- Encyclopedia ›
Definition Experiment
Experiments investigate and attempt to demonstrate the cause and effect relationship between two variables. An example can be seen in the test phase of pharmaceutical drugs , i.e., whether drug X effectively combats disease Y.
In experiments, the subjects are usually divided into two groups ‒ one control and one experimental group. The experimental group actually receives the drug while the control group only proceeds with the standard treatment. A distinction is made between laboratory (controlled environment) and field experiments (in natural settings). Experiments must satisfy the scientific quality criteria of objectivity , reliability , and validity .
Please note that the definitions in our statistics encyclopedia are simplified explanations of terms. Our goal is to make the definitions accessible for a broad audience; thus it is possible that some definitions do not adhere entirely to scientific standards.
- Extreme value
- Extrapolation
- Exogenous variable
- Endogenous variable
- Empirical probability
- Elementary event
- Ecological fallacy
- Science Notes Posts
- Contact Science Notes
- Todd Helmenstine Biography
- Anne Helmenstine Biography
- Free Printable Periodic Tables (PDF and PNG)
- Periodic Table Wallpapers
- Interactive Periodic Table
- Periodic Table Posters
- Science Experiments for Kids
- How to Grow Crystals
- Chemistry Projects
- Fire and Flames Projects
- Holiday Science
- Chemistry Problems With Answers
- Physics Problems
- Unit Conversion Example Problems
- Chemistry Worksheets
- Biology Worksheets
- Periodic Table Worksheets
- Physical Science Worksheets
- Science Lab Worksheets
- My Amazon Books
Experiment Definition in Science – What Is a Science Experiment?
In science, an experiment is simply a test of a hypothesis in the scientific method . It is a controlled examination of cause and effect. Here is a look at what a science experiment is (and is not), the key factors in an experiment, examples, and types of experiments.
Experiment Definition in Science
By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. The steps of the scientific method are:
- Make observations.
- Ask a question or identify a problem.
- State a hypothesis.
- Perform an experiment that tests the hypothesis.
- Based on the results of the experiment, either accept or reject the hypothesis.
- Draw conclusions and report the outcome of the experiment.
Key Parts of an Experiment
The two key parts of an experiment are the independent and dependent variables. The independent variable is the one factor that you control or change in an experiment. The dependent variable is the factor that you measure that responds to the independent variable. An experiment often includes other types of variables , but at its heart, it’s all about the relationship between the independent and dependent variable.
Examples of Experiments
Fertilizer and plant size.
For example, you think a certain fertilizer helps plants grow better. You’ve watched your plants grow and they seem to do better when they have the fertilizer compared to when they don’t. But, observations are only the beginning of science. So, you state a hypothesis: Adding fertilizer increases plant size. Note, you could have stated the hypothesis in different ways. Maybe you think the fertilizer increases plant mass or fruit production, for example. However you state the hypothesis, it includes both the independent and dependent variables. In this case, the independent variable is the presence or absence of fertilizer. The dependent variable is the response to the independent variable, which is the size of the plants.
Now that you have a hypothesis, the next step is designing an experiment that tests it. Experimental design is very important because the way you conduct an experiment influences its outcome. For example, if you use too small of an amount of fertilizer you may see no effect from the treatment. Or, if you dump an entire container of fertilizer on a plant you could kill it! So, recording the steps of the experiment help you judge the outcome of the experiment and aid others who come after you and examine your work. Other factors that might influence your results might include the species of plant and duration of the treatment. Record any conditions that might affect the outcome. Ideally, you want the only difference between your two groups of plants to be whether or not they receive fertilizer. Then, measure the height of the plants and see if there is a difference between the two groups.
Salt and Cookies
You don’t need a lab for an experiment. For example, consider a baking experiment. Let’s say you like the flavor of salt in your cookies, but you’re pretty sure the batch you made using extra salt fell a bit flat. If you double the amount of salt in a recipe, will it affect their size? Here, the independent variable is the amount of salt in the recipe and the dependent variable is cookie size.
Test this hypothesis with an experiment. Bake cookies using the normal recipe (your control group ) and bake some using twice the salt (the experimental group). Make sure it’s the exact same recipe. Bake the cookies at the same temperature and for the same time. Only change the amount of salt in the recipe. Then measure the height or diameter of the cookies and decide whether to accept or reject the hypothesis.
Examples of Things That Are Not Experiments
Based on the examples of experiments, you should see what is not an experiment:
- Making observations does not constitute an experiment. Initial observations often lead to an experiment, but are not a substitute for one.
- Making a model is not an experiment.
- Neither is making a poster.
- Just trying something to see what happens is not an experiment. You need a hypothesis or prediction about the outcome.
- Changing a lot of things at once isn’t an experiment. You only have one independent and one dependent variable. However, in an experiment, you might suspect the independent variable has an effect on a separate. So, you design a new experiment to test this.
Types of Experiments
There are three main types of experiments: controlled experiments, natural experiments, and field experiments,
- Controlled experiment : A controlled experiment compares two groups of samples that differ only in independent variable. For example, a drug trial compares the effect of a group taking a placebo (control group) against those getting the drug (the treatment group). Experiments in a lab or home generally are controlled experiments
- Natural experiment : Another name for a natural experiment is a quasi-experiment. In this type of experiment, the researcher does not directly control the independent variable, plus there may be other variables at play. Here, the goal is establishing a correlation between the independent and dependent variable. For example, in the formation of new elements a scientist hypothesizes that a certain collision between particles creates a new atom. But, other outcomes may be possible. Or, perhaps only decay products are observed that indicate the element, and not the new atom itself. Many fields of science rely on natural experiments, since controlled experiments aren’t always possible.
- Field experiment : While a controlled experiments takes place in a lab or other controlled setting, a field experiment occurs in a natural setting. Some phenomena cannot be readily studied in a lab or else the setting exerts an influence that affects the results. So, a field experiment may have higher validity. However, since the setting is not controlled, it is also subject to external factors and potential contamination. For example, if you study whether a certain plumage color affects bird mate selection, a field experiment in a natural environment eliminates the stressors of an artificial environment. Yet, other factors that could be controlled in a lab may influence results. For example, nutrition and health are controlled in a lab, but not in the field.
- Bailey, R.A. (2008). Design of Comparative Experiments . Cambridge: Cambridge University Press. ISBN 9780521683579.
- di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 0-521-29925-X.
- Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments. Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
- Holland, Paul W. (December 1986). “Statistics and Causal Inference”. Journal of the American Statistical Association . 81 (396): 945–960. doi: 10.2307/2289064
- Stohr-Hunt, Patricia (1996). “An Analysis of Frequency of Hands-on Experience and Science Achievement”. Journal of Research in Science Teaching . 33 (1): 101–109. doi: 10.1002/(SICI)1098-2736(199601)33:1<101::AID-TEA6>3.0.CO;2-Z
Related Posts
Teach yourself statistics
What is a Statistical Experiment?
All statistical experiments have three things in common:
- The experiment can have more than one possible outcome.
- Each possible outcome can be specified in advance.
- The outcome of the experiment depends on chance.
A coin toss has all the attributes of a statistical experiment. There is more than one possible outcome. We can specify each possible outcome (i.e., heads or tails) in advance. And there is an element of chance, since the outcome is uncertain.
The Sample Space
- A sample space is a set of elements that represents all possible outcomes of a statistical experiment.
- A sample point is an element of a sample space.
- An event is a subset of a sample space - one or more sample points.
Probability of an Event
With some statistical experiments, each sample point is equally likely to occur. In this situation, the probability of an event is very easy to compute. It is:
Think about the toss of a single die. The sample space consists of six possible outcomes (1, 2, 3, 4, 5, and 6). And each outcome is equally likely to occur. Suppose we defined Event A to be the die landing on an odd number. There are three odd numbers (1, 3, and 5). So, the probability of Event A would be 3/6 or 0.5.
Types of events
- Two events are mutually exclusive if they have no sample points in common.
- Two events are independent when the occurrence of one does not affect the probability of the occurrence of the other.
Test Your Understanding
- Suppose I roll a die. Is that a statistical experiment? Yes. Like a coin toss, rolling dice is a statistical experiment. There is more than one possible outcome. We can specify each possible outcome in advance. And there is an element of chance.
- When you roll a single die, what is the sample space? The sample space is all of the possible outcomes - an integer between 1 and 6.
- Which of the following are sample points when you roll a die - 3, 6, and 9? The numbers 3 and 6 are sample points, because they are in the sample space. The number 9 is not a sample point, since it is outside the sample space; with one die, the largest number that you can roll is 6.
- Which of the following sets represent an event when you roll a die? A. {1} B. {2, 4,} C. {2, 4, 6} D. All of the above The correct answer is D. Remember that an event is a subset of a sample space. The sample space is any integer from 1 to 6. Each of the sets shown above is a subset of the sample space, so each represents an event.
- Consider the events listed below. Which are mutually exclusive? A. {1} B. {2, 4,} C. {2, 4, 6} Two events are mutually exclusive, if they have no sample points in common. Events A and B are mutually exclusive, and Events A and C are mutually exclusive; since they have no points in common. Events B and C have common sample points, so they are not mutually exclusive.
- Suppose you roll a die two times. Is each roll of the die an independent event? Yes. Two events are independent when the occurrence of one has no effect on the probability of the occurrence of the other. Neither roll of the die affects the outcome of the other roll; so each roll of the die is independent.
- Privacy Policy
Home » Experimental Design – Types, Methods, Guide
Experimental Design – Types, Methods, Guide
Table of Contents
Experimental design is a structured approach used to conduct scientific experiments. It enables researchers to explore cause-and-effect relationships by controlling variables and testing hypotheses. This guide explores the types of experimental designs, common methods, and best practices for planning and conducting experiments.
Experimental Design
Experimental design refers to the process of planning a study to test a hypothesis, where variables are manipulated to observe their effects on outcomes. By carefully controlling conditions, researchers can determine whether specific factors cause changes in a dependent variable.
Key Characteristics of Experimental Design :
- Manipulation of Variables : The researcher intentionally changes one or more independent variables.
- Control of Extraneous Factors : Other variables are kept constant to avoid interference.
- Randomization : Subjects are often randomly assigned to groups to reduce bias.
- Replication : Repeating the experiment or having multiple subjects helps verify results.
Purpose of Experimental Design
The primary purpose of experimental design is to establish causal relationships by controlling for extraneous factors and reducing bias. Experimental designs help:
- Test Hypotheses : Determine if there is a significant effect of independent variables on dependent variables.
- Control Confounding Variables : Minimize the impact of variables that could distort results.
- Generate Reproducible Results : Provide a structured approach that allows other researchers to replicate findings.
Types of Experimental Designs
Experimental designs can vary based on the number of variables, the assignment of participants, and the purpose of the experiment. Here are some common types:
1. Pre-Experimental Designs
These designs are exploratory and lack random assignment, often used when strict control is not feasible. They provide initial insights but are less rigorous in establishing causality.
- Example : A training program is provided, and participants’ knowledge is tested afterward, without a pretest.
- Example : A group is tested on reading skills, receives instruction, and is tested again to measure improvement.
2. True Experimental Designs
True experiments involve random assignment of participants to control or experimental groups, providing high levels of control over variables.
- Example : A new drug’s efficacy is tested with patients randomly assigned to receive the drug or a placebo.
- Example : Two groups are observed after one group receives a treatment, and the other receives no intervention.
3. Quasi-Experimental Designs
Quasi-experiments lack random assignment but still aim to determine causality by comparing groups or time periods. They are often used when randomization isn’t possible, such as in natural or field experiments.
- Example : Schools receive different curriculums, and students’ test scores are compared before and after implementation.
- Example : Traffic accident rates are recorded for a city before and after a new speed limit is enforced.
4. Factorial Designs
Factorial designs test the effects of multiple independent variables simultaneously. This design is useful for studying the interactions between variables.
- Example : Studying how caffeine (variable 1) and sleep deprivation (variable 2) affect memory performance.
- Example : An experiment studying the impact of age, gender, and education level on technology usage.
5. Repeated Measures Design
In repeated measures designs, the same participants are exposed to different conditions or treatments. This design is valuable for studying changes within subjects over time.
- Example : Measuring reaction time in participants before, during, and after caffeine consumption.
- Example : Testing two medications, with each participant receiving both but in a different sequence.
Methods for Implementing Experimental Designs
- Purpose : Ensures each participant has an equal chance of being assigned to any group, reducing selection bias.
- Method : Use random number generators or assignment software to allocate participants randomly.
- Purpose : Prevents participants or researchers from knowing which group (experimental or control) participants belong to, reducing bias.
- Method : Implement single-blind (participants unaware) or double-blind (both participants and researchers unaware) procedures.
- Purpose : Provides a baseline for comparison, showing what would happen without the intervention.
- Method : Include a group that does not receive the treatment but otherwise undergoes the same conditions.
- Purpose : Controls for order effects in repeated measures designs by varying the order of treatments.
- Method : Assign different sequences to participants, ensuring that each condition appears equally across orders.
- Purpose : Ensures reliability by repeating the experiment or including multiple participants within groups.
- Method : Increase sample size or repeat studies with different samples or in different settings.
Steps to Conduct an Experimental Design
- Clearly state what you intend to discover or prove through the experiment. A strong hypothesis guides the experiment’s design and variable selection.
- Independent Variable (IV) : The factor manipulated by the researcher (e.g., amount of sleep).
- Dependent Variable (DV) : The outcome measured (e.g., reaction time).
- Control Variables : Factors kept constant to prevent interference with results (e.g., time of day for testing).
- Choose a design type that aligns with your research question, hypothesis, and available resources. For example, an RCT for a medical study or a factorial design for complex interactions.
- Randomly assign participants to experimental or control groups. Ensure control groups are similar to experimental groups in all respects except for the treatment received.
- Randomize the assignment and, if possible, apply blinding to minimize potential bias.
- Follow a consistent procedure for each group, collecting data systematically. Record observations and manage any unexpected events or variables that may arise.
- Use appropriate statistical methods to test for significant differences between groups, such as t-tests, ANOVA, or regression analysis.
- Determine whether the results support your hypothesis and analyze any trends, patterns, or unexpected findings. Discuss possible limitations and implications of your results.
Examples of Experimental Design in Research
- Medicine : Testing a new drug’s effectiveness through a randomized controlled trial, where one group receives the drug and another receives a placebo.
- Psychology : Studying the effect of sleep deprivation on memory using a within-subject design, where participants are tested with different sleep conditions.
- Education : Comparing teaching methods in a quasi-experimental design by measuring students’ performance before and after implementing a new curriculum.
- Marketing : Using a factorial design to examine the effects of advertisement type and frequency on consumer purchase behavior.
- Environmental Science : Testing the impact of a pollution reduction policy through a time series design, recording pollution levels before and after implementation.
Experimental design is fundamental to conducting rigorous and reliable research, offering a systematic approach to exploring causal relationships. With various types of designs and methods, researchers can choose the most appropriate setup to answer their research questions effectively. By applying best practices, controlling variables, and selecting suitable statistical methods, experimental design supports meaningful insights across scientific, medical, and social research fields.
- Campbell, D. T., & Stanley, J. C. (1963). Experimental and Quasi-Experimental Designs for Research . Houghton Mifflin Company.
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference . Houghton Mifflin.
- Fisher, R. A. (1935). The Design of Experiments . Oliver and Boyd.
- Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics . Sage Publications.
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences . Routledge.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
IMAGES
VIDEO
COMMENTS
Parts of an Experiment. All experiments have independent variables, dependent variables, and experimental units. Independent variable.An independent variable (also called a factor) is an explanatory variable manipulated by the experimenter.. Each factor has two or more levels (i.e., different values of the factor).
Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions. An experiment is a data collection procedure that occurs in controlled conditions to identify and understand causal relationships between variables.
Experiments must satisfy the scientific quality criteria of objectivity, reliability , and validity. Please note that the definitions in our statistics encyclopedia are simplified explanations of ...
By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. ... Journal of the American Statistical Association. 81 (396): 945-960. doi ...
A coin toss has all the attributes of a statistical experiment. There is more than one possible outcome. We can specify each possible outcome (i.e., heads or tails) in advance. And there is an element of chance, since the outcome is uncertain. The Sample Space. A sample space is a set of elements that represents all possible outcomes of a ...
So actually, an experiment is a procedure that, when repeated keeps the sample space constant. Therefore the possible results of an experiments are always the same, but the actual result of a repetition of an experiment, could be different, if the experiment is a random experiment and not a deterministic one. $\endgroup$ -
Statistics - Sampling, Variables, Design: Data for statistical studies are obtained by conducting either experiments or surveys. Experimental design is the branch of statistics that deals with the design and analysis of experiments. The methods of experimental design are widely used in the fields of agriculture, medicine, biology, marketing research, and industrial production.
Experimental design is a structured approach used to conduct scientific experiments. It enables researchers to explore cause-and-effect relationships by controlling variables and testing hypotheses. This guide explores the types of experimental designs, common methods, and best practices for planning and conducting experiments.
An experiment is a controlled study conducted to test a hypothesis by manipulating one or more independent variables and observing the effects on one or more dependent variables. The goal is to establish cause-and-effect relationships, providing clearer insights compared to observational studies. Through random assignment and control groups, experiments aim to minimize bias and variability ...
A designed experiment in statistics is essential. In the field of statistics, experimental design means the process of designing a statistical experiment , which is an experiment that is objective ...