- Thesis Action Plan New
- Academic Project Planner
Literature Navigator
Thesis dialogue blueprint, writing wizard's template, research proposal compass.
- See Success Stories
- Access Free Resources
- Why we are different
- All Products
- Coming Soon
The Art of Hypothesis Formulation: A Step-by-Step Guide to Writing your Research Prediction
Mastering the art of hypothesis formulation is a critical step in the research process. A well-constructed hypothesis provides a focused path for investigation and analysis. This guide offers a comprehensive approach to crafting a research prediction that is clear, testable, and grounded in theory, ensuring that your research is poised for success. Whether you are a seasoned researcher or a novice in the academic world, these steps will help you formulate a hypothesis that can withstand the rigors of scientific scrutiny.
Key Takeaways
- A solid hypothesis is the backbone of any research project, guiding the study design and analysis.
- Understanding the research problem and conducting a thorough literature review are foundational steps in hypothesis formulation.
- The hypothesis should be clear, specific, and testable, with well-defined conceptual and operational terms.
- Theoretical frameworks provide a lens through which the hypothesis can be developed and justified.
- Post-research evaluation of the hypothesis is crucial for refining the research process and contributing to the body of knowledge.
Laying the Groundwork for Hypothesis Formulation
Understanding the research problem.
Before you embark on the journey of research, it is crucial to grasp the essence of the research problem you intend to address. This foundational step is not merely about identifying a topic of interest but about comprehending the intricacies and nuances that define the problem space. A well-understood problem paves the way for a clear research direction and meaningful inquiry.
To effectively understand the research problem, consider the following steps:
- Articulate the problem in a precise manner, ensuring it is neither too broad nor too narrow.
- Justify the importance of addressing this problem, highlighting its relevance and potential impact.
- Review existing literature to gain insights into how the problem has been approached previously and identify gaps in knowledge.
- Formulate specific research questions that stem from the hypothesis, not the data, ensuring they are established before the study commences.
Remember, a hypothesis is an educated guess about what you expect to find through your research. It is a statement that can be tested using scientific methods, and it should be directly linked to the research problem. Avoid the common pitfall of beginning your investigation without a clear understanding of what information is required to address the research problem. Doing so may lead to weak conclusions and undermine the overall validity of your study.
Reviewing the Literature
Before you can craft a compelling hypothesis, you must immerse yourself in the existing body of knowledge. Reviewing the literature is a critical step that involves a systematic examination of scholarly articles, books, and other sources relevant to your research question. This process helps you understand the current state of research and identify gaps or inconsistencies that your study could address.
Begin by formulating a research question that accurately and succinctly captures the essence of your inquiry. Organize your literature review into sections that present themes or identify trends, including relevant theory . Remember, you are not attempting to list all the material available, but rather to synthesize and evaluate it in relation to your research question.
The literature review serves as a foundation for developing your hypothesis. It should reveal flaws or holes in previous research, providing justification for your study. A well-conducted literature review sets the stage for identifying a research question, which may be parallel to the hypothesis you will test.
Identifying Key Variables
Once you have a solid understanding of the research problem and have immersed yourself in the literature, your next step is to identify the key variables that will form the foundation of your research. Variables are the elements within your study that are subject to change or variation , and they are critical in shaping the direction of your research.
In experimental research, variables are typically categorized as independent or dependent . The independent variable is the one you manipulate to observe the effect on the dependent variable, which is the outcome you measure. However, identifying these variables is not always straightforward. You must dissect the research problem to discern potential cause-and-effect relationships , which will guide your selection of variables.
Here is a simple list to help you identify and categorize your variables:
- Determine the main elements of your research question.
- Classify these elements as independent or dependent variables.
- Consider any confounding or intervening variables that may influence the relationship between your primary variables.
- Define how each variable will be measured and operationalized in the context of your study.
Remember, the process of identifying key variables is essential for creating clear hypotheses and designing targeted research that can lead to meaningful and testable predictions.
Establishing the Research Objectives
Once you have a firm grasp of the research problem and a comprehensive understanding of the existing literature, it's time to define your research objectives. These objectives will guide your investigation and shape the direction of your study. Ensure that your objectives are aligned with the SMART criteria : Specific, Measurable, Achievable, Relevant, and Time-bound. This alignment will facilitate a clear path towards achieving your research goals.
To establish solid research objectives, consider the following steps:
- Define the research question: The question should be clearly defined and specific, serving as a beacon for your hypothesis formulation.
- Review the literature: Synthesize the information gathered to identify gaps or areas needing further exploration.
- Determine the variables: Pinpoint the key variables that will be the focus of your study.
- Set achievable goals : Outline what you aim to discover, prove, or analyze through your research.
By meticulously crafting your research objectives, you lay the groundwork for a robust and testable hypothesis, setting the stage for a successful research endeavor.
Crafting a Testable Hypothesis
Defining conceptual and operational terms.
Before you can craft a robust hypothesis, you must first ensure that your terms are clearly defined . Conceptual definitions provide the theoretical meaning of your research variables, grounding them within the scholarly discourse . For instance, a conceptual definition of 'job satisfaction' might relate it to factors like employee engagement and workplace environment.
Operational definitions, on the other hand, are crucial for empirical testing . They detail how you will measure or assess your variables in the study. This specificity is vital for the reproducibility of your research. For example, 'job satisfaction' could be operationally defined by the number of positive responses in a standardized employee survey.
To illustrate the importance of these definitions, consider the following table:
Conceptual Term | Conceptual Definition | Operational Definition |
---|---|---|
Job Satisfaction | Employee's overall contentment with their job | Number of positive responses in a survey |
Work Engagement | Employee's psychological investment in their job | Score on the Utrecht Work Engagement Scale |
By meticulously defining your terms both conceptually and operationally, you lay the groundwork for a hypothesis that is clear, testable, and grounded in existing research.
Formulating the Hypothesis Statement
Once you have a clear understanding of the research problem and have reviewed the literature, it's time to articulate your hypothesis. A hypothesis statement is a clear, concise declaration of what you expect to find. It is an educated guess that bridges your research question and the anticipated outcomes . Your hypothesis should be grounded in the literature you've reviewed and reflect a logical extrapolation of the existing knowledge.
To formulate a robust hypothesis statement, consider the following steps:
- Ensure your hypothesis is testable with the resources and time available.
- Align it closely with your research objectives.
- Make it specific and measurable.
- State it in a way that it can be disproved (falsifiability).
Remember, a hypothesis is not a wild guess but an informed prediction based on what is already known. While websites offer tools like the Thesis Action Plan and resources for students and professors, the core of hypothesis formulation remains rooted in scientific method and critical thinking. As you state your hypothesis, be mindful that it should allow for clear and actionable pathways for testing—whether through experimental design or data analysis.
Ensuring Clarity and Specificity
When crafting your hypothesis, it is essential to ensure that it is both clear and specific. A hypothesis that is vague or ambiguous will be difficult to test and can lead to inconclusive results. Ensure that your hypothesis is directly linked to observable and measurable outcomes to facilitate a straightforward testing process. This clarity not only guides your research design but also aids in the communication of your findings to others.
To achieve this level of specificity, consider the following steps:
- Define the variables and concepts clearly and explicitly.
- Formulate a hypothesis statement that is concise and to the point.
- Avoid using technical jargon unless it is well-defined and necessary.
- Anticipate potential sources of confusion and address them within the hypothesis statement.
Remember, an effective hypothesis is one that can be tested through empirical data and can provide a clear path for investigation. By adhering to these guidelines, you will set a solid foundation for your research and increase the likelihood of producing meaningful and valid results.
Predictive Power of the Hypothesis
The predictive power of a hypothesis is its ability to forecast future outcomes based on current knowledge and observations. A robust hypothesis not only explains known phenomena but also anticipates new findings . This foresight is crucial for the advancement of scientific knowledge and the practical application of research findings.
When you formulate your hypothesis, consider its potential to predict future events or behaviors. This involves a careful balance between being overly broad, which may lead to vague predictions, and being too narrow, which might limit the hypothesis's applicability. To enhance the predictive power of your hypothesis, ensure that it is grounded in empirical evidence and aligns with established theoretical frameworks.
Remember, the ultimate test of a hypothesis lies in its ability to withstand empirical scrutiny. This is where hypothesis testing comes into play. It involves collecting data and using statistical methods to determine whether the evidence supports or contradicts the hypothesis. A well-designed hypothesis should lead to a clear set of expectations that can be empirically tested, often through a series of experiments or observations.
- Define the scope of predictions
- Align with theoretical models
- Test through empirical data
By adhering to these principles, you can craft a hypothesis with strong predictive power, one that not only withstands the rigors of testing but also contributes to the broader field of knowledge.
The Role of Theoretical Frameworks in Hypothesis Development
Selecting appropriate theoretical models.
When you embark on the journey of hypothesis development, selecting the right theoretical model is akin to choosing a map for a voyage. It guides your inquiry and shapes the research path you will follow. The best practice for model selection is to review the literature to develop a theoretical understanding of the relevant independent variables. This process involves a careful examination of existing studies and the conceptual frameworks they employ.
A conceptual framework is used to clarify concepts, organize ideas, and identify relationships within your study. It is essential to select a model that not only aligns with your research questions but also has the predictive power to test your hypothesis effectively. Consider the following steps to ensure a robust selection:
- Evaluate whether a relationship exists between the variables of interest.
- Categorize the relationship into a model, such as communal sharing, authority ranking, or integrative modeling.
- Compute the strength or intensity of the relationship as suggested by the literature.
By integrating theory with your research questions, you bridge the gap between abstract concepts and empirical data, laying a solid foundation for your hypothesis.
Integrating Theory with Research Questions
When you embark on the journey of research, it is crucial to ensure that your research questions are not just reflections of curiosity, but also deeply rooted in theoretical frameworks. Theories provide a lens through which research questions gain depth and direction , guiding you towards a more structured inquiry. As you align your research questions with theoretical models, consider the following steps:
- Begin by identifying the key theories that relate to your research problem.
- Examine how these theories have been applied in existing literature.
- Articulate how the theoretical framework informs your research questions.
- Ensure that your research questions are capable of testing the theoretical assertions.
Remember, the coherence between theory and research questions is fundamental for a credible study. This integration not only enhances the conceptual clarity of your study but also strengthens the justification for your research design. Websites offering tools for thesis writing and research tips can be invaluable in this process, particularly when addressing unexpected data and evaluating research design for credibility and reliability. It's essential to revisit assumptions and integrate theory with empirical data to bridge the gap between abstract concepts and the real world.
Theoretical Justification for Hypotheses
The process of hypothesis formulation is not complete without a solid theoretical justification. You must ensure that your hypothesis is not only testable but also grounded in existing theory. Examine your thesis title and research problem to align them with the appropriate theoretical models. This alignment helps in explaining the rationale behind your predictions and strengthens the overall research design.
When you integrate theory with your research questions, you are effectively bridging the gap between abstract concepts and empirical data. For instance, a theoretical framework can elucidate why individuals might avoid uncertain options , focusing on the potential for negative outcomes. It's essential to select theoretical models that are relevant to your subject area and can support the hypothesis with a logical explanation of the observed phenomena.
To justify your hypothesis theoretically, consider the following steps:
- Review the literature to identify theories that have previously been applied to similar problems.
- Brainstorm the key variables in your study and how they relate to the chosen theory.
- Provide a conceptual definition that links your hypothesis to broader theoretical constructs.
- Develop an operational definition that details how you will measure and assess these variables in your study.
Bridging the Gap between Theory and Empirical Data
When you embark on the journey of research, you'll find that the theoretical framework serves as your compass, guiding you through the uncharted territories of knowledge. It provides conceptual clarity and ensures that your study is rooted in established theories, offering a solid foundation for your empirical data collection. The integration of theory and empirical data is crucial ; it allows you to not only explain phenomena but also to predict future occurrences, thereby enhancing the predictive power of your research.
To effectively bridge this gap, consider the following steps:
- Review the existing literature to understand how your research problem fits within the theoretical landscape.
- Identify the key variables and constructs within your theoretical framework.
- Develop a clear research proposal that articulates the relationship between theory and the empirical data you aim to collect.
- Use your theoretical framework to inform the design of your study and the selection of appropriate analytical techniques.
By meticulously aligning your theoretical framework with your empirical data, you create a robust structure for your research. This alignment not only facilitates a deeper understanding of your research problem but also ensures that your findings can contribute to the broader academic discourse. Remember, the tools for thesis writing , such as worksheets and templates, can greatly assist in this process, serving as a roadmap for your research journey .
Methodological Considerations in Testing Hypotheses
Designing the research study.
Once you have a solid understanding of the research problem and have reviewed the literature, it's time to design your study. The research design is your plan of attack ; it outlines how you will collect and analyze your data to address your research objectives. Begin by identifying the research problem and justifying the selection of your design over other alternatives. This step is crucial as it lays the foundation for the entire research process.
Next, synthesize the literature to ensure your study adds value to the existing body of knowledge. Formulate your research questions or hypotheses with precision, and describe the data necessary for adequate testing. Remember, the design of your study should facilitate the operationalization of variables, allowing you to measure and interpret your findings effectively.
Here are some steps to consider when designing your research study:
- Define the research problem and its significance.
- Choose a research design that aligns with your objectives.
- Develop a detailed plan for data collection and analysis.
- Ensure ethical considerations are addressed.
- Prepare for potential challenges and limitations.
By following these steps, you will create a robust framework for your research, enabling you to move forward with confidence.
Operationalization of Variables
Operationalization is the process by which you define your study's variables in practical, measurable terms. It involves translating the abstract conceptual definitions into specific, observable, and quantifiable indicators that can be empirically observed. Operational definitions are crucial as they allow you to consistently measure the variables throughout your research, ensuring that the data collected is valid and reliable.
To operationalize a variable, you must first decide whether it is independent or dependent . Then, you'll need to detail how each variable will be measured or assessed. For example, if your research involves human behavior, you might use surveys, observations, or physiological measurements. Here's a simple list to guide you through the operationalization process:
- Define the variable in conceptual terms.
- Translate the conceptual definition into measurable indicators.
- Determine the method of measurement or assessment.
- Ensure the reliability and validity of the measurement.
Remember, the goal is to provide a clear blueprint that other researchers could follow to replicate your study. By paying careful attention to the language used in quantitative research, you can build a foundation of Critical Quantitative Literacy (CQL), which is essential for interpreting and applying your findings effectively.
Selection of Appropriate Analytical Techniques
Once you have operationalized your variables and designed your study, the next critical step is to select the appropriate analytical techniques. Your choice of analysis will profoundly influence the interpretation of your results and the validity of your hypothesis. It is essential to match the analytical methods to the nature of your data and the objectives of your research.
For quantitative data, statistical tests such as t-tests, ANOVA, or regression analysis might be appropriate. Qualitative data may require content analysis, thematic analysis, or discourse analysis. Here's a brief list of common analytical techniques and their typical applications:
- Descriptive statistics : Summarize data (mean, median, mode)
- Inferential statistics: Test hypotheses (chi-square, t-tests)
- Content analysis: Interpret text data
- Ethnography: Study cultures through observation and interviews
Remember, the selection of analytical techniques is not arbitrary; it should be justified based on the research problem , the nature of your data, and the research objectives . Utilize various data collection and analysis techniques to draw meaningful conclusions and interpret findings to validate your hypotheses.
Interpreting Results in the Context of the Hypothesis
Once you have collected and analyzed your data, the crucial step of interpreting the results in the context of your hypothesis begins. This is where you determine whether your findings confirm or reject the hypothesis underpinning your study. It is essential to understand the context within which the research was conducted before drawing conclusions from the data. This understanding allows you to assess the relevance and applicability of your results to the real world.
Consider the following when interpreting your results:
- The alignment of the results with the original hypothesis.
- The statistical significance of the findings.
- The potential for alternative explanations.
- The implications for existing theory and future research.
Remember, the act of articulating the results helps you to understand the problem more deeply and to refine your research approach. The interpretation of data is not merely a mechanical process but a thoughtful one that requires careful consideration of the experimental context and its relation to the real world. Your conclusions should be justified with a clear rationale, bridging the gap between empirical data and theoretical understanding.
Evaluating and Refining Hypotheses Post-Research
Assessing the consistency of findings with the hypothesis.
Once you have completed your research, it is crucial to assess whether the findings align with your original hypothesis. This involves a meticulous comparison of the observed data against the expected outcomes as predicted by your hypothesis. Ensure that the consistency of your findings is not merely coincidental but statistically significant .
To evaluate the alignment, consider the following steps:
- Review the predictions made by your hypothesis.
- Compare these predictions with the actual results obtained.
- Use appropriate statistical tests to determine the significance of the observed alignment.
- Reflect on the potential reasons for any discrepancies between the expected and actual outcomes.
Remember, a hypothesis is supported, not proven, by research findings. The language of hypothesis testing is one of probability and consistency , acknowledging that alternative explanations may exist. As Rudolph Rummel suggests, confidence in your results grows when a range of tests are consistent across various data, researchers, and methods.
Implications for Theory and Practice
Upon the completion of your research, it is crucial to reflect on the implications of your findings for both theory and practice. Your hypothesis serves as a bridge between theoretical concepts and practical applications , informing future research directions and professional practices. For theory, your research can refine concepts and theories, contributing to the body of knowledge within your field. This refinement enhances the precision and applicability of theoretical frameworks, as shown in the following points:
- Provides a basis for ethical decision-making in practice.
- Aids in gaining self-understanding about the purposes of research.
- Brings clarity to guiding practices and principles.
In practice, the implications of your hypothesis testing extend to the effectiveness of interventions and strategies. Your findings can lead to the development of new intervention strategies, improving existing ones, and connecting research with practical outcomes. For instance:
- Improving the effectiveness of interventions.
- Broadening the range of mechanisms used to change behavior.
- Connecting social-norm interventions with relevant theories.
Ultimately, the evaluation of your hypothesis against empirical data can yield insights that have a profound impact on both academic discourse and real-world applications.
When to Accept, Reject, or Modify the Hypothesis
In the journey of research, you will arrive at a critical juncture where you must decide the fate of your hypothesis. After rigorous testing and analysis , the data will guide you to either accept, reject , or modify your hypothesis. Acceptance of the hypothesis occurs when your results consistently support the prediction, suggesting that your theory has merit. However, statistical evidence may compel you to reject the null hypothesis, indicating that your alternative hypothesis holds more weight.
When results are inconclusive or partially supportive, it may be necessary to refine your hypothesis. This iterative process is fundamental to scientific advancement. Consider the following steps to guide your decision:
- Review the consistency of your findings with the initial predictions.
- Assess the statistical significance of your results.
- Determine the practical implications of accepting or rejecting the hypothesis.
- Reflect on the theoretical framework and whether it still aligns with your findings.
Ultimately, the decision to accept, reject, or modify should be made with careful consideration of the empirical data and the overarching goals of your research.
The Iterative Nature of Hypothesis Testing
The journey of hypothesis testing is not a straight path to a final destination, but rather a cyclical process of refinement and learning. As you gather evidence and analyze it , you may find that your initial hypothesis requires modification to better reflect the data. This iterative nature is a fundamental aspect of scientific inquiry, where hypotheses evolve with new insights and observations.
In practice, hypothesis testing involves formulating assumptions based on sample statistics and rigorously evaluating these assumptions against empirical data. If the outcome of your experiment is inconsistent with the hypothesis, it is typically rejected. However, if the outcome supports the hypothesis, it is not proven but rather supported and may be considered more credible after surviving rounds of testing. Remember, alternative hypotheses might also explain the observations, so it's essential to remain open to new possibilities and falsifiability .
To illustrate the iterative process, consider the following steps:
- Formulate the initial hypothesis
- Design and conduct experiments
- Analyze the data
- Interpret the results in the context of the hypothesis
- Refine the hypothesis based on the findings
- Repeat the cycle as necessary
This process underscores the dynamic nature of research, where each cycle of testing and refinement brings you closer to a more accurate understanding of the phenomena under investigation.
After conducting thorough research, it's crucial to evaluate and refine your hypotheses to ensure the integrity of your findings. At Research Rebels, we understand the complexities of this process and offer a comprehensive Thesis Action Plan to guide you through it. Our step-by-step approach, developed by experts and approved by professors, has helped countless students turn their research into successful theses. Don't let anxiety and uncertainty hinder your academic progress. Visit our website now to learn more about our methodologies and claim your special offer. Take the first step towards a stress-free thesis journey with Research Rebels.
In conclusion, the art of hypothesis formulation is a critical skill in the research process, serving as a bridge between theoretical understanding and empirical investigation. This guide has provided a structured approach to crafting a research prediction, emphasizing the importance of a clear, testable hypothesis that aligns with existing literature and research goals. By following the steps outlined, researchers can create hypotheses that not only guide their studies with precision but also contribute to the broader academic discourse. As the landscape of observation and experimentation evolves, so too must our hypotheses, adapting to new data and insights. Ultimately, a well-formulated hypothesis is the compass that directs the scientific journey, leading to discoveries that challenge and expand our knowledge.
Frequently Asked Questions
What is the importance of understanding the research problem in hypothesis formulation.
Understanding the research problem is crucial as it lays the foundation for the entire study. It helps to clarify the focus, establish the context, and guide the direction of the research, which is essential for crafting a relevant and testable hypothesis.
How does reviewing the literature contribute to hypothesis development?
Reviewing the literature informs the researcher about what has already been studied, identifies gaps in knowledge, and provides insights into the theoretical and empirical background of the research problem, which are necessary for formulating a well-grounded hypothesis.
Why is it important to define conceptual and operational terms in a hypothesis?
Defining conceptual and operational terms ensures that the variables are clearly understood and measurable. This clarity is essential for the hypothesis to be testable and for other researchers to replicate the study.
What role do theoretical frameworks play in hypothesis development?
Theoretical frameworks provide a structured lens through which the research problem can be viewed. They guide the formulation of hypotheses by offering concepts and relationships that can be empirically tested, bridging the gap between abstract theory and observable phenomena.
How can a hypothesis be refined after the research has been conducted?
A hypothesis can be refined based on the consistency of the research findings with the original prediction. If the findings align with the hypothesis, it may be strengthened; if not, the hypothesis may need to be rejected or modified to better reflect the observed data.
What is the iterative nature of hypothesis testing?
The iterative nature of hypothesis testing refers to the ongoing process of developing hypotheses, testing them, evaluating the results, and then refining the hypotheses based on the findings. This cycle continues until a satisfactory explanation for the research problem is achieved.
Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide
Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'
Discovering Statistics Using SAS: A Comprehensive Review
How to Type Your Thesis Fast Without Compromising Quality
Looking for the Perfect Thesis Literature Review Sample? Here’s What You Should Know
Explanatory vs. Argumentative Thesis: Which Style Fits Your Paper Best?
Thesis Action Plan
- Rebels Blog
- Blog Articles
- Affiliate Program
- Terms and Conditions
- Payment and Shipping Terms
- Privacy Policy
- Return Policy
© 2024 Research Rebels, All rights reserved.
Your cart is currently empty.
Educational resources and simple solutions for your research journey
What is a Research Hypothesis: How to Write it, Types, and Examples
Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.
It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .
Table of Contents
What is a hypothesis ?
A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.
What is a research hypothesis ?
Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”
A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.
Characteristics of a good hypothesis
Here are the characteristics of a good hypothesis :
- Clearly formulated and free of language errors and ambiguity
- Concise and not unnecessarily verbose
- Has clearly defined variables
- Testable and stated in a way that allows for it to be disproven
- Can be tested using a research design that is feasible, ethical, and practical
- Specific and relevant to the research problem
- Rooted in a thorough literature search
- Can generate new knowledge or understanding.
How to create an effective research hypothesis
A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.
Let’s look at each step for creating an effective, testable, and good research hypothesis :
- Identify a research problem or question: Start by identifying a specific research problem.
- Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.
- Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.
- State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.
- Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.
- Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .
Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.
How to write a research hypothesis
When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.
An example of a research hypothesis in this format is as follows:
“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”
Population: athletes
Independent variable: daily cold water showers
Dependent variable: endurance
You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.
Research hypothesis checklist
Following from above, here is a 10-point checklist for a good research hypothesis :
- Testable: A research hypothesis should be able to be tested via experimentation or observation.
- Specific: A research hypothesis should clearly state the relationship between the variables being studied.
- Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.
- Falsifiable: A research hypothesis should be able to be disproven through testing.
- Clear and concise: A research hypothesis should be stated in a clear and concise manner.
- Logical: A research hypothesis should be logical and consistent with current understanding of the subject.
- Relevant: A research hypothesis should be relevant to the research question and objectives.
- Feasible: A research hypothesis should be feasible to test within the scope of the study.
- Reflects the population: A research hypothesis should consider the population or sample being studied.
- Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.
By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.
Types of research hypothesis
Different types of research hypothesis are used in scientific research:
1. Null hypothesis:
A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.
Example: “ The newly identified virus is not zoonotic .”
2. Alternative hypothesis:
This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.
Example: “ The newly identified virus is zoonotic .”
3. Directional hypothesis :
This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.
Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”
4. Non-directional hypothesis:
While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.
Example, “ Cats and dogs differ in the amount of affection they express .”
5. Simple hypothesis :
A simple hypothesis only predicts the relationship between one independent and another independent variable.
Example: “ Applying sunscreen every day slows skin aging .”
6 . Complex hypothesis :
A complex hypothesis states the relationship or difference between two or more independent and dependent variables.
Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)
7. Associative hypothesis:
An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.
Example: “ There is a positive association between physical activity levels and overall health .”
8 . Causal hypothesis:
A causal hypothesis proposes a cause-and-effect interaction between variables.
Example: “ Long-term alcohol use causes liver damage .”
Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.
Research hypothesis examples
Here are some good research hypothesis examples :
“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”
“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”
“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”
“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”
Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.
Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:
“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)
“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)
“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)
Importance of testable hypothesis
If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.
To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.
Frequently Asked Questions (FAQs) on research hypothesis
1. What is the difference between research question and research hypothesis ?
A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.
2. When to reject null hypothesis ?
A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.
3. How can I be sure my hypothesis is testable?
A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:
- Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.
- The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.
- You should be able to collect the necessary data within the constraints of your study.
- It should be possible for other researchers to replicate your study, using the same methods and variables.
- Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.
- The hypothesis should be able to be disproven or rejected through the collection of data.
4. How do I revise my research hypothesis if my data does not support it?
If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.
5. I am performing exploratory research. Do I need to formulate a research hypothesis?
As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.
6. How is a research hypothesis different from a research question?
A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.
7. Can a research hypothesis change during the research process?
Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.
8. How many hypotheses should be included in a research study?
The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.
9. Can research hypotheses be used in qualitative research?
Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.
Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.
Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place – Get All Access now starting at just $14 a month !
Related Posts
Conference Paper vs. Journal Paper: What’s the Difference
What is Availability Heuristic (with Examples)
An official website of the United States government
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
- Publications
- Account settings
The PMC website is updating on October 15, 2024. Learn More or Try it out now .
- Advanced Search
- Journal List
- J Korean Med Sci
- v.36(50); 2021 Dec 27
Formulating Hypotheses for Different Study Designs
Durga prasanna misra.
1 Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
Armen Yuri Gasparyan
2 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, UK.
Olena Zimba
3 Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
Marlen Yessirkepov
4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.
Vikas Agarwal
George d. kitas.
5 Centre for Epidemiology versus Arthritis, University of Manchester, Manchester, UK.
Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate hypotheses. Observational and interventional studies help to test hypotheses. A good hypothesis is usually based on previous evidence-based reports. Hypotheses without evidence-based justification and a priori ideas are not received favourably by the scientific community. Original research to test a hypothesis should be carefully planned to ensure appropriate methodology and adequate statistical power. While hypotheses can challenge conventional thinking and may be controversial, they should not be destructive. A hypothesis should be tested by ethically sound experiments with meaningful ethical and clinical implications. The coronavirus disease 2019 pandemic has brought into sharp focus numerous hypotheses, some of which were proven (e.g. effectiveness of corticosteroids in those with hypoxia) while others were disproven (e.g. ineffectiveness of hydroxychloroquine and ivermectin).
Graphical Abstract
DEFINING WORKING AND STANDALONE SCIENTIFIC HYPOTHESES
Science is the systematized description of natural truths and facts. Routine observations of existing life phenomena lead to the creative thinking and generation of ideas about mechanisms of such phenomena and related human interventions. Such ideas presented in a structured format can be viewed as hypotheses. After generating a hypothesis, it is necessary to test it to prove its validity. Thus, hypothesis can be defined as a proposed mechanism of a naturally occurring event or a proposed outcome of an intervention. 1 , 2
Hypothesis testing requires choosing the most appropriate methodology and adequately powering statistically the study to be able to “prove” or “disprove” it within predetermined and widely accepted levels of certainty. This entails sample size calculation that often takes into account previously published observations and pilot studies. 2 , 3 In the era of digitization, hypothesis generation and testing may benefit from the availability of numerous platforms for data dissemination, social networking, and expert validation. Related expert evaluations may reveal strengths and limitations of proposed ideas at early stages of post-publication promotion, preventing the implementation of unsupported controversial points. 4
Thus, hypothesis generation is an important initial step in the research workflow, reflecting accumulating evidence and experts' stance. In this article, we overview the genesis and importance of scientific hypotheses and their relevance in the era of the coronavirus disease 2019 (COVID-19) pandemic.
DO WE NEED HYPOTHESES FOR ALL STUDY DESIGNS?
Broadly, research can be categorized as primary or secondary. In the context of medicine, primary research may include real-life observations of disease presentations and outcomes. Single case descriptions, which often lead to new ideas and hypotheses, serve as important starting points or justifications for case series and cohort studies. The importance of case descriptions is particularly evident in the context of the COVID-19 pandemic when unique, educational case reports have heralded a new era in clinical medicine. 5
Case series serve similar purpose to single case reports, but are based on a slightly larger quantum of information. Observational studies, including online surveys, describe the existing phenomena at a larger scale, often involving various control groups. Observational studies include variable-scale epidemiological investigations at different time points. Interventional studies detail the results of therapeutic interventions.
Secondary research is based on already published literature and does not directly involve human or animal subjects. Review articles are generated by secondary research. These could be systematic reviews which follow methods akin to primary research but with the unit of study being published papers rather than humans or animals. Systematic reviews have a rigid structure with a mandatory search strategy encompassing multiple databases, systematic screening of search results against pre-defined inclusion and exclusion criteria, critical appraisal of study quality and an optional component of collating results across studies quantitatively to derive summary estimates (meta-analysis). 6 Narrative reviews, on the other hand, have a more flexible structure. Systematic literature searches to minimise bias in selection of articles are highly recommended but not mandatory. 7 Narrative reviews are influenced by the authors' viewpoint who may preferentially analyse selected sets of articles. 8
In relation to primary research, case studies and case series are generally not driven by a working hypothesis. Rather, they serve as a basis to generate a hypothesis. Observational or interventional studies should have a hypothesis for choosing research design and sample size. The results of observational and interventional studies further lead to the generation of new hypotheses, testing of which forms the basis of future studies. Review articles, on the other hand, may not be hypothesis-driven, but form fertile ground to generate future hypotheses for evaluation. Fig. 1 summarizes which type of studies are hypothesis-driven and which lead on to hypothesis generation.
STANDARDS OF WORKING AND SCIENTIFIC HYPOTHESES
A review of the published literature did not enable the identification of clearly defined standards for working and scientific hypotheses. It is essential to distinguish influential versus not influential hypotheses, evidence-based hypotheses versus a priori statements and ideas, ethical versus unethical, or potentially harmful ideas. The following points are proposed for consideration while generating working and scientific hypotheses. 1 , 2 Table 1 summarizes these points.
Points to be considered while evaluating the validity of hypotheses |
---|
Backed by evidence-based data |
Testable by relevant study designs |
Supported by preliminary (pilot) studies |
Testable by ethical studies |
Maintaining a balance between scientific temper and controversy |
Evidence-based data
A scientific hypothesis should have a sound basis on previously published literature as well as the scientist's observations. Randomly generated (a priori) hypotheses are unlikely to be proven. A thorough literature search should form the basis of a hypothesis based on published evidence. 7
Unless a scientific hypothesis can be tested, it can neither be proven nor be disproven. Therefore, a scientific hypothesis should be amenable to testing with the available technologies and the present understanding of science.
Supported by pilot studies
If a hypothesis is based purely on a novel observation by the scientist in question, it should be grounded on some preliminary studies to support it. For example, if a drug that targets a specific cell population is hypothesized to be useful in a particular disease setting, then there must be some preliminary evidence that the specific cell population plays a role in driving that disease process.
Testable by ethical studies
The hypothesis should be testable by experiments that are ethically acceptable. 9 For example, a hypothesis that parachutes reduce mortality from falls from an airplane cannot be tested using a randomized controlled trial. 10 This is because it is obvious that all those jumping from a flying plane without a parachute would likely die. Similarly, the hypothesis that smoking tobacco causes lung cancer cannot be tested by a clinical trial that makes people take up smoking (since there is considerable evidence for the health hazards associated with smoking). Instead, long-term observational studies comparing outcomes in those who smoke and those who do not, as was performed in the landmark epidemiological case control study by Doll and Hill, 11 are more ethical and practical.
Balance between scientific temper and controversy
Novel findings, including novel hypotheses, particularly those that challenge established norms, are bound to face resistance for their wider acceptance. Such resistance is inevitable until the time such findings are proven with appropriate scientific rigor. However, hypotheses that generate controversy are generally unwelcome. For example, at the time the pandemic of human immunodeficiency virus (HIV) and AIDS was taking foot, there were numerous deniers that refused to believe that HIV caused AIDS. 12 , 13 Similarly, at a time when climate change is causing catastrophic changes to weather patterns worldwide, denial that climate change is occurring and consequent attempts to block climate change are certainly unwelcome. 14 The denialism and misinformation during the COVID-19 pandemic, including unfortunate examples of vaccine hesitancy, are more recent examples of controversial hypotheses not backed by science. 15 , 16 An example of a controversial hypothesis that was a revolutionary scientific breakthrough was the hypothesis put forth by Warren and Marshall that Helicobacter pylori causes peptic ulcers. Initially, the hypothesis that a microorganism could cause gastritis and gastric ulcers faced immense resistance. When the scientists that proposed the hypothesis themselves ingested H. pylori to induce gastritis in themselves, only then could they convince the wider world about their hypothesis. Such was the impact of the hypothesis was that Barry Marshall and Robin Warren were awarded the Nobel Prize in Physiology or Medicine in 2005 for this discovery. 17 , 18
DISTINGUISHING THE MOST INFLUENTIAL HYPOTHESES
Influential hypotheses are those that have stood the test of time. An archetype of an influential hypothesis is that proposed by Edward Jenner in the eighteenth century that cowpox infection protects against smallpox. While this observation had been reported for nearly a century before this time, it had not been suitably tested and publicised until Jenner conducted his experiments on a young boy by demonstrating protection against smallpox after inoculation with cowpox. 19 These experiments were the basis for widespread smallpox immunization strategies worldwide in the 20th century which resulted in the elimination of smallpox as a human disease today. 20
Other influential hypotheses are those which have been read and cited widely. An example of this is the hygiene hypothesis proposing an inverse relationship between infections in early life and allergies or autoimmunity in adulthood. An analysis reported that this hypothesis had been cited more than 3,000 times on Scopus. 1
LESSONS LEARNED FROM HYPOTHESES AMIDST THE COVID-19 PANDEMIC
The COVID-19 pandemic devastated the world like no other in recent memory. During this period, various hypotheses emerged, understandably so considering the public health emergency situation with innumerable deaths and suffering for humanity. Within weeks of the first reports of COVID-19, aberrant immune system activation was identified as a key driver of organ dysfunction and mortality in this disease. 21 Consequently, numerous drugs that suppress the immune system or abrogate the activation of the immune system were hypothesized to have a role in COVID-19. 22 One of the earliest drugs hypothesized to have a benefit was hydroxychloroquine. Hydroxychloroquine was proposed to interfere with Toll-like receptor activation and consequently ameliorate the aberrant immune system activation leading to pathology in COVID-19. 22 The drug was also hypothesized to have a prophylactic role in preventing infection or disease severity in COVID-19. It was also touted as a wonder drug for the disease by many prominent international figures. However, later studies which were well-designed randomized controlled trials failed to demonstrate any benefit of hydroxychloroquine in COVID-19. 23 , 24 , 25 , 26 Subsequently, azithromycin 27 , 28 and ivermectin 29 were hypothesized as potential therapies for COVID-19, but were not supported by evidence from randomized controlled trials. The role of vitamin D in preventing disease severity was also proposed, but has not been proven definitively until now. 30 , 31 On the other hand, randomized controlled trials identified the evidence supporting dexamethasone 32 and interleukin-6 pathway blockade with tocilizumab as effective therapies for COVID-19 in specific situations such as at the onset of hypoxia. 33 , 34 Clues towards the apparent effectiveness of various drugs against severe acute respiratory syndrome coronavirus 2 in vitro but their ineffectiveness in vivo have recently been identified. Many of these drugs are weak, lipophilic bases and some others induce phospholipidosis which results in apparent in vitro effectiveness due to non-specific off-target effects that are not replicated inside living systems. 35 , 36
Another hypothesis proposed was the association of the routine policy of vaccination with Bacillus Calmette-Guerin (BCG) with lower deaths due to COVID-19. This hypothesis emerged in the middle of 2020 when COVID-19 was still taking foot in many parts of the world. 37 , 38 Subsequently, many countries which had lower deaths at that time point went on to have higher numbers of mortality, comparable to other areas of the world. Furthermore, the hypothesis that BCG vaccination reduced COVID-19 mortality was a classic example of ecological fallacy. Associations between population level events (ecological studies; in this case, BCG vaccination and COVID-19 mortality) cannot be directly extrapolated to the individual level. Furthermore, such associations cannot per se be attributed as causal in nature, and can only serve to generate hypotheses that need to be tested at the individual level. 39
IS TRADITIONAL PEER REVIEW EFFICIENT FOR EVALUATION OF WORKING AND SCIENTIFIC HYPOTHESES?
Traditionally, publication after peer review has been considered the gold standard before any new idea finds acceptability amongst the scientific community. Getting a work (including a working or scientific hypothesis) reviewed by experts in the field before experiments are conducted to prove or disprove it helps to refine the idea further as well as improve the experiments planned to test the hypothesis. 40 A route towards this has been the emergence of journals dedicated to publishing hypotheses such as the Central Asian Journal of Medical Hypotheses and Ethics. 41 Another means of publishing hypotheses is through registered research protocols detailing the background, hypothesis, and methodology of a particular study. If such protocols are published after peer review, then the journal commits to publishing the completed study irrespective of whether the study hypothesis is proven or disproven. 42 In the post-pandemic world, online research methods such as online surveys powered via social media channels such as Twitter and Instagram might serve as critical tools to generate as well as to preliminarily test the appropriateness of hypotheses for further evaluation. 43 , 44
Some radical hypotheses might be difficult to publish after traditional peer review. These hypotheses might only be acceptable by the scientific community after they are tested in research studies. Preprints might be a way to disseminate such controversial and ground-breaking hypotheses. 45 However, scientists might prefer to keep their hypotheses confidential for the fear of plagiarism of ideas, avoiding online posting and publishing until they have tested the hypotheses.
SUGGESTIONS ON GENERATING AND PUBLISHING HYPOTHESES
Publication of hypotheses is important, however, a balance is required between scientific temper and controversy. Journal editors and reviewers might keep in mind these specific points, summarized in Table 2 and detailed hereafter, while judging the merit of hypotheses for publication. Keeping in mind the ethical principle of primum non nocere, a hypothesis should be published only if it is testable in a manner that is ethically appropriate. 46 Such hypotheses should be grounded in reality and lend themselves to further testing to either prove or disprove them. It must be considered that subsequent experiments to prove or disprove a hypothesis have an equal chance of failing or succeeding, akin to tossing a coin. A pre-conceived belief that a hypothesis is unlikely to be proven correct should not form the basis of rejection of such a hypothesis for publication. In this context, hypotheses generated after a thorough literature search to identify knowledge gaps or based on concrete clinical observations on a considerable number of patients (as opposed to random observations on a few patients) are more likely to be acceptable for publication by peer-reviewed journals. Also, hypotheses should be considered for publication or rejection based on their implications for science at large rather than whether the subsequent experiments to test them end up with results in favour of or against the original hypothesis.
Points to be considered before a hypothesis is acceptable for publication |
---|
Experiments required to test hypotheses should be ethically acceptable as per the World Medical Association declaration on ethics and related statements |
Pilot studies support hypotheses |
Single clinical observations and expert opinion surveys may support hypotheses |
Testing hypotheses requires robust methodology and statistical power |
Hypotheses that challenge established views and concepts require proper evidence-based justification |
Hypotheses form an important part of the scientific literature. The COVID-19 pandemic has reiterated the importance and relevance of hypotheses for dealing with public health emergencies and highlighted the need for evidence-based and ethical hypotheses. A good hypothesis is testable in a relevant study design, backed by preliminary evidence, and has positive ethical and clinical implications. General medical journals might consider publishing hypotheses as a specific article type to enable more rapid advancement of science.
Disclosure: The authors have no potential conflicts of interest to disclose.
Author Contributions:
- Data curation: Gasparyan AY, Misra DP, Zimba O, Yessirkepov M, Agarwal V, Kitas GD.
- Resources Home 🏠
- Try SciSpace Copilot
- Search research papers
- Add Copilot Extension
- Try AI Detector
- Try Paraphraser
- Try Citation Generator
- April Papers
- June Papers
- July Papers
The Craft of Writing a Strong Hypothesis
Table of Contents
Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.
A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.
What is a Hypothesis?
The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .
The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.
The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.
The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.
Different Types of Hypotheses
Types of hypotheses
Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.
Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.
1. Null hypothesis
A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.
2. Alternative hypothesis
Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.
- Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
- Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'
3. Simple hypothesis
A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.
4. Complex hypothesis
In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.
5. Associative and casual hypothesis
Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.
6. Empirical hypothesis
Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.
Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher the statement after assessing a group of women who take iron tablets and charting the findings.
7. Statistical hypothesis
The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.
Characteristics of a Good Hypothesis
Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:
- A research hypothesis has to be simple yet clear to look justifiable enough.
- It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
- It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
- A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
- If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
- A hypothesis must keep and reflect the scope for further investigations and experiments.
Separating a Hypothesis from a Prediction
Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.
A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.
Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.
For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.
Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.
Finally, How to Write a Hypothesis
Quick tips on writing a hypothesis
1. Be clear about your research question
A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.
2. Carry out a recce
Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.
Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.
3. Create a 3-dimensional hypothesis
Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.
In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.
4. Write the first draft
Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.
Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.
5. Proof your hypothesis
After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.
Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.
Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.
Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.
It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.
If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.
Frequently Asked Questions (FAQs)
1. what is the definition of hypothesis.
According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.
2. What is an example of hypothesis?
The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."
3. What is an example of null hypothesis?
A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."
4. What are the types of research?
• Fundamental research
• Applied research
• Qualitative research
• Quantitative research
• Mixed research
• Exploratory research
• Longitudinal research
• Cross-sectional research
• Field research
• Laboratory research
• Fixed research
• Flexible research
• Action research
• Policy research
• Classification research
• Comparative research
• Causal research
• Inductive research
• Deductive research
5. How to write a hypothesis?
• Your hypothesis should be able to predict the relationship and outcome.
• Avoid wordiness by keeping it simple and brief.
• Your hypothesis should contain observable and testable outcomes.
• Your hypothesis should be relevant to the research question.
6. What are the 2 types of hypothesis?
• Null hypotheses are used to test the claim that "there is no difference between two groups of data".
• Alternative hypotheses test the claim that "there is a difference between two data groups".
7. Difference between research question and research hypothesis?
A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.
8. What is plural for hypothesis?
The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."
9. What is the red queen hypothesis?
The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.
10. Who is known as the father of null hypothesis?
The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.
11. When to reject null hypothesis?
You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.
You might also like
Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research
Literature Review and Theoretical Framework: Understanding the Differences
Types of Essays in Academic Writing - Quick Guide (2024)
- Privacy Policy
Home » What is a Hypothesis – Types, Examples and Writing Guide
What is a Hypothesis – Types, Examples and Writing Guide
Table of Contents
Definition:
Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.
Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.
Types of Hypothesis
Types of Hypothesis are as follows:
Research Hypothesis
A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.
Null Hypothesis
The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.
Alternative Hypothesis
An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.
Directional Hypothesis
A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.
Non-directional Hypothesis
A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.
Statistical Hypothesis
A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.
Composite Hypothesis
A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.
Empirical Hypothesis
An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.
Simple Hypothesis
A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.
Complex Hypothesis
A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.
Applications of Hypothesis
Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:
- Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
- Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
- Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
- Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
- Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
- Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.
How to write a Hypothesis
Here are the steps to follow when writing a hypothesis:
Identify the Research Question
The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.
Conduct a Literature Review
Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.
Determine the Variables
The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.
Formulate the Hypothesis
Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.
Write the Null Hypothesis
The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.
Refine the Hypothesis
After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.
Examples of Hypothesis
Here are a few examples of hypotheses in different fields:
- Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
- Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
- Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
- Education : “Implementing a new teaching method will result in higher student achievement scores.”
- Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
- Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
- Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”
Purpose of Hypothesis
The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.
The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.
In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.
When to use Hypothesis
Here are some common situations in which hypotheses are used:
- In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
- In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
- I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.
Characteristics of Hypothesis
Here are some common characteristics of a hypothesis:
- Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
- Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
- Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
- Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
- Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
- Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
- Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.
Advantages of Hypothesis
Hypotheses have several advantages in scientific research and experimentation:
- Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
- Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
- Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
- Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
- Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
- Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.
Limitations of Hypothesis
Some Limitations of the Hypothesis are as follows:
- Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
- May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
- May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
- Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
- Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
- May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Research Techniques – Methods, Types and Examples
Dissertation Methodology – Structure, Example...
Theoretical Framework – Types, Examples and...
Research Paper – Structure, Examples and Writing...
Survey Instruments – List and Their Uses
Significance of the Study – Examples and Writing...
A concise guide to reproducible research using secondary data
Chapter 2 formulating a hypothesis.
“There is no single best way to develop a research idea.” ( Pischke 2012 )
2.1 How do you develop a research question and formulate a hypothesis?
You decide to undertake a scientific project. Where do you start? First, you need to find a research question that interests you and formulate a hypothesis. We will introduce some key terminology, steps you can take, and examples how to develop research questions. Note that .
What if someone assigns a topic to me? For students attending undergraduate and graduate courses that often pick topics from a list, all of these steps are equally important and necessary. You still need to formulate a research question and a hypothesis. And it is important to clarify the relevance of your topic for yourself.
When thinking about a research question, you need to identify a topic that is:
- Relevant , important in the world and interesting to you as a researcher: Does working on the topic excites you? You will spend many hours thinking about it and working on it. Therefore, it should be interesting and engaging enough for you to motivate your continued work on this topic.
- Specific : not too broad and not too narrow
- Feasible to research within a given time frame: Is it possible to answer the research question based on your time budget, data and additional resources.
How do you find a topic or develop a feasible research idea in the first place? Finding an idea is not difficult, the critical part is to find a good idea. How do you do that? There is no one specific way how one gets an idea, rather there is a myriad of ways how people come up with potential ideas (for example, as stated by Varian ( 2016 ) ).
You can find inspiration by
- Looking at insights from the world around you: your own life and experiences, observe the behavior of people around you
- Talking to people around you, experts, other students, family members
- Talking to individuals outside your field (non-economists)
- Talking to professionals working in the area you are interested in (you may use social media and professional platforms like LinkedIN or Twitter to make contact)
- Reading journal articles from other non-economic social sciences and the medical literature
- What are the issues being discussed?
- How do these issues affect people’s lives?
In addition you could
- Go to virtual and in-person seminars, for example, the Essen Health Economics Seminar
- Look at abstracts of scientific articles and working papers
- Look at the literature in a specific field you are interested in, for example, screening complete issues of journals or editorials about certain research advancements. By reading this literature you might come up with the idea on how to extend and refine previous research.
Once you identified a research question that is of interest to you, you need to define a hypothesis.
2.2 What is a hypothesis?
A hypothesis is a statement that introduces your research question and suggests the results you might find. It is an educated guess. You start by posing an economic question and formulate a hypothesis about this question. Then you test it with your data and empirical analysis and either accept or reject the hypothesis. It constitutes the main basis of your scientific investigation and you should be careful when creating it.
2.2.1 Develop a hypothesis
Before you formulate your hypothesis, read up on the topic of interest. This should provide you with sufficient information to narrow down your research question. Once you find your question you need to develop a hypothesis, which contains a statement of your expectations regarding your research question’s results. You propose to prove your hypothesis with your research by testing the relationship between two variables of interest. Thus, a hypothesis should be testable with the data at hand. There are two types of hypotheses: alternative or null. Null states that there is no effect. Alternative states that there is an effect.
There is an alternative view on this that suggests one should not look at the literature too early on in the idea-generating process to not be influenced and shaped by someone else’s ideas ( Varian 2016 ) . According to this view you can spend some time (i.e. a few weeks) trying to develop your own original idea. Even if you end up with an idea that has already been pursued by someone else, this will still provide you with good practice in developing publishable ideas. After you have developed an idea and made sure that it was not yet investigated in the literature, you can start conducting a systematic literature review. By doing this, you can find some other interesting insights from the work of others that you can synthesize in your own work to produce something novel and original.
2.2.2 Identify relevant literature
For your research project you will need to identify and collect previous relevant literature. It should involve a thorough search of the keywords in relevant databases and journals. Place emphasis on articles from high-ranking journals with significant numbers of citations. This will give you an indication of the most influential and important work in the field. Once you identify and collect the relevant literature for your topic, you will need to critically synthesize it in your literature review.
When you perform your literature review, consider theories that may inform your research question. For example, when studying physician behavior you may consider principal-agent theory.
2.2.3 Research question or literature review: the chicken or the egg problem?
Whether you start reading the literature first or by developing an idea may depend on your level (graduate student, early career researcher) and other goals. However, thinking freely about what you like to investigate first may help to critically develop a feasible and interesting research question.
We highlight an example how to start with investigating the real world and subsequently posing a research question ( “How to Write a Strong Hypothesis Steps and Examples ” 2019 ; “Developing Strong Research Questions Criteria and Examples ” 2019 ; Schilbach 2019 ) . For example, based on your observation you notice that people spend extensive amount of time looking at their smartphones. Maybe even you yourself engage in the same behavior. In addition, you read a BBC News article Social media damages teenagers’ mental health, report says .
(#fig:social_media)Social media and mental health
Source: BBC
You decide to translate this article and your observations into a research question : How does social media use affect mental health? Before you formulate your hypothesis, read up on the topic of interest. Read economic, medical and other social science literature on the topic. There is likely to be a vast amount of literature from non-economic fields that are doing research on your topic of interest, for example, psychology or neuroscience. Familiarize yourself with it and master it. Do not get distracted by different scientific methodologies and techniques that might seem not up-to-par to the economic studies (small sample sizes, endogeneity, uncovering association rather than causation, etc.), but rather focus on suggestions of potential mechanisms.
A hypothesis is then your research question distilled into a one sentence statement, which presents your expectations regarding the results. You propose to prove your hypothesis by testing the relationship between two variables of interest with the data at hand. There are two types of hypotheses: alternative or null. The null hypothesis states that there is no effect. The alternative hypothesis states that there is an effect.
A hypothesis related to the above-stated research question could be: The increased use of social media among teenagers leads to (is associated with) worse mental health outcomes, i.e. increased incidence of depression, eating disorders, worse well-being and lower self-esteem. It suggests a direction of a relationship that you expect to find that is guided by your observations and existing evidence. It is testable with scientific research methods by using statistical analysis of the relevant data.
Your hypothesis suggests a relationship between two variables: social media use (your independent variable \(X\) ) and mental health (dependent variable \(Y\) ). It could be framed in terms of correlation (is associated with) or causation (leads to). This should be reflected in the choice of scientific investigation you decide to undertake.
The null hypothesis is: There is no relationship between social media use among teenagers and their mental health .
2.3 Resources box
2.3.1 how to develop strong research questions.
- The form of the research process
- Varian, H. R. (2016). How to build an economic model in your spare time. The American Economist, 61(1), 81-90.
2.3.2 Identify relevant literature from major general interest and field literature
To identify the relevant literature you can
- use academic search engines such as Google Scholar, Web of Science, EconLit, PubMed.
- search working paper series such as the National Bureau of Economic Research , NetEc or IZA
- search more general resource sites such as Resources for Economists
- go to the library/use library database
2.3.3 Assess the quality of a journal article
Several rankings may help to assess the quality of research you consider
- Journals of general interest and by field in economics and management - For German-speaking countries, consider the VWL / BWL Handelsblatt Ranking for economics and management - The German Association of Management Scholars provides an expert-based ranking VHB JourQual 3.0, Teilranking Management im Gesundheitswesen - Web of Science Impact Factors - Scimago
- Health Economics, Health Services and Health Care Managment Research: Health Economics Journals List
- Be aware that like in any other domain there are predatory publishing practices .
Use tools to investigate how a journal article is connected to other works
- Citationgecko
- Connected papers
- scite_ – a tool to get a first impression whether a study is disputed or academic consensus
2.3.4 Organize your literature
- Zotero (free of charge)
- Mendeley (free of charge)
- EndNote (potentially free of charge via your university)
- Citavi (potentially free of charge via your university)
- BibTEX if you work with TEX
- Excel spread sheet
2.4 Checklist to get started with formulating your hypothesis
- Find an interesting and relevant research topic, if not assigned
- Try to suck up all information you can easily obtain from various sources within and outside academic literature
- Formulate one compelling research question
- Find the best available empirical and theoretical evidence that is related to your research question
- Formulate a hypothesis
- Check whether data are available for analysis
- Challenge your idea with your fellows or senior researchers
2.5 Example: Hellerstein ( 1998 )
As an illustration of the research process of formulating a hypothesis, designing a study, running a study, collecting and analyzing the data and, finally, reporting the study, we provide an example by replicating Judith K. Hellerstein’s paper “The Importance of the Physician in the Generic versus Trade-Name Prescription Decision” that was published in 1998 in the RAND Journal of Economics.
Hellerstein’s 1998 paper has impacted discussion about behavioral factors of physician decisions and pharmaceutical markets over two decades. The study received 448 citations on Google Scholar since 1998 by 27/03/2022, including recent mentions in top field journals such as Journal of Public Economics (2021) , Journal of Health Economics (2019) , and Health Economics (2019) .
Figure 2.1: Connected graph of Hellerstein ( 1998 ) , February 2022
Figure 2.1 shows a connected graph of prior and derivative works related to the study.
The work has impacted the literature researching the role of physician behavior and its influence on access, adoption and diffusion of health services, moral hazard and incentives in prescription and treatment decisions and the influence of different payment schemes, and a vast body of literature studying the pharmaceutical market.
The research that has been influenced by Hellerstein includes evidence on:
- generic drug entries and market efficiency
- the effectiveness of pharmaceutical promotion
- the effectiveness of price regulations
- the role of patents and dynamics of market segmentation
At the end of each chapter, we demonstrate insights into this study that we replicate.
2.5.1 Context of the study - escalating health expenditures
In the United States, the total prescription drug expenditure in 2020 marked about 358.7 billion US Dollars ( Statista n.d. ) . The prescription of generic drugs in comparison to more expensive brand-name versions is an option in reducing the total health care expenditure. Generic drugs are bioequivalent in the active ingredients and can serve as a channel to contain prescription expenditure ( Kesselheim 2008 ) as generic drugs are between 20 and 90% cheaper than their trade-name alternatives ( Dunne et al. 2013 ) .
2.5.2 Research question - How does a patient’s insurance status influence the physician’s choice between generic compared to brand-name drugs?
Physicians are faced with a multitude of medication options, including the choice between generic and trade-name drugs. Physicians ideally act as agents for their patients to identify the best available treatment option based on their needs. Choosing the best treatment entails cost of coordination and cognition. The prescription of generic drugs may serve as an example to what extent physicians customize treatments according to patients’ needs with regards to cost. From an economic point of view we may expect that once a generic drug is available, a perfectly rational agent (i.e. physician) would prescribe a generic drug instead of the trade-name version if therapeutically identical ( Dranove 1989 ) . This leads to the following research question: “Do physicians vary their prescription decisions on a patient-by-patient basis or do they systematically prescribe the same version, trade-name or generic, to all patients?” .
The 1998 Hellerstein’s study examines two hypotheses:
- The physician prescribing choice influences the selection of a generic over a brand-name drug
- The patient’s insurance status influences the physician’s choice between generic and brand-name drugs.
For the purpose of this example and in the replication exercise we focus on the second aspect.
2.5.3 Hypothesis
The paper formulates the following hypothesis:
Physicians are more likely to prescribe generics to patients who do not have insurance coverage for prescription pharmaceuticals (moral hazard in insurance)
Hellerstein ( 1998 ) discusses that, based on insurance status, some patients may demand certain care more than others. If, for example, the prescription drug is reimbursed by the patient’s health insurance, this may cause overconsumption. This behavior can potentially differ by the patient’s insurance scheme. A patient that has no insurance and, thus, does not get any reimbursement for prescription drugs, might have a higher incentive to demand cheaper generic drugs ( Danzon and Furukawa 2011 ) than a patient with insurance that covers prescription drugs, either generic or trade-name. Given that the United States have different insurance schemes with varying prescription drug coverage, it is of interest to investigate the role of a patient’s insurance status in the physician’s choice between generic compared to brand-name drugs.
Hellerstein ( 1998 ) considers a patient’s insurance status as a matter of dividing the study population in groups for which the choice between generic and brand-name drugs differs. She suggests that There is a relationship between the prescription of a generic drug and insurance status of a patient. ( Hellerstein 1998 ) .
Providing answers to a research question requires formulating and testing a hypothesis. Based on logic, theory or previous research, a hypothesis proposes an expected relationship within the given data. According to her research question, Hellerstein hypothesizes that: Physicians are more likely to prescribe generics to patients who do not have insurance coverage for prescription pharmaceuticals.
Specifically, she writes “if there is moral hazard in insurance when it comes to physician prescription behavior, there will be differences in the propensity of physicians to prescribe low-cost generic drugs, and these differences will be (partially) a function of the insurance held by the patient. In particular, if moral hazard exists, patients with extensive insurance coverage for prescription drugs (like those on Medicaid in 1989) should receive prescriptions written for generic drugs less frequently than patients with no prescription drug coverage.” ( Hellerstein 1998, 113 )
Based on Hellerstein’s considerations, we expect the effect of the insurance status on whether a patient receives a generic to be different from zero. To obtain a testable null hypothesis, we reformulate this relationship so that we reject the hypothesis if our expectations are correct. This means, if we expect to see an effect of insurance on prescriptions of generics, our null hypothesis is that insurance status has no effect on the outcome (prescription of generic drugs). No moral hazard arises from having obtained insurance.
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
- How to Write a Strong Hypothesis | Guide & Examples
How to Write a Strong Hypothesis | Guide & Examples
Published on 6 May 2022 by Shona McCombes .
A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.
Table of contents
What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
Variables in hypotheses
Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.
In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .
Prevent plagiarism, run a free check.
Step 1: ask a question.
Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.
Step 2: Do some preliminary research
Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.
At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.
Step 3: Formulate your hypothesis
Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.
Step 4: Refine your hypothesis
You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:
- The relevant variables
- The specific group being studied
- The predicted outcome of the experiment or analysis
Step 5: Phrase your hypothesis in three ways
To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.
In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.
If you are comparing two groups, the hypothesis can state what difference you expect to find between them.
Step 6. Write a null hypothesis
If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .
Research question | Hypothesis | Null hypothesis |
---|---|---|
What are the health benefits of eating an apple a day? | Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. | Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits. |
Which airlines have the most delays? | Low-cost airlines are more likely to have delays than premium airlines. | Low-cost and premium airlines are equally likely to have delays. |
Can flexible work arrangements improve job satisfaction? | Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. | There is no relationship between working hour flexibility and job satisfaction. |
How effective is secondary school sex education at reducing teen pregnancies? | Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. | Secondary school sex education has no effect on teen pregnancy rates. |
What effect does daily use of social media have on the attention span of under-16s? | There is a negative correlation between time spent on social media and attention span in under-16s. | There is no relationship between social media use and attention span in under-16s. |
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).
A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 15 October 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/
Is this article helpful?
Shona McCombes
Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
- Knowledge Base
Hypothesis Testing | A Step-by-Step Guide with Easy Examples
Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.
There are 5 main steps in hypothesis testing:
- State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a or H 1 ).
- Collect data in a way designed to test the hypothesis.
- Perform an appropriate statistical test .
- Decide whether to reject or fail to reject your null hypothesis.
- Present the findings in your results and discussion section.
Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.
Table of contents
Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.
After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.
The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.
- H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.
Here's why students love Scribbr's proofreading services
Discover proofreading & editing
For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.
There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).
If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.
Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.
Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .
- an estimate of the difference in average height between the two groups.
- a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.
Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.
In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.
In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).
The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .
In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.
In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.
However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.
If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”
These are superficial differences; you can see that they mean the same thing.
You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.
If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .
If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.
- Normal distribution
- Descriptive statistics
- Measures of central tendency
- Correlation coefficient
Methodology
- Cluster sampling
- Stratified sampling
- Types of interviews
- Cohort study
- Thematic analysis
Research bias
- Implicit bias
- Cognitive bias
- Survivorship bias
- Availability heuristic
- Nonresponse bias
- Regression to the mean
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).
Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved October 15, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/
Is this article helpful?
Rebecca Bevans
Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.
IMAGES
VIDEO
COMMENTS
A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.
Formulating a hypothesis is a fundamental step in the scientific method that helps guide research and experimentation. By gathering observations, evaluating potential causes, and developing testable statements, researchers can create hypotheses that are both meaningful and falsifiable.
Mastering the art of hypothesis formulation is a critical step in the research process. A well-constructed hypothesis provides a focused path for investigation and analysis. This guide offers a comprehensive approach to crafting a research prediction that is clear, testable, and grounded in theory, ensuring that your research is poised for success.
A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation. Characteristics of a good hypothesis
Go to: Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate hypotheses.
A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods.
A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.
First, you need to find a research question that interests you and formulate a hypothesis. We will introduce some key terminology, steps you can take, and examples how to develop research questions. Note that . What if someone assigns a topic to me?
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter.
There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis.