Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science ⋅
  • Nature ⋅
  • Environment

Global Warming Thesis Statement Ideas

Rapidly declining Arctic sea ice offers one topic for a paper on global warming.

Economic Impact of Coastal Erosion

Global warming is a complex problem that often sparks policy debates. When writing about it, stick to the facts and make sure that your thesis statement -- the central assertion of your essay -- is supported by research. Some global warming topics have produced extensive research worldwide and can serve as topical guides in formulating your thesis statement.

Manmade Causes versus Natural Causes

The causes of global warming are complex, including natural and man-made emissions of carbon dioxide and methane. Use your thesis to highlight the difference between natural sources and man-made sources. For example, according to the Environmental Protection Agency, carbon dioxide concentrations in the atmosphere have risen from 280 parts per million in the 18th century to 390 parts per million in 2010. Human activities release more than 30 billion tons of carbon dioxide each year, or 135 times as much as volcanoes. Focus your thesis on this discrepancy, how man-made carbon dioxide sources such as fossil fuel consumption, have eclipsed natural sources of the gas.

Rising Temperatures and Declining Sea Ice

Your thesis statement may focus on the relationship between rising surface temperatures and declining sea ice, specifically ice in the Arctic. For instance, since 1901, sea surface temperatures have risen at an average rate of 0.13 degrees Fahrenheit per decade, with the highest rates of change occurring in the past three decades alone, according to the EPA.

Your thesis may establish the inverse relationship between these rising surface temperatures and the shrinking ice coverage in the Arctic. Arctic sea ice extent in December 2014, for instance, was the ninth lowest in the satellite record. The rate of decline for December ice alone is 3.4 percent per decade, according to the National Snow and Ice Data Center.

Effects of Melting Glaciers on Water Supply

Along with sea ice, many of the world’s glaciers are melting due to climate change. Since the 1960s, the U.S. Geological Survey has tracked the mass of two glaciers in Alaska and one in Washington state, all three of which have shrunk considerably in the past 40 years.

Research other mountain ranges and compare the glaciological data. Use your thesis to answer the question of what melting glaciers will mean for populations dependent on the ice flows for their fresh water supply. For example, much of Peru’s population depends on Andean glaciers not only for drinking water but for hydroelectricity.

Effects of Drought on Food Production

While global warming is projected to raise sea levels and flooding in coastal regions, it’s also been credited for changes in weather patterns and extreme drought, according to the EPA. In the arid American Southwest, for example, average annual temperatures have increased about 1.5 degrees Fahrenheit over the past century, leading to decreased snowpack, extreme drought, wildfires and fierce competition for remaining water supplies.

As drought still rages in this region, your thesis can explore the relationship between global warming and agriculture, specifically in California’s Central Valley, which provides produce for much of the country. It’s possible that hotter, longer growing seasons are beneficial to California crops, but that shrinking water supplies threaten the viability of commercial agriculture.

Ocean Acidification and Global Seafood Stocks

Increased carbon dioxide emissions don't just impact our air quality. These emissions also result in increased acidity of our planet's oceans. An immense range of shellfish and other molluscs, such as clams, oysters, crabs, lobsters and more, face immediate population decline due to ocean acidification weakening their calcium carbonate shells.

Your thesis can explore the mechanics of ocean acidification as well as the potential economic impact to the fisheries that rely upon these marine animals for survival. You can also explore the potential ecosystem impact for the predators that feed upon these animals.

Related Articles

Ice caps melting facts, efforts to protect the tundra, what drives the process of plate tectonics, effect of human activities on the environment, the top 10 topics for research papers, how to calculate a p-value, how to make a glacier, persuasive speech topics on water, brine vs. conductivity, how to do a bell curve on a ti, how to contact your representative about climate change, how to calculate exceedance probability, what is the meaning of sample size, the difference between an earthquake & a volcano, the history of volcanology, how bitcoin is polluting the planet, how to report a sample size, the effects of human intervention on the environment, the scientist henry hess invented what kind of devices.

  • U.S. Environmental Protection Agency: Causes of Climate Change
  • U.S. Environmental Protection Agency: Climate Change Indicators in the United States
  • National Snow and Ice Data Center: Artic Sea Ice News and Analysis
  • U.S. Geological Survey: 3-Glacier Mass Balance Summary
  • National Geographic: Signs from Earth: The Big Thaw
  • U.S. Environmental Protection Agency: Climate Impacts in the Southwest
  • Alaska Public Media: Ocean Acidification

About the Author

Scott Neuffer is an award-winning journalist and writer who lives in Nevada. He holds a bachelor's degree in English and spent five years as an education and business reporter for Sierra Nevada Media Group. His first collection of short stories, "Scars of the New Order," was published in 2014.

Photo Credits

Purestock/Purestock/Getty Images

Find Your Next Great Science Fair Project! GO

Global Warming Topics with Thesis Statement Suggestions

It is hard to close your eyes to the fact that the current state of our ecosystem is in danger. This problem is not only a burden for scientists and scholars but all of us as well. When students try to get in-depth knowledge of global warming and overall ecological problems worldwide, it helps governments implement new precautions and climate-saving programs.

A conscious approach to topic selection helps students write an engaging piece of work that can impact our future. Therefore, in the guide prepared by our essay writing service , you can get powerful ideas for your eco projects that our specialists have prepared for you.

Causes of global warming

Understanding what is behind global warming is crucial for students’ research. Consider these problems as tips to choose a global warming topic.

  • Factory farming and its vast volume of greenhouse cases.
  • Biochemical pollution and a wide range of potentially lethal toxins from factories.
  • Natural resource consumption in business and its impact on climate change.
  • Forest destruction threatens to increase the global warming problem.
  • Refusing plastic sorting is dangerous for the planet.
  • Factors that contribute to temperature increase worldwide.
  • Vanishing water resources.
  • Ignoring the power of technology and communication solving the global warming catastrophe.
  • Lack of global awareness campaigns.
  • Landscape deformation and its effect on flora and fauna.

Actually, there are many fields that a student and an essay writer can consider while choosing the topic for their ecological research. In this article, you can find topics from many categories and select the most appealing for your task.

Essay topics on global warming and humanity’s influence

  • How does the NRDC manage global warming?
  • How does global warming affect American industry?
  • What is the connection of global warming and the implications for Minnesota?
  • What are global reports on climate change?
  • Human endeavor in global warming.
  • The influence of global warming on human behavior.
  • Is global warming an anthropogenic cause or is it the nature of the Earth’s system?
  • Can we sustain the discrepancy between those who deny it and the existence of solid evidence of global warming’s validity?
  • Is global warming a myth?
  • What are the effects of burning fossil fuel for transportation on global warming in Beijing, China, and possible solutions for the future?
  • Does global warming increase the severity and frequency of hurricanes and typhoons? Compare and contrast evidence for the Pacific and Atlantic oceans.
  • How dangerous is the threat of floods caused by global warming?
  • What are consequences and remedies of global warming?
  • Does tracking contribute to global warming?
  • How does global warming impact the tourism and hospitality industry?
  • If human activity is contributing to global warming, how significant is the contribution?
  • What is the ethical standpoint of global warming?
  • Should carbon trading policies be used to combat global warming?
  • What has the insurance industry done, or what should they do with global warming?
  • How will humanity fair in the future with current global warming rates?
  • How big is your protein footprint? Does a meat-rich diet have a negative impact on our environment? Does it contribute to global warming?
  • What to choose: global warming or global cooling?

Topics of global warming related to politics

  • Do some governments have an interest in not preventing global warming?
  • How does politics influence global warming?
  • How do international treaties influence global warming?
  • How can politics stop global warming?
  • Can global warming be stabilized by politics?
  • Are political decisions the main reason for global warming?
  • What are politicians doing to prevent global warming, and is it enough?
  • What is the political issue of global warming?
  • What is the role of politics in global warming?
  • What do politicians fail to do to stop global warming?

Topics of global warming related to biology

  • What effect does global warming have on biodiversity?
  • How does global warming influence food?
  • Why do some people think that global warming is good for the animals?
  • What are the effects of global warming on plants?
  • What are solutions to protect animals from global warming?
  • What is the phenomenon of global warming denial and its impact on animals?
  • What is the relationship between global warming and extinction of species?
  • Is global warming harmful to human health?
  • What is the influence of global warming on population shift?
  • What is the connection of human health and climate change?
  • Global warming and climate control: is man the enemy of the planet?
  • The shrinking of the Greenland ice sheet due to global warming.
  • Death of coral reefs because of global warming.
  • Is global warming a natural cycle?
  • What is the effect of global warming on ecosystems?

Topics of global warming in history

  • What is the evidence for environmental change during historic times?
  • During their eight years in office, the Obama administration took concrete steps to limit climate change and foster adaptation and resilience in the USA and its territories. What are these steps?
  • Where did global warming come from?
  • When did the first evidence that polar bears are dying out because of the global warming appear?
  • When did indigenous people in Alaska get exposed to global warming?
  • How could we have stopped global warming ten years ago?
  • When did scientists notice the effects of global warming on animals for the first time?
  • How did chemical engineering influence global warming over time?
  • Within our lifetime, how will global warming affect us, specifically, within the United States?
  • How has agriculture been influenced by global warming over the past few years?
  • What are the recent and anticipated physical, social (including health), and economic impacts of ongoing global warming on Australia?
  • Problem and solution of global warming in the Pacific Ocean due to the rise of the sea and salinity levels in the past 20 years.

Global warming topics related to movies, articles, and books

  • Analyze Al Gore’s documentary on global warming. What is the main theme of it?
  • Analyze the Rolling Stone article on climate change and national security. Does this article address the issue of national security as implications of the phenomenon of climate change?
  • According to computer climate models, how does the soil type result in different tree species becoming prevalent? Use the article “Crossroads of Climate Change” to answer the question.
  • Analyze “Summary for Policymakers” from the 2014 Intergovernmental Panel on Climate Change (IPCC) synthesis report and express your attitude.
  • Research the topic of the cartoon about global warming by Glenn McCoy, and write on the subject presented by the artist.
  • Analysis of the argument on Bill Mckibben’s Rolling Stone article “Global Warming’s Terrifying New Math.”
  • Analyze David Attenborough’s video on global impacts of climate change and present your attitude about it.

Global warming speech topics

  • Negative impacts of a warmer global climate on human health.
  • Negative impacts of a warmer global climate on northern Minnesota.
  • The evidence that scientists use to study and make predictions about global climate change.
  • Global warming effects on business in Florida.
  • The change in the atmosphere that influences the change in the global climate.
  • The difference between the war on global warming and the war on terror.
  • The difference between natural and anthropogenic climate changes.
  • The effect of global warming on rising sea levels.
  • The theory that best explains why some countries are ignoring global warming and others are not.
  • Connection between global warming and urbanization.

Global warming topics on the greenhouse effect

  • What is the greenhouse effect and its influence on the Earth’s environment?
  • What is the process by which greenhouse gasses absorb atmospheric heat and radiate it back onto the Earth’s surface?
  • What are three things individuals can do to reduce greenhouse gas emissions?
  • What are strategies for reducing greenhouse gas concentrations in the atmosphere?
  • Why do Canada’s greenhouse gas emissions continue to increase?
  • Pros and cons of the greenhouse effect.
  • Possible caused human global warming due to greenhouse gas emissions.
  • Ozone depletion and the green house effect.

Examples of thesis statements for global warming topics

Topic: Is global warming a catastrophe that warrants immediate action? Thesis statement: We do not see CO2. This is an invisible threat, but quite real. This means an increase in global temperatures, an increase in extreme weather events such as floods, melting ice, and rising sea levels, and an increase in ocean acidity.

Topic: Why is global warming influencing people? Thesis statement : Scientists, after analyzing the results of research in more than 60 fields of science, concluded that a change in temperature leads to a surge in aggression. Extensive research has revealed a strong relationship between outbreaks of aggression and global warming.

Topic: Is global warming a hoax or exaggerated? Thesis statement: Climate change leads to overflowing rivers all over the world, the water level in reservoirs will increase markedly, and heavy rains and storms in many regions will become even more devastating.

Topic: How does global warming affect the weather? Thesis statement: Environmentalists say that there are more and more frequent sharp changes in weather, storm winds, hurricanes, tornadoes, and abnormally high and abnormally low temperatures. According to experts, the cause of these phenomena is the global climate change.

Global Warming Thesis Statement Requirements

Learn ecology better with a reliable writing service

Students who dive into global warming awareness become great activists that can save our planet. They awaken consciousness among various social groups and easily explain why saving the planet can be possible when each participates. Choosing the topic for an academic paper should be considered carefully because the work a student creates can be fundamental for a life-changing speech.

At our service, students can get educational assistance for a reasonable price. Find a custom writer by leaving an order with your specific instructions or read more articles in our blog. If you are engaged in ecological issues, you can read an extended list of ecology paper topics and discover more informative sources for your research. EssayShark is here so you can expand the horizons of your knowledge!

Pay for research paper or pay for term papers and get an original paper written in accordance with your requirements.

Photo by Pexels from Pixabay

AI tools

7 thoughts on “ Global Warming Topics with Thesis Statement Suggestions ”

' src=

this post helped me not only with a topic but with a thesis on climate change too. Thanx!

' src=

Oh Lord, what a nice collection of topics!!!

' src=

Pretty helpful

' src=

looks like a helpful post to me

' src=

I was searching for climate change argumentative essay topics for 2 days! Thank god I found them!!!

' src=

It seems to me that here are the best climate change essay topics!!!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

What our customers say

Our website uses secure cookies. More details

Get professional help from best writers right from your phone

Books

Grab our 3 e-books bundle for $27 FREE

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

Current events and news told in essay format

  • Global Warming

Global Warming Essay

global warming essay

So You Want To Write A Global Warming Essay?

One of the most important issues of our time is climate change, or global warming. As a student, you should know that climate change is real and that the only political issue is what to do about it. Climate change is not something you can believe in, any more than gravity is something you can believe in. However, it can be difficult to propose solutions to the problem that are realistic and workable.

Climate change is complex but can be explained in simple terms even by those with no scientific background. Basically, climate change caused by the greenhouse effect, which means exactly what it says: the earth is like a giant greenhouse in which the heat can get trapped beneath the atmosphere. The atmosphere traps heat that emits from the surface of the planet. That heat would normally be allowed to move into space, but due to the proliferation of “greenhouse gases,” the atmosphere is becoming less permeable.

Writing the Essay

When you have been asked to write about global warming , you may be overwhelmed. There are many approaches to this complex subject. You could write about it for a science class, or for a political science class. You could talk about the causes or global warming, or the effects of global warming, or both. In fact, you could even write only about your suggestions for how to deal with the effects of global warming.

Looking for a creative or unique approach to global warming that will impress your readers? Want to write about global warming in a way that will interest you? This article will help you understand how to write an essay about global warming from many different perspectives.

  • The different effects of global warming in two different geographic regions.
  • Possible social or humanitarian effects from global warming, such as population migration.
  • The places on Earth most at risk due to rising sea levels.
  • The most reasonable policy solutions to address climate change.
  • The countries that are doing the most to reduce greenhouse gas emissions.
  • Some of the most effective global warming policies
  • The history of global warming.
  • Not Yet Worried About Global Warming? You Should Be
  • Why Global Warming Is a Political Issue
  • Will Global Warming Bring The World Together For a Common Cause?
  • The Possible Effects of Global Warming
  • Global Warming: Policy Suggestions
  • Why Some People Think Global Warming is a Hoax
  • Global Warming: Worst Case Scenarios

Getting Started

Before you begin your essay, consider things like how long it has to be and what class you are writing for. Then, narrow down your topic using one of the suggested subjects above or one of your own ideas. The next step would be to create a subject outline to help you structure your essay. With a subject like global warming, you are generally going to talk about causes, effects, and possible solutions to the problem.

I. Introduction

A. One degree in temperature change may not seem like a lot, but that amount of global warming can cause major crises, displacing millions of people and causing billions of dollars in damage.

B. It is a known fact that fossil fuel burning, particularly coal, is the biggest culprit of global warming (MacMillan, 2016).

C. Knowing what causes global warming makes it possible to take action, to minimize the deleterious effects of global warming.

D. Thesis Statement: A comprehensive solution to global warming would be to curtail carbon emissions further through innovations in alternative energy, combined with a plan to minimize humanitarian and financial damages.

II. Body Section One: Causes of Global Warming

A. Topic sentence: Global warming is anthropogenic, meaning that it is caused by human beings.

B. Human industrial activity results in the emission of greenhouse gases, with China and the United States the biggest culprits (MacMillan, 2016).

C. Knowing the causes of global warming, it becomes easier to come up with targeted and reasonable solutions to the problem.

III. Body Section Two: Effects of Global Warming

A. Topic sentence: Global warming is a problem because it can lead to extreme weather conditions, flooding due to rising sea levels, and resulting deaths, destruction, and displacement.

B. The term “global warming” is misleading, because not all areas will experience uniform temperature rises and some areas will not warm at all (NASA, 2018).

C. However, global warming has the potential to radically alter the climate conditions around the world.

1. Effects on agricultural production and food security.

2. Effects on water security.

3. Effects on population displacement and financial damages due to natural disasters.

4. Humanitarian and political effects due to displacement, which could even lead to the outbreak of wars.

D. Because of how devastating the effects of global warming will be, taking action now is an ethical responsibility.

IV. Body Section Three: How to Prevent Global Warming

A. Topic Sentence: Taking action on global warming now requires a concerted coalition between the private and public sectors around the world.

B. Governments need to work together better to create stimulus packages for investment into alternative energy.

C. The private sector needs to become more environmentally responsible, requiring new anti-pollution laws if necessary.

D. Governments and the private sector also need to work together to build resilience and have strategies in place for mitigating disasters.

V. Conclusion

A. Doing something about global warming requires being proactive, both in terms of changing the way industry operates, and also building resilience to minimize harm.

B. Innovation in new technologies will be essential to prevent global warming and stimulate the global economy.

C. Investment into infrastructure improvement will also help to minimize damages due to climate change.

D. Legislation and public policy, in addition to ethical behavior from the private sector, will help reduce climate change and create a safer tomorrow.

Introduction

Thesis statement.

A comprehensive solution to global warming would be to curtail carbon emissions further through innovations in alternative energy, combined with a plan to minimize humanitarian and financial damages.

One degree. That is all it takes to create massive changes on planet earth. Just one degree in temperature change may not seem like a lot, but that amount of global warming can cause major crises, displacing millions of people and causing billions of dollars in damage (NASA, 2018).

One degree. That is all it takes to create massive changes on planet earth. Just one degree in temperature change may not seem like a lot, but that amount of global warming can cause major crises, displacing millions of people and causing billions of dollars in damage (NASA, 2018). It is a known fact that fossil fuel burning, particularly coal, is the biggest culprit of global warming (MacMillan, 2016). Knowing what causes global warming makes it possible to take action, to minimize the deleterious effects of global warming. Global warming is not a political issue, but a simple fact. However, what to do about global warming is a political issue. A comprehensive solution to global warming would be to curtail carbon emissions further through innovations in alternative energy, combined with a plan to minimize humanitarian and financial damages.

Causes of Global Warming

Global warming is anthropogenic, meaning that its primary cause is human beings. In particular, human industrial activity results in the emission of greenhouse gases, with China and the United States the biggest culprits (MacMillan, 2016). The population of the planet has also exploded rapidly over the past century, which results in increased industry, increased use of land for agriculture, and increased human activities that contribute to global warming. The most important cause of global warming is greenhouse gases, which trap hot air in the Earth’s atmosphere instead of allowing that heat to escape into space. Greenhouse gasses build up in the earth’s atmosphere, effectively insulating the planet just as a greenhouse used to grow fruits and vegetables traps heat.

According to NASA (2018), the primary greenhouse gases responsible for global warming include water vapor, carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Deforestation leads to an overabundance of carbon dioxide, and agriculture leads to an overabundance of methane (NASA, 2018). Therefore, unsustainable agricultural practices and related issues like land use are one of the biggest causes of greenhouse gas buildup. Unsustainable agriculture is a major cause of global warming. There are several reasons why agriculture is a problem. One reason is linked to land use. When rainforests and other vegetation-dense areas are cut down to make room for agriculture, the result is an increase in carbon dioxide emissions (MacMillan, 2016). Many crops and farm animals are especially bad for the environment. For example, animals like cattle emit methane, a greenhouse gas, and certain fertilizers used extensively in mono-crop agriculture also lead to greenhouse gas emissions (NASA, 2018). Yet the burning of fossil fuels like coal and oil for electricity production and transportation also cause global warming. Knowing the causes of global warming, it becomes easier to come up with targeted and reasonable solutions to the problem.

Effects of Global Warming

Global warming is a problem because it can lead to extreme weather conditions, flooding due to rising sea levels, and resulting deaths, destruction, and displacement. In fact, the term “global warming” is misleading, because not all areas will experience uniform temperature rises and some areas will not warm at all (NASA, 2018). However, global warming has the potential to radically alter the climate conditions around the world. The main effects of global warming will be on agricultural production and food security, on water security, on population displacement, financial damages due to natural disasters, and the humanitarian and possibly military effects of global warming.

Global warming will lead to changes to weather patterns, causing some areas to experience flooding and other areas to experience drought conditions (NASA, 2018). The result is that food production will be less reliable, and there could be major crop failures. Crop failures and unpredictable food supplies will drive up prices of food, leading to humanitarian crises, and possibly even cause famine in some of the most affected areas. In addition to alterations in food production, global warming will also lead to increased extreme weather events including major storms like hurricanes, and wildfires (Union of Concerned Scientists, 2018). These extreme weather patterns can destroy whole communities, leading to humanitarian crises. The initial extreme weather may cause deaths, while the long-term effects include population displacement and refugee crises. Because of what it could mean for displacement and refugee crises, global warming could cause wars in the future. Because of how devastating the effects of global warming will be, taking action now is an ethical responsibility.

Rising temperatures cause ice packs to melt in the arctic and other glacial regions. The melting of ice is the primary contributor of sea level rises. Some ice packs will melt directly into the sea, altering the salinity of the sea water too, thereby having an impact on all underwater life. When inland glaciers melt, the additional water fills rivers, which could lead to disastrous flooding. Rising sea levels could inundate coastal regions and cause whole islands to disappear. Flooding due to global warming could displace countless people all around the world, creating humanitarian crises. As MacMillan (2016) also points out, flooding also increases the rates at which communicable diseases spread. Therefore, global warming could indirectly lead to disease proliferation.

It is also important to address the effects of global warming on the non-human populations of planet earth. Global warming has the potential to wipe out whole species. Whole ecosystems will change because of global warming, causing some animals and plants to move to new territories, altering the food chains and also changing the relationships between humans and nature.

Another important effect of global warming is related to national security. As the Union of Concerned Scientists (2018) points out, global warming may directly impact American military bases, particularly those located in coastal areas. In addition to the impact on military bases that are at risk for flooding, global warming could also create national security issues such as diverting military resources to helping the victims of climate change. If the United States experiences water shortages or crop failures due to global warming, it would also become more vulnerable and dependent on other nations, creating national security crises or alternatively, causing a bellicose president to invade another country for its resources.

How to Prevent Global Warming and Minimize Damage

Taking action on global warming now requires a concerted coalition between the private and public sectors around the world. Governments need to work together better to create stimulus packages for investment into alternative energy. Likewise, the private sector needs to become more environmentally responsible, requiring new anti-pollution laws if necessary. Governments and the private sector also need to work together to build resilience and have strategies in place for mitigating disasters. Unfortunately, getting multiple stakeholders to work together can be challenging, even within the same country. Creating international coalitions between governments and private sector organizations has been ineffective so far, but there is still room for hope.

As the Union of Concerned Scientists (2018) claims, reducing greenhouse gas emissions is the first and most important order of business, and will require politicians to take action. The reason why politicians are often reluctant to take action is fear that doing so would adversely impact the economy. After all, many businesses have yet to develop alternative methods, processes, or technologies that can replace those that caused global warming. To overcome this problem, politicians need to simultaneously pass laws that offer incentives to companies for developing alternative technologies or energy sources. Another reason why governments need to take responsibility is that in most places, land use issues can be mitigated via legislation. Instead of allowing more deforestation, governments can cease new developments in favor of a more sustainable economic policy.

thesis statement about effects of global warming

Taking action on global warming requires a multifaceted effort, that combines working with the private sector as well as forming local, regional, national, and international coalitions. Each region will experience global warming differently. Therefore, it is important to not just focus on what can be done nationally or internationally but also locally. Each community needs to build its own resilience strategy to reduce harm. For example, regions in California and the American West that could experience greater wildfires and droughts need to have in place improved fire mitigation strategies. Low-lying coastal regions like Florida and the Atlantic seaboard need to have evacuation or land reclamation measures in place in case of storms and rising sea levels. Local approaches help to create more robust long-term solutions. It is often easier to get smaller groups of people from the same region to agree on a course of action than it is for larger and more diverse entities. The residents of one area can see the immediate results of their work, and are more connected to the need to take action for their community.

Individual consumers also need to take responsibility for their choices to help reduce global warming. Because the private sector responds to consumers, and because governments respond to the private sector, ultimately consumers have more power than they may believe. By choosing sustainable products, and supporting sustainable, ethical companies, individuals can reduce global warming. Eating less meat or no meat is one way to contribute to the effort in reducing demand for unsustainable agricultural practices. Likewise, boycotting products that are manufactured in ways that contribute to global warming can also help create a consumer-driven revolution. Walking, riding a bicycle, and otherwise avoiding unnecessary use of fuel-burning cars is another way consumers can make a difference even before governments are willing to take action. As the Union of Concerned Scientists (2018) also points out, individuals have a responsibility to promote science literacy and reduce misinformation. When voters are empowered with information about global warming, they are more able and likely to elect officials who are dedicated to implementing solutions.

Minimizing damage is also an important global warming strategy. Both governments and the private sector need to work together to create more resilient communities. Disasters will happen, but responses need to be more robust. For example, the public infrastructure needs to be improved so that hurricanes like Katrina cause less damage than they did. Helping the most vulnerable areas around the world to prepare for disasters and evacuate people as safely and efficiently as possible is one of the most important ways of responding to the problem of global warming.

It may be impossible to completely eliminate global warming because of the huge population on the planet, but a lot can be done to minimize it and reduce harm. Doing something about global warming requires being proactive, both in terms of changing the way industry operates, and also building resilience to minimize the damages that may result from extreme weather, drought, and other problems. Innovation in new technologies will be essential to prevent global warming and stimulate the global economy. Investment into infrastructure improvement will also help to minimize damages due to climate change. Legislation and public policy, in addition to ethical behavior from the private sector, will help reduce climate change and create a safer tomorrow.

MacMillan, A. (2016). Global warming 101. https://www.nrdc.org/stories/global-warming-101#warming

NASA (2018). Facts. https://climate.nasa.gov/causes/

Union of Concerned Scientists (2018). Confronting the realities of climate change. https://www.ucsusa.org/global-warming#.WrwXPtPwYWo

When you write about global warming for a class, always remember to keep your audience in mind.

Are you writing your global warming essay for an environmental science class? If so, then make sure you use credible science sources and talk about the chemistry of greenhouse gases and other scientific principles.

However, if you are writing your essay for a debate class or for an English composition class, you will want to use the principles of argumentative essay or expository essay writing.

You might even be asked to write about global warming from a historical perspective, such as tracing the evolution of policies or attitudes towards global warming. Sociology, anthropology, and psychology classes might also ask you to write about attitudes towards global warming.

Remember to use an outline to stay organized while you write, and proofread your copy when you are finished writing your draft.

To avoid being accused of plagiarism when you write an essay, always keep track of what sources you use and cite them properly in the References or Bibliography section of your essay. If you need help composing an essay on global warming or any other subject, you can seek help with a writing tutor.

the silhouette of people can be seen as a giant glowing earth floats on a lake

  • ENVIRONMENT

How global warming is disrupting life on Earth

The signs of global warming are everywhere, and are more complex than just climbing temperatures.

Our planet is getting hotter. Since the Industrial Revolution—an event that spurred the use of fossil fuels in everything from power plants to transportation—Earth has warmed by 1 degree Celsius, about 2 degrees Fahrenheit.  

That may sound insignificant, but 2023 was the hottest year on record , and all 10 of the hottest years on record have occurred in the past decade.  

Global warming and climate change are often used interchangeably as synonyms, but scientists prefer to use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems.  

Climate change encompasses not only rising average temperatures but also natural disasters, shifting wildlife habitats, rising seas , and a range of other impacts. All of these changes are emerging as humans continue to add heat-trapping greenhouse gases , like carbon dioxide and methane, to the atmosphere.

What causes global warming?

When fossil fuel emissions are pumped into the atmosphere, they change the chemistry of our atmosphere, allowing sunlight to reach the Earth but preventing heat from being released into space. This keeps Earth warm, like a greenhouse, and this warming is known as the greenhouse effect .  

Carbon dioxide is the most commonly found greenhouse gas and about 75 percent of all the climate warming pollution in the atmosphere. This gas is a product of producing and burning oil, gas, and coal. About a quarter of Carbon dioxide also results from land cleared for timber or agriculture.  

Methane is another common greenhouse gas. Although it makes up only about 16 percent of emissions, it's roughly 25 times more potent than carbon dioxide and dissipates more quickly. That means methane can cause a large spark in warming, but ending methane pollution can also quickly limit the amount of atmospheric warming. Sources of this gas include agriculture (mostly livestock), leaks from oil and gas production, and waste from landfills.  

What are the effects of global warming?  

One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic is warming four times faster than the rest of the planet. This warming reduces critical ice habitat and it disrupts the flow of the jet stream, creating more unpredictable weather patterns around the globe.  

( Learn more about the jet stream. )

A warmer planet doesn't just raise temperatures. Precipitation is becoming more extreme as the planet heats. For every degree your thermometer rises, the air holds about seven percent more moisture. This increase in moisture in the atmosphere can produce flash floods, more destructive hurricanes, and even paradoxically, stronger snow storms.  

The world's leading scientists regularly gather to review the latest research on how the planet is changing. The results of this review is synthesized in regularly published reports known as the Intergovernmental Panel on Climate Change (IPCC) reports.  

A recent report outlines how disruptive a global rise in temperature can be:

  • Coral reefs are now a highly endangered ecosystem. When corals face environmental stress, such as high heat, they expel their colorful algae and turn a ghostly white, an effect known as coral bleaching . In this weakened state, they more easily die.  
  • Trees are increasingly dying from drought , and this mass mortality is reshaping forest ecosystems.
  • Rising temperatures and changing precipitation patterns are making wildfires more common and more widespread. Research shows they're even moving into the eastern U.S. where fires have historically been less common.
  • Hurricanes are growing more destructive and dumping more rain, an effect that will result in more damage. Some scientists say we even need to be preparing for Cat 6 storms . (The current ranking system ends at Cat 5.)

How can we limit global warming?  

Limiting the rising in global warming is theoretically achievable, but politically, socially, and economically difficult.  

Those same sources of greenhouse gas emissions must be limited to reduce warming. For example, oil and gas used to generate electricity or power industrial manufacturing will need to be replaced by net zero emission technology like wind and solar power. Transportation, another major source of emissions, will need to integrate more electric vehicles, public transportation, and innovative urban design, such as safe bike lanes and walkable cities.  

( Learn more about solutions to limit global warming. )

One global warming solution that was once considered far fetched is now being taken more seriously: geoengineering. This type of technology relies on manipulating the Earth's atmosphere to physically block the warming rays of the sun or by sucking carbon dioxide straight out of the sky.

Restoring nature may also help limit warming. Trees, oceans, wetlands, and other ecosystems help absorb excess carbon—but when they're lost, so too is their potential to fight climate change.  

Ultimately, we'll need to adapt to warming temperatures, building homes to withstand sea level rise for example, or more efficiently cooling homes during heat waves.  

Become a subscriber and support our award-winning editorial features, videos, photography, and much more.

For as little as $2/mo.

Related Topics

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • POLAR REGIONS

You May Also Like

thesis statement about effects of global warming

Why all life on Earth depends on trees

thesis statement about effects of global warming

Life probably exists beyond Earth. So how do we find it?

thesis statement about effects of global warming

Pizzlies, grolars, and narlugas: Why we may soon see more Arctic hybrids

thesis statement about effects of global warming

For Antarctica’s emperor penguins, ‘there is no time left’

thesis statement about effects of global warming

Listen to 30 years of climate change transformed into haunting music

  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Key natural hazards statistics from 1978 to 2020
Country1978 change2018Absolute changeRelative
Drought630 − 63 − 100%
Earthquake25,1624,321 − 20,841 − 83%
Extreme temperature150536 + 386 + 257%
Extreme weather36761,666 − 2,010 − 55%
Flood5,8972,869 − 3,028 − 51%
Landslide86275 + 189 + 220%
Mass movement5017 − 33 − 66%
Volcanic activity268878 + 610 + 228%
Wildfire2247 + 245 + 12,250%
All − natural disasters35,03610,809 − 24,227 − 69%

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Environmental modificationsPotential diseasesThe causative organisms and pathway of effect
Construction of canals, dams, irrigation pathwaysSchistosomiasisSnail host locale, human contact
MalariaUpbringing places for mosquitoes
HelminthiasesLarval contact due to moist soil
River blindnessBlackfly upbringing
Agro-strengtheningMalariaCrop pesticides
Venezuelan hemorrhagic feverRodent abundance, contact
SuburbanizationCholeradeprived hygiene, asepsis; augmented water municipal assembling pollution
DengueWater-gathering rubbishes Aedes aegypti mosquito upbringing sites
Cutaneous leishmaniasisPSandfly vectors
Deforestation and new tenancyMalariaUpbringing sites and trajectories, migration of vulnerable people
Oropoucheupsurge contact, upbringing of directions
Visceral leishmaniasisRecurrent contact with sandfly vectors
AgricultureLyme diseaseTick hosts, outside revelation
Ocean heatingRed tidePoisonous algal blooms

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

AttributesDescriptionForestry example
PurposefulnessAutonomousIncludes continuing application of prevailing information and techniques in retort to experienced climate change

Thin to reduce drought stress; construct breaks in vegetation to

Stop feast of wildfires, vermin, and ailments

TimingPreemptiveNecessitates interactive change to diminish future injury, jeopardy, and weakness, often through planning, observing, growing consciousness, structure partnerships, and ornamental erudition or investigation

Ensure forest property against potential future losses; transition to

species or stand erections that are better reformed to predictable

future conditions; trial with new forestry organization

practices

ScopeIncremental

Involves making small changes in present circumstances to circumvent disturbances

and ongoing to chase the same purposes

Condense rotation pauses to decrease the likelihood of harm to storm Events, differentiate classes to blowout jeopardy; thin to lessening compactness and defenselessness of jungle stands to tension
GoalOppositionShield or defend from alteration; take procedures to reservation constancy and battle changeGenerate refugia for rare classes; defend woodlands from austere fire and wind uproar; alter forest construction to reduce harshness or extent of wind and ice impairment; establish breaks in vegetation to dampen the spread of vermin, ailments, and wildfire

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050
  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (American)
  • Literary Studies (Romanticism)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Asian)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Policy
  • Public Administration
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Global Warming: A Very Short Introduction (2nd edn)

A newer edition of this book is available.

  • < Previous chapter

10 (page 173) p. 173 Conclusion

  • Published: November 2008
  • Cite Icon Cite
  • Permissions Icon Permissions

The ‘Conclusion’ confirms that global warming is the major challenge for our global society. There is very little doubt that global warming will change our climate in the next century. So what are the solutions to global warming? First, there must be an international political solution. Second, funding for developing cheap and clean energy production must be increased, as all economic development is based on increasing energy usage. We must not pin all our hopes on global politics and clean energy technology, so we must prepare for the worst and adapt. If implemented now, a lot of the costs and damage that could be caused by changing climate can be mitigated.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 8
November 2022 2
December 2022 4
January 2023 2
February 2023 4
March 2023 6
April 2023 2
May 2023 3
June 2023 3
July 2023 2
August 2023 2
September 2023 2
October 2023 3
November 2023 2
December 2023 2
January 2024 8
February 2024 1
March 2024 10
April 2024 2
May 2024 3
June 2024 4
July 2024 2
August 2024 3
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

thesis statement about effects of global warming

How to write an effective climate change thesis statement

Wills Williams

Wills Williams

Climate change is the phrase used to describe long-term changes in the climate that occur over decades, centuries, or even millennia. Globally, climate change is a serious issue that has been debated by scholars and researchers in an attempt to try and explain its causes and effects on the environment. When trying to write a paper on climate change it is good to have a strong thesis statement that shows your position in this debate.

In the course of writing your paper on climate change, there are a number of thesis statement ideas and you can use to make it effective and this is what I have discussed in this article.

Are humans responsible for global climate change?

Indeed, there is a lot of evidence suggesting that human beings are causing climate change. Scientists agree that global warming is caused mainly by Human activities. Studies have shown how human activities such as burning fossil fuels and releasing chemicals like carbon dioxide into the atmosphere lead to global warming. Other activities, like tree felling and cattle domestication, add vast amounts of greenhouse gases to the previously existing ones in the atmosphere. This contributes to global warming by magnifying the greenhouse effect.

Is global climate change man made?

The world’s population has managed to dramatically modify the earth’s atmosphere since the dawn of the industrial period, when humans first began depending on fossil fuels as a primary source of energy. Though natural cycles of climate change have always existed, global warming is now thought to be man-made. Scientist have accumulated lots of data that points human activities such as increased fossil fuel burning and large-scale deforestation to the big worldwide climate change. This have resulted in a substantial increase in carbon dioxide emissions, coinciding with continuously rising temperatures and unpredictable rainfalls.

Is global warming natural or an effect of human activities?

To some scientists it is primarily the human activities that cause global warming. There is strong evidence that has associated human activities like heat trapping and climate change.

How are people affected by climate change?

Climate change puts people’s health at risk. Heat stress, unpredictable rainfall that sometimes causes increased flooding due to soil erosion and lack of trees. In some regions drought has been observed as an impact of climate change.

What are the negative effects of human activities on resources?

Humans impact the physical environment in many ways: 1. Human activity causes Environmental degradation. 2. Ecosystem disruption which is led by overpopulation 3. Habitat loss due to deforestation 4. Species extinction; and pollution due to burning fossil fuels. Which includes the depletion of resources such as air, water, and soil. How do humans adapt to their surroundings?

An adaptation is the successful interaction of a population with its environment.

How do humans adapt themselves to the environment Give example?

Naturally, humans have the ability to adapt to new environmental changes. As climate change happens, people are devising new ways of survival. Humans adapt to their surroundings by modifying the natural environment to fulfill their requirements. They develop artificial energy sources in order to keep access to the environment. The ecology may be harmed or benefited by these changes.

Why do we need to adapt to our environment?

We need to adapt to our environment to be able to survive. It is compulsory for all living organisms. This entails adapting to the ecosystem’s environmental circumstances, as well as predators and other species vying for the same food and space. There are three types of adaptation that a human being or an animal can adapt to its environment based on genetic changes. They include: behavioral, structural, and physical adaptation. It can take three to six months for humans to adapt to a new environment.

What did early humans do to change the environment?

According to Wing, early people’s habitat was modified through animal domestication, hunting, and farming. They also learn to construct houses in place of natural habitats and lived a settled life.

What challenges did early humans face?

Although early humans lived a basic life and met their needs by relying on the natural world. The summit of the food chain has not always been occupied by them. In their daily lives, our ancestors faced enormous challenges, and they were vulnerable to disease, injury, and predators. As a result of environmental change, early humans faced both risks and opportunities, which is one of the constant challenges to survival.

How did the development of the early humans take place?

The capacity to walk on two legs was one of the first distinguishing characteristics of humans. Bipedalism is the name given to this characteristic, which originated around 4 million years ago. The development of man from his cradle land Africa also helps to illustrate important changes that have been happening over the years and how they have been affecting man and the environment.

What factors allowed the first humans to adapt and survive?

Changes in atmospheric temperatures happened in the original land of man and they triggered important adaptations. Some of the notable changes include change from cool to drier weather. Man had to adapt by developing larger brains and stronger legs and arms. Man also developed tools to aid in hunting and harvesting of food in order to survive in the new environments.

How did humans get to Earth?

Human first evolved in Africa. Homo sapiens began moving from Africa between seventy thousand and one hundred thousand years ago. The first group of human beings exited Africa as they migrated to Asia. They later arrived in Europe and through boats they also reached Australia. The species of modern human (Homo sapiens) spread around the globe over time. The different regions where humans occupied is depicted on a world map such as where they occupied in Europe and Asia. For example, people first arrived in Australia approximately 60000 years ago, and in America approximately 300 years ago.

Who made humans?

The origins of modern humans can be traced back to African continent where much of human evolution took place. Humans and other big apes all descended from a common ape-like ancestor. Our forefathers and mothers stayed in Africa for three to four million years. The human ancestors eventually evolved two legs and a larger brain. They descended from Homo erectus, their most recent shared ancestor. They were also the first human species to leave Africa and spread throughout the globe. In Latin, Homo erectus means “upright man.” The human species Homo erectus lived between one point nine million years and 135,000 years ago and is now extinct.

Who made earth?

Earth came into being as a result of debris orbiting our solar. About 4.5 million years ago, swirling gas and dust were drawn in by gravity to form the third planet from the Sun. There was a big bang when the solar system settled into its current configuration. In other words, the age of the earth is roughly equal to the age of the sun.

Parting shot

Writing an effective thesis statement can be challenging if you don’t have enough time. You can send me an email if you need quick assistance to write a good essay or if you want your essay reviewed or edited with a professional eye.

Also if you find value in this article, please share it with friend and give me some feedback in the comments section.

Wills Williams

Written by Wills Williams

BSC Communications Stanford University

Text to speech

  • Ways to Give
  • Contact an Expert
  • Explore WRI Perspectives

Filter Your Site Experience by Topic

Applying the filters below will filter all articles, data, insights and projects by the topic area you select.

  • All Topics Remove filter
  • Climate filter site by Climate
  • Cities filter site by Cities
  • Energy filter site by Energy
  • Food filter site by Food
  • Forests filter site by Forests
  • Freshwater filter site by Freshwater
  • Ocean filter site by Ocean
  • Business filter site by Business
  • Economics filter site by Economics
  • Finance filter site by Finance
  • Equity & Governance filter site by Equity & Governance

Search WRI.org

Not sure where to find something? Search all of the site's content.

A girl wearing a long sundress pedals a bicycle down a flooded road..

10 Big Findings from the 2023 IPCC Report on Climate Change

  • climate change
  • Climate Resilience
  • climate science
  • climatewatch-pinned

March 20 marked the release of the final installment of the Intergovernmental Panel on Climate Change’s (IPCC) Sixth Assessment Report (AR6) , an eight-year long undertaking from the world’s most authoritative scientific body on climate change. Drawing on the findings of 234 scientists on the  physical science of climate change , 270 scientists on  impacts, adaptation and vulnerability to climate change , and 278 scientists on  climate change mitigation , this  IPCC synthesis report  provides the most comprehensive, best available scientific assessment of climate change.

It also makes for grim reading. Across nearly 8,000 pages, the AR6 details the devastating consequences of rising greenhouse gas (GHG) emissions around the world — the destruction of homes, the loss of livelihoods and the fragmentation of communities, for example — as well as the increasingly dangerous and irreversible risks should we fail to change course.

But the IPCC also offers hope, highlighting pathways to avoid these intensifying risks. It identifies readily available, and in some cases, highly cost-effective actions that can be undertaken now to reduce GHG emissions, scale up carbon removal and build resilience. While the window to address the climate crisis is rapidly closing, the IPCC affirms that we can still secure a safe, livable future.

Here are 10 key findings you need to know:

1. Human-induced global warming of 1.1 degrees C has spurred changes to the Earth’s climate that are unprecedented in recent human history.

Already, with 1.1 degrees C (2 degrees F) of global temperature rise, changes to the climate system that are unparalleled over centuries to millennia are now occurring in every region of the world, from rising sea levels to more extreme weather events to rapidly disappearing sea ice.

An illustration showing evidence of global warming, including glacial retreating and sea level rise.

Additional warming will increase the magnitude of these changes. Every 0.5 degree C (0.9 degrees F) of global temperature rise, for example, will cause clearly discernible increases in the frequency and severity of heat extremes, heavy rainfall events and regional droughts. Similarly, heatwaves that, on average, arose once every 10 years in a climate with little human influence will likely occur 4.1 times more frequently with 1.5 degrees C (2.7 degrees F) of warming, 5.6 times with 2 degrees C (3.6 degrees F) and 9.4 times with 4 degrees C (7.2 degrees F) — and the intensity of these heatwaves will also increase by 1.9 degrees C (3.4 degrees F), 2.6 degrees C (4.7 degrees F) and 5.1 degrees C (9.2 degrees F) respectively.

Rising global temperatures also heighten the probability of reaching dangerous tipping points in the climate system that, once crossed, can trigger self-amplifying feedbacks that further increase global warming, such as thawing permafrost or massive forest dieback. Setting such reinforcing feedbacks in motion can also lead to other substantial, abrupt and irreversible changes to the climate system. Should warming reach between 2 degrees C (3.6 degrees F) and 3 degrees C (5.4 degrees F), for example, the West Antarctic and Greenland ice sheets could melt almost completely and irreversibly over many thousands of years, causing sea levels to rise by several meters.

2. Climate impacts on people and ecosystems are more widespread and severe than expected, and future risks will escalate rapidly with every fraction of a degree of warming.

Described as an “an atlas of human suffering and a damning indictment of failed climate leadership” by United Nations Secretary-General António Guterres, one of AR6’s most alarming conclusions is that adverse climate impacts are already more far-reaching and extreme than anticipated. About half of the global population currently contends with severe water scarcity for at least one month per year, while higher temperatures are enabling the spread of vector-borne diseases, such as malaria, West Nile virus and Lyme disease. Climate change has also slowed improvements in agricultural productivity in middle and low latitudes, with crop productivity growth shrinking by a third in Africa since 1961. And since 2008, extreme floods and storms have forced over 20 million people from their homes every year.

Every fraction of a degree of warming will intensify these threats, and even limiting global temperature rise to 1.5 degree C is not safe for all. At this level of warming, for example, 950 million people across the world’s drylands will experience water stress, heat stress and desertification, while the share of the global population exposed to flooding will rise by 24%.

A chart about comparing risks from rising temperatures.

Similarly, overshooting 1.5 degrees C (2.7 degrees F), even temporarily, will lead to much more severe, oftentimes irreversible impacts, from local species extinctions to the complete drowning of salt marshes to loss of human lives from increased heat stress. Limiting the magnitude and duration of overshooting 1.5 degrees C (2.7 degrees F), then, will prove critical in ensuring a safe, livable future, as will holding warming to as close to 1.5 degrees C (2.7 degrees F) or below as possible. Even if this temperature limit is exceeded by the end of the century, the imperative to rapidly curb GHG emissions to avoid higher levels of warming and associated impacts remains unchanged.

3. Adaptation measures can effectively build resilience, but more finance is needed to scale solutions.

Climate policies in at least 170 countries now consider adaptation, but in many nations, these efforts have yet to progress from planning to implementation. Measures to build resilience are still largely small-scale, reactive and incremental, with most focusing on immediate impacts or near-term risks. This disparity between today’s levels of adaptation and those required persists in large part due to limited finance. According to the IPCC, developing countries alone will need $127 billion per year by 2030 and $295 billion per year by 2050 to adapt to climate change. But funds for adaptation reached just $23 billion to $46 billion from 2017 to 2018, accounting for only 4% to 8% of tracked climate finance.

The good news is that the IPCC finds that, with sufficient support, proven and readily available adaptation solutions can build resilience to climate risks and, in many cases, simultaneously deliver broader sustainable development benefits.

Ecosystem-based adaptation, for example, can help communities adapt to impacts that are already devastating their lives and livelihoods, while also safeguarding biodiversity, improving health outcomes, bolstering food security, delivering economic benefits and enhancing carbon sequestration. Many ecosystem-based adaptation measures — including the protection, restoration and sustainable management of ecosystems, as well as more sustainable agricultural practices like integrating trees into farmlands and increasing crop diversity — can be implemented at relatively low costs today. Meaningful collaboration with Indigenous Peoples and local communities is critical to the success of this approach, as is ensuring that ecosystem-based adaptation strategies are designed to account for how future global temperature rise will impact ecosystems.

An illustration of how ecosystem-based adaption can protect lives and livelihoods.

4. Some climate impacts are already so severe they cannot be adapted to, leading to losses and damages.

Around the world, highly vulnerable people and ecosystems are already struggling to adapt to climate change impacts. For some, these limits are “soft” — effective adaptation measures exist, but economic, political and social obstacles constrain implementation, such as lack of technical support or inadequate funding that does not reach the communities where it’s needed most. But in other regions, people and ecosystems already face or are fast approaching “hard” limits to adaptation, where climate impacts from 1.1 degrees C (2 degrees F) of global warming are becoming so frequent and severe that no existing adaptation strategies can fully avoid losses and damages. Coastal communities in the tropics, for example, have seen entire coral reef systems that once supported their livelihoods and food security experience widespread mortality, while rising sea levels have forced other low-lying neighborhoods to move to higher ground and abandon cultural sites. 

A large bleached coral reef in Indonesia.

Whether grappling with soft or hard limits to adaptation, the result for vulnerable communities is oftentimes irreversible and devastating. Such losses and damages will only escalate as the world warms. Beyond 1.5 degrees C (2.7 degrees F) of global temperature rise, for example, regions reliant on snow and glacial melt will likely experience water shortages to which they cannot adapt. At 2 degrees C (3.6 degrees F), the risk of concurrent maize production failures across important growing regions will rise dramatically. And above 3 degrees C (5.4 degrees F), dangerously high summertime heat will threaten the health of communities in parts of southern Europe.

Urgent action is needed to avert, minimize and address these losses and damages. At COP27, countries took a critical step forward by agreeing to establish funding arrangements for loss and damage, including a dedicated fund. While this represents  a historic breakthrough  in the climate negotiations, countries must now figure out the details of what these funding arrangements, as well as the new fund , will look like in practice — and it’s these details that will ultimately determine the adequacy, accessibility, additionality and predictability of these financial flows to those experiencing loss and damage.

5. Global GHG emissions peak before 2025 in 1.5 degrees C-aligned pathways.

The IPCC finds that there is a more than 50% chance that global temperature rise will reach or surpass 1.5 degrees C (2.7 degrees F) between 2021 and 2040 across studied scenarios, and under a high-emissions pathway, specifically, the world may hit this threshold even sooner — between 2018 and 2037. Global temperature rise in such a carbon-intensive scenario could also increase to 3.3 degrees C to 5.7 degrees C (5.9 degrees F to 10.3 degrees F) by 2100. To put this projected amount of warming into perspective, the last time global temperatures exceeded 2.5 degrees C (4.5 degrees F) above pre-industrial levels was more than 3 million years ago.

Changing course to limit global warming to 1.5 degrees C (2.7 degrees F) — with no or limited overshoot — will instead require deep GHG emissions reductions in the near-term. In modelled pathways that limit global warming to this goal, GHG emissions peak immediately and before 2025 at the latest. They then drop rapidly, declining 43% by 2030 and 60% by 2035, relative to 2019 levels.

A chart shows GHG emission reductions needed to keep 1.5 degrees C within reach.

While there are some bright spots — the annual growth rate of GHG emissions slowed from an average of 2.1% per year between 2000 and 2009 to 1.3% per year between 2010 and 2019, for example — global progress in mitigating climate change remains woefully off track. GHG emissions have climbed steadily over the past decade, reaching 59 gigatonnes of carbon dioxide equivalent (GtCO2e) in 2019 — approximately 12% higher than in 2010 and 54% greater than in 1990.

Even if countries achieved their climate pledges (also known as nationally determined contributions or NDCs),  WRI research  finds that they would reduce GHG emissions by just 7% from 2019 levels by 2030, in contrast to the 43% associated with limiting temperature rise to 1.5 degrees C (2.7 degrees F). And while handful of countries have submitted  new or enhanced NDCs  since the IPCC’s cut-off date,  more recent analysis  that takes these submissions into account finds that these commitments collectively still fall short of closing this emissions gap.

6. The world must rapidly shift away from burning fossil fuels — the number one cause of the climate crisis.

In pathways limiting warming to 1.5 degrees C (2.7 degrees F) with no or limited overshoot just a net 510 GtCO2 can be emitted before carbon dioxide emissions reach net zero in the early 2050s. Yet future carbon dioxide emissions from existing and planned fossil fuel infrastructure alone could surpass that limit by 340 GtCO2, reaching 850 GtCO2.

Carbon dioxide emissions from existing and planned fossil fuels put 1.5 degrees C out of reach

A mix of strategies can help avoid  locking in  these emissions, including retiring existing fossil fuel infrastructure, canceling new projects, retrofitting fossil-fueled power plants with carbon capture and storage (CCS) technologies and scaling up renewable energy sources like solar and wind (which are now cheaper than fossil fuels in many regions).

In pathways that limit warming to 1.5 degrees C (2.7 degrees F) — with no or limited overshoot — for example, global use of coal falls by 95% by 2050, oil declines by about 60% and gas by about 45%. These figures assume significant use of abatement technologies like CCS, and without them, these same pathways show much steeper declines by mid-century. Global use of coal without CCS, for example, is virtually phased out by 2050.

Although coal-fired power plants are starting to be retired across Europe and the United States, some multilateral development banks continue to invest in new coal capacity. Failure to change course risks stranding assets worth trillions of dollars.

7. We also need urgent, systemwide transformations to secure a net-zero, climate-resilient future.

While fossil fuels are the number one source of GHG emissions, deep emission cuts are necessary across all of society to combat the climate crisis. Power generation, buildings, industry, and transport are responsible for close to 80% of global emissions while agriculture, forestry and other land uses account for the remainder.

A list of 10 key solutions to mitigate climate change including retiring coal plants, decarbonizing aviation and reducing food waste.

Take the  transport system , for instance. Drastically cutting emissions will require urban planning that minimizes the need for travel, as well as the build-out of shared, public and nonmotorized transport, such as rapid transit and bicycling in cities. Such a transformation will also entail increasing the supply of electric passenger vehicles, commercial vehicles and buses, coupled with wide-scale installation of rapid-charging infrastructure, investments in zero-carbon fuels for shipping and aviation and more.

Policy measures that make these changes less disruptive can help accelerate needed transitions, such as subsidizing zero-carbon technologies and taxing high-emissions technologies like fossil-fueled cars. Infrastructure design — like reallocating street space for sidewalks or bike lanes — can help people transition to lower-emissions lifestyles. It is important to note there are many co-benefits that accompany these transformations, too. Minimizing the number of passenger vehicles on the road, in this example, reduces harmful local air pollution and cuts traffic-related crashes and deaths.

Systems Change Lab  monitors, learns from and mobilizes action to achieve the far-reaching transformational shifts needed to limit global warming to 1.5 degrees C, halt biodiversity loss and build a just and equitable economy.

Transformative adaptation measures, too, are critical for securing a more prosperous future. The IPCC emphasizes the importance of ensuring that adaptation measures drive systemic change, cut across sectors and are distributed equitably across at-risk regions. The good news is that there are oftentimes strong synergies between transformational mitigation and adaptation. For example, in the global food system, climate-smart agriculture practices like shifting to  agroforestry  can improve resilience to climate impacts, while simultaneously advancing mitigation.  

8. Carbon removal is now essential to limit global temperature rise to 1.5 degrees C.

Deep decarbonization across all systems while building resilience won’t be enough to achieve global climate goals, though. The IPCC finds that all pathways that limit warming to 1.5 degrees C (2.7 degrees F) — with no or limited overshoot — depend on some quantity of  carbon removal . These approaches encompass both natural solutions, such as sequestering and storing carbon in trees and soil, as well as more nascent technologies that pull carbon dioxide directly from the air.

Hover over each carbon removal approach to learn more:

a long arrow with natural approaches at the top and technological approacheson the bottom

Note: This figure includes carbon removal approaches mentioned in countries' long-term climate strategies as well as other leading proposed approaches. The natural/biotic vs. technological/abiotic categorization shown here is illustrative rather than definitive and will vary depending on how approaches are applied, particularly for carbon removal approaches in the ocean.

The amount of carbon removal required depends on how quickly we reduce GHG emissions across other systems and the extent to which climate targets are overshot, with estimates ranging from between 5 GtCO2 to 16 GtCO2 per year needed by mid-century.

All carbon removal approaches have merits and drawbacks. Reforestation, for instance, represents a readily available, relatively low-cost strategy that, when implemented appropriately, can deliver a wide range of benefits to communities. Yet the carbon stored within these ecosystems is also vulnerable to disturbances like wildfires, which may increase in frequency and severity with additional warming. And, while technologies like bioenergy with carbon capture and storage (BECCS) may offer a more permanent solution, such approaches also risk displacing croplands, and in doing so, threatening food security. Responsibly researching, developing and deploying emerging carbon removal technologies, alongside existing natural approaches, will therefore require careful understanding of each solution’s unique benefits, costs and risks.

9. Climate finance for both mitigation and adaptation must increase dramatically this decade.

The IPCC finds that public and private finance flows for fossil fuels today far surpass those directed toward climate mitigation and adaptation. Thus, while annual public and private climate finance has risen by upwards of 60% since the IPCC’s Fifth Assessment Report, much more is still required to achieve global climate change goals. For instance, climate finance will need to increase between 3 and 6 times by 2030 to achieve mitigation goals, alone.

This gap is widest in developing countries, particularly those already struggling with debt, poor credit ratings and economic burdens from the COVID-19 pandemic. Recent mitigation investments, for example, need to increase by at least sixfold in Southeast Asia and developing countries in the Pacific, fivefold in Africa and fourteenfold in the Middle East by 2030 to hold warming below 2 degrees C (3.6 degrees F). And across sectors, this shortfall is most pronounced for agriculture, forestry and other land use, where recent financial flows are 10 to 31 times below what is required to achieve the Paris Agreement’s goals.

Finance for adaptation, as well as loss and damage, will also need to rise dramatically. Developing countries, for example, will need $127 billion per year by 2030 and $295 billion per year by 2050. While AR6 does not assess countries’ needs for finance to avert, minimize and address losses and damages,  recent estimates  suggest that they will be substantial in the coming decades. Current funds for both fall well below estimated needs, with the highest estimates of adaptation finance totaling under $50 billion per year.

Rows of young mangroves.

10. Climate change — as well as our collective efforts to adapt to and mitigate it — will exacerbate inequity should we fail to ensure a just transition.  

Households with incomes in the top 10%, including a relatively large share in developed countries, emit upwards of 45% of the world's GHGs, while those families earning in the bottom 50% account for 15% at most. Yet the effects of climate change already — and will continue to — hit poorer, historically marginalized communities the hardest.

Today, between 3.3 billion and 3.6 billion people live in countries that are highly vulnerable to climate impacts, with global hotspots concentrated in the Arctic, Central and South America, Small Island Developing states, South Asia and much of sub-Saharan Africa. Across many countries in these regions, conflict, existing inequalities and development challenges (e.g., poverty and limited access to basic services like clean water) not only heighten sensitivity to climate hazards, but also limit communities’ capacity to adapt.  Mortality from storms, floods and droughts, for instance, was 15 times higher in countries with high vulnerability to climate change than in those with very low vulnerability from 2010 to 2020.

At the same time, efforts to mitigate climate change also risk disruptive changes and exacerbating inequity. Retiring coal-fired power plants, for instance, may displace workers, harm local economies and reconfigure the social fabric of communities, while inappropriately implemented efforts to halt deforestation could heighten poverty and intensify food insecurity. And certain climate policies, such as  carbon taxes  that raise the cost of emissions-intensive goods like gasoline, can also prove to be regressive, absent of efforts to recycle the revenues raised from these taxes back into programs that benefit low-income communities.

Fortunately, the IPCC identifies a range of measures that can support a just transition and help ensure that no one is left behind as the world moves toward a net-zero-emissions, climate-resilient future. Reconfiguring social protection programs (e.g., cash transfers, public works programs and social safety nets) to include adaptation, for example, can reduce communities’ vulnerability to a wide range of future climate impacts, while strengthening justice and equity. Such programs are particularly effective when paired with efforts to expand access to infrastructure and basic services.

Similarly, policymakers can design mitigation strategies to better distribute the costs and benefits of reducing GHG emissions. Governments can pair efforts to phase out coal-fired electricity generation, for instance, with subsidized job retraining programs that support workers in developing the skills needed to secure new, high-quality jobs. Or, in another example, officials can couple policy interventions dedicated to expanding access to public transit with interventions to improve access to nearby, affordable housing.

Across both mitigation and adaptation measures, inclusive, transparent and participatory decision-making processes will play a central role in ensuring a just transition. More specifically, these forums can help cultivate public trust, deepen public support for transformative climate action and avoid unintended consequences.

Looking Ahead

The IPCC’s AR6 makes clear that risks of inaction on climate are immense and the way ahead requires change at a scale not seen before. However, this report also serves as a reminder that we have never had more information about the gravity of the climate emergency and its cascading impacts — or about what needs to be done to reduce intensifying risks.

Limiting global temperature rise to 1.5 degrees C (2.7 degrees F) is still possible, but only if we act immediately. As the IPCC makes clear, the world needs to peak GHG emissions before 2025 at the very latest, nearly halve GHG emissions by 2030 and reach net-zero CO2 emissions around mid-century, while also ensuring a just and equitable transition. We’ll also need an all-hands-on-deck approach to guarantee that communities experiencing increasingly harmful impacts of the climate crisis have the resources they need to adapt to this new world. Governments, the private sector, civil society and individuals must all step up to keep the future we desire in sight. A narrow window of opportunity is still open, but there’s not one second to waste.

Note: In addition to showcasing findings from the IPCC’s AR6 Synthesis Report, this article also draws on previous articles detailing the IPCC’s findings on  the physical science of climate change ,  impacts, adaption and vulnerability ,  and  climate change mitigation .

Relevant Work

6 takeaways from the 2022 ipcc climate change mitigation report, 6 big findings from the ipcc 2022 report on climate impacts, adaptation and vulnerability, 5 big findings from the ipcc’s 2021 climate report, 8 things you need to know about the ipcc 1.5˚c report.

Join us on March 23 for a high-level webinar featuring IPCC authors, government representatives and leading carbon removal experts to discuss how carbon removal is a critical tool in our toolbox to address the climate crisis.

Carbon capture.

How You Can Help

WRI relies on the generosity of donors like you to turn research into action. You can support our work by making a gift today or exploring other ways to give.

Stay Informed

World Resources Institute 10 G Street NE Suite 800 Washington DC 20002 +1 (202) 729-7600

© 2024 World Resources Institute

Envision a world where everyone can enjoy clean air, walkable cities, vibrant landscapes, nutritious food and affordable energy.

  • Make a Donation
  • Give in your will
  • Send a virtual gift
  • More ways to give
  • All species

Partner with us

  • Partnerships
  • Workplace Giving

Community involvement

  • Fundraise for WWF
  • Join an Event

Reduce your impact

  • Calculate Your Ecological Footprint
  • Reduce Your Plastic Use
  • Change The Way You Live
  • Discover My Backyard
  • Scat Chat with WWF

Take Action

  • Protect Aussie Wildlife

OUR STRATEGY

Regenerate Nature by 2030

  • Regenerative Sky
  • Regenerative Country
  • Regenerative Saltwater
  • Inclusive Conservation

Where we work

  • Caring on Country
  • People and communities
  • Living Planet Report
  • Resource Library
  • Annual Report
  • Nature Wallpapers

Latest stories

About WWF-Australia

  • Contact WWF
  • Get involved
  • Effects of global warming

EFFECTS OF GLOBAL WARMING

The effects of global warming are already being felt across all areas of Australian life and these will continue to worsen if we do not act now to limit global warming to 1.5°C.

Global warming caused by greenhouse gas pollution leads to immediate and direct environmental changes.

What changes to the climate are humans causing through global warming?

Hotter days

2023 was the hottest year on record by a significant margin, and the past 10 years have been the warmest. Records have been broken for the longest heatwaves in the past few years. The Bureau of Meteorology has added purple and magenta to the forecast map for temperatures up to 54°C.

Rising sea levels

Research shows ocean temperatures have reached new heights and might be at their highest in 1,000 years. Increased ocean temperatures are melting glaciers and ice caps worldwide, causing rising sea levels and threatening low-lying islands and coastal cities. Melting sea-ice also results in the loss of critical habitat for krill, without which the entire Southern Ocean food web would fall apart.

More frequent and intense extreme weather events

Extreme weather events like bushfires, cyclones, droughts and floods are becoming more frequent and intense due to global warming. Over the past decade, we have seen three times more hot weather records than cold weather records. By 2070, the number of heatwaves will increase from 2.5 to 4.5 events annually across Australia and even more in central and northern NSW.

Oceans are warming and acidifying

The oceans have absorbed most of the extra heat and carbon dioxide (CO2) so far – making the seas warmer and more acidic. The acidity of surface ocean water has increased by 30% since the early 1800s. Warming waters are bleaching coral reefs and driving stronger storms. Rising ocean acidity threatens tiny crustacean populations that would disrupt the entire marine food chain.

Bushfire in Bowraville NSW= November 2019

How is global warming affecting life in Australia?

Global warming stresses ecosystems through rising temperatures, water shortages, increased fire threats, drought, weed and pest invasions, intense storm damage, and salt invasion, to name a few. Some of Australia’s great natural icons, such as the  Great Barrier Reef , are already threatened.

One in six  species  is at risk of extinction because of climate change. Australia currently holds the unenviable title for the world’s highest rate of mammal extinctions . To survive, plants, animals and birds confronted with climate change have two options: move or adapt. With the speed of climate change we are already experiencing, it’s often not possible for a species to adapt quickly enough to keep up with its changing environment. And with the amount of habitat destruction, moving is becoming increasingly difficult.

Food and farming

Changes to rainfall patterns, increasingly severe drought, more frequent heat waves, flooding and extreme weather make it more difficult for farmers to graze livestock and grow produce, reducing food availability and making it more expensive to buy.

Rainfall patterns are changing across Australia. In southwest and southeast Australia, rainfall has been below average for 17 of the past 20 years. Reduced rainfall and increasingly severe droughts have already led to severe water shortages in large areas of New South Wales.

Coastal Erosion

Rising sea levels and more frequent and intense storm surges will cause more erosion of Australia's coastline, wearing away and inundating community and residential properties. Coastal erosion also significantly impacts local biodiversity that depends on coastal habitats like mangroves and seagrass to survive.

Increasingly severe and frequent heatwaves may lead to death and illness, especially among the elderly. Higher temperatures and humidity could also produce more mosquito-borne diseases. At the same time, bushfires are impacting overall air quality, while floods can contaminate our drinking water supplies.

Damage to homes

Increasingly severe extreme weather events like bushfires, storms, floods, cyclones and coastal erosion will see increased damage to homes, as well as more costly insurance premiums. Research revealed that up to 1.6 million homes in Australia were already at moderate or high risk from climate change-related extreme weather. This number is expected to jump up to 2.6 million homes by 2050.

Coral bleaching

Rising temperatures and acidity within our oceans contribute to extreme coral bleaching events happening more frequently. In 2024, the fourth global mass bleaching event was confirmed, the second event in 10 years. The Great Barrier Reef has been under significant heat stress – experiencing five mass bleaching events in just eight years, and the 2024 event is feared to be the most widespread and damaging to date.

Learn more about global warming and climate change

Climate  banner video background © European Space Agency;

Causes of global warming

Coral bleaching= Lizard Island= Great Barrier Reef= March 2016

Effects of global warming on our oceans

Our oceans are critical to human health and wellbeing. Without them, we simply cannot survive. But due to global warming, the future of our oceans is on a knife edge. 

What is WWF doing

To save the species, places, and communities we love, we must do everything possible to keep global warming at 1.5°C above pre-industrial levels. The good news is we have the solutions and opportunities to do this.    It’s not too late.  WWF-Australia is dedicated to supporting Australia to become a global leader in securing a healthy climate powered by communities, nature and renewable energy.

Renewable energy wind workers

Renewables Australia

Climate change is rapidly impacting the people, animals and places we love – and the impacts are not equal for some. Australia needs to rapidly shift towards a more…

Nerolyn, a community facilitator dives for sea grapes in Solomon Islands

Nature-based solutions

Nature can help us address the biggest challenges facing our world. 

WWF Supporters take part in the Global Day of Action for Climate Justice march through Glasgow during COP26 in 2021

COP31: Australia's Opportunity

Australia has a unique opportunity to work with the Pacific to secure a defining moment for climate, nature and communities if called on to host COP31 in 2026. 

Koala dozes in a tree

We must restore and regenerate our planet for everything that calls it home. 

Heat stressed bleaches coral at Lizard Island

How you can help

Gentoo penguins (Pygoscelis papua) on Hovgaard Island

Calculate your Ecological footprint

When is your Earth Overshoot day? How many planets are needed if everyone lives like you? Calculate your Ecological footprint.

Eastern Quoll is a medium-sized carnivorous dasyurid marsupial native to Australia.

Save Threatened Wildlife

Help bring our threatened Australian animals and the places they call home back from the brink of extinction. Sign the petition now and help regenerate nature.

Greater glider poking its head out of a tree hollow in a patch of old-growth forest in Munruben, Logan City, south of Brisbane

Donate to WWF-Australia today to save our precious wildlife from extinction and protect the natural places they call home.

preview

Thesis Statement : Global Warming

Thesis Statement: Global warming is a growing concern of scientists and researchers who believe that it is a serious problem for our planet. The concerns and research have also been questioned and have even been called myths. Millions of people find themselves affected by these weather pattern changes and are concerned for their futures. Activists on both sides of the argument are very passionate and not afraid to attack each other in every way they can. There are many questions that are still not answered, however, we continue to see drastic weather changes to Earth . We must go beyond the arguments and learn as much as we can to stop what could possibly lead to the destruction of our planet, our way of life and our future. Global warming is concerned with an average increase in the temperature of the atmosphere and the increase in the Earth 's surface temperature primarily due to the emission of greenhouse gases from the burning of fossil fuels. As for the processes of global warming, they can occur from a variety of causes. The causes include the things that are concerned with natural and human factors. Some people believe that global warming is a myth or hoax. They believe that global warming is being used to generate fear and panic and that those behind this movement are using it to control people 's lives and for financial gain. “Within the community of scientists and others concerned about anthropogenic climate change , those who are skeptics are more commonly termed

Analysis Of Bill Mckibben 's Global Warming Essay

Global warming is the rising of temperatures on the surface of the earth due to the trapping of heat rising from the earth’s surface. It is caused by the destruction of the Ozone layer by the carbon dioxide emitted mostly from the burning of the fossil fuel and the deforestation. The ozone layer is a layer of oxygen in the atmosphere responsible for absorbing the heat from the earth’s surface.

Global Warming On Polar Bears Research Paper

Global warming is the recent and ongoing rise of temperature on a global scale. Over the past century, the Earth's average temperature has risen 1.4°F (Carlowicz, 2010). Global warming is the effect of an excessive amount of greenhouse gases in the atmosphere. Greenhouse gasses trap heat from escaping back into space to keep the Earth from freezing, this is called the Greenhouse Effect. An excessive amount of greenhouse gases in the atmosphere trap too much heat, thus, causing Earth's temperature to rise.

Global Warming Is A Hoax

Global warming is, in essence, term for the observed century scale rise in the average temperature of the earth’s climate and its related effect.(wiki) The greenhouse effect is mainly because the modern industrial society burned too much coal, oil and natural gas, the fuel combustion after release large amounts of carbon dioxide gas into the atmosphere. Carbon dioxide is the function of heat absorption and heat insulation. It

Global Warming - Is It Man-Made or Mother Nature or Both?

For the past several years skeptics and believers alike have debated back and forth about the causes of global warming. The believers say that if the man-made causes are left untouched and steadily get worse these causes may not be able to be reversed. A few examples of these are: the rainforest reductions, depletion of the ozone, and the use of fossil fuels. Doubters claim that the warming of the earth is just a natural process and that the overall effect man has on nature is vastly overrated. The

Greenhouse Gases In America

The definition given by NASA of global warming is “the average global surface temperature increase from human emissions of greenhouse gases.” On the subject of global warming, the key terms that applies is greenhouse gases. The title “greenhouse gas” comes from the idea that the chemicals that people use to run a greenhouse are also very common in our own atmosphere. A few of these chemicals include carbon dioxide and methane. Global warming is mainly caused by an excessive amount of greenhouse gases and creates environmental problems that affect not only temperatures, but can also disrupt many animal habitats and their way of life.

The Pros and Cons of Wind Energy Essay

Global warming is the increase in the Earth's temperature caused by human activities, such as burning coal, oil and natural gas. This releases gases such as: carbon dioxide, methane, and other greenhouse gases into the atmosphere.

Impact Of Global Warming On North Carolina

“Global warming refers to the recent and ongoing rise in global average temperature near Earth 's surface. It is caused mostly by increasing concentrations of greenhouse gases in the atmosphere. Global warming is causing climate patterns to change. However, global warming itself represents only one aspect of climate change” (Climate Change, EPA.gov).

Global Warming Is No Theory Or Hoax Essay

Global warming is no theory or hoax, extensive scientific research by researchers across the globe can assure us of that. Although a large amount of information on the issue is readily available to the public, many Americans including our President-elect don’t believe in global warming. In an effort to inform the public of this very real occurrence, I will provide examples of climate change, its effects pertaining to the United States, and provide counter arguments against global warming’s opposition. Americans and other global citizens are making uninformed decisions, that is unacceptable and can only be resolved by providing evidence of climate change and explaining the significance of the global events. In this paper I will use the vast cache of information on climate change to not only argue the existence of global warming but also the threat it poses to the American people.

Global Warming Controversy

Global warming is a controversial topic, widely discussed among today’s society. It is significant because it deals with the opinions and beliefs of many individuals. It also creates controversy and provides society with the opportunity to express itself and its beliefs. Many people believe that the conditions of the climate have no correlation to human behavior and that nowadays, people exaggerate the impacts of climate change. However, these individuals fail to recognize the truth behind the topic. Global warming is both a real and serious threat to our existence that humans must address by altering their actions and behaviors.

Humans Are Causing Global Warming Essay

  • 9 Works Cited

In recent years, the controversial subject of global warming has been more predominantly brought to our attention. Is the threat of global warming real? Is it man-made or is this just a natural cycle of earth? Does it really affect earth’s inhabitants? Should action be taken against it? If so, what kind and to what extent? It cannot be only a coincidence that the alarmingly rapid climate change coincides perfectly with the increased amount of pollutants that humans release into the environment. The once stable climate has in recent years begun to skyrocket, thus altering the delicate structure of earthly life. This proves to be hazardous to the future of the planet; some people worry that many of the resources the environment provides that

Global Warming Is Wrong Essay

Global warming is the heating of the Earth, as the name implies. It is caused by greenhouse gases, like carbon dioxide, water vapor, and methane, that we have released into our atmosphere through burned fossil fuels and other chemicals

Global Warming : An Inconvenient Truth Essay

Global warming is defined as the process of gradual growth of average annual temperature of the atmosphere, the Earth, and the oceans. Global warming and climate change threaten the very existence of earths inhabitants. In 2006, former senator Al Gore created an amazing award winning documentary on global warming named “An Inconvenient Truth”. Yet there are still skeptics that can 't decide on whether global warming is actually facts or a theory. People need to wake up and realize that this is real, just look around you. The Glaciers are melting, crazy weather patterns are happening, winters are getting shorter and summers are getting hotter. At the rate we are going we are destroying our Earth. Global warming is a man-made disaster that should be recognized all over the globe. This is an ethical crisis that deserves immediate action.

The Causes And Consequences Of Global Warming

Usually when people think of global warming they usually think of all the countries being very hot and people getting heat strokes. Although global warming does make the earth warmer, there is way more to it in the effects of global warming than just heat. Global warming is the observed and projected increases in the average temperature of Earth's atmosphere and oceans. And it brings with it many negative effects such as; the increase in the temperature of the atmosphere, the melting of the ice caps, the loss of species, the increase of storms, diseases, and economic consequences. The factors that cause global warming are divided into two categories, the first category is natural causes and, of course, the second category; the human influences that provokes global warming.

The Effects Of Global Warming On The Earth

What is global warming? Global warming is the result of certain gases building up in the atmosphere that block heat from escaping. These gases are causing a temperature rise in the Earth’s atmosphere and causing climate change. The rise in the Earth’s temperature has had many effects on the Earth itself. These effects include: polar ice caps melting, the rise in sea level, plant and animal ranges shifting and trees flowering sooner.

Global Warming And Climate Change

What is Global warming? Global warming is the increased heating of Earth 's surface, oceans and atmosphere; generally associated to the greenhouse effect caused by increased levels of carbon dioxide, chlorofluorocarbons, and other pollutants. Global warming is a highly controversial and debated topic. Global warming has become a threat to everyone and everything on Earth.

Related Topics

  • Climate change
  • Global warming
  • Greenhouse gas
  • Carbon dioxide

News from the Columbia Climate School

How Climate Change Impacts the Economy

plant growing in desert

The Fourth National Climate Assessment , published in 2018, warned that if we do not curb greenhouse gas emissions and start to adapt, climate change could seriously disrupt the U.S. economy. Warmer temperatures, sea level rise and extreme weather will damage property and critical infrastructure, impact human health and productivity, and negatively affect sectors such as agriculture, forestry, fisheries and tourism. The demand for energy will increase as power generation becomes less reliable, and water supplies will be stressed. Damage to other countries around the globe will also affect U.S. business through disruption in trade and supply chains.

A recent report  examined how climate change could affect 22 different sectors of the economy under two different scenarios: if global temperatures rose 2.8˚ C from pre-industrial levels by 2100, and if they increased by 4.5˚ C. The study projected that if the higher-temperature scenario prevails, climate change impacts on these 22 sectors could cost the U.S. $520 billion each year. If we can keep to 2.8˚ C, it would cost $224 billion less. In any case, the U.S. stands to suffer large economic losses due to climate change, second only to India, according to another study .

We are already seeing the economic impacts of the changing climate. According to Morgan Stanley, climate disasters have cost North America $415 billion in the last three years, much of that due to wildfires and hurricanes.

housing development flooded

In 2017, Texas’s estimated losses from Hurricane Harvey were $125 billion; Hurricane Sandy caused about $71 billion of damages in 2012. And while it’s not yet possible to directly link climate change to hurricanes, warmer temperatures and higher sea levels are known to enhance their intensity and destructiveness.

“Science advances also give us more detailed spatial information to say which assets and operations are in harm’s way with climate change—for example say, just how many buildings will be inundated due to sea level rise,” said climatologist Radley Horton, associate research professor at Lamont-Doherty Earth Observatory. But the indirect economic impacts may be felt long before an actual disaster.

high tide flooding

“For example, it’s not just whether a building is underwater or not,” he said. “What’s important are the harder-to-define things like when does societal risk perception shift? It may be that buildings lose their value before the water actually arrives, once people realize that eventually the water’s going to arrive. We need deeper thinking about the interconnection between physical and social systems.”

Here are some of the many ways that climate change will likely affect our economy, both directly and indirectly.

Agriculture

The sector most vulnerable to climate risk is agriculture.

Environmental economist Geoffrey Heal, a professor in the Columbia Business School, explained that although agriculture makes up a fairly small part of the total U.S. economy, “locally these effects could be big. There are about a dozen states in the Midwest that are very dependent on agriculture and they could take quite a big hit.”

They already have. Extreme rainfall events have increased 37 percent in the Midwest since the 1950s, and this year, the region has experienced above normal amounts of rain and snowmelt that have caused historic flooding.

floods in nebraska

Many fields have washed away and livestock have drowned; Nebraska alone lost $440 million worth of cattle, and as of March, Iowa had suffered $1.6 billion in losses.

The National Oceanic and Atmospheric Administration (NOAA) expects the coming months to bring even more flooding, which could impact our food supply. To date, farmers have only planted 67 percent of their corn crop compared to last June, when they had planted 96 percent. This lost yield could cause prices for animal feed and ethanol to rise, and potentially disrupt marketplaces at home and abroad. As a result of climate change impacts, the Midwest is projected to lose up to 25 percent of its current corn and  soybean yield by 2050.

In addition to flooding, increased heat and drought will likely reduce crop yields. According to a 2011  National Academy of Sciences report , for every degree Celsius the global thermostat rises, there will be a 5 to 15 percent decrease in overall crop production. Many commodity crops such as corn, soybean, wheat, rice, cotton, and oats do not grow well above certain temperature thresholds. In addition, crops will be affected by less availability of water and groundwater, increased pests and weeds, and fire risk. And as farmers struggle to stay afloat by finding ways to adapt to changing conditions, prices will likely increase and be passed along to consumers.

Infrastructure

Much of our society’s critical infrastructure is at risk from flooding. “Sea level rise could potentially cause a loss of value of assets in the trillions of dollars—probably anywhere from two to five trillion dollars—by the end of the century,” said Heal. “That’s loss from damage to housing, damage to airports on the coasts, damage to docks, the railway line that runs up and down the East Coast all of which is within a few feet of sea level, damage to I-95 which runs also along the coast. And that’s just the East Coast. If you take a global perspective, this is repeated around the world.” Much of this infrastructure will likely need to be repaired or replaced.

Military bases are also vulnerable. According to a  2016 report published by the Center for Climate and Security policy institute, sea level rise could flood parts of military bases along the East and Gulf coasts for up to three months a year as soon as 2050. Inland military installations near rivers are also vulnerable, because they can overflow with heavy precipitation, which is expected to become more common as the atmosphere warms. Extreme weather will necessitate more maintenance and repair for runways and roads, infrastructure and equipment.

warning sign about fiber optic cables

In addition, our communication systems will be affected. A 2018 study   found that over 4,000 miles of fiber optic cable as well as data centers, traffic exchanges and termination points — the lifeblood of the global information network — are at risk from sea level rise. According to NOAA’s sea level rise projections, this infrastructure could be underwater by 2033 because most of it is buried along highways and coastlines. When it was built 25 years ago, climate change was not a concern, so while the cables are water resistant, they are not waterproof. New York, Miami and Seattle and large service providers including CenturyLink, Intelliquent and AT&T are most at risk. Threats to the internet infrastructure could have huge implications for businesses in the U.S.

Human health and productivity

If temperatures rise 4.5˚ C by 2090, 9,300 more people will die in American cities due to the rising heat. The annual losses associated with extreme temperature-related deaths alone are projected to be $140 billion.

mosquito biting skin

Increasing warmth and precipitation will also add to the risk of waterborne and foodborne diseases and allergies, and spur the proliferation of insects that spread diseases like Zika, West Nile, dengue and Lyme disease into new territories. Extreme weather and climate-related natural disasters can also exacerbate mental health issues. The most vulnerable populations, such as the elderly, children, low-income communities and communities of color, will be most affected by these health impacts.

Temperature extremes are also projected to cause the loss of two billion labor hours each year by 2090, resulting in $160 billion of lost wages. Because of heat exposure, productivity in the Southeast and Southern Great Plains regions is expected to decline by 3 percent, and some counties of Texas and Florida could lose more than 6 percent of labor hours each year by 2100. According to a 2014 Rhodium Group study, the largest climate change-related economic losses in the U.S. will be from lost labor productivity.

Two billion dollars could be lost in winter recreation due to less snow and ice. For example, rapid warming in the Adirondack Mountains could decimate the winter activity sector, which makes up 30 percent of the local economy.

In addition, as water temperatures increase, water quality could suffer due to more frequent and more intense algae blooms, which can be toxic, thus curtailing recreational water activities and freshwater fishing. More frequent and severe wildfires will worsen air quality and discourage tourism. Sea level rise could submerge small islands and coastal areas, while deforestation and its destructive impacts on biodiversity could make some tourist destinations less attractive.

Businesses and the financial market

Climate change and its impacts across the globe will threaten the bottom line of businesses in a variety of ways. The frequency and intensity of extreme weather, both in the U.S. and in other countries, can damage factories, supply chain operations and other infrastructure, and disrupt transport. Drought will make water more expensive, which will likely affect the cost of raw materials and production. Climate volatility may force companies to deal with uncertainty in the price of resources for production, energy transport and insurance. And some products could become obsolete or lose their market, such as equipment related to coal mining or skiing in an area that no longer has snow.

Whether in the U.S. or abroad, new regulations such as carbon pricing and subsidies that favor a competitor may affect a business’s bottom line. A company’s reputation could also suffer if it’s seen as doing something that hurts the environment. And investors and stakeholders are increasingly worried about the potential for “stranded assets”—those that become prematurely obsolete or fall out of favor, and must be recorded as a loss, such as fossil fuels that many believe should stay in the ground or real estate in a newly designated flood plain.

In 2018, the Carbon Disclosure Project asked more than 7,000 companies to assess their financial risks from climate change. The CDP found that, unless they took preemptive measures, 215 of the world’s 500 biggest companies could lose an estimated one trillion dollars due to climate change, beginning within five years. For example, Alphabet (Google’s parent company) will likely have to deal with rising cooling costs for its data centers. Hitachi Ltd.’s suppliers in Southeast Asia could be disrupted by increased rainfall and flooding. Some companies have already been impacted by climate change-related losses. Western Digital Technologies, maker of hard disks, suffered enormous losses in 2011 after flooding in Thailand disrupted its production.

remains of a home after a fire

PG&E became liable for fire damages and had to file for bankruptcy after its power lines sparked California’s deadliest wildfire last fall. And GE cost its investors $193 billion between 2015 and 2018 because it overestimated demand for natural gas and underestimated the transition to renewable energy.

“The movement away from fossil fuels will have a big impact which could affect banks and investment firms that have relationships with the fossil fuel industry,” said Heal. “For example, the stock market value of the U.S. coal industry in 2011 was something like $37 billion. Today it’s about $2 billion. So anybody that lent a lot of money to the coal industry 10 years back would be in trouble. One of the things worrying those in the financial field is that this could happen to the oil and gas industry. So people who have invested in them or lent money to them are potentially at risk.”

Climate change and opportunity

The good news is that climate change also presents business opportunities. The Carbon Disclosure Project reported that 225 of the world’s 500 biggest companies believe climate change could generate over $2.1 trillion in new business prospects.

man installing solar panels on roof

There will be more opportunity in clean energy, resilient and green buildings, and energy efficiency. Hybrid and electric vehicle production and the electric public transit sector are expected to grow. Construction of green infrastructure and more resilient coastal infrastructure could create many new jobs. Carbon capture and sequestration and uses of captured CO2  present opportunities, especially in light of the new 45Q federal tax credits. In addition, there are forward-thinking new businesses—witness the dramatic rise of Beyond Meat, the company selling plant-based burgers at Carl’s Jr. and A&W.

As the Arctic sea ice melts, new shipping lines will open up for trade, substantially cutting transport time. The warming Arctic could also offer more prospects for oil and gas drilling. Weather satellites and radar technology will be in demand to monitor extreme weather. Air conditioning and cooling products will be needed around the world. Biotech companies are developing new crops that are resistant to climate change impacts. Pharmaceutical companies expect increased demand for drugs to combat diseases such as malaria and dengue and other infectious diseases. And the market for military equipment and private security services may expand because the scarcity of resources could trigger civil unrest and conflict.

What individuals, businesses and governments can do to protect themselves

How much climate change will hurt the economy depends on what measures we take to adapt to and prepare for it.

Individuals

Individuals need to consider the implications of climate change when choosing where to spend and invest their money. And be aware that while a particular risk may not seem to be factored into prices yet, things could turn on a dime when the realization of risk sinks in, resulting in a massive redistribution of wealth. So it’s best not to buy or move to an area near wild lands, which have a higher risk of wildfires. Don’t move into a flood zone or buy real estate in an area that’s vulnerable to sea level rise. And in any case, purchase flood and fire insurance, and diversify your investments.

Individuals should also think about different opportunities in terms of new places that people are moving to. And, if possible, people who work outdoors in construction, agriculture or tourism should consider alternative jobs within the sector or new industries to work in.

Businesses and financial entities

Businesses need to scrutinize their operations carefully. “There’s a groundswell towards the view that any companies that fail to study their exposure to extreme weather and fail to disclose the types of vulnerabilities, including indirect ones, are going to have a hard time in the future,” said Horton. “Are companies looking at what’s coming down the road and making strategies to deal with it? I think investors are going to demand that and the companies that don’t do that are going to have trouble getting underwriting, getting infrastructure funded by the Moody’s of the world, and getting insurance.” He added that he’s seen a change in the last three or four years in what his students are demanding and believes that young people in the future will not work for companies that are not thinking about climate change.

Banks and funds need to analyze where their investments are and see if they are vulnerable to climate change. Have they invested in someone who has coastal property, or given a loan to a fossil fuel company or in agriculture operations that might be affected by climate change? Sixty-three percent of financial risk managers surveyed now believe climate change is a major concern. As a result, “The total value of funds that have integrated environmental, social and governance factors into their investment process has more than quadrupled since 2014, rising to $485 billion as of April,” reported the Wall Street Journal .

Governments

Governments should proactively think about the risks their communities face before disaster strikes.

raised infrastructure

They should be investing in resiliency measures such as hardening infrastructure, improving water resources, building redundancy into important systems, moving people out of harm’s way and improving health care services. “You want to do it before the disaster but you also need to be cognizant that the only time people will listen seems to be right after a disaster,” said Horton. “Those are also the times when money’s available to rebuild.”

Government leaders are currently debating whether the country can afford the Green New Deal (an ambitious plan to address climate change) or something like it. The question should be, ‘can we afford not to afford it?’ Nobel Prize-winning economist Joseph Stiglitz, a professor at Columbia University, wrote in an op ed , “We will pay for climate breakdown one way or another, so it makes sense to spend the money now to reduce emissions rather than wait until later to pay a lot more for the consequences… It’s a cliché, but it’s true: An ounce of prevention is worth a pound of cure.”

Related Posts

Ancient Ocean Sediments Reveal Analog to Human-Influenced Warming

Ancient Ocean Sediments Reveal Analog to Human-Influenced Warming

Air Conditioning Poses a Climate Conundrum

Air Conditioning Poses a Climate Conundrum

How Greenland’s Ice Holds Clues to Our Future

How Greenland’s Ice Holds Clues to Our Future

Banner for Climate Week NYC 2024

Columbia Climate School has once again been selected as university partner for Climate Week NYC, an annual convening of climate leaders to drive the transition, speed up progress and champion change. Join us for events and follow our coverage .

guest

Degrowth is the most effective solution. Eco-sufficiency and life quality are more important than profit maximization. Please read https://www.degrowth.info or https://en.wikipedia.org/wiki/Degrowth

abdulrahman

how os quality of life gonna go up when people have less resources from degrowth

theDude

Don’t state the obvious. You said the quite part out loud.

Don't talk sass

Well, many people will have the chance to grow and adapt, making this obvious statment stupid. Many have already died, and many more will, but we can eventually get better. I don’t have much faith though.

Stuart Scott

Hey there, this was a very informative and we’ll written article. Thank you kindly

Angela

Right. Helps a lot in an essay!

Anonymous

I used this for a essay and this helped a lot! Thanks!

Bradly Ginzards

Hello, This is a big problem economically and globally. Climate change has impacted us in so many ways.

Anomynous

https://www.cbsnews.com/video/climate-refugees-the-quest-for-a-haven-from-extreme-weather-events/#x

Jazmine Padilla

Is this all rights reserved? Can I use some info from here?

Matteo

why was this made, and how the hell does texas have enough buildings to cost 71 billion dollars in damages.

Peter griffin

because they built buildings

Jillian Ivy

To Renee Cho,

I first want to start off by saying thank you for sharing your knowledge of this subject with the world. It’s extremely important to share these types of ideas publicly, and it’s helpful when trying to formulate an opinion on this subject when you aren’t an expert on it.  I agree with your article. I think Climate change, if not dealt with, can have a bigger effect on our lives than we often think. Yes, the climate and earth would suffer, but so will our economy in the years leading up to the point of no return. The damage to the supply chain and factories, which you mentioned, is a huge deal. If our supply can’t withstand the strength of the demand in the future, then we will have more problems than just climate change. Because of the genera; nature of the market however, businesses will start to see that renewable energy is more profitable, and the market will start to shift. If fossil fuels become obsolete, companies wont run the risk of receiving a bad reputation for using them. I hope that this is what our economy will look like soon, instead of companies holding onto fossil fuels and other things that are harmful to our earth. They can’t make money if the world isn’t safe to make it on.  Another thing I found interesting is how instead of just focusing on what businesses need to do to mitigate this issue, you also target the individual consumer. Individuals play a big part in the market and economic health, so the choices they make can really make a difference in how climate change affects our economy.  Everyone needs to read this article, or articles like this; it’s crucial that you understand how not only the world is affected by this issue, but how you as an individual are affected as well. 

Baishali Deka

Can i use the above stated information for an article to be published in our college Magazine

shriya

This article is great! very informative can i use some of the content for my assignment?

Karl Mewa

All people must start to learn to control and reduce emission of greenhouse gases.

Katie

This was incredibly helpful, thank you!!

Sam

I like the article! it’s very descriptive.

Get the Columbia Climate School Newsletter

Joint Programs

MIT Global Change

Search form, the net environmental effects of carbon dioxide reduction policies, [ download ], abstract/summary:.

In response to the threat of global warming a variety of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane, nitrous oxide, nitrogen oxides, carbon monoxide, and sulfur oxides. When these additional effects are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all greenhouse-relevant gases should be included when evaluating CO2 reduction policies.

Other proposals which recognize the need to reduce emissions of all greenhouse gases have called for the reduction of a “CO2-equivalent" amount. Policymakers evaluate these policies by using a Global Warming Potential (GWP) which is an index that supposedly indicates the relative radiative power of a greenhouse gas with respect to CO2 . This method, however, is flawed, as calculation of the GWP depends critically on the lifetime of the gas as well as the radiative effect of CO2 which can change depending on the composition of the atmosphere. When analyzing the effect of gases on global warming, an atmospheric chemistry model which describes the interactions of all the gases should be used in place of the GWP. In this case, specification of future emissions of all greenhouse-relevant gases is also required. This thesis addresses these two problems by developing a model which forecasts emissions of all greenhouse-relevant gases. This emissions model uses the GREEN model as the underlying economic model and incorporates the emissions of greenhouse-relevant gases from activities in energy, agriculture, industry, and land use. The results of the model are then fed into an atmospheric chemistry model to evaluate the effect on warming.

The atmospheric chemistry model is used to compare the results of a reference case with a Toronto-type agreement. The thesis finds that including other greenhouse-relevant gases results in an additional decrease of 40% in warming as compared to when only CO2 is specified. Additional analyses are performed to illustrate the interaction between chemical species and the importance of including all greenhouse-relevant gases when evaluating global warming policies.

  • Student Dissertation or Thesis

Abstract/Summary: 

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Effects of global warming pose threats to Pacific island region

By Delphine Allaire

During the 53rd Pacific Islands Forum Leaders' Summit in Tonga which ran from 23-30 August 2024, the UN Secretary General once again called on the international community to address the plight of small island states, which are already vulnerable and yet the first to be threatened by rising sea levels and warmer waters. UN Secretary General, Antonio Guterres, preceded the Pope in travelling to Oceania when he went to Tonga for the Summit. Pope Francis will travel to Oceania from 6-9 September when he visits Papua New Guinea, a member of the 18 states making up the Pacific Islands Forum. The Pope will also travel to Singapore on 11 September for an official visit with one of the themes focusing on environmental protection. This is an important issue for urban planning and sustainability in the Southeast Asian city-state, which will welcome the Pope from 11 to 13 September.

Vulnerable island nations

In addition to this calendar convergence, the Holy See and the United Nations have long shared a concern about the vulnerability of the islands of the blue continent. At multilateral level, the two institutions are advocating the cancellation of debt owed by these countries, as well as increased participation by rich countries in the financing of ‘climate funds’ to compensate the Pacific States and help them adapt. In some cases, development aid has been replaced by aid for adaptation to climate change.

These measures are welcomed by Tamatoa Bambridge, an observer of Pacific island life and Director of Research at the CNRS (French National Centre for Scientific Research), based at the Centre for Island Studies and Environmental Observatories (Criobe) in Moorea, French Polynesia: "All these solutions are cumulative. None of them excludes the others. On the contrary, we need to combine several types of funding."

These medium- and long-term investments have the disadvantage of not being immediately noticed by the local populations. Yet the future is worrying for these inhabitants scattered across 35 million square kilometres of ocean. The natural resources of the Pacific's turquoise lagoons are under threat from warming water, "a long-term trend that has been exacerbated by the impact of human activity," and from distant swells linked to cyclones. 

The climatic phenomenon is becoming more and more frequent, leading some islands to lose land and others to gain it, observes Tamatoa Bambridge. The Pacific islands are particularly vulnerable: the average altitude is one to two metres above sea level, around 90% of the population lives less than five kilometres from the coast, and half of all infrastructure is less than 500 metres from the sea.

Climate change adaptation

Climate change adaptation is key to the response in these places. "Without it, heavy rainfall or major droughts, any extreme event will lead to an increase in communicable or non-communicable diseases, a reduction in food reserves, or at the very least the ability to grow food or extract it from the ocean," predicts the Polynesian researcher.

The islands' climate resilience is still inadequate due to a lack of funds, and relies on centuries-old wisdom. "We have traditional knowledge of how to read the weather and the sky, and how to anticipate changes in the weather," says Tamatoa Bambridge, warning against short-term solutions such as dam projects. Their construction is intended to compensate for rising sea levels, but they are causing a dangerous desilting of the coastline. "We are not necessarily trying to ensure that everyone can live three metres above sea level. But we are building town halls to cyclonic standards, to standards for distant swells, so that at least the entire population can take refuge there in the event of extreme events," says Tamatoa Bambridge.

Oceans linked together

During his visit to Papua New Guinea, a country suffering following a deadly landslide in which 2,000 people were buried last May, the Pope is expected to speak more broadly to the whole of the South Pacific about the safeguarding of Creation. "The Earth has a fever" and is "sick," the Pope says in his prayer intention for September, published on 30 August on the eve of the trip and devoted entirely to the victims of environmental disasters.

The ocean, a blue expanse that has no political or cultural borders says Pope Francis, has a special place in this protection. "One element common to the traditional societies of the Amazon, South Asia, and Oceania is that there is no distinction between nature and culture. Nature expresses itself through culture and, conversely, culture is part of nature," points out Tamatoa Bambridge, also noting that Austronesian languages have precisely “no word” for nature. In these Melanesian, Polynesian and Micronesian worlds of the South Pacific, the approach to the environment is totally holistic and genealogical, intrinsically linking land and sea to human societies. 

"The Oceanians have been mastering the oceans for the past 3,000 years, at a time when they were using their own measuring instruments, such as navigation by the stars. The ocean is seen as a unifying element, linking continents rather than separating them," stresses the Moorea-based researcher, certain that this cultural dimension of the ocean that brings people together has a role to play on an international scale. Like the Mediterranean, the Pacific is one of those prophetic places where the future of humanity is at stake.

Thank you for reading our article. You can keep up-to-date by subscribing to our daily newsletter. Just click here

Your contribution for a great mission:support us in bringing the Pope's words into every home

More upcoming events:

Listen to our podcasts

Listen to our podcasts

Subscribe to our newsletters

Subscribe to our newsletters

To get the latest news

Angelus

Papal audiences

Daily readings

Daily readings

Saint of the day

Saint of the day

Your contribution for a great mission

You need to be logged in to access this feature. Click “Confirm” to log in to your existing account or create a new account.

Become Membership Confirmation

You must purchase an AGU membership to complete this session. Click on confirm to purchase.

Leaving AGU

You are redirecting to an external site. Are you sure you want to continue?

We are experiencing difficulty processing your payment. Please do not refresh the page or submit again.

Contact our Member Service Center for help at [email protected] , or 800.966. 2481 (toll-free in North America), or +1 202.462.6900.

  • Leadership and Governance
  • Publish with AGU
  • Explore Meetings
  • Learn and Develop
  • Share and Advocate
  • College of Fellows
  • AGU Connect

Welcome to AGU's new digital experience

Learn more about our digital vision.

Check out current highlights for the new platform and what's coming in the future. We're continuously improving the experience with your feedback!

Important Short Cuts

Important links, interesting articles.

Seismic Sensors in Orbit

Snow blowing on top of mountain peaks

Position Statement on Climate Change

Society must address the growing climate crisis now.

Download the PDF

Immediate and coordinated actions to limit and adapt to human-caused climate change are needed to protect human and ecological health, economic well-being, and global security.

The Challenge

Human activities are changing Earth’s climate, causing increasingly disruptive societal and ecological impacts. Such impacts are creating hardships and suffering now, and they will continue to do so into the future - in ways expected as well as potentially unforeseen. To limit these impacts, the world’s nations have agreed to hold the increase in global average temperature to well below 2°C (3.6°F) above pre-industrial levels.

To achieve this goal, global society must promptly reduce its greenhouse gas emissions. According to the Intergovernmental Panel on Climate Change (IPCC), global carbon dioxide (CO2) emissions must reach net-zero by around 2070 to have a good chance of limiting warming to a 2° C increase and by about 2050 to achieve a more protective limit of a 1.5°C (2.7°F) increase. Either target will require a substantial near-term transition to carbon-neutral energy sources, adoption of more carbon-efficient food systems and land use practices, and enhanced removal of CO2 from the atmosphere through a combination of ecological and technological approaches.

Society must also prepare to cope with and adapt to the adverse impacts of climate change. Done strategically, efficiently, and equitably, the needed transformations provide a pathway toward greater prosperity and well-being, while inaction will prove very costly for humans and other life on the planet.

The Evidence

Over the past century, as a result of burning fossil fuels and other human activities, atmospheric concentrations of greenhouse gases—including CO2, methane, nitrous oxide, and halocarbons—have risen to levels unprecedented in at least the last 800,000 years. Extensive observations document that the global average surface temperature in the atmosphere and ocean has increased by about 1°C (1.8°F) from 1880 to 2018. The current decade is now the hottest in the history of modern civilization. Based on extensive scientific evidence, it is extremely likely that human activities, especially emissions of greenhouse gases, are the dominant cause of the observed warming since the mid-20th century. There is no alterative explanation supported by convincing evidence.

Many other changes related to heating have been documented: more frequent heat waves on land and in the ocean; reductions in Arctic sea ice, the Northern Hemisphere’s snow cover, the Greenland and West Antarctic ice sheets, and mountain glaciers; changes in the global water cycle, including intensifying

precipitation events; and rising sea levels. Greater CO2 concentrations in the atmosphere are also affecting the growth and nutritional value of land plants and are directly acidifying ocean waters.

The Predictions

Realistic and continually improving computer simulations of the global climate predict that global temperatures will continue to rise as a result of past and future greenhouse gas emissions, with growing risks to natural and human systems. The amount of warming predicted in the coming decades depends primarily on the choices society makes and how those choices affect future emissions.

Global average temperatures will only stabilize after CO2 emissions reach net-zero, which means that the amount humans emit into the atmosphere is matched by efforts to accelerate its removal by natural or technological means. Simulations demonstrate that limiting the overall temperature increase to 1.5°C, including the 1.0°C warming that has already occurred, requires achieving net zero CO2 emissions around 2050, sooner if warming reduces the ability for nature to absorb and retain carbon. Large reductions in emissions of other greenhouse gases, as well as increased removal of CO2 from the atmosphere, are also required. Even if global temperature is stabilized, sea level will continue to rise for hundreds of years, but at a much slower rate than if warming continued.

The Consequences

Human-caused climate change is occurring more rapidly than has been typical in Earth’s history, disrupting communities and ecosystems adapted to previous, relatively stable climatic conditions. The changing climate will increase heat-related deaths, various mental and physical illnesses, and some infectious diseases. It will accentuate hazards such as flooding, wildfire, and dryland water scarcity, and toxic algae. Economic disruption and additional health impacts will result from shifts in agricultural and fisheries productivity, diminished worker productivity, damages to critical infrastructure, and more severe weather disasters, including expected increases in drought and hurricane intensities. Economic or social disruption is likely to drive migration and compound risks of conflict and global insecurity. Climate change will continue to severely stress the world’s ecosystems, including threatened coral reefs, permafrost landscapes and the Arctic; decrease biodiversity; and cause extraordinary numbers of extinctions on land and in the oceans. The severity of these and other impacts will worsen with more warming.

Climate change is manifest in myriad ways that exacerbate many existing challenges, stressing every region of the world and every sector of the economy. Some populations, communities, regions, and ecosystems are especially vulnerable. As lower-income and other marginalized populations are likely to be more affected and generally have less capacity to adapt to changes, climate change is expected to worsen pre-existing inequalities.

The Needed Responses

Destructive consequences of global climate change can be moderated by taking prompt actions to use energy more efficiently, transition to energy sources and products and services that do not release greenhouse gases, implement existing and novel technologies and practices to remove and store CO2 from the atmosphere, and adapt to unavoidable changes. These actions must involve individuals, communities, businesses, governments, acting at local, regional, national, and global scales. Done smartly, those actions can yield significant economic and social benefits, including better human health and well-being, employment opportunities, more sustainably used resources, and conserved biodiversity. Enhanced CO2 removal from the atmosphere will be needed to achieve net-zero emissions. Other climate intervention approaches, such as solar radiation management, require cautious consideration of risks. Neither can substitute for deep cuts in emissions or the need for adaptation.

Effective climate policies will rely on innovative and responsive science and engineering to inform and weigh response options. Scientists and engineers must continue to engage with policy makers, communities, businesses, and the public to undertake solution-oriented research and analysis. Scientific institutions, including academia and governmental agencies, should expand and prioritize their support for research, application, and knowledge dissemination to address the climate crisis.

A position statement on climate change was previously adopted by the American Geophysical Union in December 1998; A new version was adopted December 2003; Revised and Reaffirmed December 2007, February 2012, August 2013, November 2019.

COMMENTS

  1. Global Warming Thesis Statement Ideas

    Global warming has spurred a wide variety of research projects to better understand - and more importantly, attempt to combat or reverse - global climate change and its impacts on our planet. Many different causes of global warming exist and these can provide a valid basis for a thesis statement.

  2. Global Warming Topics with Thesis Statement Suggestions

    Global Warming Topics with Thesis Statement Suggestions It is hard to close your eyes to the fact that the current state of our ecosystem is in danger. This problem is not only a burden for scientists and scholars but all of us as well. When students try to get in-depth knowledge of global warming and overall ecological problems worldwide, it helps governments implement new precautions and ...

  3. Understanding the Impact of Global Warming on the Environment

    1. The Effects of Global Warming on the Environment Introduction Hook: Start with a powerful statistic or fact about the rising global temperatures. Background: Provide a brief overview of global warming and its causes, such as greenhouse gas emissions. Thesis Statement: Introduce the idea that global warming has severe effects on the environment, which require immediate attention and action.

  4. Essay on Effects of Global Warming for Students and Children

    Global warming refers to climate change that causes an increase in the average of Earth's temperature. In this Essay on Effects of Global Warming will Discuss Causes, Effects, and Solutions of Global Warming.

  5. (PDF) Thesis on Global Warming

    Global warming can be caused with natural process and human induced as well. In order to mitigate effect of Global warming prevention on emission of green house gases on domestic and industrial ...

  6. Global Warming Essay: Causes, Effects, and Prevention

    This example global warming essay discusses the causes of this environmental change along with the effects of the warming of our planet and how to prevent it in the future.

  7. PDF A Thesis submitted to the Faculty of the Graduate School of Arts and

    THE ROAD AFTER PARIS: THE RELATIONSHIP BETWEEN CLIMATE CHANGE POLICY STRINGENCY AND ECONOMIC GROWTH AT THE COUNTRY LEVEL A Thesis submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Master of Public Policy in Public Policy

  8. What are the effects of global warming?

    What are the effects of global warming? One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers.

  9. A review of the global climate change impacts, adaptation, and

    Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

  10. Humans are causing global warming

    Natural changes in the Sun and Earth cannot explain today's global warming. Human activities are causing Earth to heat up in ways that are different from warm periods in the past.

  11. Climate change and ecosystems: threats, opportunities and solutions

    The rapid anthropogenic climate change that is being experienced in the early twenty-first century is intimately entwined with the health and functioning of the biosphere. Climate change is impacting ecosystems through changes in mean conditions and in ...

  12. Conclusion

    Global warming is one of the few scientific theories that makes us examine the whole basis of modern society. It is a theory that has politicians arguing, sets nations against each other, queries individual choices of lifestyle, and ultimately asks questions about humanity's relationship with the rest of the planet.

  13. How to write an effective climate change thesis statement

    Is global warming natural or an effect of human activities? To some scientists it is primarily the human activities that cause global warming.

  14. PDF Proposal for Thesis in Partial Fulfillment of Requirements for the

    Overview of various human perspectives of climate change, from the early sixteenth century to the modern research on human-caused climate change. Views have ranged from how humans and civilizations change climate, for example, by changing the landscape in America during the seventeenth and eighteenth centuries, to the role climate has on types and success of civilizations. Describes the ...

  15. Microsoft Word

    Through a qualitative analysis the author illustrates the connection between these three areas and shows how both energy efficiency, as a key policy measure, and the Buildings Sector, as the key recipient of such policies, can act together to significantly mitigate the effects of global warming and resulting climate change.

  16. 10 Big Findings from the 2023 IPCC Report on Climate Change

    The latest IPCC report details the devastating consequences of climate change and highlights pathways to avoid dangerous and irreversible risks from rising greenhouse gas emissions.

  17. This is how climate change could impact the global economy

    Impact of Climate Change The Swiss Re Institute's Climate Economics Index stress tests how global warming will affect 48 countries - representing 90% of the world economy - and ranks their climate resilience. Global temperature rises will negatively impact GDP in all regions by mid-century.

  18. EFFECTS OF GLOBAL WARMING

    The effects of global warming are already being felt across all areas of Australian life and these will continue to worsen if we do not act now to limit global warming to 1.5°C.

  19. Thesis Statement : Global Warming

    Thesis Statement: Global warming is a growing concern of scientists and researchers who believe that it is a serious problem for our planet. The concerns and research have also been questioned and have even been called myths. Millions of people find themselves affected by these weather pattern changes and are concerned for their futures. Activists on both sides of the argument are very ...

  20. How Climate Change Impacts the Economy

    Damage to other countries around the globe will also affect U.S. business through disruption in trade and supply chains. A recent report examined how climate change could affect 22 different sectors of the economy under two different scenarios: if global temperatures rose 2.8˚ C from pre-industrial levels by 2100, and if they increased by 4.5˚ C.

  21. The Net Environmental Effects of Carbon Dioxide Reduction Policies

    The thesis finds that including other greenhouse-relevant gases results in an additional decrease of 40% in warming as compared to when only CO2 is specified. Additional analyses are performed to illustrate the interaction between chemical species and the importance of including all greenhouse-relevant gases when evaluating global warming policies.

  22. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  23. Effects of global warming pose threats to Pacific island region

    The sparsely populated island nations of the Pacific emit less than .02% of the world's annual greenhouse gas emissions. Yet this collection of volcanic islands and coral atolls is the first to suffer the effects of global warming. The Pope will visit the region during his 45th apostolic journey.

  24. Position Statement on Climate Change

    According to the Intergovernmental Panel on Climate Change (IPCC), global carbon dioxide (CO2) emissions must reach net-zero by around 2070 to have a good chance of limiting warming to a 2° C increase and by about 2050 to achieve a more protective limit of a 1.5°C (2.7°F) increase. Either target will require a substantial near-term ...