathematical reasoning have been contrasted with intuition ...

  4. Critical Thinking Math Problems: Examples and Activities

    Critical thinking is an important factor in understanding math. Discover how critical thinking can help with real-world problem solving, using examples and activities like asking questions ...

  5. PDF Mathematical Teaching Strategies: Pathways to Critical Thinking and

    critical thinking skills by indicating optional methods and perhaps simplifying the process. Below is an example of how critical thinking can be used with simple mathematics. Students can develop and enhance their critical thinking skills as a result of instructors providing optional methods for simplifying the mathematical process.

  6. 20 Math Critical Thinking Questions to Ask in Class Tomorrow

    Start small. Add critical thinking questions to word problems. Keep reading for math critical thinking questions that can be applied to any subject or topic! When you want your students to defend their answers. When you want your students to justify their opinions. When you want your students to think outside of the box.

  7. PDF High-Leverage Critical Thinking Practices and Mathematics

    orted by high-leverage criti. al-thinking practices. 1. Teacher background knowledgeTeachers trying to help students develop their critical-thinking skills must hav. a grounding in fundamental critical-thinking principles. These include methods for structuring one's thinking, techniques for turning everyday language into logical arguments ...

  8. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  9. PDF When? and How?

    What is critical thinking in mathematics? When students think critically in mathematics, they make reasoned decisions or judgments about what to do and think. In other words, students consider the criteria or grounds for a thoughtful decision and do not simply guess or apply a rule without assessing its relevance.

  10. Inspiring Minds: The Role of Mathematics in Critical Thinking

    Join us for an enlightening conversation with Dr. Igor Subbotin, an esteemed mathematician and educator, as we explore the essential role mathematics plays in our world. Throughout our discussion, we uncover the profound impact that mathematics has on developing critical thinking and problem-solving skills, vital for the 21st-century landscape.

  11. Spirit of Mathematics Critical Thinking Skills (CTS)

    The mathematical critical-thinking skill is a process of thinking systematically to develop logical and critical thinking on mathematical problems, which characterize and demand to learn in the 21st century. This conceptual paper aims to analyze the spirit of critical thinking skill, and various approaches that can be applied in mathematics ...

  12. What is Critical Thinking?

    Critical Thinking and Logic. Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and ...

  13. Promoting Independent Critical Thinking in Math

    5 Ways to Get Your Students to Think. 1. Answer questions with a refocus on the students' point of view. Liljedahl found in his research that students ask three types of questions: " (1) proximity questions—asked when the teacher is close; (2) stop thinking questions—most often of the form 'is this right' or 'will this be on the ...

  14. How to Improve Problem-Solving Skills: Mathematics and Critical Thinking

    This helps them see math as a tool to navigate real-world challenges, thereby promoting critical thinking. 4. What are the six basic steps of the problem-solving process in math? The six steps are: Identification, Analysis, Generation of Alternatives, Decision Making, Implementation, and Evaluation.

  15. Mathematics Improves Your Critical Thinking and Problem ...

    Mathematics provides a systematic and logical framework for problem-solving and critical thinking. The study of math helps to develop analytical skills, logical reasoning, and problem-solving abilities that can be applied to many areas of life.By using critical thinking skills to solve math problems, we can develop a deeper understanding of concepts, enhance our problem-solving skills, and ...

  16. Creative and Critical Thinking in Primary Mathematics

    In mathematics, creative thinking occurs when students generalise. Generalising involves identifying common properties or patterns across more than one case and communicating a rule (conjecture) to describe the common property, pattern or relationship. In order to generalise students need to first analyse the problem to notice things that are ...

  17. PDF CRITICAL THINKING IN MATHEMATICS: WHAT, WHY, AND HOW CAN ...

    mathematics critical thinking skill as follows. Some stores offer an additional discount on items that have already been marked down. There is a 25% discount on a blouse that was originally priced ...

  18. Full article: Promoting critical thinking through mathematics and

    Critical thinking in mathematics education. The classroom dynamics and atmosphere determine students' interaction and the kind of thinking and learning that takes place. Engaging students in argumentation in the mathematics classroom means going beyond recalling prescribed procedures and providing the right answers.

  19. (Pdf) Critical Thinking in Mathematics: What, Why, and How Can Be

    thinking is the ability to think mathematically in solving mathematical problems which. include the ability to connect, analyze, evaluate, and prove. In the learning of mathematics, critical ...

  20. Enhancing Math Thinking Skills: Transforming Traditional Activities for

    Discover effective strategies for promoting critical thinking, problem-solving, and mathematical reasoning in the classroom. Learn how to transform traditional numeracy tasks into engaging thinking activities that foster deep understanding. Empower your students with open-ended exploration and patte

  21. PDF Learners' Critical Thinking About Learning Mathematics

    Therefore, learners' critical thinking about their own mathematics learning process was analyzed by using the self-examination and self-correction sub-skills of the sixth core cognitive critical thinking, self-regulation (Figure 1). The APA consensus' definitions of sub-skills self-examination and self-correction were adapted to analyze ...

  22. PDF Exploring Critical Thinking in a Mathematics Problem-Based Learning

    The learning process was adapted from Othman, Salleh, and Sulaiman's study (2013), which consists of five ladders (i.e., introduction to the problem, self-directed learning, group meeting, presentation and discussion, and exercises). The critical thinking was described in terms of the subskills adapted from AACU (2009) as mentioned before.

  23. Critical Thinking in Math: A Focus on Mathematical Reasoning

    These tips will nurture a love of learning, deepen understanding, and strengthen abilities to use mathematical thinking both in and out of school. Critical Thinking in Math: A Focus on Mathematical Reasoning Competencies. TC²'s approach to math embraces the idea that sustained quality mathematical thinking, or reasoning, is the key to the ...

  24. Critical Thinking—What Is It?* in: The Mathematics Teacher Volume 44

    Do mathematics teachers mean the same by critical thinking as do the teachers of the social studies or the logician or the psychologist? Contributor Notes * A summary of a paper presented to the Mathematics Section of the Illinois Education Association, Lake Shore Division, October 20 and 23, 1950.

  25. PDF JUST WHAT IS ALGEBRAIC THINKING

    COMPONENTS OF ALGEBRAIC THINKING. Algebraic thinking is organized here into two major components: the development of mathematical thinking tools and the study of fundamental algebraic ideas (see Figure 1). Mathematical thinking tools are analytical habits of mind. They include problem solving skills, representation skills, and reasoning skills.

  26. Critical Thinking in Mathematics Education

    Critical Thinking and Mathematical Reasoning. Mathematical argumentation features prominently as an example of disciplined reasoning based on clear and concise language, questioning of assumptions, and appreciation of logical inference for deriving conclusions. These features of mathematical reasoning have been contrasted with intuition ...

  27. Learning Maths Is Important to a Child's Growth and Success

    Mathematics is a core subject in a child's learning. It is taught in school but applies everywhere and every day. ... Critical thinking is important throughout life and mathematics will always ...

  28. Using critical incidents as a tool for promoting prospective ...

    Preparing prospective mathematics teachers to become teachers who recognize and respond to students' mathematical needs is challenging. In this study, we use the construct of critical incident as a tool to support prospective mathematics teachers' reflection on their authentic fieldwork activities, notice students' thinking, and link it to the complexity of mathematics teaching ...