banner-in1

10 Current Database Research Topic Ideas in 2024

Home Blog Database 10 Current Database Research Topic Ideas in 2024

Play icon

As we head towards the second half of 2024, the world of technology evolves at a rapid pace. With the rise of AI and blockchain, the demand for data, its management and the need for security increases rapidly. A logical consequence of these changes is the way fields like database security research topics and DBMS research have come up as the need of the hour.

With new technologies and techniques emerging day-by-day, staying up-to-date with the latest trends in database research topics is crucial. Whether you are a student, researcher, or industry professional, we recommend taking our Database Certification courses to stay current with the latest research topics in DBMS.

In this blog post, we will introduce you to 10 current database research topic ideas that are likely to be at the forefront of the field in 2024. From blockchain-based database systems to real-time data processing with in-memory databases, these topics offer a glimpse into the exciting future of database research.

So, get ready to dive into the exciting world of databases and discover the latest developments in database research topics of 2024!

Blurring the Lines between Blockchains and Database Systems 

The intersection of blockchain technology and database systems offers fertile new grounds to anyone interested in database research.

As blockchain gains popularity, many thesis topics in DBMS[1] are exploring ways to integrate both fields. This research will yield innovative solutions for data management. Here are 3 ways in which these two technologies are being combined to create powerful new solutions:

Immutable Databases: By leveraging blockchain technology, it’s possible to create databases to be immutable. Once data has been added to such a database, it cannot be modified or deleted. This is particularly useful in situations where data integrity is critical, such as in financial transactions or supply chain management.

Decentralized Databases: Blockchain technology enables the creation of decentralized databases. Here data is stored on a distributed network of computers rather than in a central location. This can help to improve data security and reduce the risk of data loss or corruption.

Smart Contracts: Smart contracts are self-executing contracts with the terms of the agreement between buyer and seller being directly written into lines of code. By leveraging blockchain technology, it is possible to create smart contracts that are stored and executed on a decentralized database, making it possible to automate a wide range of business processes.

Childhood Obesity: Data Management 

Childhood obesity is a growing public health concern, with rates of obesity among children and adolescents rising around the world. To address this issue, it’s crucial to have access to comprehensive data on childhood obesity. Analyzing information on prevalence, risk factors, and interventions is a popular research topic in DBMS these days.

Effective data management is essential for ensuring that this information is collected, stored, and analyzed in a way that is useful and actionable. This is one of the hottest DBMS research paper topics. In this section, we will explore the topic of childhood obesity data management.

A key challenge to childhood obesity data management is ensuring data consistency. This is difficult as various organizations have varied methods for measuring and defining obesity. For example:

Some may use body mass index (BMI) as a measure of obesity.

Others may use waist circumference or skinfold thickness.   Another challenge is ensuring data security and preventing unauthorized access. To protect the privacy and confidentiality of individuals, it is important to ensure appropriate safeguards are in place. This calls for database security research and appropriate application.

Application of Computer Database Technology in Marketing

Leveraging data and analytics allows businesses to gain a competitive advantage in this digitized world today. With the rising demand for data, the use of computer databases in marketing has gained prominence.

The application of database capabilities in marketing has really come into its own as one of the most popular and latest research topics in DBMS[2]. In this section, we will explore how computer database technology is being applied in marketing, and the benefits this research can offer.

Customer Segmentation: Storage and analysis of customer data makes it possible to gain valuable insights. It allows businesses to identify trends in customer behavior, preferences and demographics. This information can be utilized to create highly targeted customer segments. This is how businesses can tailor their marketing efforts to specific groups of customers.

Personalization: Computer databases can be used to store and analyze customer data in real-time. In this way, businesses can personalize their marketing and offers based on individual customer preferences. This can help increase engagement and loyalty among customers, thereby driving greater revenue for businesses.

Predictive Analytics: Advanced analytics techniques such as machine learning and predictive modeling can throw light on patterns in customer behavior. This can even be used to predict their future actions. This information can be used to create more targeted marketing campaigns, and to identify opportunities for cross-selling and upselling.

Database Technology in Sports Competition Information Management

Database technology has revolutionized the way in which sports competition information is managed and analyzed. With the increasing popularity of sports around the world, there is a growing need for effective data management systems that can collect, store, and analyze large volumes of relevant data. Thus, researching database technologies[3] is vital to streamlining operations, improving decision-making, and enhancing the overall quality of events.

Sports organizations can use database technology to collect and manage a wide range of competition-related data such as: 

Athlete and team information,

competition schedules and results,

performance metrics, and

spectator feedback.

Collating this data in a distributed database lets sports organizations easily analyze and derive valuable insights. This is emerging as a key DBMS research paper topic.

Database Technology for the Analysis of Spatio-temporal Data

Spatio-temporal data refers to data which has a geographic as well as a temporal component. Meteorological readings, GPS data, and social media content are prime examples of this diverse field. This data can provide valuable insights into patterns and trends across space and time. However, its multidimensional nature makes analysis be super challenging. It’s no surprise that this has become a hot topic for distributed database research[4].

In this section, we will explore how database technology is being used to analyze spatio-temporal data, and the benefits this research offers.

Data Storage and Retrieval: Spatio-temporal data tends to be very high-volume. Advances in database technology are needed to make storage, retrieval and consumption of such information more efficient. A solution to this problem will make such data more available. It will then be easily retrievable and usable by a variety of data analytics tools.

Spatial Indexing: Database technology can create spatial indexes to enable faster queries on spatio-temporal data. This allows analysts to quickly retrieve data for specific geographic locations or areas of interest, and to analyze trends across these areas.

Temporal Querying: Distributed database research can also enable analysts to analyze data over specific time periods. This facilitates the identification of patterns over time. Ultimately, this enhances our understanding of how these patterns evolve over various seasons.

Artificial Intelligence and Database Technology

Artificial intelligence (AI) is another sphere of technology that’s just waiting to be explored. It hints at a wealth of breakthroughs which can change the entire world. It’s unsurprising that the combination of AI with database technology is such a hot topic for database research papers[5] in modern times. 

By using AI to analyze data, organizations can identify patterns and relationships that might not be apparent through traditional data analysis methods. In this section, we will explore some of the ways in which AI and database technology are being used together. We’ll also discuss the benefits that this amalgamation can offer.

Predictive Analytics: By analyzing large volumes of organizational and business data, AI can generate predictive models to forecast outcomes. For example, AI can go through customer data stored in a database and predict who is most likely to make a purchase in the near future.

Natural Language Processing: All businesses have huge, untapped wells of valuable information in the form of customer feedback and social media posts. These types of data sources are unstructured, meaning they don’t follow rigid parameters. By using natural language processing (NLP) techniques, AI can extract insights from this data. This helps organizations understand customer sentiment, preferences and needs.

Anomaly Detection: AI can be used to analyze large volumes of data to identify anomalies and outliers. Then, a second round of analysis can be done to pinpoint potential problems or opportunities. For example, AI can analyze sensor data from manufacturing equipment and detect when equipment is operating outside of normal parameters.

Data Collection and Management Techniques of a Qualitative Research Plan

Any qualitative research calls for the collection and management of empirical data. A crucial part of the research process, this step benefits from good database management techniques. Let’s explore some thesis topics in database management systems[6] to ensure the success of a qualitative research plan.

Interviews: This is one of the most common methods of data collection in qualitative research. Interviews can be conducted in person, over the phone, or through video conferencing. A standardized interview guide ensures the data collected is reliable and accurate. Relational databases, with their inherent structure, aid in this process. They are a way to enforce structure onto the interviews’ answers.

Focus Groups: Focus groups involve gathering a small group of people to discuss a particular topic. These generate rich data by allowing participants to share their views in a group setting. It is important to select participants who have knowledge or experience related to the research topic.

Observations: Observations involve observing and recording events in a given setting. These can be conducted openly or covertly, depending on the research objective and setting. To ensure that the data collected is accurate, it is important to develop a detailed observation protocol that outlines what behaviors or events to observe, how to record data, and how to handle ethical issues.

Database Technology in Video Surveillance System 

Video surveillance systems are used to monitor and secure public spaces, workplaces, even homes. With the increasing demand for such systems, it’s important to have an efficient and reliable way to store, manage and analyze the data generated. This is where database topics for research paper [7] come in.

By using database technology in video surveillance systems, it is possible to store and manage large amounts of video data efficiently. Database management systems (DBMS) can be used to organize video data in a way that is easily searchable and retrievable. This is particularly important in cases where video footage is needed as evidence in criminal investigations or court cases.

In addition to storage and management, database technology can also be used to analyze video data. For example, machine learning algorithms can be applied to video data to identify patterns and anomalies that may indicate suspicious activity. This can help law enforcement agencies and security personnel to identify and respond to potential threats more quickly and effectively.

Application of Java Technology in Dynamic Web Database Technology 

Java technology has proven its flexibility, scalability, and ease of use over the decades. This makes it widely used in the development of dynamic web database applications. In this section, we will explore research topics in DBMS[8] which seek to apply Java technology in databases.

Java Server Pages (JSP): JSP is a Java technology that is used to create dynamic web pages that can interact with databases. It allows developers to embed Java code within HTML scripts, thereby enabling dynamic web pages. These can interact with databases in real-time, and aid in data collection and maintenance.

Java Servlets: Java Servlets are Java classes used to extend the functionality of web servers. They provide a way to handle incoming requests from web browsers and generate dynamic content that can interact with databases.

Java Database Connectivity (JDBC): JDBC is a Java API that provides a standard interface for accessing databases. It allows Java applications to connect to databases. It can SQL queries to enhance, modify or control the backend database. This enables developers to create dynamic web applications.

Online Multi Module Educational Administration System Based on Time Difference Database Technology 

With the widespread adoption of remote learning post-COVID, online educational systems are gaining popularity at a rapid pace. A ubiquitous challenge these systems face is managing multiple modules across different time zones. This is one of the latest research topics in database management systems[9].

Time difference database technology is designed to handle time zone differences in online systems. By leveraging this, it’s possible to create a multi-module educational administration system that can handle users from different parts of the world, with different time zones.

This type of system can be especially useful for online universities or other educational institutions that have a global reach:

It makes it possible to schedule classes, assignments and other activities based on the user's time zone, ensuring that everyone can participate in real-time.

In addition to managing time zones, a time difference database system can also help manage student data, course materials, grades, and other important information.

Why is it Important to Study Databases?

Databases are the backbone of many modern technologies and applications, making it essential for professionals in various fields to understand how they work. Whether you're a software developer, data analyst or a business owner, understanding databases is critical to success in today's world. Here are a few reasons why it is important to study databases and more database topics for research paper should be published:

Efficient Data Management

Databases enable the efficient storage, organization, and retrieval of data. By studying databases, you can learn how to design and implement effective data management systems that can help organizations store, analyze, and use data efficiently.

Improved Decision-Making

Data is essential for making informed decisions, and databases provide a reliable source of data for analysis. By understanding databases, you can learn how to retrieve and analyze data to inform business decisions, identify trends, and gain insights.

Career Opportunities

In today's digital age, many career paths require knowledge of databases. By studying databases, you can open up new career opportunities in software development, data analysis, database administration and related fields.

Needless to say, studying databases is essential for anyone who deals with data. Whether you're looking to start a new career or enhance your existing skills, studying databases is a critical step towards success in today's data-driven world.

Final Takeaways

In conclusion, as you are interested in database technology, we hope this blog has given you some insights into the latest research topics in the field. From blockchain to AI, from sports to marketing, there are a plethora of exciting database topics for research papers that will shape the future of database technology.

As technology continues to evolve, it is essential to stay up-to-date with the latest trends in the field of databases. Our curated KnowledgeHut Database Certification Courses will help you stay ahead of the curve and develop new skills.

We hope this blog has inspired you to explore the exciting world of database research in 2024. Stay curious and keep learning!

Frequently Asked Questions (FAQs)

There are several examples of databases, with the five most common ones being:

MySQL : An open-source RDBMS used commonly in web applications.

Microsoft SQL Server : A popular RDBMS used in enterprise environments.

Oracle : A trusted commercial RDBMS famous for its high-scalability and security.

MongoDB : A NoSQL document-oriented database optimized for storing large amounts of unstructured data.

PostgreSQL : An open-source RDBMS offering advanced features like high concurrency and support for multiple data types.

Structured Query Language (SQL) is a high-level language designed to communicate with relational databases. It’s not a database in and of itself. Rather, it’s a language used to create, modify, and retrieve data from relational databases such as MySQL and Oracle.

A primary key is a column (or a set of columns) that uniquely identifies each row in a table. In technical terms, the primary key is a unique identifier of records. It’s used as a reference to establish relationships between various tables.

Profile

Monica Gupta

I am Monica Gupta with 19+ years of experience in the field of Training and Development. I have done over 500 Corporate Trainings. I am currently working as a freelancer for several years. My core area of work is Java, C++, Angular, PHP, Python, VBA.

Avail your free 1:1 mentorship session.

Something went wrong

Upcoming Database Batches & Dates

NameDateFeeKnow more

Chat icon for mobile

Research topics

As more businesses realized that data, in all forms and sizes, is critical to making the best possible decisions, we see the continued growth of systems that support a massive volume of non-relational or unstructured forms of data. Our research focus is to develop new theories and algorithms of a novel multi-model database management system to manage both well-structured data and NoSQL data. Our approach will reduce integration issues, simplify operations, and eliminate migration issues between relational and NoSQL data.

A video to introduce Multi-model databases: Link

Selected papers:

Jiaheng Lu, Irena Holubova : Multi-model Databases: A New Journey to Handle the Variety of Data , ACM Computing Surveys 2019

Jiaheng Lu, Irena Holubova, Bogdan Cautis: Multi-model Databases and Tightly Integrated Polystores CIKM 2018 Tutorial

Jiaheng Lu, Irena Holubova: Multi-model Data Management: What's New and What's Next? EDBT 2017 Tutorial

Chao Zhang, Jiaheng Lu, Pengfei Xu, Yuxing Chen: UniBench: A Benchmark for Multi-model Database Management Systems. TPCTC 2018: 7-23

Data Topics

  • Data Architecture
  • Data Literacy
  • Data Science
  • Data Strategy
  • Data Modeling
  • Governance & Quality
  • Data Education
  • Enterprise Information Management
  • Information Management Articles

Database Management Trends in 2022

Historically, Database Management systems (DBMS) were simple software programs and associated hardware that allowed users to access data from different geographical locations. The system offers its users the ability to store data without concerns about structural changes, or the data’s physical location. Additionally, a Database Management system (DBMS) can set restrictions on the data being […]

research topics on database management system

Historically, Database Management systems (DBMS) were simple software programs and associated hardware that allowed users to access data from different geographical locations. The system offers its users the ability to store data without concerns about structural changes, or the data’s physical location. Additionally, a Database Management system (DBMS) can set restrictions on the data being used, and the services available to each user.

research topics on database management system

The coronavirus pandemic, with its emphasis on isolation, has accelerated the acceptance of online shopping and working remotely. Many small businesses have made the decision to digitize and are shifting to the cloud at an accelerated rate.

The market for Database Management systems is growing fast and, according to Research and Markets , the global DBMS market was estimated to have reached $63.9 trillion in 2020, and is projected to reach $142.7 trillion by 2027.

Increasingly, organizations are merging their data warehouses and data lakes into cloud storage systems. Shifting to the cloud requires a Database Management system (DBMS) for working with a broad range of new data formats.

Database Management trends in 2022 include:

Cloud-based DBMS

  • Automation and DBMS
  • Augmented DBMS
  • Increased security
  • In-memory databases
  • Graph databases
  • Open source DBMSs
  • Databases-as-a-service

These trends are based, to a large extent, on businesses wanting to provide access to their products and services over the internet, with the goal of maintaining (or increasing) profits during the pandemic.

The Gartner report The Future of the DBMS Market Is Cloud predicts the use of cloud-based DBMSs will increase. The market for Database Management systems is being driven increasingly by cloud services, and no longer by on-premise systems. Certainly, there are large organizations still using on-premises DBMS solutions, however, they are combining it with a cloud-based DBMS and using a “hybrid” approach .

The choice of using a cloud-based DBMS service is being supported, in part, by a shift toward using software-as-a-service applications. This is a very reasonable alternative to the upfront expenses required for deploying an on-premise Data Management system. Improved data sharing, improved data integration, and data security are also reasons for using a cloud-based Database Management system.

Database Management Trends & Automated Services

Automated services can help streamline the process of Database Management. An automated DBMS can help significantly in sifting through the massive amounts of data generated by eCommerce, mobile applications, customer relationship management, and social media. As a consequence, organizations are experiencing enormous surges in the amounts of data being stored. These massive amounts of data can be used to the business’ advantage, providing useful insights about their customers and products.

Data automation supports the uploading, handling, and processing of data by automated tools, rather than performing the tasks manually. Automating data processing improves efficiency by working much faster than could be done manually, and by eliminating human error.

Having automation as part of the data analytics process allows researchers to focus on analyzing the data instead preparing it. Automation also helps improve the integration of data from multiple data sources to a single one. Examples of DBMS automation that is used on a daily basis include:

  • Customer support
  • Employee analytics
  • Purchase order automation
  • Desk support
  • Scheduling meetings

DBMS automation is also being used to provide security, data integration, and Data Governance. Most organizations must meet several compliance requirements, and DBMS automation helps to meet them. The GDPR, for instance, requires user data be anonymous and used for statistical purposes before it is shared with external partners, and this can be done with automated services.

Augmented Data Management (ADM)

Augmented Data Management uses machine learning and artificial intelligence to automate Data Management tasks, such as spotting anomalies within large amounts of data and resolving Data Quality issues.

The AI models are specifically designed to perform Data Management tasks, taking less time and making fewer errors. Todd Ramlin, a manager of Cable Compare, in describing the benefits of augmented Data Management, said,

“Historically, data scientists and engineers have spent the majority of their time manually accessing, preparing, and managing data, but Augmented Data Management is changing that. ADM uses artificial intelligence and machine learning to automate manual tasks in Data Management. It simplifies, optimizes, and automates operations in Data Quality, Metadata Management, Master Data Management, and Database Management systems. AI/ML can offer smart recommendations based on pre-learned models of solutions to specific data tasks. The automation of manual tasks will lead to increased productivity and better data outcomes.”

Data Security (and Avoiding Data Breaches)

There have been several high-profile data breaches in the last year. For example, LinkedIn was breached in June 2021, resulting in 700 million users having their information sold online. In September, the retailer Neiman Marcus was breached, with 4.8 million customers being affected. In October of 2021, it was announced the information of 1.5 billion Facebook users was put up for sale in a hacker’s forum. And those are just a few of the hundreds of data breaches taking place in 2021. In the state of Washington, the number of known breaches went up from 220 last year to 280 in 2021.

Security has always been a consideration for database administrators , but the recent breaches have made it a primary concern. As a result, increased database security has become a trending issue.

In-Memory Databases

In-memory databases are gaining popularity because they respond faster than traditional systems. An in-memory database (IMDB) eliminates the disk drive, and instead stores data in the computer’s main memory – its random access memory or RAM. This tactic reduces response times.

The lowered response times is made possible because there is no need for translation and caching. The data being used remains in the same form as when it arrived, and in the same form as the application working with it. These databases are commonly used by applications that depend on rapid response times and offer real-time Data Management. The industries operating and benefitting from in-memory databases include banking, travel, gaming, and telecommunications.

The Graph Database

Graph databases provide an excellent way to establish and research relationships in a quick and easy way. They use nodes and edges to form data relationships (nodes represent entities, and edges represent their relationships). Graph databases are designed to assign the relationship between data entities with the same importance the data receives. The design results in only the data which is needed being accessed, while unnecessary data remains untouched, making data retrieval more efficient.

Currently, graph databases are being used with network and IT management. They have been used for accessing social media and providing business intelligence, and for finding anomalies and enhancing security. More recently, graph databases have started being used successfully with:

  • Network management
  • Telecommunications
  • Impact analysis
  • Data center and IT asset management
  • Cloud platform management

Open Source Databases

Ten years ago, “open source” Database Management systems were not as commonly used as they are now. They are now used by 7% of the market. Open source technologies generally evolve and develop quickly, and this includes databases. Open source technologies are typically designed to minimize the barriers of adoption, and are extremely attractive to apps developers working with cloud-native platforms.

Gartner has predicted that by 2022, over 70% of the new in-house applications created will be developed using an open source DBMS (OSDBMS), or a cloud-based OSDBMS platform-as-a-service. Open source has shown itself to be a successful method for tapping into creativity and problem-solving skills. It has been used to develop and distribute useful business-critical software, and its use will continue to grow.

The Database-as-a-Service

Generally speaking, in the past databases were not designed to work with microservices. Databases were normally monolithic. Monolithic architecture is the traditional way of developing applications. Monolithic software is developed as a single, indivisible unit. Monolithic applications typically lack modularity and use one large code base.

The Database Management trend of using databases-as-a-service is based on the behavior of development teams designing and building applications, while using a microservice. When an application “interacts with a database,” the data is shared by all the application’s components.

With a microservices app, however, the data is not shared, but decentralized. Each microservice is autonomous and comes with its own private data storage, relevant to its functionality. One service cannot modify the data stored inside another service’s database. This creates a conflict for integrating microservices with a DBMS.   

Fortunately, many new database offerings (primarily NoSQL vendors like AWS DynamoDB and MongoDB) support the flexibility, redundancy, and scalability requirements, and the serverless architecture pattern needed for microservices .

Database Management Trends and Evolution

Until recently, DBMSs have been considered consistent, trustworthy structures that offered reliability without drama. However, with the pandemic acting as an accelerant, databases are evolving to process data more efficiently, while simultaneously becoming more intelligent. To access this evolution, and embrace the economic benefits offered by the cloud, businesses are increasingly shifting to cloud databases.

Currently, a large part of the DBMS market’s growth is being driven by organizations moving their Database Management systems to the cloud, which provides faster integration and configuration. Additionally, improved security protocols and superior tools have made remote work a more reasonable option, and has had significant impact on the market’s current growth. The increasing number of demands being made on DBMSs – and the increasing number of solutions – makes research a key step in selecting a new Database Management system.

Image used under license from Shutterstock.com

Leave a Reply Cancel reply

You must be logged in to post a comment.

CS 764 Topics in Database Management Systems

This course covers a number of advanced topics in the development of database management systems (DBMS) and the modern applications of databases. The topics discussed include query processing and optimization, advanced access methods, advanced concurrency control and recovery, parallel and distributed data systems, cloud computing for data platforms, and data processing with emerging hardware. The course material will be drawn from a number of papers in the database literature. We will cover one paper per lecture. All students are expected to read the paper before coming to the lecture.

Prerequisites: CS 564 or equivalent. If you have concerns about meeting the prerequisties, please contact the instructor.

  • Red Book : Readings in Database Systems (5th edition) - edited by Bailis, Hellerstein, and Stonebraker.
  • Cow Book : Database Management Systems (3rd edition) - by Raghu Ramakrishnan and Johannes Gehrke, McGraw Hill, 2003.

Lecture Format: Each lecture focuses on a classic or modern research paper. Students will read the paper and submit a review to https://wisc-cs764-f22.hotcrp.com before the lecture starts. Here is a sample review for the paper on join processing.

Course projects: A big component of this course is a research project. For the project, you pick a topic in the area of data management systems, and explore it in depth. Here are lists of suggested project topics created in 2020 , 2021 , and 2022 ; but you are encouraged to select a project outside of the list. The course project is a group project, and each group must be of size 2-4. Please start looking for project partners right away. The course project will include a project proposal, a short presentation at the end of the semester, and a final project report. Here are three sample projects from previous years ( sample1 , sample2 , sample3 ). The presentations are organized as a workshop. DAWN 2019 to have an idea of what it looks like. --> The project has the following deadlines:

  • Proposal due: Oct. 24
  • Presentation: Dec. 12 & 14
  • Paper submission: Dec. 19
  • CloudLab: https://www.cloudlab.us/signup.php?pid=NextGenDB (project name: NextGenDB)
  • Chameleon: https://www.chameleoncloud.org (project name: ngdb)
  • Paper review: 15%
  • Project proposal: 10%
  • Project presentation: 10%
  • Project final report: 30%
--> --> --> -->
Lec# Date Topic Reading Slides
1 Wed 9/7 Introduction None ( )
2 Mon 9/12 Join Leonard Shapiro, . ACM Transactions on Database Systems, 1986
[optional] Laura Haas, et al., . JVLDB, 1997
[optional] Jaeyoung Do, Jignesh Patel, . DaMoN, 2009
( )
3 Wed 9/14 Radix Join Peter Boncz, et al., . VLDB, 1999
[optional] Spyros Blanas, et al. .SIGMOD, 2011
( )
4 Mon 9/19 Buffer Management Hong-Tai Chou, David DeWitt, . Algorithmica, 1986
[optional] Jim Gray, Gianfranco R. Putzolu, . SIGMOD, 1987
[optional] Alexander van Renen, et al., . SIGMOD, 2018
( )
5 Wed 9/21 Modern Buffer Management Viktor Leis, et al., . ICDE 2018
[optional] Justin DeBrabant, et al., . VLDB, 2013
[optional] Ahmed Eldawy, et al., . VLDB 2014
( )
6 Mon 9/26 Query Optimization Patricia G. Selinger, et al., . SIGMOD, 1979
[optional] Surajit Chaudhuri, . PODS, 1998
( )
7 Wed 9/28 Column Store Mike Stonebraker, et al. , VLDB 2005
[optional] Daniel Abadi, et al., , SIGMOD 2008
( )
8 Mon 10/3 Parallel Database David DeWitt, Jim Gray, . Communications of the ACM, 1992
[optional] Robert Epstein, et al., . SIGMOD, 1978
( )
Wed 9/22 Query Optimization-2 Surajit Chaudhuri, . PODS 1998.
. VLDB 1990.
9 Wed 10/5 Granularity of Locks Jim Gray, et al., . Modelling in Data Base Management Systems, 1976
( )
10 Mon 10/10 Isolation Hal Berenson, et al., . SIGMOD Record, 1995
( )
11 Wed 10/12 Guest lecture from PingCAP : The present and future of TiDB
: Ed will present TiDB's architecture and its architecture evolution philosophy, how TiDB answers the challenges brought by OLTP/OLAP/HTAP workloads in the era of cloud computing.
: Ed Huang is the co-founder & CTO of PingCAP, a distributed system expert, executive member of CCF Database Committee, Open Source Development Committee and Big Data Committee. He is an active open source enthusiast and open source software author, whose representative work includes Codis, a distributed Redis caching solution, and TiDB, a distributed relational database. He is one of the "Top 10 Outstanding Contributors to Open Source in China in 2020" and one of the "OSCAR Open Source Vanguards". His first-author paper, TiDB: A Raft-based HTAP Database, is the first paper in the industry on the Raft-based implementation of a real-time HTAP distributed database.
: 2:30-3:30pm, room CS 4310
12 Mon 10/17 Optimistic CC H. T. Kung, John T. Robinson, . ACM Transactions on Database Systems, 1981
[optional] Per-Ake Larson, et al., . VLDB, 2011
13 Wed 10/19 Modern OCC Stephen Tu, et al., . SOSP, 2013
[optional] Xiangyao Yu, et al., . SIGMOD, 2016
( )
14 Mon 10/24 Guest Lecture from Oracle : Dream the Stream : High Velocity Event Processing with a Converged Database
: Event stream processing is a rapidly growing category of workloads including IoT, Timeseries, Clickstream, Quality Control, Security, Auditing, Metrics, and Monitoring, etc. Analysts estimate the market to grow to $4B USD by 2027! One industry trend has been to use purpose-built stream processing engines for these workloads. This approach, however, sacrifices most of the advantages of an industrial-strength database platform. In this talk, we'll discuss the key aspects of streaming workloads and the requirements of effective stream processing engines, and then show how the many capabilities of the Oracle Database, such as Native JSON support, RAC, Parallel Query, ILM (Information Lifecycle Management) Policies, In-Memory Columnar processing and Advanced Analytics, come together to provide an ideal streaming architecture on a converged database.
: Shasank Chavan is the Vice President of the Data and In-Memory Technologies group at Oracle. He leads a team of brilliant engineers in the Database organization who develop customer-facing, performance-critical features for an In-Memory Columnar Store which, as Larry Ellison proclaimed, "processes data at ungodly speeds". His team is currently building Oracle's next-generation, highly distributed, data storage engine that powers the cloud. Shasank earned his BS/MS in Computer Science at the University of California, San Diego. He has accumulated 30+ patents over a span of 23 years working on systems software technology.
( )
15 Wed 10/26 Blink Tree Philip Lehman, S. Bing Yao, . ACM Transactions on Database Systems, 1981
[optional] Viktor Leis, et al. . IEEE Data Eng. Bull. 2019
( )
16 Mon 10/31 Adaptive Radix Tree Viktor Leis, et al., . ICDE, 2013
[optional] Yandong Mao, et al., . EuroSys, 2012
( )
17 Wed 11/2 ARIES C. Mohan, et al. . ACM Transactions on Database Systems, 1992
[optional] Philip Bernstein, et al., . Addison-wesley, 1987
( )
18 Mon 11/7 Exam review , --> , , , -->
19 Wed 11/9 Exam
20 Mon 11/14 Two-Phase Commit C. Mohan, et al., . ACM Transactions on Database Systems, 1986 . arXiv 2102.10185, 2021 --> ( )
Mon 11/14 Replication Jim Gray, et al., . SIGMOD, 1996
21 Wed 11/16 Cornus Zhihan Guo, et al., . arXiv 2102.10185, 2022
[optional] Gray, Jim, and Leslie Lamport. ACM Transactions on Database Systems (TODS) 31.1 (2006): 133-160.
( )
Mon 11/21 Deterministic DBMS Yi Lu, et al., . VLDB, 2020
[optional] Alexander Thomson, et al., . SIGMOD, 2012
Mon 11/21 HTAP Adam Prout, et al. . SIGMOD 2022
[optional] Elena Milkai, et al. . SIGMOD 2022
23 Wed 11/23 Project Meetings Each group meets with the instructor to discuss the final project.
Mon 11/28 Cloud OLTP Donald Kossmann, et al., . SIGMOD, 2010
[optional] Matthias Brantner, et al., . SIGMOD, 2008
24 Mon 11/28 Amazon Aurora Alexandre Verbitski, et al., . SIGMOD, 2017
[optional] Panagiotis Antonopoulos, et al., . SIGMOD, 2019
( )
25 Wed 11/30 Snowflake Benoit Dageville, et al., . SIGMOD, 2016
[optional] Midhul Vuppalapati, et al., . NSDI, 2020
( )
26 Mon 12/5 Pushdown DBMS Yifei Yang, et al., . VLDB, 2021
[optional] Xiangyao Yu, et al., . ICDE, 2020
( )
27 Wed 12/7 GPU Database Anil Shanbhag, et al., . SIGMOD, 2020
[optional] Anil Shanbhag, et al. . SIGMOD, 2022
[optional] Bobbi Yogatama, et al. . VLDB 2022
( )
28 Mon 12/12 DAWN Workshop
29 Wed 12/14 DAWN Workshop
  • Bibliography
  • More Referencing guides Blog Automated transliteration Relevant bibliographies by topics
  • Automated transliteration
  • Relevant bibliographies by topics
  • Referencing guides

Advances in database systems education: Methods, tools, curricula, and way forward

Muhammad ishaq.

1 Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan

2 Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

3 Department of Computer Science, University of Management and Technology, Lahore, Pakistan

Muhammad Shoaib Farooq

Muhammad faraz manzoor.

4 Department of Computer Science, Lahore Garrison University, Lahore, Pakistan

Uzma Farooq

Kamran abid.

5 Department of Electrical Engineering, University of the Punjab, Lahore, Pakistan

Mamoun Abu Helou

6 Faculty of Information Technology, Al Istiqlal University, Jericho, Palestine

Associated Data

Not Applicable.

Fundamentals of Database Systems is a core course in computing disciplines as almost all small, medium, large, or enterprise systems essentially require data storage component. Database System Education (DSE) provides the foundation as well as advanced concepts in the area of data modeling and its implementation. The first course in DSE holds a pivotal role in developing students’ interest in this area. Over the years, the researchers have devised several different tools and methods to teach this course effectively, and have also been revisiting the curricula for database systems education. In this study a Systematic Literature Review (SLR) is presented that distills the existing literature pertaining to the DSE to discuss these three perspectives for the first course in database systems. Whereby, this SLR also discusses how the developed teaching and learning assistant tools, teaching and assessment methods and database curricula have evolved over the years due to rapid change in database technology. To this end, more than 65 articles related to DSE published between 1995 and 2022 have been shortlisted through a structured mechanism and have been reviewed to find the answers of the aforementioned objectives. The article also provides useful guidelines to the instructors, and discusses ideas to extend this research from several perspectives. To the best of our knowledge, this is the first research work that presents a broader review about the research conducted in the area of DSE.

Introduction

Database systems play a pivotal role in the successful implementation of the information systems to ensure the smooth running of many different organizations and companies (Etemad & Küpçü, 2018 ; Morien, 2006 ). Therefore, at least one course about the fundamentals of database systems is taught in every computing and information systems degree (Nagataki et al., 2013 ). Database System Education (DSE) is concerned with different aspects of data management while developing software (Park et al., 2017 ). The IEEE/ACM computing curricula guidelines endorse 30–50 dedicated hours for teaching fundamentals of design and implementation of database systems so as to build a very strong theoretical and practical understanding of the DSE topics (Cvetanovic et al., 2010 ).

Practically, most of the universities offer one user-oriented course at undergraduate level that covers topics related to the data modeling and design, querying, and a limited number of hours on theory (Conklin & Heinrichs, 2005 ; Robbert & Ricardo, 2003 ), where it is often debatable whether to utilize a design-first or query-first approach. Furthermore, in order to update the course contents, some recent trends, including big data and the notion of NoSQL should also be introduced in this basic course (Dietrich et al., 2008 ; Garcia-Molina, 2008 ). Whereas, the graduate course is more theoretical and includes topics related to DB architecture, transactions, concurrency, reliability, distribution, parallelism, replication, query optimization, along with some specialized classes.

Researchers have designed a variety of tools for making different concepts of introductory database course more interesting and easier to teach and learn interactively (Brusilovsky et al., 2010 ) either using visual support (Nagataki et al., 2013 ), or with the help of gamification (Fisher & Khine, 2006 ). Similarly, the instructors have been improvising different methods to teach (Abid et al., 2015 ; Domínguez & Jaime, 2010 ) and evaluate (Kawash et al., 2020 ) this theoretical and practical course. Also, the emerging and hot topics such as cloud computing and big data has also created the need to revise the curriculum and methods to teach DSE (Manzoor et al., 2020 ).

The research in database systems education has evolved over the years with respect to modern contents influenced by technological advancements, supportive tools to engage the learners for better learning, and improvisations in teaching and assessment methods. Particularly, in recent years there is a shift from self-describing data-driven systems to a problem-driven paradigm that is the bottom-up approach where data exists before being designed. This mainly relies on scientific, quantitative, and empirical methods for building models, while pushing the boundaries of typical data management by involving mathematics, statistics, data mining, and machine learning, thus opening a multidisciplinary perspective. Hence, it is important to devote a few lectures to introducing the relevance of such advance topics.

Researchers have provided useful review articles on other areas including Introductory Programming Language (Mehmood et al., 2020 ), use of gamification (Obaid et al., 2020 ), research trends in the use of enterprise service bus (Aziz et al., 2020 ), and the role of IoT in agriculture (Farooq et al., 2019 , 2020 ) However, to the best of our knowledge, no such study was found in the area of database systems education. Therefore, this study discusses research work published in different areas of database systems education involving curricula, tools, and approaches that have been proposed to teach an introductory course on database systems in an effective manner. The rest of the article has been structured in the following manner: Sect.  2 presents related work and provides a comparison of the related surveys with this study. Section  3 presents the research methodology for this study. Section  4 analyses the major findings of the literature reviewed in this research and categorizes it into different important aspects. Section  5 represents advices for the instructors and future directions. Lastly, Sect.  6 concludes the article.

Related work

Systematic Literature Reviews have been found to be a very useful artifact for covering and understanding a domain. A number of interesting review studies have been found in different fields (Farooq et al., 2021 ; Ishaq et al., 2021 ). Review articles are generally categorized into narrative or traditional reviews (Abid et al., 2016 ; Ramzan et al., 2019 ), systematic literature review (Naeem et al., 2020 ) and meta reviews or mapping study (Aria & Cuccurullo, 2017 ; Cobo et al., 2012 ; Tehseen et al., 2020 ). This study presents a systematic literature review on database system education.

The database systems education has been discussed from many different perspectives which include teaching and learning methods, curriculum development, and the facilitation of instructors and students by developing different tools. For instance, a number of research articles have been published focusing on developing tools for teaching database systems course (Abut & Ozturk, 1997 ; Connolly et al., 2005 ; Pahl et al., 2004 ). Furthermore, few authors have evaluated the DSE tools by conducting surveys and performing empirical experiments so as to gauge the effectiveness of these tools and their degree of acceptance among important stakeholders, teachers and students (Brusilovsky et al., 2010 ; Nelson & Fatimazahra, 2010 ). On the other hand, some case studies have also been discussed to evaluate the effectiveness of the improvised approaches and developed tools. For example, Regueras et al. ( 2007 ) presented a case study using the QUEST system, in which e-learning strategies are used to teach the database course at undergraduate level, while, Myers and Skinner ( 1997 ) identified the conflicts that arise when theories in text books regarding the development of databases do not work on specific applications.

Another important facet of DSE research focuses on the curriculum design and evolution for database systems, whereby (Alrumaih, 2016 ; Bhogal et al., 2012 ; Cvetanovic et al., 2010 ; Sahami et al., 2011 ) have proposed solutions for improvements in database curriculum for the better understanding of DSE among the students, while also keeping the evolving technology into the perspective. Similarly, Mingyu et al. ( 2017 ) have shared their experience in reforming the DSE curriculum by adding topics related to Big Data. A few authors have also developed and evaluated different tools to help the instructors teaching DSE.

There are further studies which focus on different aspects including specialized tools for specific topics in DSE (Mcintyre et al, 1995 ; Nelson & Fatimazahra, 2010 ). For instance, Mcintyre et al. ( 1995 ) conducted a survey about using state of the art software tools to teach advanced relational database design courses at Cleveland State University. However, the authors did not discuss the DSE curricula and pedagogy in their study. Similarly, a review has been conducted by Nelson and Fatimazahra ( 2010 ) to highlight the fact that the understanding of basic knowledge of database is important for students of the computer science domain as well as those belonging to other domains. They highlighted the issues encountered while teaching the database course in universities and suggested the instructors investigate these difficulties so as to make this course more effective for the students. Although authors have discussed and analyzed the tools to teach database, the tools are yet to be categorized according to different methods and research types within DSE. There also exists an interesting systematic mapping study by Taipalus and Seppänen ( 2020 ) that focuses on teaching SQL which is a specific topic of DSE. Whereby, they categorized the selected primary studies into six categories based on their research types. They utilized directed content analysis, such as, student errors in query formulation, characteristics and presentation of the exercise database, specific or non-specific teaching approach suggestions, patterns and visualization, and easing teacher workload.

Another relevant study that focuses on collaborative learning techniques to teach the database course has been conducted by Martin et al. ( 2013 ) This research discusses collaborative learning techniques and adapted it for the introductory database course at the Barcelona School of Informatics. The motive of the authors was to introduce active learning methods to improve learning and encourage the acquisition of competence. However, the focus of the study was only on a few methods for teaching the course of database systems, while other important perspectives, including database curricula, and tools for teaching DSE were not discussed in this study.

The above discussion shows that a considerable amount of research work has been conducted in the field of DSE to propose various teaching methods; develop and test different supportive tools, techniques, and strategies; and to improve the curricula for DSE. However, to the best of our knowledge, there is no study that puts all these relevant and pertinent aspects together while also classifying and discussing the supporting methods, and techniques. This review is considerably different from previous studies. Table ​ Table1 1 highlights the differences between this study and other relevant studies in the field of DSE using ✓ and – symbol reflecting "included" and "not included" respectively. Therefore, this study aims to conduct a systematic mapping study on DSE that focuses on compiling, classifying, and discussing the existing work related to pedagogy, supporting tools, and curricula.

Comparison with other related research articles

Study(Mcintyre et al., )(Myers & Skinner, )(Beecham et al., )(Dietrich et al., )(Regueras et al., )(Nelson & Fatimazahra, )(Martin et al., )(Abbasi et al., )(Luxton-Reilly et al., )(Taipalus & Seppänen, )This article
FocusDatabaseDatabaseSoftware EngineeringDatabaseDatabaseDatabaseDatabaseOOPProgrammingData BaseDatabase System
Research Types Classifications
Teaching Methods
Tools to aid teaching -
Curricula considered
Evolution
Year19951997200820082009201520132017201820202022

Research methodology

In order to preserve the principal aim of this study, which is to review the research conducted in the area of database systems education, a piece of advice has been collected from existing methods described in various studies (Elberzhager et al., 2012 ; Keele et al., 2007 ; Mushtaq et al., 2017 ) to search for the relevant papers. Thus, proper research objectives were formulated, and based on them appropriate research questions and search strategy were formulated as shown in Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig1_HTML.jpg

Research objectives

The Following are the research objectives of this study:

  • i. To find high quality research work in DSE.
  • ii. To categorize different aspects of DSE covered by other researchers in the field.
  • iii. To provide a thorough discussion of the existing work in this study to provide useful information in the form of evolution, teaching guidelines, and future research directions of the instructors.

Research questions

In order to fulfill the research objectives, some relevant research questions have been formulated. These questions along with their motivations have been presented in Table ​ Table2 2 .

Study selection results

NoResearch questionsMotivations
RQ1What are the developments in DSE with respect to tools, methods, and curriculum?

- Identify focal areas of research in DSE

- Discuss the work done in each area

RQ2How the research in DSE evolved in past 25 years?- Discuss the focus of research in different time spans while mapping it onto the technological advancement

Search strategy

The Following search string used to find relevant articles to conduct this study. “Database” AND (“System” OR “Management”) AND (“Education*” OR “Train*” OR “Tech*” OR “Learn*” OR “Guide*” OR “Curricul*”).

Articles have been taken from different sources i.e. IEEE, Springer, ACM, Science Direct and other well-known journals and conferences such as Wiley Online Library, PLOS and ArXiv. The planning for search to find the primary study in the field of DSE is a vital task.

Study selection

A total of 29,370 initial studies were found. These articles went through a selection process, and two authors were designated to shortlist the articles based on the defined inclusion criteria as shown in Fig.  2 . Their conflicts were resolved by involving a third author; while the inclusion/exclusion criteria were also refined after resolving the conflicts as shown in Table ​ Table3. 3 . Cohen’s Kappa coefficient 0.89 was observed between the two authors who selected the articles, which reflects almost perfect agreement between them (Landis & Koch, 1977 ). While, the number of papers in different stages of the selection process for all involved portals has been presented in Table ​ Table4 4 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig2_HTML.jpg

Selection criteria

ICInclusion criteria
IC 1The study related to the database and education
IC 2The years of research publication must be from 1995 to 2022
IC 3Only full length papers are included
IC 4Research papers written in English language are included
ECExclusion criteria
EC1Incomplete papers, i.e., presentation, posters or essay
EC2Research articles without abstract
EC3Research articles other than English language
EC4Papers that do not include education as their primary focus
PhaseProcessSelection stageIEEESpringerACMElsevierOthersTotal
1SearchSearch string500531210,8025696704529,370
2ScreeningTitle15312111513387609
3ScreeningAbstract4523292140158
4ScreeningFull text1012023770

Title based search: Papers that are irrelevant based on their title are manually excluded in the first stage. At this stage, there was a large portion of irrelevant papers. Only 609 papers remained after this stage.

Abstract based search: At this stage, abstracts of the selected papers in the previous stage are studied and the papers are categorized for the analysis along with research approach. After this stage only 152 papers were left.

Full text based analysis: Empirical quality of the selected articles in the previous stage is evaluated at this stage. The analysis of full text of the article has been conducted. The total of 70 papers were extracted from 152 papers for primary study. Following questions are defined for the conduction of final data extraction.

Quality assessment criteria

Following are the criteria used to assess the quality of the selected primary studies. This quality assessment was conducted by two authors as explained above.

  • The study focuses on curricula, tools, approach, or assessments in DSE, the possible answers were Yes (1), No (0)
  • The study presents a solution to the problem in DSE, the possible answers to this question were Yes (1), Partially (0.5), No (0)
  • The study focuses on empirical results, Yes (1), No (0)

Score pattern of publication channels

Channel typeQuartile numberScore
Journal Quartile RankingQ12
Q21.5
Q31
Q40.5
Other0
Conference/Workshop/ Symposium/Core RankingCore A1.5
Core B1
Core C0.5
Other0

Almost 50.00% of papers had scored more than average and 33.33% of papers had scored between the average range i.e., 2.50–3.50. Some articles with the score below 2.50 have also been included in this study as they present some useful information and were published in education-based journals. Also, these studies discuss important demography and technology based aspects that are directly related to DSE.

Threats to validity

The validity of this study could be influenced by the following factors during the literature of this publication.

Construct validity

In this study this validity identifies the primary study for research (Elberzhager et al., 2012 ). To ensure that many primary studies have been included in this literature two authors have proposed possible search keywords in multiple repetitions. Search string is comprised of different terms related to DS and education. Though, list might be incomplete, count of final papers found can be changed by the alternative terms (Ampatzoglou et al., 2013 ). IEEE digital library, Science direct, ACM digital library, Wiley Online Library, PLOS, ArXiv and Google scholar are the main libraries where search is done. We believe according to the statistics of search engines of literature the most research can be found on these digital libraries (Garousi et al., 2013 ). Researchers also searched related papers in main DS research sites (VLDB, ICDM, EDBT) in order to minimize the risk of missing important publication.

Including the papers that does not belong to top journals or conferences may reduce the quality of primary studies in this research but it indicates that the representativeness of the primary studies is improved. However, certain papers which were not from the top publication sources are included because of their relativeness wisth the literature, even though they reduce the average score for primary studies. It also reduces the possibility of alteration of results which might have caused by the improper handling of duplicate papers. Some cases of duplications were found which were inspected later whether they were the same study or not. The two authors who have conducted the search has taken the final decision to the select the papers. If there is no agreement between then there must be discussion until an agreement is reached.

Internal validity

This validity deals with extraction and data analysis (Elberzhager et al., 2012 ). Two authors carried out the data extraction and primary studies classification. While the conflicts between them were resolved by involving a third author. The Kappa coefficient was 0.89, according to Landis and Koch ( 1977 ), this value indicates almost perfect level of agreement between the authors that reduces this threat significantly.

Conclusion validity

This threat deals with the identification of improper results which may cause the improper conclusions. In this case this threat deals with the factors like missing studies and wrong data extraction (Ampatzoglou et al., 2013 ). The objective of this is to limit these factors so that other authors can perform study and produce the proper conclusions (Elberzhager et al., 2012 ).

Interpretation of results might be affected by the selection and classification of primary studies and analyzing the selected study. Previous section has clearly described each step performed in primary study selection and data extraction activity to minimize this threat. The traceability between the result and data extracted was supported through the different charts. In our point of view, slight difference based on the publication selection and misclassification would not alter the main results.

External validity

This threat deals with the simplification of this research (Mateo et al., 2012 ). The results of this study were only considered that related to the DSE filed and validation of the conclusions extracted from this study only concerns the DSE context. The selected study representativeness was not affected because there was no restriction on time to find the published research. Therefore, this external validity threat is not valid in the context of this research. DS researchers can take search string and the paper classification scheme represented in this study as an initial point and more papers can be searched and categorized according to this scheme.

Analysis of compiled research articles

This section presents the analysis of the compiled research articles carefully selected for this study. It presents the findings with respect to the research questions described in Table ​ Table2 2 .

Selection results

A total of 70 papers were identified and analyzed for the answers of RQs described above. Table ​ Table6 6 represents a list of the nominated papers with detail of the classification results and their quality assessment scores.

Classification and quality assessment of selected articles

RefChannelYearResearch TypeabcdTotal
ToolsQuality Assessment
(Mcintyre et al., )Journal1995Review11024
(Abut & Ozturk, )Conference1997Experiment11002
(Yau & Karim, )Conference2003Experiment10.5012.5
(Pahl et al., )Journal2004Experiment11002
(Connolly et al., )Conference2005Experiment10.5113.5
(Regueras et al., )Conference2007Case Study11103
(Sciore, )Symposium2007Case Study1011.53.5
(Holliday & Wang, )Conference2009Experiment10.510.53
(Brusilovsky et al., )Journal2010Experiment11125
(Cvetanovic et al., )Journal2010Experiment11024
(Nelson & Fatimazahra, )Journal2010Review11013
(Wang et al., )Conference2010Experiment1101.53.5
(Nagataki et al., )Journal2013Experiment01124
(Yue, )Journal2013Experiment1111.54.5
(Abelló Gamazo et al., )Journal2016Experiment11125
(Taipalus & Perälä, )Symposium2019Review1111.54.5
MethodsQuality Assessment
(Dietrich & Urban, )Conference1996Review1101.53.5
(Urban & Dietrich, )Journal1997Experiment11002
(Nelson et al., )Workshop2003Review11002
(Amadio, )Conference2003Experiment10.510.53
(Connolly & Begg, )Journal2006Experiment11024
(Morien, )Journal2006Experiment10.5124.5
(Prince & Felder, )Journal2006Review00.5022.5
(Martinez-González & Duffing, )Journal2007Review11024
(Gudivada et al., )Conference2007Review10.5001.5
(Svahnberg et al., )Symposium2008Review1001.52.5
(Brusilovsky et al., )Conference2008Experiment10.511.54
(Dominguez & Jaime, )Journal2010Experiment11125
(Efendiouglu & Yelken )Journal2010Experiment11103
(Hou & Chen, )Conference2010Review10.5102.5
(Yuelan et al., )Conference2011Experiment10.5001.5
(Zheng & Dong, )Conference2011Review11013
(Al-Shuaily, )Workshop2012Review11103
(Juxiang & Zhihong, )Conference2012Review10.5001.5
(Chen et al., )Journal2012Review11125
(Martin et al., )Journal2013Review11125
(Rashid & Al-Radhy, )conference2014Review10.5102.5
(Wang & Chen, )Conference2014Experiment10102
(Dicheva et al., )Journal2015Review11013
(Rashid, )Journal2015Review10.5124.5
(Etemad & Küpçü, )Journal2018Experiment00.5123.5
(Kui et al., )Conference2018Experiment11013
(Taipalus et al., )Journal2018Review11024
(Zhang et al., )conference2018Experiment11103
(Shebaro, )Journal2018Review10.5102.5
(Cai & Gao, )Conference2019Review11002
(Kawash et al., )Symposium2020Experiment1111.54.5
(Taipalus & Seppänen, )Journal2020Review11125
(Canedo et al., )Journal2021Experiment11114
(Naik & Gajjar, )Journal2021Case Study11103
(Ko et al., )Journal2021Review11125
(Sibia et al., )Workshop 2022Case Study11103
CurriculumQuality Assessment
(Dean & Milani, )Conference1995Experiment10.510.53
(Urban & Dietrich, )Symposium2001Case Study1011.53.5
(Calero et al., )Journal2003Review11024
(Robbert & Ricardo, )Conference2003Review1101.53.5
(Adams et al., )Journal2004Experiment11002
(Conklin & Heinrichs, )Journal2005Review11103
(Dietrich et al., )Journal2008Case Study01124
(Luo et al., )Conference2008Experiment11103
(Marshall, )Conference2011Review11103
(Bhogal et al., )Workshop2012Case Study11002
(Picciano, )Journal2012Review11002
(Abid et al., )Journal2015Review11114
(Taipalus & Seppänen, )Journal2015Experiment11125
(Abourezq & Idrissi, )Journal2016Experiment1100.52.5
(Silva et al., )Conference2016Experiment1101.53.5
(Zhanquan et al., )Journal2016Review11103
(Mingyu et al., )Conference2017Experiment11103
(Andersson et al., )Conference2019Review10.5001.5

RQ1.Categorization of research work in DSE field

The analysis in this study reveals that the literature can be categorized as: Tools: any additional application that helps instructors in teaching and students in learning. Methods: any improvisation aimed at improving pedagogy or cognition. Curriculum: refers to the course content domains and their relative importance in a degree program, as shown in Fig.  3 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig3_HTML.jpg

Taxonomy of DSE study types

Most of the articles provide a solution by gathering the data and also prove the novelty of their research through results. These papers are categorized as experiments w.r.t. their research types. Whereas, some of them case study papers which are used to generate an in depth, multifaceted understanding of a complex issue in its real-life context, while few others are review studies analyzing the previously used approaches. On the other hand, a majority of included articles have evaluated their results with the help of experiments, while others conducted reviews to establish an opinion as shown in Fig.  4 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig4_HTML.jpg

Cross Mapping of DSE study type and research Types

Educational tools, especially those related to technology, are making their place in market faster than ever before (Calderon et al., 2011 ). The transition to active learning approaches, with the learner more engaged in the process rather than passively taking in information, necessitates a variety of tools to help ensure success. As with most educational initiatives, time should be taken to consider the goals of the activity, the type of learners, and the tools needed to meet the goals. Constant reassessment of tools is important to discover innovation and reforms that improve teaching and learning (Irby & Wilkerson, 2003 ). For this purpose, various type of educational tools such as, interactive, web-based and game based have been introduced to aid the instructors in order to explain the topic in more effective way.

The inclusion of technology into the classroom may help learners to compete in the competitive market when approaching the start of their career. It is important for the instructors to acknowledge that the students are more interested in using technology to learn database course instead of merely being taught traditional theory, project, and practice-based methods of teaching (Adams et al., 2004 ). Keeping these aspects in view many authors have done significant research which includes web-based and interactive tools to help the learners gain better understanding of basic database concepts.

Great research has been conducted with the focus of students learning. In this study we have discussed the students learning supportive with two major finding’s objectives i.e., tools which prove to be more helpful than other tools. Whereas, proposed tools with same outcome as traditional classroom environment. Such as, Abut and Ozturk ( 1997 ) proposed an interactive classroom environment to conduct database classes. The online tools such as electronic “Whiteboard”, electronic textbooks, advance telecommunication networks and few other resources such as Matlab and World Wide Web were the main highlights of their proposed smart classroom. Also, Pahl et al. ( 2004 ) presented an interactive multimedia-based system for the knowledge and skill oriented Web-based education of database course students. The authors had differentiated their proposed classroom environment from traditional classroom-based approach by using tool mediated independent learning and training in an authentic setting. On the other hand, some authors have also evaluated the educational tools based on their usage and impact on students’ learning. For example, Brusilovsky et al. ( 2010 )s evaluated the technical and conceptual difficulties of using several interactive educational tools in the context of a single course. A combined Exploratorium has been presented for database courses and an experimental platform, which delivers modified access to numerous types of interactive learning activities.

Also, Taipalus and Perälä ( 2019 ) investigated the types of errors that are persistent in writing SQL by the students. The authors also contemplated the errors while mapping them onto different query concepts. Moreover, Abelló Gamazo et al. ( 2016 ) presented a software tool for the e-assessment of relational database skills named LearnSQL. The proposed software allows the automatic and efficient e-learning and e-assessment of relational database skills. Apart from these, Yue ( 2013 ) proposed the database tool named Sakila as a unified platform to support instructions and multiple assignments of a graduate database course for five semesters. According to this study, students find this tool more useful and interesting than the highly simplified databases developed by the instructor, or obtained from textbook. On the other hand, authors have proposed tools with the main objective to help the student’s grip on the topic by addressing the pedagogical problems in using the educational tools. Connolly et al. ( 2005 ) discussed some of the pedagogical problems sustaining the development of a constructive learning environment using problem-based learning, a simulation game and interactive visualizations to help teach database analysis and design. Also, Yau and Karim ( 2003 ) proposed smart classroom with prevalent computing technology which will facilitate collaborative learning among the learners. The major aim of this smart classroom is to improve the quality of interaction between the instructors and students during lecture.

Student satisfaction is also an important factor for the educational tools to more effective. While it supports in students learning process it should also be flexible to achieve the student’s confidence by making it as per student’s needs (Brusilovsky et al., 2010 ; Connolly et al., 2005 ; Pahl et al., 2004 ). Also, Cvetanovic et al. ( 2010 ) has proposed a web-based educational system named ADVICE. The proposed solution helps the students to reduce the gap between DBMS, theory and its practice. On the other hand, authors have enhanced the already existing educational tools in the traditional classroom environment to addressed the student’s concerns (Nelson & Fatimazahra, 2010 ; Regueras et al., 2007 ) Table ​ Table7 7 .

Tools: Adopted in DSE and their impacts

ObjectiveFindingsReferencesTarget Topic/ exposition platform
Support of Students’ learningMore supportive• (Abut & Ozturk, )

• Data models and data modelling principles

• IDLE (the Interactive Database Learning Environment)

• (Pahl et al., )

• Data models

• IDLE

• (Brusilovsky et al., )

• SQL

• SQL-Knot, SQL-Lab

• Conceptual database design, Logical database design, Physical database design

• Online games

• SQL

• Interactive

• (Abbasi et al., )

• Relational Database

• LearnSQL

• (Yue, )

• Relational Calculus, XML generation, XPath, and XQuery

• Sakila

• (Nelson & Fatimazahra, )

• Introductory Database topics

• TLAD

Same as others• (Connolly et al., )

• Conceptual database design, Logical database design, Physical database design

• Online games

• (Yau & Karim, )

• Introductory Database topics

• RCSM

Students’ SatisfactionSatisfied• (Brusilovsky et al., )

• SQL

• SQL-Knot, SQL-Lab

• (Cvetanovic et al., )

• SQL, formal query languages, and normalization

• ADVICE

• (Connolly et al., )
• (Pahl et al., )

• Data models

• IDLE

Similar satisfaction as compared to traditional classroom environment• (Nelson & Fatimazahra, )

• Introductory Database topics

• TLAD

• (Regueras et al., )

• Entity Relationship Model

• QUEST

Students’ motivation towards database developmentSame impact as other approaches• (Nagataki et al., )

• SQL

• sAccess

Helped students to develop better database development strategies• (Brusilovsky et al., )

• SQL

• SQL-Knot, SQL-Lab

• (Mcintyre et al., )

• Relational Database Design

• Expert IT system

Students’ course performanceBetter performance• (Cvetanovic et al., )

• SQL, formal query languages, and normalization

• ADVICE

• (Wang et al., )

• Entity Relationship Model, SQL

• MeTube

• (Holliday & Wang, )

• MySQL

• MeTube

• (Taipalus & Perälä, )

• SQL

• Interactive

Same performance as other approaches• (Pahl et al., )

• Data models

• IDLE

• (Yue, )

• Relational Calculus, XML generation, XPath, and XQuery

• Sakila

Student and instructor interaction percentageIncreased• (Abut & Ozturk, )

• Introductory Database topics

• “Whiteboard”

• (Yau & Karim, )

• Introductory Database topics

• RCSM

• (Taipalus & Perälä, )

• SQL

• Interactive

Hands on database development is the main concern in most of the institute as well as in industry. However, tools assisting the students in database development and query writing is still major concern especially in SQL (Brusilovsky et al., 2010 ; Nagataki et al., 2013 ).

Student’s grades reflect their conceptual clarity and database development skills. They are also important to secure jobs and scholarships after passing out, which is why it is important to have the educational learning tools to help the students to perform well in the exams (Cvetanovic et al., 2010 ; Taipalus et al., 2018 ). While, few authors (Wang et al., 2010 ) proposed Metube which is a variation of YouTube. Subsequently, existing educational tools needs to be upgraded or replaced by the more suitable assessment oriented interactive tools to attend challenging students needs (Pahl et al., 2004 ; Yuelan et al., 2011 ).

One other objective of developing the educational tools is to increase the interaction between the students and the instructors. In the modern era, almost every institute follows the student centered learning(SCL). In SCL the interaction between students and instructor increases with most of the interaction involves from the students. In order to support SCL the educational based interactive and web-based tools need to assign more roles to students than the instructors (Abbasi et al., 2016 ; Taipalus & Perälä, 2019 ; Yau & Karim, 2003 ).

Theory versus practice is still one of the main issues in DSE teaching methods. The traditional teaching method supports theory first and then the concepts learned in the theoretical lectures implemented in the lab. Whereas, others think that it is better to start by teaching how to write query, which should be followed by teaching the design principles for database, while a limited amount of credit hours are also allocated for the general database theory topics. This part of the article discusses different trends of teaching and learning style along with curriculum and assessments methods discussed in DSE literature.

A variety of teaching methods have been designed, experimented, and evaluated by different researchers (Yuelan et al., 2011 ; Chen et al., 2012 ; Connolly & Begg, 2006 ). Some authors have reformed teaching methods based on the requirements of modern way of delivering lectures such as Yuelan et al. ( 2011 ) reform teaching method by using various approaches e.g. a) Modern ways of education: includes multimedia sound, animation, and simulating the process and working of database systems to motivate and inspire the students. b) Project driven approach: aims to make the students familiar with system operations by implementing a project. c) Strengthening the experimental aspects: to help the students get a strong grip on the basic knowledge of database and also enable them to adopt a self-learning ability. d) Improving the traditional assessment method: the students should turn in their research and development work as the content of the exam, so that they can solve their problem on their own.

The main aim of any teaching method is to make student learn the subject effectively. Student must show interest in order to gain something from the lectures delivered by the instructors. For this, teaching methods should be interactive and interesting enough to develop the interest of the students in the subject. Students can show interest in the subject by asking more relative questions or completing the home task and assignments on time. Authors have proposed few teaching methods to make topic more interesting such as, Chen et al. ( 2012 ) proposed a scaffold concept mapping strategy, which considers a student’s prior knowledge, and provides flexible learning aids (scaffolding and fading) for reading and drawing concept maps. Also, Connolly & Begg (200s6) examined different problems in database analysis and design teaching, and proposed a teaching approach driven by principles found in the constructivist epistemology to overcome these problems. This constructivist approach is based on the cognitive apprenticeship model and project-based learning. Similarly, Domínguez & Jaime ( 2010 ) proposed an active method for database design through practical tasks development in a face-to-face course. They analyzed results of five academic years using quasi experimental. The first three years a traditional strategy was followed and a course management system was used as material repository. On the other hand, Dietrich and Urban ( 1996 ) have described the use of cooperative group learning concepts in support of an undergraduate database management course. They have designed the project deliverables in such a way that students develop skills for database implementation. Similarly, Zhang et al. ( 2018 ) have discussed several effective classroom teaching measures from the aspects of the innovation of teaching content, teaching methods, teaching evaluation and assessment methods. They have practiced the various teaching measures by implementing the database technologies and applications in Qinghai University. Moreover, Hou and Chen ( 2010 ) proposed a new teaching method based on blending learning theory, which merges traditional and constructivist methods. They adopted the method by applying the blending learning theory on Access Database programming course teaching.

Problem solving skills is a key aspect to any type of learning at any age. Student must possess this skill to tackle the hurdles in institute and also in industry. Create mind and innovative students find various and unique ways to solve the daily task which is why they are more likeable to secure good grades and jobs. Authors have been working to introduce teaching methods to develop problem solving skills in the students(Al-Shuaily, 2012 ; Cai & Gao, 2019 ; Martinez-González & Duffing, 2007 ; Gudivada et al., 2007 ). For instance, Al-Shuaily ( 2012 ) has explored four cognitive factors such as i) Novices’ ability in understanding, ii) Novices’ ability to translate, iii) Novice’s ability to write, iv) Novices’ skills that might influence SQL teaching, and learning methods and approaches. Also, Cai and Gao ( 2019 ) have reformed the teaching method in the database course of two higher education institutes in China. Skills and knowledge, innovation ability, and data abstraction were the main objective of their study. Similarly, Martinez-González and Duffing ( 2007 ) analyzed the impact of convergence of European Union (EU) in different universities across Europe. According to their study, these institutes need to restructure their degree program and teaching methodologies. Moreover, Gudivada et al. ( 2007 ) proposed a student’s learning method to work with the large datasets. they have used the Amazon Web Services API and.NET/C# application to extract a subset of the product database to enhance student learning in a relational database course.

On the other hand, authors have also evaluated the traditional teaching methods to enhance the problem-solving skills among the students(Eaglestone & Nunes, 2004 ; Wang & Chen, 2014 ; Efendiouglu & Yelken, 2010 ) Such as, Eaglestone and Nunes ( 2004 ) shared their experiences of delivering a database design course at Sheffield University and discussed some of the issues they faced, regarding teaching, learning and assessments. Likewise, Wang and Chen ( 2014 ) summarized the problems mainly in teaching of the traditional database theory and application. According to the authors the teaching method is outdated and does not focus on the important combination of theory and practice. Moreover, Efendiouglu and Yelken ( 2010 ) investigated the effects of two different methods Programmed Instruction (PI) and Meaningful Learning (ML) on primary school teacher candidates’ academic achievements and attitudes toward computer-based education, and to define their views on these methods. The results show that PI is not favoured for teaching applications because of its behavioural structure Table ​ Table8 8 .

Methods: Teaching approaches adopted in DSE

ObjectiveFindingsReferencesTarget Topic/ Approach or Method
Develop interest in SubjectStudents begin to ask more relative questions• (Chen et al., )

• Data modeling, relational databases, database query languages

• Scaffolded Concept

• (Connolly & Begg, )

• Database concepts, Database Analysis and Design, Implementation

• Constructivist-Based Approach

• (Dominguez & Jaime, )

• Database design

• Project-based learning

• (Rashid & Al-Radhy, )

• Database Analysis and Design

• Project based learning, Assessment based learning

• (Yuelan et al., )

• Principles of Database, SQL Server

• Project-driven approach

• (Taipalus & Seppänen, )

• SQL

• Group learning and projects

• (Brusilovsky et al., )

• SQL

• SQL Exploratorium

• (Hou & Chen, )

• Access

• Blending Learning

Same effect as others traditional teaching methods• (Dietrich & Urban, )

• ER Model, Relational Design, SQL

• Teaching and learning strategies

• (Kui et al., )

• E-R model, relational model, SQL

• Flipped Classroom

• (Rashid, )

• Entity Relational Database, Relational Algebra, Normalization,

• Learning and Assessment Methods

• (Zhang et al., )

• Data Models, Physical Data Design

• Project teaching mode, Discussion teaching mode, Demonstrative teaching mode

Develop problem solving skillsStudents become creative and try new methods to solve tasks• (Al-Shuaily, )

• SQL

• Cognitive task, Comprehension Task

• (Cai & Gao, )

• E-R model, relational model, SQL

• Database Course for Liberal Arts Majors

• (Martin et al., )

• SQL and relational algebra, The relational model, Transaction management

• Collaborative Learning

• (Martinez-González & Duffing, )

• Data Models, Physical Data Design, SQL

• European convergence in higher education

• (Prince & Felder, )

• SQL

• Inductive teaching and learning

• (Urban & Dietrich, )

• Relational database mapping and prototyping, Database system implementation

• cooperative group project based learning

• (Gudivada et al., )

• SQL, Logical design, Physical Design

• Working with large datasets from Amazon

Use same methods as mentioned in books• (Eaglestone & Nunes, )

• SQL, ER Model

• Pedagogical model, teaching and learning strategies

• (Wang et al., )

• SQL Server and Oracle

• Refine Teaching Method

• (Efendiouglu & Yelken )

• SQL

• Programmed instruction and meaningful learning

Motivate students to explore topics through independent studyStudents begin to read books and internet to enhance their knowledge independently or in groups• (Cai & Gao, )

• SQL, E-R model, relational model

• Database Course for Liberal Arts Majors

• (Kawash et al., )

• SQL, Entity Relationship, Relational model

• Group Exams

• (Martin et al., )

• SQL, Relational Model, UML

• Collaborative Learning

• (Martinez-González & Duffing, )

• SQL, Data Models, Physical Data Design

• European convergence in higher education

• (Amadio, )

• SQL Programming

• Team Learning

Students stick to the course content• (Morien, )

• Entity modeling, relational modelling

• Teaching Reform

• (Eaglestone & Nunes, )

• SQL, ER Model

• Pedagogical model, teaching and learning strategies

• (Zheng & Dong, )

• SQL, ER Model

• Teaching Reform and Practice

Focus on theory and practical GapStudents begin to apply theoretical knowledge on developing database applications• (Al-Shuaily, )

• SQL

• Cognitive task, Comprehension Task

• (Etemad & Küpçü, )

• SQL

• cooperative group project-based learning

• (Svahnberg et al., )

• SQL

• Industrial project-based learning

• (Taipalus et al., )

• SQL

• Group learning and projects

• (Juxiang & Zhihong, )

• SQL, ER Model

• Computational Thinking

• (Connolly & Begg, )

• Database concepts, Database Analysis and Design, Implementation

• Constructivist-Based Approach

• (Rashid & Al-Radhy, )

• Database Analysis and Design

• Project based learning, Assessment based learning

• (Naik & Gajjar, )

• database designing, transaction management, SQL

• ENABLE, Project based learning

Students only focus on theory to clear exams• (Wang et al., )

• SQL Server and Oracle

• Refine Teaching Method

• (Zheng & Dong, )

• SQL, ER Model

• Teaching Reform and Practice

• (Nelson et al., )

• Advanced relational design, UML, data warehousing

• Teaching Methods, Assessment Methods

Students become creative and innovative when the try to study on their own and also from different resources rather than curriculum books only. In the modern era, there are various resources available on both online and offline platforms. Modern teaching methods must emphasize on making the students independent from the curriculum books and educate them to learn independently(Amadio et al., 2003 ; Cai & Gao, 2019 ; Martin et al., 2013 ). Also, in the work of Kawash et al. ( 2020 ) proposed he group study-based learning approach called Graded Group Activities (GGAs). In this method students team up in order to take the exam as a group. On the other hand, few studies have emphasized on course content to prepare students for the final exams such as, Zheng and Dong ( 2011 ) have discussed the issues of computer science teaching with particular focus on database systems, where different characteristics of the course, teaching content and suggestions to teach this course effectively have been presented.

As technology is evolving at rapid speed, so students need to have practical experience from the start. Basic theoretical concepts of database are important but they are of no use without its implementation in real world projects. Most of the students study in the institutes with the aim of only clearing the exams with the help of theoretical knowledge and very few students want to have practical experience(Wang & Chen, 2014 ; Zheng & Dong, 2011 ). To reduce the gap between the theory and its implementation, authors have proposed teaching methods to develop the student’s interest in the real-world projects (Naik & Gajjar, 2021 ; Svahnberg et al., 2008 ; Taipalus et al., 2018 ). Moreover, Juxiang and Zhihong ( 2012 ) have proposed that the teaching organization starts from application scenarios, and associate database theoretical knowledge with the process from analysis, modeling to establishing database application. Also, Svahnberg et al. ( 2008 ) explained that in particular conditions, there is a possibility to use students as subjects for experimental studies in DSE and influencing them by providing responses that are in line with industrial practice.

On the other hand, Nelson et al. ( 2003 ) evaluated the different teaching methods used to teach different modules of database in the School of Computing and Technology at the University of Sunder- land. They outlined suggestions for changes to the database curriculum to further integrate research and state-of-the-art systems in databases.

  • III. Curriculum

Database curriculum has been revisited many times in the form of guidelines that not only present the contents but also suggest approximate time to cover different topics. According to the ACM curriculum guidelines (Lunt et al., 2008 ) for the undergraduate programs in computer science, the overall coverage time for this course is 46.50 h distributed in such a way that 11 h is the total coverage time for the core topics such as, Information Models (4 core hours), Database Systems (3 core hours) and Data Modeling (4 course hours). Whereas, the remaining hours are allocated for elective topics such as Indexing, Relational Databases, Query Languages, Relational Database Design, Transaction Processing, Distributed Databases, Physical Database Design, Data Mining, Information Storage and Retrieval, Hypermedia, Multimedia Systems, and Digital Libraries(Marshall, 2012 ). While, according to the ACM curriculum guidelines ( 2013 ) for undergraduate programs in computer science, this course should be completed in 15 weeks with two and half hour lecture per week and lab session of four hours per week on average (Brady et al., 2004 ). Thus, the revised version emphasizes on the practice based learning with the help of lab component. Numerous organizations have exerted efforts in this field to classify DSE (Dietrich et al., 2008 ). DSE model curricula, bodies of knowledge (BOKs), and some standardization aspects in this field are discussed below:

Model curricula

There are standard bodies who set the curriculum guidelines for teaching undergraduate degree programs in computing disciplines. Curricula which include the guidelines to teach database are: Computer Engineering Curricula (CEC) (Meier et al., 2008 ), Information Technology Curricula (ITC) (Alrumaih, 2016 ), Computing Curriculum Software Engineering (CCSE) (Meyer, 2001 ), Cyber Security Curricula (CSC) (Brady et al., 2004 ; Bishop et al., 2017 ).

Bodies of knowledge (BOK)

A BOK includes the set of thoughts and activities related to the professional area, while in model curriculum set of guidelines are given to address the education issues (Sahami et al., 2011 ). Database body of Knowledge comprises of (a) The Data Management Body of Knowledge (DM- BOK), (b) Software Engineering Education Knowledge (SEEK) (Sobel, 2003 ) (Sobel, 2003 ), and (c) The SE body of knowledge (SWEBOK) (Swebok Evolution: IEEE Computer Society n.d. ).

Apart from the model curricula, and bodies of knowledge, there also exist some standards related to the database and its different modules: ISO/IEC 9075–1:2016 (Computing Curricula, 1991 ), ISO/IEC 10,026–1: 1998 (Suryn, 2003 ).

We also utilize advices from some studies (Elberzhager et al., 2012 ; Keele et al., 2007 ) to search for relevant papers. In order to conduct this systematic study, it is essential to formulate the primary research questions (Mushtaq et al., 2017 ). Since the data management techniques and software are evolving rapidly, the database curriculum should also be updated accordingly to meet these new requirements. Some authors have described ways of updating the content of courses to keep pace with specific developments in the field and others have developed new database curricula to keep up with the new data management techniques.

Furthermore, some authors have suggested updates for the database curriculum based on the continuously evolving technology and introduction of big data. For instance Bhogal et al. ( 2012 ) have shown that database curricula need to be updated and modernized, which can be achieved by extending the current database concepts that cover the strategies to handle the ever changing user requirements and how database technology has evolved to meet the requirements. Likewise, Picciano ( 2012 ) examines the evolving world of big data and analytics in American higher education. According to the author, the “data driven” decision making method should be used to help the institutes evaluate strategies that can improve retention and update the curriculum that has big data basic concepts and applications, since data driven decision making has already entered in the big data and learning analytic era. Furthermore, Marshall ( 2011 ) presented the challenges faced when developing a curriculum for a Computer Science degree program in the South African context that is earmarked for international recognition. According to the author, the Curricula needs to adhere both to the policy and content requirements in order to be rated as being of a particular quality.

Similarly, some studies (Abourezq & Idrissi, 2016 ; Mingyu et al., 2017 ) described big data influence from a social perspective and also proceeded with the gaps in database curriculum of computer science, especially, in the big data era and discovers the teaching improvements in practical and theoretical teaching mode, teaching content and teaching practice platform in database curriculum. Also Silva et al. ( 2016 ) propose teaching SQL as a general language that can be used in a wide range of database systems from traditional relational database management systems to big data systems.

On the other hand, different authors have developed a database curriculum based on the different academic background of students. Such as, Dean and Milani ( 1995 ) have recommended changes in computer science curricula based on the practice in United Stated Military Academy (USMA). They emphasized greatly on the practical demonstration of the topic rather than the theoretical explanation. Especially, for the non-computer science major students. Furthermore, Urban and Dietrich ( 2001 ) described the development of a second course on database systems for undergraduates, preparing students for the advanced database concepts that they will exercise in the industry. They also shared their experience with teaching the course, elaborating on the topics and assignments. Also, Andersson et al. ( 2019 ) proposed variations in core topics of database management course for the students with the engineering background. Moreover, Dietrich et al. ( 2014 ) described two animations developed with images and color that visually and dynamically introduce fundamental relational database concepts and querying to students of many majors. The goal is that the educators, in diverse academic disciplines, should be able to incorporate these animations in their existing courses to meet their pedagogical needs.

The information systems have evolved into large scale distributed systems that store and process a huge amount of data across different servers, and process them using different distributed data processing frameworks. This evolution has given birth to new paradigms in database systems domain termed as NoSQL and Big Data systems, which significantly deviate from conventional relational and distributed database management systems. It is pertinent to mention that in order to offer a sustainable and practical CS education, these new paradigms and methodologies as shown in Fig.  5 should be included into database education (Kleiner, 2015 ). Tables ​ Tables9 9 and ​ and10 10 shows the summarized findings of the curriculum based reviewed studies. This section also proposed appropriate text book based on the theory, project, and practice-based teaching methodology as shown in Table ​ Table9. 9 . The proposed books are selected purely on the bases of their usage in top universities around the world such as, Massachusetts Institute of Technology, Stanford University, Harvard University, University of Oxford, University of Cambridge and, University of Singapore and the coverage of core topics mentioned in the database curriculum.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig5_HTML.jpg

Concepts in Database Systems Education (Kleiner, 2015 )

Recommended text books for DSE

MethodologyBook titleAuthor(s)EditionYear
TheoryDatabase Management SystemsRamakrishnan, Raghu, and Johannes Gehrke32002
Database Systems: The Complete BookGarcia-Molina, Ullman and Widom22008
Introduction to Database SystemsC. J. Date Addison-Wesley82003
Introduction to Database SystemsS. Bressan and B. Catania12005
Database system conceptsSilberschatz, A., Korth, H.F. and Sudarshan, S72019
A first course in database systemsUllman, J. and Widom, J32007
ProjectModern Database ManagementJeffrey A. Hoffer, Ramesh Venkataraman and HeikkiTopi122015
Database Systems: A Practical Approach to Design, Implementation, and ManagementThomas M. Connolly,Carolyn E. Begg62015
PracticeFundamentals of SQL ProgrammingR. A. Mata-Toledo and P. Cushman. Schaum’s12000
Readings in Database Systems (The Red Book)Hellerstein, Joseph, and Michael Stonebraker42005

Curriculum: Findings of Reviewed Literature

ObjectiveFindingsReferencesTopic(s)/ CurriculaStandard bodies
Recommendations and revisionsProposed variations based on the scope in the region• (Abourezq & Idrissi, )

• Big Data, SQL

• Computer Science Curricula

• CS 2008
• (Bhogal et al., )

• Big Data

• Computer Science/Engineering Curriculum

• CS 2008/CE 2004
• (Mingyu et al., )

• Big Data, NoSQL

• Computer Science Curricula

• CS 2013
• (Picciano, )

• Big Data

• Computer Science Curricula

• CS 2008
• (Silva et al., )

• Big Data, MapReduce, NoSQL

• and NewSQL

• Computer Science Curricula

• CS 2013
• (Calero et al., )

• Database Design, Database Administration, Database Application

• SWEBOK, DBBOK

• N/A
• (Conklin & Heinrichs, )

• Database theory and database practice

• Computer Science Curricula

• IS 2002

• CC2001

• CC2004

• (Zhanquan et al., )

• Database principles design

• Coursera, Udacity, edX

• N/A
• (Robbert & Ricardo, )

• Data Models, Physical Data Design, SQL

• Computer Science Curricula

• CC 2001
• (Luo et al., )

• SQL Server and Oracle

• Computer Science Curricula

• CC 2004
• (Dietrich & Urban, )

• Object oriented database (OODB) systems; object relational database (ORDB) systems

• Curriculum and Laboratory Improvement Educational Materials Development (CCLI EMD)

• N/A
• (Marshall, )

• Data Models, Physical Data Design, Database Schema and Design, SQL

• CS-BoK

• N/A
Proposed variations based on the educational background of the students• (Dean & Milani, )

• SQL

• Computer Science Curricula

• ACM/IEEE Computing Curricula
• (Dietrich et al., )

• Relational Databases

• Computer Science Curricula

• CC 2008
• (Urban & Dietrich, )

• Relational algebra, Relational calculus, and SQL

• Engineering Curriculum 2000

• CC 2001
• (Andersson et al., )

• ER Model, Relational Model, SQL

• Engineering Curriculum

• CE 2000
Relating Curriculum to assessmentProposed variations based on the assessment methods• (Abid et al., )

• Data Models, Physical Data Design, Database Schema and Design, SQL

• Computer Science Curricula

• CS 2008
• (Adams et al., )

• ER, EER, and UML

• Computer Science Curricula

• CC 2001

RQ.2 Evolution of DSE research

This section discusses the evolution of database while focusing the DSE over the past 25 years as shown in Fig.  6 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig6_HTML.jpg

Evolution of DSE studies

This study shows that there is significant increase in research in DSE after 2004 with 78% of the selected papers are published after 2004. The main reason of this outcome is that some of the papers are published in well-recognized channels like IEEE Transactions on Education, ACM Transactions on Computing Education, International Conference on Computer Science and Education (ICCSE), and Teaching, Learning and Assessment of Database (TLAD) workshop. It is also evident that several of these papers were published before 2004 and only a few articles were published during late 1990s. This is because of the fact that DSE started to gain interest after the introduction of Body of Knowledge and DSE standards. The data intensive scientific discovery has been discussed as the fourth paradigm (Hey et al., 2009 ): where the first involves empirical science and observations; second contains theoretical science and mathematically driven insights; third considers computational science and simulation driven insights; while the fourth involves data driven insights of modern scientific research.

Over the past few decades, students have gone from attending one-room class to having the world at their fingertips, and it is a great challenge for the instructors to develop the interest of students in learning database. This challenge has led to the development of the different types of interactive tools to help the instructors teach DSE in this technology oriented era. Keeping the importance of interactive tools in DSE in perspective, various authors have proposed different interactive tools over the years, such as during 1995–2003, when different authors proposed various interactive tools. Some studies (Abut & Ozturk, 1997 ; Mcintyre et al., 1995 ) introduced state of the art interactive tools to teach and enhance the collaborative learning among the students. Similarly, during 2004–2005 more interactive tools in the field of DSE were proposed such as Pahl et al. ( 2004 ), Connolly et al. ( 2005 ) introduced multimedia system based interactive model and game based collaborative learning environment.

The Internet has started to become more common in the first decade of the twenty-first century and its positive impact on the education sector was undeniable. Cost effective, student teacher peer interaction, keeping in touch with the latest information were the main reasons which made the instructors employ web-based tools to teach database in the education sector. Due to this spike in the demand of web-based tools, authors also started to introduce new instruments to assist with teaching database. In 2007 Regueras et al. ( 2007 ) proposed an e-learning tool named QUEST with a feedback module to help the students to learn from their mistakes. Similarly, in 2010, multiple authors have proposed and evaluated various web-based tools. Cvetanovic et al. ( 2010 ) proposed ADVICE with the functionality to monitor student’s progress, while, few authors (Wang et al., 2010 ) proposed Metube which is a variation of YouTube. Furthermore, Nelson and Fatimazahra ( 2010 ) evaluated different web-based tools to highlight the complexities of using these web-based instruments.

Technology has changed the teaching methods in the education sector but technology cannot replace teachers, and despite the amount of time most students spend online, virtual learning will never recreate the teacher-student bond. In the modern era, innovation in technology used in educational sectors is not meant to replace the instructors or teaching methods.

During the 1990s some studies (Dietrich & Urban, 1996 ; Urban & Dietrich, 1997 ) proposed learning and teaching methods respectively keeping the evolving technology in view. The highlight of their work was project deliverables and assignments where students progressively advanced to a step-by-step extension, from a tutorial exercise and then attempting more difficult extension of assignment.

During 2002–2007 various authors have discussed a number of teaching and learning methods to keep up the pace with the ever changing database technology, such as Connolly and Begg ( 2006 ) proposing a constructive approach to teach database analysis and design. Similarly, Prince and Felder ( 2006 ) reviewed the effectiveness of inquiry learning, problem based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching. Also, McIntyre et al. (Mcintyre et al., 1995 ) brought to light the impact of convergence of European Union (EU) in different universities across Europe. They suggested a reconstruction of teaching and learning methodologies in order to effectively teach database.

During 2008–2013 more work had been done to address the different methods of teaching and learning in the field of DSE, like the work of Dominguez and Jaime ( 2010 ) who proposed an active learning approach. The focus of their study was to develop the interest of students in designing and developing databases. Also, Zheng and Dong ( 2011 ) have highlighted various characteristics of the database course and its teaching content. Similarly, Yuelan et al. ( 2011 ) have reformed database teaching methods. The main focus of their study were the Modern ways of education, project driven approach, strengthening the experimental aspects, and improving the traditional assessment method. Likewise, Al-Shuaily ( 2012 ) has explored 4 cognitive factors that can affect the learning process of database. The main focus of their study was to facilitate the students in learning SQL. Subsequently, Chen et al. ( 2012 ) also proposed scaffolding-based concept mapping strategy. This strategy helps the students to better understand database management courses. Correspondingly, Martin et al. ( 2013 ) discussed various collaborative learning techniques in the field of DSE while keeping database as an introductory course.

In the years between 2014 and 2021, research in the field of DSE increased, which was the main reason that the most of teaching, learning and assessment methods were proposed and discussed during this period. Rashid and Al-Radhy ( 2014 ) discussed the issues of traditional teaching, learning, assessing methods of database courses at different universities in Kurdistan and the main focus of their study being reformation issues, such as absence of teaching determination and contradiction between content and theory. Similarly, Wang and Chen ( 2014 ) summarized the main problems in teaching the traditional database theory and its application. Curriculum assessment mode was the main focus of their study. Eaglestone and Nunes ( 2004 ) shared their experiences of delivering a databases design course at Sheffield University. Their focus of study included was to teach the database design module to a diverse group of students from different backgrounds. Rashid ( 2015 ) discussed some important features of database courses, whereby reforming the conventional teaching, learning, and assessing strategies of database courses at universities were the main focus of this study. Kui et al. ( 2018 ) reformed the teaching mode of database courses based on flipped classroom. Initiative learning of database courses was their main focus in this study. Similarly, Zhang et al. ( 2018 ) discussed several effective classroom teaching measures. The main focus of their study was teaching content, teaching methods, teaching evaluation and assessment methods. Cai and Gao ( 2019 ) also carried out the teaching reforms in the database course of liberal arts. Diversified teaching modes, such as flipping classroom, case oriented teaching and task oriented were the focus of their study. Teaching Kawash et al. ( 2020 ) proposed a learning approach called Graded Group Activities (GGAs). Their main focus of the study was reforming learning and assessment method.

Database course covers several topics that range from data modeling to data implementation and examination. Over the years, various authors have given their suggestions to update these topics in database curriculum to meet the requirements of modern technologies. On the other hand, authors have also proposed a new curriculum for the students of different academic backgrounds and different areas. These reformations in curriculum helped the students in their preparation, practically and theoretically, and enabled them to compete in the competitive market after graduation.

During 2003 and 2006 authors have proposed various suggestions to update and develop computer science curriculum across different universities. Robbert and Ricardo ( 2003 ) evaluated three reviews from 1999 to 2002 that were given to the groups of educators. The focus of their study was to highlight the trends that occurred in database curriculum. Also, Calero et al. ( 2003 ) proposed a first draft for this Database Body of Knowledge (DBBOK). Database (DB), Database Design (DBD), Database Administration (DBAd), Database Application (DBAp) and Advance Databases (ADVDB) were the main focus of their study. Furthermore, Conklin and Heinrichs (Conklin & Heinrichs, 2005 ) compared the content included in 13 database textbooks and the main focus of their study was IS 2002, CC2001, and CC2004 model curricula.

The years from 2007 and 2011, authors managed to developed various database curricula, like Luo et al. ( 2008 ) developed curricula in Zhejiang University City College. The aim of their study to nurture students to be qualified computer scientists. Likewise, Dietrich et al. ( 2008 ) proposed the techniques to assess the development of an advanced database course. The purpose behind the addition of an advanced database course at undergraduate level was to prepare the students to respond to industrial requirements. Also, Marshall ( 2011 ) developed a new database curriculum for Computer Science degree program in the South African context.

During 2012 and 2021 various authors suggested updates for the database curriculum such as Bhogal et al. ( 2012 ) who suggested updating and modernizing the database curriculum. Data management and data analytics were the focus of their study. Similarly, Picciano ( 2012 ) examined the curriculum in the higher level of American education. The focus of their study was big data and analytics. Also, Zhanquan et al. ( 2016 ) proposed the design for the course content and teaching methods in the classroom. Massive Open Online Courses (MOOCs) were the focus of their study. Likewise, Mingyu et al. ( 2017 ) suggested updating the database curriculum while keeping new technology concerning the database in perspective. The focus of their study was big data.

The above discussion clearly shows that the SQL is most discussed topic in the literature where more than 25% of the studies have discussed it in the previous decade as shown in Fig.  7 . It is pertinent to mention that other SQL databases such as Oracle, MS access are discussed under the SQL banner (Chen et al., 2012 ; Hou & Chen, 2010 ; Wang & Chen, 2014 ). It is mainly because of its ability to handle data in a relational database management system and direct implementation of database theoretical concepts. Also, other database topics such as transaction management, application programming etc. are also the main highlights of the topics discussed in the literature.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig7_HTML.jpg

Evolution of Database topics discussed in literature

Research synthesis, advice for instructors, and way forward

This section presents the synthesized information extracted after reading and analyzing the research articles considered in this study. To this end, it firstly contextualizes the tools and methods to help the instructors find suitable tools and methods for their settings. Similarly, developments in curriculum design have also been discussed. Subsequently, general advice for instructors have been discussed. Lastly, promising future research directions for developing new tools, methods, and for revising the curriculum have also been discussed in this section.

Methods, tools, and curriculum

Methods and tools.

Web-based tools proposed by Cvetanovic et al. ( 2010 ) and Wang et al. ( 2010 ) have been quite useful, as they are growing increasingly pertinent as online mode of education is prevalent all around the globe during COVID-19. On the other hand, interactive tools and smart class room methodology has also been used successfully to develop the interest of students in database class. (Brusilovsky et al., 2010 ; Connolly et al., 2005 ; Pahl et al., 2004 ; Canedo et al., 2021 ; Ko et al., 2021 ).

One of the most promising combination of methodology and tool has been proposed by Cvetanovic et al. ( 2010 ), whereby they developed a tool named ADVICE that helps students learn and implement database concepts while using project centric methodology, while a game based collaborative learning environment was proposed by Connolly et al. ( 2005 ) that involves a methodology comprising of modeling, articulation, feedback, and exploration. As a whole, project centric teaching (Connolly & Begg, 2006 ; Domínguez & Jaime, 2010 ) and teaching database design and problem solving skills Wang and Chen ( 2014 ), are two successful approaches for DSE. Whereas, other studies (Urban & Dietrich, 1997 ) proposed teaching methods that are more inclined towards practicing database concepts. While a topic specific approach has been proposed by Abbasi et al. ( 2016 ), Taipalus et al. ( 2018 ) and Silva et al. ( 2016 ) to teach and learn SQL. On the other hand, Cai and Gao ( 2019 ) developed a teaching method for students who do not have a computer science background. Lastly, some useful ways for defining assessments for DSE have been proposed by Kawash et al. ( 2020 ) and Zhang et al. ( 2018 ).

Curriculum of database adopted by various institutes around the world does not address how to teach the database course to the students who do not have a strong computer science background. Such as Marshall ( 2012 ), Luo et al. ( 2008 ) and Zhanquan et al. ( 2016 ) have proposed the updates in current database curriculum for the students who are not from computer science background. While Abid et al. ( 2015 ) proposed a combined course content and various methodologies that can be used for teaching database systems course. On the other hand, current database curriculum does not include the topics related to latest technologies in database domain. This factor was discussed by many other studies as well (Bhogal et al., 2012 ; Mehmood et al., 2020 ; Picciano, 2012 ).

Guidelines for instructors

The major conclusion of this study are the suggestions based on the impact and importance for instructors who are teaching DSE. Furthermore, an overview of productivity of every method can be provided by the empirical studies. These instructions are for instructors which are the focal audience of this study. These suggestions are subjective opinions after literature analysis in form of guidelines according to the authors and their meaning and purpose were maintained. According to the literature reviewed, various issues have been found in this section. Some other issues were also found, but those were not relevant to DSE. Following are some suggestions that provide interesting information:

Project centric and applied approach

  • To inculcate database development skills for the students, basic elements of database development need to be incorporated into teaching and learning at all levels including undergraduate studies (Bakar et al., 2011 ). To fulfill this objective, instructors should also improve the data quality in DSE by assigning the projects and assignments to the students where they can assess, measure and improve the data quality using already deployed databases. They should demonstrate that the quality of data is determined not only by the effective design of a database, but also through the perception of the end user (Mathieu & Khalil, 1997 )
  • The gap between the database course theory and industrial practice is big. Fresh graduate students find it difficult to cope up with the industrial pressure because of the contrast between what they have been taught in institutes and its application in industry (Allsopp et al., 2006 ). Involve top performers from classes in industrial projects so that they are able to acquiring sufficient knowledge and practice, especially for post graduate courses. There must be some other activities in which industry practitioners come and present the real projects and also share their industrial experiences with the students. The gap between theoretical and the practical sides of database has been identified by Myers and Skinner ( 1997 ). In order to build practical DS concepts, instructors should provide the students an accurate view of reality and proper tools.

Importance of software development standards and impact of DB in software success

  • They should have the strategies, ability and skills that can align the DSE course with the contemporary Global Software Development (GSD) (Akbar & Safdar, 2015 ; Damian et al., 2006 ).
  • Enable the students to explain the approaches to problem solving, development tools and methodologies. Also, the DS courses are usually taught in normal lecture format. The result of this method is that students cannot see the influence on the success or failure of projects because they do not realize the importance of DS activities.

Pedagogy and the use of education technology

  • Some studies have shown that teaching through play and practical activities helps to improve the knowledge and learning outcome of students (Dicheva et al., 2015 ).
  • Interactive classrooms can help the instructors to deliver their lecture in a more effective way by using virtual white board, digital textbooks, and data over network(Abut & Ozturk, 1997 ). We suggest that in order to follow the new concept of smart classroom, instructors should use the experience of Yau and Karim ( 2003 ) which benefits in cooperative learning among students and can also be adopted in DSE.
  • The instructors also need to update themselves with full spectrum of technology in education, in general, and for DSE, in particular. This is becoming more imperative as during COVID the world is relying strongly on the use of technology, particularly in education sector.

Periodic Curriculum Revision

  • There is also a need to revisit the existing series of courses periodically, so that they are able to offer the following benefits: (a) include the modern day database system concepts; (b) can be offered as a specialization track; (c) a specialized undergraduate degree program may also be designed.

DSE: Way forward

This research combines a significant work done on DSE at one place, thus providing a point to find better ways forward in order to improvise different possible dimensions for improving the teaching process of a database system course in future. This section discusses technology, methods, and modifications in curriculum would most impact the delivery of lectures in coming years.

Several tools have already been developed for effective teaching and learning in database systems. However, there is a great room for developing new tools. Recent rise of the notion of “serious games” is marking its success in several domains. Majority of the research work discussed in this review revolves around web-based tools. The success of serious games invites researchers to explore this new paradigm of developing useful tools for learning and practice database systems concepts.

Likewise, due to COVID-19 the world is setting up new norms, which are expected to affect the methods of teaching as well. This invites the researchers to design, develop, and test flexible tools for online teaching in a more interactive manner. At the same time, it is also imperative to devise new techniques for assessments, especially conducting online exams at massive scale. Moreover, the researchers can implement the idea of instructional design in web-based teaching in which an online classroom can be designed around the learners’ unique backgrounds and effectively delivering the concepts that are considered to be highly important by the instructors.

The teaching, learning and assessment methods discussed in this study can help the instructors to improve their methods in order to teach the database system course in a better way. It is noticed that only 16% of authors have the assessment methods as their focus of study, which clearly highlights that there is still plenty of work needed to be done in this particular domain. Assessment techniques in the database course will help the learners to learn from their mistakes. Also, instructors must realize that there is a massive gap between database theory and practice which can only be reduced with maximum practice and real world database projects.

Similarly, the technology is continuously influencing the development and expansion of modern education, whereas the instructors’ abilities to teach using online platforms are critical to the quality of online education.

In the same way, the ideas like flipped classroom in which students have to prepare the lesson prior to the class can be implemented on web-based teaching. This ensures that the class time can be used for further discussion of the lesson, share ideas and allow students to interact in a dynamic learning environment.

The increasing impact of big data systems, and data science and its anticipated impact on the job market invites the researchers to revisit the fundamental course of database systems as well. There is a need to extend the boundaries of existing contents by including the concepts related to distributed big data systems data storage, processing, and transaction management, with possible glimpse of modern tools and technologies.

As a whole, an interesting and long term extension is to establish a generic and comprehensive framework that engages all the stakeholders with the support of technology to make the teaching, learning, practicing, and assessing easier and more effective.

This SLR presents review on the research work published in the area of database system education, with particular focus on teaching the first course in database systems. The study was carried out by systematically selecting research papers published between 1995 and 2021. Based on the study, a high level categorization presents a taxonomy of the published under the heads of Tools, Methods, and Curriculum. All the selected articles were evaluated on the basis of a quality criteria. Several methods have been developed to effectively teach the database course. These methods focus on improving learning experience, improve student satisfaction, improve students’ course performance, or support the instructors. Similarly, many tools have been developed, whereby some tools are topic based, while others are general purpose tools that apply for whole course. Similarly, the curriculum development activities have also been discussed, where some guidelines provided by ACM/IEEE along with certain standards have been discussed. Apart from this, the evolution in these three areas has also been presented which shows that the researchers have been presenting many different teaching methods throughout the selected period; however, there is a decrease in research articles that address the curriculum and tools in the past five years. Besides, some guidelines for the instructors have also been shared. Also, this SLR proposes a way forward in DSE by emphasizing on the tools: that need to be developed to facilitate instructors and students especially post Covid-19 era, methods: to be adopted by the instructors to close the gap between the theory and practical, Database curricula update after the introduction of emerging technologies such as big data and data science. We also urge that the recognized publication venues for database research including VLDB, ICDM, EDBT should also consider publishing articles related to DSE. The study also highlights the importance of reviving the curricula, tools, and methodologies to cater for recent advancements in the field of database systems.

Data availability

Code availability, declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abbasi, S., Kazi, H., Khowaja, K., Abelló Gamazo, A., Burgués Illa, X., Casany Guerrero, M. J., Martin Escofet, C., Quer, C., Rodriguez González, M. E., Romero Moral, Ó., Urpi Tubella, A., Abid, A., Farooq, M. S., Raza, I., Farooq, U., Abid, K., Hussain, N., Abid, K., Ahmad, F., …, Yatim, N. F. M. (2016). Research trends in enterprise service bus (ESB) applications: A systematic mapping study. Journal of Informetrics, 27 (1), 217–220.
  • Abbasi, S., Kazi, H., & Khowaja, K. (2017). A systematic review of learning object oriented programming through serious games and programming approaches. 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS) , 1–6.
  • Abelló Gamazo A, Burgués Illa X, Casany Guerrero MJ, Martin Escofet C, Quer C, Rodriguez González ME, Romero Moral Ó, Urpi Tubella A. A software tool for E-assessment of relational database skills. International Journal of Engineering Education. 2016; 32 (3A):1289–1312. [ Google Scholar ]
  • Abid A, Farooq MS, Raza I, Farooq U, Abid K. Variants of teaching first course in database systems. Bulletin of Education and Research. 2015; 37 (2):9–25. [ Google Scholar ]
  • Abid A, Hussain N, Abid K, Ahmad F, Farooq MS, Farooq U, Khan SA, Khan YD, Naeem MA, Sabir N. A survey on search results diversification techniques. Neural Computing and Applications. 2016; 27 (5):1207–1229. [ Google Scholar ]
  • Abourezq, M., & Idrissi, A. (2016). Database-as-a-service for big data: An overview. International Journal of Advanced Computer Science and Applications (IJACSA) , 7 (1).
  • Abut, H., & Ozturk, Y. (1997). Interactive classroom for DSP/communication courses. 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing , 1 , 15–18.
  • Adams ES, Granger M, Goelman D, Ricardo C. Managing the introductory database course: What goes in and what comes out? ACM SIGCSE Bulletin. 2004; 36 (1):497–498. [ Google Scholar ]
  • Akbar, R., & Safdar, S. (2015). A short review of global software development (gsd) and latest software development trends. 2015 International Conference on Computer, Communications, and Control Technology (I4CT) , 314–317.
  • Allsopp DH, DeMarie D, Alvarez-McHatton P, Doone E. Bridging the gap between theory and practice: Connecting courses with field experiences. Teacher Education Quarterly. 2006; 33 (1):19–35. [ Google Scholar ]
  • Alrumaih, H. (2016). ACM/IEEE-CS information technology curriculum 2017: status report. Proceedings of the 1st National Computing Colleges Conference (NC3 2016) .
  • Al-Shuaily, H. (2012). Analyzing the influence of SQL teaching and learning methods and approaches. 10 Th International Workshop on the Teaching, Learning and Assessment of Databases , 3.
  • Amadio, W., Riyami, B., Mansouri, K., Poirier, F., Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., Mahmood, A., Hey, A. J. G., Tansley, S., Tolle, K. M., others, Tehseen, R., Farooq, M. S., Abid, A., …, Fatimazahra, E. (2003). The fourth paradigm: data-intensive scientific discovery. Innovation in Teaching and Learning in Information and Computer Sciences , 1 (1), 823–828. https://www.iso.org/standard/27614.html
  • Amadio, W. (2003). The dilemma of Team Learning: An assessment from the SQL programming classroom . 823–828.
  • Ampatzoglou A, Charalampidou S, Stamelos I. Research state of the art on GoF design patterns: A mapping study. Journal of Systems and Software. 2013; 86 (7):1945–1964. [ Google Scholar ]
  • Andersson C, Kroisandt G, Logofatu D. Including active learning in an online database management course for industrial engineering students. IEEE Global Engineering Education Conference (EDUCON) 2019; 2019 :217–220. [ Google Scholar ]
  • Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics. 2017; 11 (4):959–975. [ Google Scholar ]
  • Aziz O, Farooq MS, Abid A, Saher R, Aslam N. Research trends in enterprise service bus (ESB) applications: A systematic mapping study. IEEE Access. 2020; 8 :31180–31197. [ Google Scholar ]
  • Bakar MA, Jailani N, Shukur Z, Yatim NFM. Final year supervision management system as a tool for monitoring computer science projects. Procedia-Social and Behavioral Sciences. 2011; 18 :273–281. [ Google Scholar ]
  • Beecham S, Baddoo N, Hall T, Robinson H, Sharp H. Motivation in Software Engineering: A systematic literature review. Information and Software Technology. 2008; 50 (9–10):860–878. [ Google Scholar ]
  • Bhogal, J. K., Cox, S., & Maitland, K. (2012). Roadmap for Modernizing Database Curricula. 10 Th International Workshop on the Teaching, Learning and Assessment of Databases , 73.
  • Bishop, M., Burley, D., Buck, S., Ekstrom, J. J., Futcher, L., Gibson, D., ... & Parrish, A. (2017, May). Cybersecurity curricular guidelines . In IFIP World Conference on Information Security Education (pp. 3–13). Cham: Springer.
  • Brady A, Bruce K, Noonan R, Tucker A, Walker H. The 2003 model curriculum for a liberal arts degree in computer science: preliminary report. ACM SIGCSE Bulletin. 2004; 36 (1):282–283. [ Google Scholar ]
  • Brusilovsky P, Sosnovsky S, Lee DH, Yudelson M, Zadorozhny V, Zhou X. An open integrated exploratorium for database courses. AcM SIGcSE Bulletin. 2008; 40 (3):22–26. [ Google Scholar ]
  • Brusilovsky P, Sosnovsky S, Yudelson MV, Lee DH, Zadorozhny V, Zhou X. Learning SQL programming with interactive tools: From integration to personalization. ACM Transactions on Computing Education (TOCE) 2010; 9 (4):1–15. [ Google Scholar ]
  • Cai, Y., & Gao, T. (2019). Teaching Reform in Database Course for Liberal Arts Majors under the Background of" Internet Plus". 2018 6th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2018) , 208–213.
  • Calderon KR, Vij RS, Mattana J, Jhaveri KD. Innovative teaching tools in nephrology. Kidney International. 2011; 79 (8):797–799. [ PubMed ] [ Google Scholar ]
  • Calero C, Piattini M, Ruiz F. Towards a database body of knowledge: A study from Spain. ACM SIGMOD Record. 2003; 32 (2):48–53. [ Google Scholar ]
  • Canedo, E. D., Bandeira, I. N., & Costa, P. H. T. (2021). Challenges of database systems teaching amidst the Covid-19 pandemic. In 2021 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE.
  • Chen H-H, Chen Y-J, Chen K-J. The design and effect of a scaffolded concept mapping strategy on learning performance in an undergraduate database course. IEEE Transactions on Education. 2012; 56 (3):300–307. [ Google Scholar ]
  • Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology. 2012; 63 (8):1609–1630. [ Google Scholar ]
  • Conklin M, Heinrichs L. In search of the right database text. Journal of Computing Sciences in Colleges. 2005; 21 (2):305–312. [ Google Scholar ]
  • Connolly, T. M., & Begg, C. E. (2006). A constructivist-based approach to teaching database analysis and design. Journal of Information Systems Education , 17 (1).
  • Connolly, T. M., Stansfield, M., & McLellan, E. (2005). An online games-based collaborative learning environment to teach database design. Web-Based Education: Proceedings of the Fourth IASTED International Conference(WBE-2005) .
  • Curricula Computing. (1991). Report of the ACM/IEEE-CS Joint Curriculum Task Force. Technical Report . New York: Association for Computing Machinery.
  • Cvetanovic M, Radivojevic Z, Blagojevic V, Bojovic M. ADVICE—Educational system for teaching database courses. IEEE Transactions on Education. 2010; 54 (3):398–409. [ Google Scholar ]
  • Damian, D., Hadwin, A., & Al-Ani, B. (2006). Instructional design and assessment strategies for teaching global software development: a framework. Proceedings of the 28th International Conference on Software Engineering , 685–690.
  • Dean, T. J., & Milani, W. G. (1995). Transforming a database systems and design course for non computer science majors. Proceedings Frontiers in Education 1995 25th Annual Conference. Engineering Education for the 21st Century , 2 , 4b2--17.
  • Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Journal of Educational Technology \& Society , 18 (3), 75–88.
  • Dietrich SW, Urban SD, Haag S. Developing advanced courses for undergraduates: A case study in databases. IEEE Transactions on Education. 2008; 51 (1):138–144. [ Google Scholar ]
  • Dietrich SW, Goelman D, Borror CM, Crook SM. An animated introduction to relational databases for many majors. IEEE Transactions on Education. 2014; 58 (2):81–89. [ Google Scholar ]
  • Dietrich, S. W., & Urban, S. D. (1996). Database theory in practice: learning from cooperative group projects. Proceedings of the Twenty-Seventh SIGCSE Technical Symposium on Computer Science Education , 112–116.
  • Dominguez, C., & Jaime, A. (2010). Database design learning: A project-based approach organized through a course management system. Computers \& Education , 55 (3), 1312–1320.
  • Eaglestone, B., & Nunes, M. B. (2004). Pragmatics and practicalities of teaching and learning in the quicksand of database syllabuses. Journal of Innovations in Teaching and Learning for Information and Computer Sciences , 3 (1).
  • Efendiouglu A, Yelken TY. Programmed instruction versus meaningful learning theory in teaching basic structured query language (SQL) in computer lesson. Computers & Education. 2010; 55 (3):1287–1299. [ Google Scholar ]
  • Elberzhager F, Münch J, Nha VTN. A systematic mapping study on the combination of static and dynamic quality assurance techniques. Information and Software Technology. 2012; 54 (1):1–15. [ Google Scholar ]
  • Etemad M, Küpçü A. Verifiable database outsourcing supporting join. Journal of Network and Computer Applications. 2018; 115 :1–19. [ Google Scholar ]
  • Farooq MS, Riaz S, Abid A, Abid K, Naeem MA. A Survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access. 2019; 7 :156237–156271. [ Google Scholar ]
  • Farooq MS, Riaz S, Abid A, Umer T, Zikria YB. Role of IoT technology in agriculture: A systematic literature review. Electronics. 2020; 9 (2):319. [ Google Scholar ]
  • Farooq U, Rahim MSM, Sabir N, Hussain A, Abid A. Advances in machine translation for sign language: Approaches, limitations, and challenges. Neural Computing and Applications. 2021; 33 (21):14357–14399. [ Google Scholar ]
  • Fisher, D., & Khine, M. S. (2006). Contemporary approaches to research on learning environments: Worldviews . World Scientific.
  • Garcia-Molina, H. (2008). Database systems: the complete book . Pearson Education India.
  • Garousi V, Mesbah A, Betin-Can A, Mirshokraie S. A systematic mapping study of web application testing. Information and Software Technology. 2013; 55 (8):1374–1396. [ Google Scholar ]
  • Gudivada, V. N., Nandigam, J., & Tao, Y. (2007). Enhancing student learning in database courses with large data sets. 2007 37th Annual Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports , S2D--13.
  • Hey, A. J. G., Tansley, S., Tolle, K. M., & others. (2009). The fourth paradigm: data-intensive scientific discovery (Vol. 1). Microsoft research Redmond, WA.
  • Holliday, M. A., & Wang, J. Z. (2009). A multimedia database project and the evolution of the database course. 2009 39th IEEE Frontiers in Education Conference , 1–6.
  • Hou, S., & Chen, S. (2010). Research on applying the theory of Blending Learning on Access Database Programming Course teaching. 2010 2nd International Conference on Education Technology and Computer , 3 , V3--396.
  • Irby DM, Wilkerson L. Educational innovations in academic medicine and environmental trends. Journal of General Internal Medicine. 2003; 18 (5):370–376. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ishaq K, Zin NAM, Rosdi F, Jehanghir M, Ishaq S, Abid A. Mobile-assisted and gamification-based language learning: A systematic literature review. PeerJ Computer Science. 2021; 7 :e496. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Joint Task Force on Computing Curricula, A. F. C. M. (acm), & Society, I. C. (2013). Computer science curricula 2013: Curriculum guidelines for undergraduate degree programs in computer science . New York, NY, USA: Association for Computing Machinery.
  • Juxiang R, Zhihong N. Taking database design as trunk line of database courses. Fourth International Conference on Computational and Information Sciences. 2012; 2012 :767–769. [ Google Scholar ]
  • Kawash, J., Jarada, T., & Moshirpour, M. (2020). Group exams as learning tools: Evidence from an undergraduate database course. Proceedings of the 51st ACM Technical Symposium on Computer Science Education , 626–632.
  • Keele, S., et al. (2007). Guidelines for performing systematic literature reviews in software engineering .
  • Kleiner, C. (2015). New Concepts in Database System Education: Experiences and Ideas. Proceedings of the 46th ACM Technical Symposium on Computer Science Education , 698.
  • Ko J, Paek S, Park S, Park J. A news big data analysis of issues in higher education in Korea amid the COVID-19 pandemic. Sustainability. 2021; 13 (13):7347. [ Google Scholar ]
  • Kui, X., Du, H., Zhong, P., & Liu, W. (2018). Research and application of flipped classroom in database course. 2018 13th International Conference on Computer Science \& Education (ICCSE) , 1–5.
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics , 159–174. [ PubMed ]
  • Lunt, B., Ekstrom, J., Gorka, S., Hislop, G., Kamali, R., Lawson, E., ... & Reichgelt, H. (2008). Curriculum guidelines for undergraduate degree programs in information technology . ACM.
  • Luo, R., Wu, M., Zhu, Y., & Shen, Y. (2008). Exploration of Curriculum Structures and Educational Models of Database Applications. 2008 The 9th International Conference for Young Computer Scientists , 2664–2668.
  • Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory programming: a systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education , 55–106.
  • Manzoor MF, Abid A, Farooq MS, Nawaz NA, Farooq U. Resource allocation techniques in cloud computing: A review and future directions. Elektronika Ir Elektrotechnika. 2020; 26 (6):40–51. doi: 10.5755/j01.eie.26.6.25865. [ CrossRef ] [ Google Scholar ]
  • Marshall, L. (2011). Developing a computer science curriculum in the South African context. CSERC , 9–19.
  • Marshall, L. (2012). A comparison of the core aspects of the acm/ieee computer science curriculum 2013 strawman report with the specified core of cc2001 and cs2008 review. Proceedings of Second Computer Science Education Research Conference , 29–34.
  • Martin C, Urpi T, Casany MJ, Illa XB, Quer C, Rodriguez ME, Abello A. Improving learning in a database course using collaborative learning techniques. The International Journal of Engineering Education. 2013; 29 (4):986–997. [ Google Scholar ]
  • Martinez-González MM, Duffing G. Teaching databases in compliance with the European dimension of higher education: Best practices for better competences. Education and Information Technologies. 2007; 12 (4):211–228. [ Google Scholar ]
  • Mateo PR, Usaola MP, Alemán JLF. Validating second-order mutation at system level. IEEE Transactions on Software Engineering. 2012; 39 (4):570–587. [ Google Scholar ]
  • Mathieu, R. G., & Khalil, O. (1997). Teaching Data Quality in the Undergraduate Database Course. IQ , 249–266.
  • Mcintyre, D. R., Pu, H.-C., & Wolff, F. G. (1995). Use of software tools in teaching relational database design. Computers \& Education , 24 (4), 279–286.
  • Mehmood E, Abid A, Farooq MS, Nawaz NA. Curriculum, teaching and learning, and assessments for introductory programming course. IEEE Access. 2020; 8 :125961–125981. [ Google Scholar ]
  • Meier, R., Barnicki, S. L., Barnekow, W., & Durant, E. (2008). Work in progress-Year 2 results from a balanced, freshman-first computer engineering curriculum. In 38th Annual Frontiers in Education Conference (pp. S1F-17). IEEE.
  • Meyer B. Software engineering in the academy. Computer. 2001; 34 (5):28–35. [ Google Scholar ]
  • Mingyu, L., Jianping, J., Yi, Z., & Cuili, Z. (2017). Research on the teaching reform of database curriculum major in computer in big data era. 2017 12th International Conference on Computer Science and Education (ICCSE) , 570–573.
  • Morien, R. I. (2006). A Critical Evaluation Database Textbooks, Curriculum and Educational Outcomes. Director , 7 .
  • Mushtaq Z, Rasool G, Shehzad B. Multilingual source code analysis: A systematic literature review. IEEE Access. 2017; 5 :11307–11336. [ Google Scholar ]
  • Myers M, Skinner P. The gap between theory and practice: A database application case study. Journal of International Information Management. 1997; 6 (1):5. [ Google Scholar ]
  • Naeem A, Farooq MS, Khelifi A, Abid A. Malignant melanoma classification using deep learning: Datasets, performance measurements, challenges and opportunities. IEEE Access. 2020; 8 :110575–110597. [ Google Scholar ]
  • Nagataki, H., Nakano, Y., Nobe, M., Tohyama, T., & Kanemune, S. (2013). A visual learning tool for database operation. Proceedings of the 8th Workshop in Primary and Secondary Computing Education , 39–40.
  • Naik, S., & Gajjar, K. (2021). Applying and Evaluating Engagement and Application-Based Learning and Education (ENABLE): A Student-Centered Learning Pedagogy for the Course Database Management System. Journal of Education , 00220574211032319.
  • Nelson, D., Stirk, S., Patience, S., & Green, C. (2003). An evaluation of a diverse database teaching curriculum and the impact of research. 1st LTSN Workshop on Teaching, Learning and Assessment of Databases, Coventry .
  • Nelson D, Fatimazahra E. Review of Contributions to the Teaching, Learning and Assessment of Databases (TLAD) Workshops. Innovation in Teaching and Learning in Information and Computer Sciences. 2010; 9 (1):78–86. [ Google Scholar ]
  • Obaid I, Farooq MS, Abid A. Gamification for recruitment and job training: Model, taxonomy, and challenges. IEEE Access. 2020; 8 :65164–65178. [ Google Scholar ]
  • Pahl C, Barrett R, Kenny C. Supporting active database learning and training through interactive multimedia. ACM SIGCSE Bulletin. 2004; 36 (3):27–31. [ Google Scholar ]
  • Park, Y., Tajik, A. S., Cafarella, M., & Mozafari, B. (2017). Database learning: Toward a database that becomes smarter every time. Proceedings of the 2017 ACM International Conference on Management of Data , 587–602.
  • Picciano AG. The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks. 2012; 16 (3):9–20. [ Google Scholar ]
  • Prince MJ, Felder RM. Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education. 2006; 95 (2):123–138. [ Google Scholar ]
  • Ramzan M, Abid A, Khan HU, Awan SM, Ismail A, Ahmed M, Ilyas M, Mahmood A. A review on state-of-the-art violence detection techniques. IEEE Access. 2019; 7 :107560–107575. [ Google Scholar ]
  • Rashid, T. A., & Al-Radhy, R. S. (2014). Transformations to issues in teaching, learning, and assessing methods in databases courses. 2014 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) , 252–256.
  • Rashid, T. (2015). Investigation of instructing reforms in databases. International Journal of Scientific \& Engineering Research , 6 (8), 64–72.
  • Regueras, L. M., Verdú, E., Verdú, M. J., Pérez, M. A., & De Castro, J. P. (2007). E-learning strategies to support databases courses: a case study. First International Conference on Technology, Training and Communication .
  • Robbert MA, Ricardo CM. Trends in the evolution of the database curriculum. ACM SIGCSE Bulletin. 2003; 35 (3):139–143. [ Google Scholar ]
  • Sahami, M., Guzdial, M., McGettrick, A., & Roach, S. (2011). Setting the stage for computing curricula 2013: computer science--report from the ACM/IEEE-CS joint task force. Proceedings of the 42nd ACM Technical Symposium on Computer Science Education , 161–162.
  • Sciore E. SimpleDB: A simple java-based multiuser syst for teaching database internals. ACM SIGCSE Bulletin. 2007; 39 (1):561–565. [ Google Scholar ]
  • Shebaro B. Using active learning strategies in teaching introductory database courses. Journal of Computing Sciences in Colleges. 2018; 33 (4):28–36. [ Google Scholar ]
  • Sibia, N., & Liut, M. (2022, June). The Positive Effects of using Reflective Prompts in a Database Course. In 1st International Workshop on Data Systems Education (pp. 32–37).
  • Silva, Y. N., Almeida, I., & Queiroz, M. (2016). SQL: From traditional databases to big data. Proceedings of the 47th ACM Technical Symposium on Computing Science Education , 413–418.
  • Sobel, A. E. K. (2003). Computing Curricula--Software Engineering Volume. Proc. of the Final Draft of the Software Engineering Education Knowledge (SEEK) .
  • Suryn, W., Abran, A., & April, A. (2003). ISO/IEC SQuaRE: The second generation of standards for software product quality .
  • Svahnberg, M., Aurum, A., & Wohlin, C. (2008). Using students as subjects-an empirical evaluation. Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement , 288–290.
  • Swebok evolution: IEEE Computer Society. (n.d.). In IEEE Computer Society SWEBOK Evolution Comments . Retrieved March 24, 2021 https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-committee/swebok-evolution
  • Taipalus T, Seppänen V. SQL education: A systematic mapping study and future research agenda. ACM Transactions on Computing Education (TOCE) 2020; 20 (3):1–33. [ Google Scholar ]
  • Taipalus T, Siponen M, Vartiainen T. Errors and complications in SQL query formulation. ACM Transactions on Computing Education (TOCE) 2018; 18 (3):1–29. [ Google Scholar ]
  • Taipalus, T., & Perälä, P. (2019). What to expect and what to focus on in SQL query teaching. Proceedings of the 50th ACM Technical Symposium on Computer Science Education , 198–203.
  • Tehseen R, Farooq MS, Abid A. Earthquake prediction using expert systems: A systematic mapping study. Sustainability. 2020; 12 (6):2420. [ Google Scholar ]
  • Urban, S. D., & Dietrich, S. W. (2001). Advanced database concepts for undergraduates: experience with teaching a second course. Proceedings of the Thirty-Second SIGCSE Technical Symposium on Computer Science Education , 357–361.
  • Urban SD, Dietrich SW. Integrating the practical use of a database product into a theoretical curriculum. ACM SIGCSE Bulletin. 1997; 29 (1):121–125. [ Google Scholar ]
  • Wang, J., & Chen, H. (2014). Research and practice on the teaching reform of database course. International Conference on Education Reform and Modern Management, ERMM .
  • Wang, J. Z., Davis, T. A., Westall, J. M., & Srimani, P. K. (2010). Undergraduate database instruction with MeTube. Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education , 279–283.
  • Yau, G., & Karim, S. W. (2003). Smart classroom: Enhancing collaborative learning using pervasive computing technology. II American Society… .
  • Yue K-B. Using a semi-realistic database to support a database course. Journal of Information Systems Education. 2013; 24 (4):327. [ Google Scholar ]
  • Yuelan L, Yiwei L, Yuyan H, Yuefan L. Study on teaching methods of database application courses. Procedia Engineering. 2011; 15 :5425–5428. [ Google Scholar ]
  • Zhang, X., Wang, X., Liu, Z., Xue, W., & ZHU, X. (2018). The Exploration and Practice on the Classroom Teaching Reform of the Database Technologies Course in colleges. 2018 3rd International Conference on Modern Management, Education Technology, and Social Science (MMETSS 2018) , 320–323.
  • Zhanquan W, Zeping Y, Chunhua G, Fazhi Z, Weibin G. Research of database curriculum construction under the environment of massive open online courses. International Journal of Educational and Pedagogical Sciences. 2016; 10 (12):3873–3877. [ Google Scholar ]
  • Zheng, Y., & Dong, J. (2011). Teaching reform and practice of database principles. 2011 6th International Conference on Computer Science \& Education (ICCSE) , 1460–1462.

Advertisement

Advertisement

Advances in database systems education: Methods, tools, curricula, and way forward

  • Published: 31 August 2022
  • Volume 28 , pages 2681–2725, ( 2023 )

Cite this article

research topics on database management system

  • Muhammad Ishaq 1 ,
  • Adnan Abid 2 , 3 ,
  • Muhammad Shoaib Farooq 3 ,
  • Muhammad Faraz Manzoor 3 , 4 ,
  • Uzma Farooq 3 ,
  • Kamran Abid 5 &
  • Mamoun Abu Helou 6  

6471 Accesses

8 Citations

Explore all metrics

Fundamentals of Database Systems is a core course in computing disciplines as almost all small, medium, large, or enterprise systems essentially require data storage component. Database System Education (DSE) provides the foundation as well as advanced concepts in the area of data modeling and its implementation. The first course in DSE holds a pivotal role in developing students’ interest in this area. Over the years, the researchers have devised several different tools and methods to teach this course effectively, and have also been revisiting the curricula for database systems education. In this study a Systematic Literature Review (SLR) is presented that distills the existing literature pertaining to the DSE to discuss these three perspectives for the first course in database systems. Whereby, this SLR also discusses how the developed teaching and learning assistant tools, teaching and assessment methods and database curricula have evolved over the years due to rapid change in database technology. To this end, more than 65 articles related to DSE published between 1995 and 2022 have been shortlisted through a structured mechanism and have been reviewed to find the answers of the aforementioned objectives. The article also provides useful guidelines to the instructors, and discusses ideas to extend this research from several perspectives. To the best of our knowledge, this is the first research work that presents a broader review about the research conducted in the area of DSE.

Similar content being viewed by others

research topics on database management system

Thought and Measures of Reforming About Database Courses in Universities

research topics on database management system

Reform of Database and Data Warehouse Course Based on OBE-CDIO Model

research topics on database management system

Learning from Errors as a Pedagogic Approach for Reaching a Higher Conceptual Level in Database Modeling

Explore related subjects.

  • Artificial Intelligence
  • Digital Education and Educational Technology

Avoid common mistakes on your manuscript.

1 Introduction

Database systems play a pivotal role in the successful implementation of the information systems to ensure the smooth running of many different organizations and companies (Etemad & Küpçü, 2018 ; Morien, 2006 ). Therefore, at least one course about the fundamentals of database systems is taught in every computing and information systems degree (Nagataki et al., 2013 ). Database System Education (DSE) is concerned with different aspects of data management while developing software (Park et al., 2017 ). The IEEE/ACM computing curricula guidelines endorse 30–50 dedicated hours for teaching fundamentals of design and implementation of database systems so as to build a very strong theoretical and practical understanding of the DSE topics (Cvetanovic et al., 2010 ).

Practically, most of the universities offer one user-oriented course at undergraduate level that covers topics related to the data modeling and design, querying, and a limited number of hours on theory (Conklin & Heinrichs, 2005 ; Robbert & Ricardo, 2003 ), where it is often debatable whether to utilize a design-first or query-first approach. Furthermore, in order to update the course contents, some recent trends, including big data and the notion of NoSQL should also be introduced in this basic course (Dietrich et al., 2008 ; Garcia-Molina, 2008 ). Whereas, the graduate course is more theoretical and includes topics related to DB architecture, transactions, concurrency, reliability, distribution, parallelism, replication, query optimization, along with some specialized classes.

Researchers have designed a variety of tools for making different concepts of introductory database course more interesting and easier to teach and learn interactively (Brusilovsky et al., 2010 ) either using visual support (Nagataki et al., 2013 ), or with the help of gamification (Fisher & Khine, 2006 ). Similarly, the instructors have been improvising different methods to teach (Abid et al., 2015 ; Domínguez & Jaime, 2010 ) and evaluate (Kawash et al., 2020 ) this theoretical and practical course. Also, the emerging and hot topics such as cloud computing and big data has also created the need to revise the curriculum and methods to teach DSE (Manzoor et al., 2020 ).

The research in database systems education has evolved over the years with respect to modern contents influenced by technological advancements, supportive tools to engage the learners for better learning, and improvisations in teaching and assessment methods. Particularly, in recent years there is a shift from self-describing data-driven systems to a problem-driven paradigm that is the bottom-up approach where data exists before being designed. This mainly relies on scientific, quantitative, and empirical methods for building models, while pushing the boundaries of typical data management by involving mathematics, statistics, data mining, and machine learning, thus opening a multidisciplinary perspective. Hence, it is important to devote a few lectures to introducing the relevance of such advance topics.

Researchers have provided useful review articles on other areas including Introductory Programming Language (Mehmood et al., 2020 ), use of gamification (Obaid et al., 2020 ), research trends in the use of enterprise service bus (Aziz et al., 2020 ), and the role of IoT in agriculture (Farooq et al., 2019 , 2020 ) However, to the best of our knowledge, no such study was found in the area of database systems education. Therefore, this study discusses research work published in different areas of database systems education involving curricula, tools, and approaches that have been proposed to teach an introductory course on database systems in an effective manner. The rest of the article has been structured in the following manner: Sect.  2 presents related work and provides a comparison of the related surveys with this study. Section  3 presents the research methodology for this study. Section  4 analyses the major findings of the literature reviewed in this research and categorizes it into different important aspects. Section  5 represents advices for the instructors and future directions. Lastly, Sect.  6 concludes the article.

2 Related work

Systematic Literature Reviews have been found to be a very useful artifact for covering and understanding a domain. A number of interesting review studies have been found in different fields (Farooq et al., 2021 ; Ishaq et al., 2021 ). Review articles are generally categorized into narrative or traditional reviews (Abid et al., 2016 ; Ramzan et al., 2019 ), systematic literature review (Naeem et al., 2020 ) and meta reviews or mapping study (Aria & Cuccurullo, 2017 ; Cobo et al., 2012 ; Tehseen et al., 2020 ). This study presents a systematic literature review on database system education.

The database systems education has been discussed from many different perspectives which include teaching and learning methods, curriculum development, and the facilitation of instructors and students by developing different tools. For instance, a number of research articles have been published focusing on developing tools for teaching database systems course (Abut & Ozturk, 1997 ; Connolly et al., 2005 ; Pahl et al., 2004 ). Furthermore, few authors have evaluated the DSE tools by conducting surveys and performing empirical experiments so as to gauge the effectiveness of these tools and their degree of acceptance among important stakeholders, teachers and students (Brusilovsky et al., 2010 ; Nelson & Fatimazahra, 2010 ). On the other hand, some case studies have also been discussed to evaluate the effectiveness of the improvised approaches and developed tools. For example, Regueras et al. ( 2007 ) presented a case study using the QUEST system, in which e-learning strategies are used to teach the database course at undergraduate level, while, Myers and Skinner ( 1997 ) identified the conflicts that arise when theories in text books regarding the development of databases do not work on specific applications.

Another important facet of DSE research focuses on the curriculum design and evolution for database systems, whereby (Alrumaih, 2016 ; Bhogal et al., 2012 ; Cvetanovic et al., 2010 ; Sahami et al., 2011 ) have proposed solutions for improvements in database curriculum for the better understanding of DSE among the students, while also keeping the evolving technology into the perspective. Similarly, Mingyu et al. ( 2017 ) have shared their experience in reforming the DSE curriculum by adding topics related to Big Data. A few authors have also developed and evaluated different tools to help the instructors teaching DSE.

There are further studies which focus on different aspects including specialized tools for specific topics in DSE (Mcintyre et al, 1995 ; Nelson & Fatimazahra, 2010 ). For instance, Mcintyre et al. ( 1995 ) conducted a survey about using state of the art software tools to teach advanced relational database design courses at Cleveland State University. However, the authors did not discuss the DSE curricula and pedagogy in their study. Similarly, a review has been conducted by Nelson and Fatimazahra ( 2010 ) to highlight the fact that the understanding of basic knowledge of database is important for students of the computer science domain as well as those belonging to other domains. They highlighted the issues encountered while teaching the database course in universities and suggested the instructors investigate these difficulties so as to make this course more effective for the students. Although authors have discussed and analyzed the tools to teach database, the tools are yet to be categorized according to different methods and research types within DSE. There also exists an interesting systematic mapping study by Taipalus and Seppänen ( 2020 ) that focuses on teaching SQL which is a specific topic of DSE. Whereby, they categorized the selected primary studies into six categories based on their research types. They utilized directed content analysis, such as, student errors in query formulation, characteristics and presentation of the exercise database, specific or non-specific teaching approach suggestions, patterns and visualization, and easing teacher workload.

Another relevant study that focuses on collaborative learning techniques to teach the database course has been conducted by Martin et al. ( 2013 ) This research discusses collaborative learning techniques and adapted it for the introductory database course at the Barcelona School of Informatics. The motive of the authors was to introduce active learning methods to improve learning and encourage the acquisition of competence. However, the focus of the study was only on a few methods for teaching the course of database systems, while other important perspectives, including database curricula, and tools for teaching DSE were not discussed in this study.

The above discussion shows that a considerable amount of research work has been conducted in the field of DSE to propose various teaching methods; develop and test different supportive tools, techniques, and strategies; and to improve the curricula for DSE. However, to the best of our knowledge, there is no study that puts all these relevant and pertinent aspects together while also classifying and discussing the supporting methods, and techniques. This review is considerably different from previous studies. Table 1 highlights the differences between this study and other relevant studies in the field of DSE using ✓ and – symbol reflecting "included" and "not included" respectively. Therefore, this study aims to conduct a systematic mapping study on DSE that focuses on compiling, classifying, and discussing the existing work related to pedagogy, supporting tools, and curricula.

3 Research methodology

In order to preserve the principal aim of this study, which is to review the research conducted in the area of database systems education, a piece of advice has been collected from existing methods described in various studies (Elberzhager et al., 2012 ; Keele et al., 2007 ; Mushtaq et al., 2017 ) to search for the relevant papers. Thus, proper research objectives were formulated, and based on them appropriate research questions and search strategy were formulated as shown in Fig.  1 .

figure 1

Research methodology

4 Research objectives

The Following are the research objectives of this study:

To find high quality research work in DSE.

To categorize different aspects of DSE covered by other researchers in the field.

To provide a thorough discussion of the existing work in this study to provide useful information in the form of evolution, teaching guidelines, and future research directions of the instructors.

5 Research questions

In order to fulfill the research objectives, some relevant research questions have been formulated. These questions along with their motivations have been presented in Table 2 .

5.1 Search strategy

The Following search string used to find relevant articles to conduct this study. “Database” AND (“System” OR “Management”) AND (“Education*” OR “Train*” OR “Tech*” OR “Learn*” OR “Guide*” OR “Curricul*”).

Articles have been taken from different sources i.e. IEEE, Springer, ACM, Science Direct and other well-known journals and conferences such as Wiley Online Library, PLOS and ArXiv. The planning for search to find the primary study in the field of DSE is a vital task.

5.2 Study selection

A total of 29,370 initial studies were found. These articles went through a selection process, and two authors were designated to shortlist the articles based on the defined inclusion criteria as shown in Fig.  2 . Their conflicts were resolved by involving a third author; while the inclusion/exclusion criteria were also refined after resolving the conflicts as shown in Table 3 . Cohen’s Kappa coefficient 0.89 was observed between the two authors who selected the articles, which reflects almost perfect agreement between them (Landis & Koch, 1977 ). While, the number of papers in different stages of the selection process for all involved portals has been presented in Table 4 .

figure 2

Study selection

Title based search: Papers that are irrelevant based on their title are manually excluded in the first stage. At this stage, there was a large portion of irrelevant papers. Only 609 papers remained after this stage.

Abstract based search: At this stage, abstracts of the selected papers in the previous stage are studied and the papers are categorized for the analysis along with research approach. After this stage only 152 papers were left.

Full text based analysis: Empirical quality of the selected articles in the previous stage is evaluated at this stage. The analysis of full text of the article has been conducted. The total of 70 papers were extracted from 152 papers for primary study. Following questions are defined for the conduction of final data extraction.

5.2.1 Quality assessment criteria

Following are the criteria used to assess the quality of the selected primary studies. This quality assessment was conducted by two authors as explained above.

The study focuses on curricula, tools, approach, or assessments in DSE, the possible answers were Yes (1), No (0)

The study presents a solution to the problem in DSE, the possible answers to this question were Yes (1), Partially (0.5), No (0)

The study focuses on empirical results, Yes (1), No (0)

The study is published in a well reputed venue that is adjudged through the CORE ranking of conferences, and Scientific Journal Ranking (SJR). The possible answers to this question are given in Table 5 .

Almost 50.00% of papers had scored more than average and 33.33% of papers had scored between the average range i.e., 2.50–3.50. Some articles with the score below 2.50 have also been included in this study as they present some useful information and were published in education-based journals. Also, these studies discuss important demography and technology based aspects that are directly related to DSE.

5.3 Threats to validity

The validity of this study could be influenced by the following factors during the literature of this publication.

Construct validity

In this study this validity identifies the primary study for research (Elberzhager et al., 2012 ). To ensure that many primary studies have been included in this literature two authors have proposed possible search keywords in multiple repetitions. Search string is comprised of different terms related to DS and education. Though, list might be incomplete, count of final papers found can be changed by the alternative terms (Ampatzoglou et al., 2013 ). IEEE digital library, Science direct, ACM digital library, Wiley Online Library, PLOS, ArXiv and Google scholar are the main libraries where search is done. We believe according to the statistics of search engines of literature the most research can be found on these digital libraries (Garousi et al., 2013 ). Researchers also searched related papers in main DS research sites (VLDB, ICDM, EDBT) in order to minimize the risk of missing important publication.

Including the papers that does not belong to top journals or conferences may reduce the quality of primary studies in this research but it indicates that the representativeness of the primary studies is improved. However, certain papers which were not from the top publication sources are included because of their relativeness wisth the literature, even though they reduce the average score for primary studies. It also reduces the possibility of alteration of results which might have caused by the improper handling of duplicate papers. Some cases of duplications were found which were inspected later whether they were the same study or not. The two authors who have conducted the search has taken the final decision to the select the papers. If there is no agreement between then there must be discussion until an agreement is reached.

Internal validity

This validity deals with extraction and data analysis (Elberzhager et al., 2012 ). Two authors carried out the data extraction and primary studies classification. While the conflicts between them were resolved by involving a third author. The Kappa coefficient was 0.89, according to Landis and Koch ( 1977 ), this value indicates almost perfect level of agreement between the authors that reduces this threat significantly.

Conclusion validity

This threat deals with the identification of improper results which may cause the improper conclusions. In this case this threat deals with the factors like missing studies and wrong data extraction (Ampatzoglou et al., 2013 ). The objective of this is to limit these factors so that other authors can perform study and produce the proper conclusions (Elberzhager et al., 2012 ).

Interpretation of results might be affected by the selection and classification of primary studies and analyzing the selected study. Previous section has clearly described each step performed in primary study selection and data extraction activity to minimize this threat. The traceability between the result and data extracted was supported through the different charts. In our point of view, slight difference based on the publication selection and misclassification would not alter the main results.

External validity

This threat deals with the simplification of this research (Mateo et al., 2012 ). The results of this study were only considered that related to the DSE filed and validation of the conclusions extracted from this study only concerns the DSE context. The selected study representativeness was not affected because there was no restriction on time to find the published research. Therefore, this external validity threat is not valid in the context of this research. DS researchers can take search string and the paper classification scheme represented in this study as an initial point and more papers can be searched and categorized according to this scheme.

6 Analysis of compiled research articles

This section presents the analysis of the compiled research articles carefully selected for this study. It presents the findings with respect to the research questions described in Table 2 .

6.1 Selection results

A total of 70 papers were identified and analyzed for the answers of RQs described above. Table 6 represents a list of the nominated papers with detail of the classification results and their quality assessment scores.

6.1.1 RQ1.Categorization of research work in DSE field

The analysis in this study reveals that the literature can be categorized as: Tools: any additional application that helps instructors in teaching and students in learning. Methods: any improvisation aimed at improving pedagogy or cognition. Curriculum: refers to the course content domains and their relative importance in a degree program, as shown in Fig.  3 .

figure 3

Taxonomy of DSE study types

Most of the articles provide a solution by gathering the data and also prove the novelty of their research through results. These papers are categorized as experiments w.r.t. their research types. Whereas, some of them case study papers which are used to generate an in depth, multifaceted understanding of a complex issue in its real-life context, while few others are review studies analyzing the previously used approaches. On the other hand, a majority of included articles have evaluated their results with the help of experiments, while others conducted reviews to establish an opinion as shown in Fig.  4 .

figure 4

Cross Mapping of DSE study type and research Types

Educational tools, especially those related to technology, are making their place in market faster than ever before (Calderon et al., 2011 ). The transition to active learning approaches, with the learner more engaged in the process rather than passively taking in information, necessitates a variety of tools to help ensure success. As with most educational initiatives, time should be taken to consider the goals of the activity, the type of learners, and the tools needed to meet the goals. Constant reassessment of tools is important to discover innovation and reforms that improve teaching and learning (Irby & Wilkerson, 2003 ). For this purpose, various type of educational tools such as, interactive, web-based and game based have been introduced to aid the instructors in order to explain the topic in more effective way.

The inclusion of technology into the classroom may help learners to compete in the competitive market when approaching the start of their career. It is important for the instructors to acknowledge that the students are more interested in using technology to learn database course instead of merely being taught traditional theory, project, and practice-based methods of teaching (Adams et al., 2004 ). Keeping these aspects in view many authors have done significant research which includes web-based and interactive tools to help the learners gain better understanding of basic database concepts.

Great research has been conducted with the focus of students learning. In this study we have discussed the students learning supportive with two major finding’s objectives i.e., tools which prove to be more helpful than other tools. Whereas, proposed tools with same outcome as traditional classroom environment. Such as, Abut and Ozturk ( 1997 ) proposed an interactive classroom environment to conduct database classes. The online tools such as electronic “Whiteboard”, electronic textbooks, advance telecommunication networks and few other resources such as Matlab and World Wide Web were the main highlights of their proposed smart classroom. Also, Pahl et al. ( 2004 ) presented an interactive multimedia-based system for the knowledge and skill oriented Web-based education of database course students. The authors had differentiated their proposed classroom environment from traditional classroom-based approach by using tool mediated independent learning and training in an authentic setting. On the other hand, some authors have also evaluated the educational tools based on their usage and impact on students’ learning. For example, Brusilovsky et al. ( 2010 )s evaluated the technical and conceptual difficulties of using several interactive educational tools in the context of a single course. A combined Exploratorium has been presented for database courses and an experimental platform, which delivers modified access to numerous types of interactive learning activities.

Also, Taipalus and Perälä ( 2019 ) investigated the types of errors that are persistent in writing SQL by the students. The authors also contemplated the errors while mapping them onto different query concepts. Moreover, Abelló Gamazo et al. ( 2016 ) presented a software tool for the e-assessment of relational database skills named LearnSQL. The proposed software allows the automatic and efficient e-learning and e-assessment of relational database skills. Apart from these, Yue ( 2013 ) proposed the database tool named Sakila as a unified platform to support instructions and multiple assignments of a graduate database course for five semesters. According to this study, students find this tool more useful and interesting than the highly simplified databases developed by the instructor, or obtained from textbook. On the other hand, authors have proposed tools with the main objective to help the student’s grip on the topic by addressing the pedagogical problems in using the educational tools. Connolly et al. ( 2005 ) discussed some of the pedagogical problems sustaining the development of a constructive learning environment using problem-based learning, a simulation game and interactive visualizations to help teach database analysis and design. Also, Yau and Karim ( 2003 ) proposed smart classroom with prevalent computing technology which will facilitate collaborative learning among the learners. The major aim of this smart classroom is to improve the quality of interaction between the instructors and students during lecture.

Student satisfaction is also an important factor for the educational tools to more effective. While it supports in students learning process it should also be flexible to achieve the student’s confidence by making it as per student’s needs (Brusilovsky et al., 2010 ; Connolly et al., 2005 ; Pahl et al., 2004 ). Also, Cvetanovic et al. ( 2010 ) has proposed a web-based educational system named ADVICE. The proposed solution helps the students to reduce the gap between DBMS, theory and its practice. On the other hand, authors have enhanced the already existing educational tools in the traditional classroom environment to addressed the student’s concerns (Nelson & Fatimazahra, 2010 ; Regueras et al., 2007 ) Table 7 .

Hands on database development is the main concern in most of the institute as well as in industry. However, tools assisting the students in database development and query writing is still major concern especially in SQL (Brusilovsky et al., 2010 ; Nagataki et al., 2013 ).

Student’s grades reflect their conceptual clarity and database development skills. They are also important to secure jobs and scholarships after passing out, which is why it is important to have the educational learning tools to help the students to perform well in the exams (Cvetanovic et al., 2010 ; Taipalus et al., 2018 ). While, few authors (Wang et al., 2010 ) proposed Metube which is a variation of YouTube. Subsequently, existing educational tools needs to be upgraded or replaced by the more suitable assessment oriented interactive tools to attend challenging students needs (Pahl et al., 2004 ; Yuelan et al., 2011 ).

One other objective of developing the educational tools is to increase the interaction between the students and the instructors. In the modern era, almost every institute follows the student centered learning(SCL). In SCL the interaction between students and instructor increases with most of the interaction involves from the students. In order to support SCL the educational based interactive and web-based tools need to assign more roles to students than the instructors (Abbasi et al., 2016 ; Taipalus & Perälä, 2019 ; Yau & Karim, 2003 ).

Theory versus practice is still one of the main issues in DSE teaching methods. The traditional teaching method supports theory first and then the concepts learned in the theoretical lectures implemented in the lab. Whereas, others think that it is better to start by teaching how to write query, which should be followed by teaching the design principles for database, while a limited amount of credit hours are also allocated for the general database theory topics. This part of the article discusses different trends of teaching and learning style along with curriculum and assessments methods discussed in DSE literature.

A variety of teaching methods have been designed, experimented, and evaluated by different researchers (Yuelan et al., 2011 ; Chen et al., 2012 ; Connolly & Begg, 2006 ). Some authors have reformed teaching methods based on the requirements of modern way of delivering lectures such as Yuelan et al. ( 2011 ) reform teaching method by using various approaches e.g. a) Modern ways of education: includes multimedia sound, animation, and simulating the process and working of database systems to motivate and inspire the students. b) Project driven approach: aims to make the students familiar with system operations by implementing a project. c) Strengthening the experimental aspects: to help the students get a strong grip on the basic knowledge of database and also enable them to adopt a self-learning ability. d) Improving the traditional assessment method: the students should turn in their research and development work as the content of the exam, so that they can solve their problem on their own.

The main aim of any teaching method is to make student learn the subject effectively. Student must show interest in order to gain something from the lectures delivered by the instructors. For this, teaching methods should be interactive and interesting enough to develop the interest of the students in the subject. Students can show interest in the subject by asking more relative questions or completing the home task and assignments on time. Authors have proposed few teaching methods to make topic more interesting such as, Chen et al. ( 2012 ) proposed a scaffold concept mapping strategy, which considers a student’s prior knowledge, and provides flexible learning aids (scaffolding and fading) for reading and drawing concept maps. Also, Connolly & Begg (200s6) examined different problems in database analysis and design teaching, and proposed a teaching approach driven by principles found in the constructivist epistemology to overcome these problems. This constructivist approach is based on the cognitive apprenticeship model and project-based learning. Similarly, Domínguez & Jaime ( 2010 ) proposed an active method for database design through practical tasks development in a face-to-face course. They analyzed results of five academic years using quasi experimental. The first three years a traditional strategy was followed and a course management system was used as material repository. On the other hand, Dietrich and Urban ( 1996 ) have described the use of cooperative group learning concepts in support of an undergraduate database management course. They have designed the project deliverables in such a way that students develop skills for database implementation. Similarly, Zhang et al. ( 2018 ) have discussed several effective classroom teaching measures from the aspects of the innovation of teaching content, teaching methods, teaching evaluation and assessment methods. They have practiced the various teaching measures by implementing the database technologies and applications in Qinghai University. Moreover, Hou and Chen ( 2010 ) proposed a new teaching method based on blending learning theory, which merges traditional and constructivist methods. They adopted the method by applying the blending learning theory on Access Database programming course teaching.

Problem solving skills is a key aspect to any type of learning at any age. Student must possess this skill to tackle the hurdles in institute and also in industry. Create mind and innovative students find various and unique ways to solve the daily task which is why they are more likeable to secure good grades and jobs. Authors have been working to introduce teaching methods to develop problem solving skills in the students(Al-Shuaily, 2012 ; Cai & Gao, 2019 ; Martinez-González & Duffing, 2007 ; Gudivada et al., 2007 ). For instance, Al-Shuaily ( 2012 ) has explored four cognitive factors such as i) Novices’ ability in understanding, ii) Novices’ ability to translate, iii) Novice’s ability to write, iv) Novices’ skills that might influence SQL teaching, and learning methods and approaches. Also, Cai and Gao ( 2019 ) have reformed the teaching method in the database course of two higher education institutes in China. Skills and knowledge, innovation ability, and data abstraction were the main objective of their study. Similarly, Martinez-González and Duffing ( 2007 ) analyzed the impact of convergence of European Union (EU) in different universities across Europe. According to their study, these institutes need to restructure their degree program and teaching methodologies. Moreover, Gudivada et al. ( 2007 ) proposed a student’s learning method to work with the large datasets. they have used the Amazon Web Services API and.NET/C# application to extract a subset of the product database to enhance student learning in a relational database course.

On the other hand, authors have also evaluated the traditional teaching methods to enhance the problem-solving skills among the students(Eaglestone & Nunes, 2004 ; Wang & Chen, 2014 ; Efendiouglu & Yelken, 2010 ) Such as, Eaglestone and Nunes ( 2004 ) shared their experiences of delivering a database design course at Sheffield University and discussed some of the issues they faced, regarding teaching, learning and assessments. Likewise, Wang and Chen ( 2014 ) summarized the problems mainly in teaching of the traditional database theory and application. According to the authors the teaching method is outdated and does not focus on the important combination of theory and practice. Moreover, Efendiouglu and Yelken ( 2010 ) investigated the effects of two different methods Programmed Instruction (PI) and Meaningful Learning (ML) on primary school teacher candidates’ academic achievements and attitudes toward computer-based education, and to define their views on these methods. The results show that PI is not favoured for teaching applications because of its behavioural structure Table 8 .

Students become creative and innovative when the try to study on their own and also from different resources rather than curriculum books only. In the modern era, there are various resources available on both online and offline platforms. Modern teaching methods must emphasize on making the students independent from the curriculum books and educate them to learn independently(Amadio et al., 2003 ; Cai & Gao, 2019 ; Martin et al., 2013 ). Also, in the work of Kawash et al. ( 2020 ) proposed he group study-based learning approach called Graded Group Activities (GGAs). In this method students team up in order to take the exam as a group. On the other hand, few studies have emphasized on course content to prepare students for the final exams such as, Zheng and Dong ( 2011 ) have discussed the issues of computer science teaching with particular focus on database systems, where different characteristics of the course, teaching content and suggestions to teach this course effectively have been presented.

As technology is evolving at rapid speed, so students need to have practical experience from the start. Basic theoretical concepts of database are important but they are of no use without its implementation in real world projects. Most of the students study in the institutes with the aim of only clearing the exams with the help of theoretical knowledge and very few students want to have practical experience(Wang & Chen, 2014 ; Zheng & Dong, 2011 ). To reduce the gap between the theory and its implementation, authors have proposed teaching methods to develop the student’s interest in the real-world projects (Naik & Gajjar, 2021 ; Svahnberg et al., 2008 ; Taipalus et al., 2018 ). Moreover, Juxiang and Zhihong ( 2012 ) have proposed that the teaching organization starts from application scenarios, and associate database theoretical knowledge with the process from analysis, modeling to establishing database application. Also, Svahnberg et al. ( 2008 ) explained that in particular conditions, there is a possibility to use students as subjects for experimental studies in DSE and influencing them by providing responses that are in line with industrial practice.

On the other hand, Nelson et al. ( 2003 ) evaluated the different teaching methods used to teach different modules of database in the School of Computing and Technology at the University of Sunder- land. They outlined suggestions for changes to the database curriculum to further integrate research and state-of-the-art systems in databases.

Database curriculum has been revisited many times in the form of guidelines that not only present the contents but also suggest approximate time to cover different topics. According to the ACM curriculum guidelines (Lunt et al., 2008 ) for the undergraduate programs in computer science, the overall coverage time for this course is 46.50 h distributed in such a way that 11 h is the total coverage time for the core topics such as, Information Models (4 core hours), Database Systems (3 core hours) and Data Modeling (4 course hours). Whereas, the remaining hours are allocated for elective topics such as Indexing, Relational Databases, Query Languages, Relational Database Design, Transaction Processing, Distributed Databases, Physical Database Design, Data Mining, Information Storage and Retrieval, Hypermedia, Multimedia Systems, and Digital Libraries(Marshall, 2012 ). While, according to the ACM curriculum guidelines ( 2013 ) for undergraduate programs in computer science, this course should be completed in 15 weeks with two and half hour lecture per week and lab session of four hours per week on average (Brady et al., 2004 ). Thus, the revised version emphasizes on the practice based learning with the help of lab component. Numerous organizations have exerted efforts in this field to classify DSE (Dietrich et al., 2008 ). DSE model curricula, bodies of knowledge (BOKs), and some standardization aspects in this field are discussed below:

Model curricula

There are standard bodies who set the curriculum guidelines for teaching undergraduate degree programs in computing disciplines. Curricula which include the guidelines to teach database are: Computer Engineering Curricula (CEC) (Meier et al., 2008 ), Information Technology Curricula (ITC) (Alrumaih, 2016 ), Computing Curriculum Software Engineering (CCSE) (Meyer, 2001 ), Cyber Security Curricula (CSC) (Brady et al., 2004 ; Bishop et al., 2017 ).

Bodies of knowledge (BOK)

A BOK includes the set of thoughts and activities related to the professional area, while in model curriculum set of guidelines are given to address the education issues (Sahami et al., 2011 ). Database body of Knowledge comprises of (a) The Data Management Body of Knowledge (DM- BOK), (b) Software Engineering Education Knowledge (SEEK) (Sobel, 2003 ) (Sobel, 2003 ), and (c) The SE body of knowledge (SWEBOK) (Swebok Evolution: IEEE Computer Society n.d. ).

Apart from the model curricula, and bodies of knowledge, there also exist some standards related to the database and its different modules: ISO/IEC 9075–1:2016 (Computing Curricula, 1991 ), ISO/IEC 10,026–1: 1998 (Suryn, 2003 ).

We also utilize advices from some studies (Elberzhager et al., 2012 ; Keele et al., 2007 ) to search for relevant papers. In order to conduct this systematic study, it is essential to formulate the primary research questions (Mushtaq et al., 2017 ). Since the data management techniques and software are evolving rapidly, the database curriculum should also be updated accordingly to meet these new requirements. Some authors have described ways of updating the content of courses to keep pace with specific developments in the field and others have developed new database curricula to keep up with the new data management techniques.

Furthermore, some authors have suggested updates for the database curriculum based on the continuously evolving technology and introduction of big data. For instance Bhogal et al. ( 2012 ) have shown that database curricula need to be updated and modernized, which can be achieved by extending the current database concepts that cover the strategies to handle the ever changing user requirements and how database technology has evolved to meet the requirements. Likewise, Picciano ( 2012 ) examines the evolving world of big data and analytics in American higher education. According to the author, the “data driven” decision making method should be used to help the institutes evaluate strategies that can improve retention and update the curriculum that has big data basic concepts and applications, since data driven decision making has already entered in the big data and learning analytic era. Furthermore, Marshall ( 2011 ) presented the challenges faced when developing a curriculum for a Computer Science degree program in the South African context that is earmarked for international recognition. According to the author, the Curricula needs to adhere both to the policy and content requirements in order to be rated as being of a particular quality.

Similarly, some studies (Abourezq & Idrissi, 2016 ; Mingyu et al., 2017 ) described big data influence from a social perspective and also proceeded with the gaps in database curriculum of computer science, especially, in the big data era and discovers the teaching improvements in practical and theoretical teaching mode, teaching content and teaching practice platform in database curriculum. Also Silva et al. ( 2016 ) propose teaching SQL as a general language that can be used in a wide range of database systems from traditional relational database management systems to big data systems.

On the other hand, different authors have developed a database curriculum based on the different academic background of students. Such as, Dean and Milani ( 1995 ) have recommended changes in computer science curricula based on the practice in United Stated Military Academy (USMA). They emphasized greatly on the practical demonstration of the topic rather than the theoretical explanation. Especially, for the non-computer science major students. Furthermore, Urban and Dietrich ( 2001 ) described the development of a second course on database systems for undergraduates, preparing students for the advanced database concepts that they will exercise in the industry. They also shared their experience with teaching the course, elaborating on the topics and assignments. Also, Andersson et al. ( 2019 ) proposed variations in core topics of database management course for the students with the engineering background. Moreover, Dietrich et al. ( 2014 ) described two animations developed with images and color that visually and dynamically introduce fundamental relational database concepts and querying to students of many majors. The goal is that the educators, in diverse academic disciplines, should be able to incorporate these animations in their existing courses to meet their pedagogical needs.

The information systems have evolved into large scale distributed systems that store and process a huge amount of data across different servers, and process them using different distributed data processing frameworks. This evolution has given birth to new paradigms in database systems domain termed as NoSQL and Big Data systems, which significantly deviate from conventional relational and distributed database management systems. It is pertinent to mention that in order to offer a sustainable and practical CS education, these new paradigms and methodologies as shown in Fig.  5 should be included into database education (Kleiner, 2015 ). Tables 9 and 10 shows the summarized findings of the curriculum based reviewed studies. This section also proposed appropriate text book based on the theory, project, and practice-based teaching methodology as shown in Table 9 . The proposed books are selected purely on the bases of their usage in top universities around the world such as, Massachusetts Institute of Technology, Stanford University, Harvard University, University of Oxford, University of Cambridge and, University of Singapore and the coverage of core topics mentioned in the database curriculum.

figure 5

Concepts in Database Systems Education (Kleiner, 2015 )

6.1.2 RQ.2 Evolution of DSE research

This section discusses the evolution of database while focusing the DSE over the past 25 years as shown in Fig.  6 .

figure 6

Evolution of DSE studies

This study shows that there is significant increase in research in DSE after 2004 with 78% of the selected papers are published after 2004. The main reason of this outcome is that some of the papers are published in well-recognized channels like IEEE Transactions on Education, ACM Transactions on Computing Education, International Conference on Computer Science and Education (ICCSE), and Teaching, Learning and Assessment of Database (TLAD) workshop. It is also evident that several of these papers were published before 2004 and only a few articles were published during late 1990s. This is because of the fact that DSE started to gain interest after the introduction of Body of Knowledge and DSE standards. The data intensive scientific discovery has been discussed as the fourth paradigm (Hey et al., 2009 ): where the first involves empirical science and observations; second contains theoretical science and mathematically driven insights; third considers computational science and simulation driven insights; while the fourth involves data driven insights of modern scientific research.

Over the past few decades, students have gone from attending one-room class to having the world at their fingertips, and it is a great challenge for the instructors to develop the interest of students in learning database. This challenge has led to the development of the different types of interactive tools to help the instructors teach DSE in this technology oriented era. Keeping the importance of interactive tools in DSE in perspective, various authors have proposed different interactive tools over the years, such as during 1995–2003, when different authors proposed various interactive tools. Some studies (Abut & Ozturk, 1997 ; Mcintyre et al., 1995 ) introduced state of the art interactive tools to teach and enhance the collaborative learning among the students. Similarly, during 2004–2005 more interactive tools in the field of DSE were proposed such as Pahl et al. ( 2004 ), Connolly et al. ( 2005 ) introduced multimedia system based interactive model and game based collaborative learning environment.

The Internet has started to become more common in the first decade of the twenty-first century and its positive impact on the education sector was undeniable. Cost effective, student teacher peer interaction, keeping in touch with the latest information were the main reasons which made the instructors employ web-based tools to teach database in the education sector. Due to this spike in the demand of web-based tools, authors also started to introduce new instruments to assist with teaching database. In 2007 Regueras et al. ( 2007 ) proposed an e-learning tool named QUEST with a feedback module to help the students to learn from their mistakes. Similarly, in 2010, multiple authors have proposed and evaluated various web-based tools. Cvetanovic et al. ( 2010 ) proposed ADVICE with the functionality to monitor student’s progress, while, few authors (Wang et al., 2010 ) proposed Metube which is a variation of YouTube. Furthermore, Nelson and Fatimazahra ( 2010 ) evaluated different web-based tools to highlight the complexities of using these web-based instruments.

Technology has changed the teaching methods in the education sector but technology cannot replace teachers, and despite the amount of time most students spend online, virtual learning will never recreate the teacher-student bond. In the modern era, innovation in technology used in educational sectors is not meant to replace the instructors or teaching methods.

During the 1990s some studies (Dietrich & Urban, 1996 ; Urban & Dietrich, 1997 ) proposed learning and teaching methods respectively keeping the evolving technology in view. The highlight of their work was project deliverables and assignments where students progressively advanced to a step-by-step extension, from a tutorial exercise and then attempting more difficult extension of assignment.

During 2002–2007 various authors have discussed a number of teaching and learning methods to keep up the pace with the ever changing database technology, such as Connolly and Begg ( 2006 ) proposing a constructive approach to teach database analysis and design. Similarly, Prince and Felder ( 2006 ) reviewed the effectiveness of inquiry learning, problem based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching. Also, McIntyre et al. (Mcintyre et al., 1995 ) brought to light the impact of convergence of European Union (EU) in different universities across Europe. They suggested a reconstruction of teaching and learning methodologies in order to effectively teach database.

During 2008–2013 more work had been done to address the different methods of teaching and learning in the field of DSE, like the work of Dominguez and Jaime ( 2010 ) who proposed an active learning approach. The focus of their study was to develop the interest of students in designing and developing databases. Also, Zheng and Dong ( 2011 ) have highlighted various characteristics of the database course and its teaching content. Similarly, Yuelan et al. ( 2011 ) have reformed database teaching methods. The main focus of their study were the Modern ways of education, project driven approach, strengthening the experimental aspects, and improving the traditional assessment method. Likewise, Al-Shuaily ( 2012 ) has explored 4 cognitive factors that can affect the learning process of database. The main focus of their study was to facilitate the students in learning SQL. Subsequently, Chen et al. ( 2012 ) also proposed scaffolding-based concept mapping strategy. This strategy helps the students to better understand database management courses. Correspondingly, Martin et al. ( 2013 ) discussed various collaborative learning techniques in the field of DSE while keeping database as an introductory course.

In the years between 2014 and 2021, research in the field of DSE increased, which was the main reason that the most of teaching, learning and assessment methods were proposed and discussed during this period. Rashid and Al-Radhy ( 2014 ) discussed the issues of traditional teaching, learning, assessing methods of database courses at different universities in Kurdistan and the main focus of their study being reformation issues, such as absence of teaching determination and contradiction between content and theory. Similarly, Wang and Chen ( 2014 ) summarized the main problems in teaching the traditional database theory and its application. Curriculum assessment mode was the main focus of their study. Eaglestone and Nunes ( 2004 ) shared their experiences of delivering a databases design course at Sheffield University. Their focus of study included was to teach the database design module to a diverse group of students from different backgrounds. Rashid ( 2015 ) discussed some important features of database courses, whereby reforming the conventional teaching, learning, and assessing strategies of database courses at universities were the main focus of this study. Kui et al. ( 2018 ) reformed the teaching mode of database courses based on flipped classroom. Initiative learning of database courses was their main focus in this study. Similarly, Zhang et al. ( 2018 ) discussed several effective classroom teaching measures. The main focus of their study was teaching content, teaching methods, teaching evaluation and assessment methods. Cai and Gao ( 2019 ) also carried out the teaching reforms in the database course of liberal arts. Diversified teaching modes, such as flipping classroom, case oriented teaching and task oriented were the focus of their study. Teaching Kawash et al. ( 2020 ) proposed a learning approach called Graded Group Activities (GGAs). Their main focus of the study was reforming learning and assessment method.

Database course covers several topics that range from data modeling to data implementation and examination. Over the years, various authors have given their suggestions to update these topics in database curriculum to meet the requirements of modern technologies. On the other hand, authors have also proposed a new curriculum for the students of different academic backgrounds and different areas. These reformations in curriculum helped the students in their preparation, practically and theoretically, and enabled them to compete in the competitive market after graduation.

During 2003 and 2006 authors have proposed various suggestions to update and develop computer science curriculum across different universities. Robbert and Ricardo ( 2003 ) evaluated three reviews from 1999 to 2002 that were given to the groups of educators. The focus of their study was to highlight the trends that occurred in database curriculum. Also, Calero et al. ( 2003 ) proposed a first draft for this Database Body of Knowledge (DBBOK). Database (DB), Database Design (DBD), Database Administration (DBAd), Database Application (DBAp) and Advance Databases (ADVDB) were the main focus of their study. Furthermore, Conklin and Heinrichs (Conklin & Heinrichs, 2005 ) compared the content included in 13 database textbooks and the main focus of their study was IS 2002, CC2001, and CC2004 model curricula.

The years from 2007 and 2011, authors managed to developed various database curricula, like Luo et al. ( 2008 ) developed curricula in Zhejiang University City College. The aim of their study to nurture students to be qualified computer scientists. Likewise, Dietrich et al. ( 2008 ) proposed the techniques to assess the development of an advanced database course. The purpose behind the addition of an advanced database course at undergraduate level was to prepare the students to respond to industrial requirements. Also, Marshall ( 2011 ) developed a new database curriculum for Computer Science degree program in the South African context.

During 2012 and 2021 various authors suggested updates for the database curriculum such as Bhogal et al. ( 2012 ) who suggested updating and modernizing the database curriculum. Data management and data analytics were the focus of their study. Similarly, Picciano ( 2012 ) examined the curriculum in the higher level of American education. The focus of their study was big data and analytics. Also, Zhanquan et al. ( 2016 ) proposed the design for the course content and teaching methods in the classroom. Massive Open Online Courses (MOOCs) were the focus of their study. Likewise, Mingyu et al. ( 2017 ) suggested updating the database curriculum while keeping new technology concerning the database in perspective. The focus of their study was big data.

The above discussion clearly shows that the SQL is most discussed topic in the literature where more than 25% of the studies have discussed it in the previous decade as shown in Fig.  7 . It is pertinent to mention that other SQL databases such as Oracle, MS access are discussed under the SQL banner (Chen et al., 2012 ; Hou & Chen, 2010 ; Wang & Chen, 2014 ). It is mainly because of its ability to handle data in a relational database management system and direct implementation of database theoretical concepts. Also, other database topics such as transaction management, application programming etc. are also the main highlights of the topics discussed in the literature.

figure 7

Evolution of Database topics discussed in literature

7 Research synthesis, advice for instructors, and way forward

This section presents the synthesized information extracted after reading and analyzing the research articles considered in this study. To this end, it firstly contextualizes the tools and methods to help the instructors find suitable tools and methods for their settings. Similarly, developments in curriculum design have also been discussed. Subsequently, general advice for instructors have been discussed. Lastly, promising future research directions for developing new tools, methods, and for revising the curriculum have also been discussed in this section.

7.1 Methods, tools, and curriculum

Methods and tools.

Web-based tools proposed by Cvetanovic et al. ( 2010 ) and Wang et al. ( 2010 ) have been quite useful, as they are growing increasingly pertinent as online mode of education is prevalent all around the globe during COVID-19. On the other hand, interactive tools and smart class room methodology has also been used successfully to develop the interest of students in database class. (Brusilovsky et al., 2010 ; Connolly et al., 2005 ; Pahl et al., 2004 ; Canedo et al., 2021 ; Ko et al., 2021 ).

One of the most promising combination of methodology and tool has been proposed by Cvetanovic et al. ( 2010 ), whereby they developed a tool named ADVICE that helps students learn and implement database concepts while using project centric methodology, while a game based collaborative learning environment was proposed by Connolly et al. ( 2005 ) that involves a methodology comprising of modeling, articulation, feedback, and exploration. As a whole, project centric teaching (Connolly & Begg, 2006 ; Domínguez & Jaime, 2010 ) and teaching database design and problem solving skills Wang and Chen ( 2014 ), are two successful approaches for DSE. Whereas, other studies (Urban & Dietrich, 1997 ) proposed teaching methods that are more inclined towards practicing database concepts. While a topic specific approach has been proposed by Abbasi et al. ( 2016 ), Taipalus et al. ( 2018 ) and Silva et al. ( 2016 ) to teach and learn SQL. On the other hand, Cai and Gao ( 2019 ) developed a teaching method for students who do not have a computer science background. Lastly, some useful ways for defining assessments for DSE have been proposed by Kawash et al. ( 2020 ) and Zhang et al. ( 2018 ).

Curriculum of database adopted by various institutes around the world does not address how to teach the database course to the students who do not have a strong computer science background. Such as Marshall ( 2012 ), Luo et al. ( 2008 ) and Zhanquan et al. ( 2016 ) have proposed the updates in current database curriculum for the students who are not from computer science background. While Abid et al. ( 2015 ) proposed a combined course content and various methodologies that can be used for teaching database systems course. On the other hand, current database curriculum does not include the topics related to latest technologies in database domain. This factor was discussed by many other studies as well (Bhogal et al., 2012 ; Mehmood et al., 2020 ; Picciano, 2012 ).

7.2 Guidelines for instructors

The major conclusion of this study are the suggestions based on the impact and importance for instructors who are teaching DSE. Furthermore, an overview of productivity of every method can be provided by the empirical studies. These instructions are for instructors which are the focal audience of this study. These suggestions are subjective opinions after literature analysis in form of guidelines according to the authors and their meaning and purpose were maintained. According to the literature reviewed, various issues have been found in this section. Some other issues were also found, but those were not relevant to DSE. Following are some suggestions that provide interesting information:

7.2.1 Project centric and applied approach

To inculcate database development skills for the students, basic elements of database development need to be incorporated into teaching and learning at all levels including undergraduate studies (Bakar et al., 2011 ). To fulfill this objective, instructors should also improve the data quality in DSE by assigning the projects and assignments to the students where they can assess, measure and improve the data quality using already deployed databases. They should demonstrate that the quality of data is determined not only by the effective design of a database, but also through the perception of the end user (Mathieu & Khalil, 1997 )

The gap between the database course theory and industrial practice is big. Fresh graduate students find it difficult to cope up with the industrial pressure because of the contrast between what they have been taught in institutes and its application in industry (Allsopp et al., 2006 ). Involve top performers from classes in industrial projects so that they are able to acquiring sufficient knowledge and practice, especially for post graduate courses. There must be some other activities in which industry practitioners come and present the real projects and also share their industrial experiences with the students. The gap between theoretical and the practical sides of database has been identified by Myers and Skinner ( 1997 ). In order to build practical DS concepts, instructors should provide the students an accurate view of reality and proper tools.

7.2.2 Importance of software development standards and impact of DB in software success

They should have the strategies, ability and skills that can align the DSE course with the contemporary Global Software Development (GSD) (Akbar & Safdar, 2015 ; Damian et al., 2006 ).

Enable the students to explain the approaches to problem solving, development tools and methodologies. Also, the DS courses are usually taught in normal lecture format. The result of this method is that students cannot see the influence on the success or failure of projects because they do not realize the importance of DS activities.

7.2.3 Pedagogy and the use of education technology

Some studies have shown that teaching through play and practical activities helps to improve the knowledge and learning outcome of students (Dicheva et al., 2015 ).

Interactive classrooms can help the instructors to deliver their lecture in a more effective way by using virtual white board, digital textbooks, and data over network(Abut & Ozturk, 1997 ). We suggest that in order to follow the new concept of smart classroom, instructors should use the experience of Yau and Karim ( 2003 ) which benefits in cooperative learning among students and can also be adopted in DSE.

The instructors also need to update themselves with full spectrum of technology in education, in general, and for DSE, in particular. This is becoming more imperative as during COVID the world is relying strongly on the use of technology, particularly in education sector.

7.2.4 Periodic Curriculum Revision

There is also a need to revisit the existing series of courses periodically, so that they are able to offer the following benefits: (a) include the modern day database system concepts; (b) can be offered as a specialization track; (c) a specialized undergraduate degree program may also be designed.

7.3 DSE: Way forward

This research combines a significant work done on DSE at one place, thus providing a point to find better ways forward in order to improvise different possible dimensions for improving the teaching process of a database system course in future. This section discusses technology, methods, and modifications in curriculum would most impact the delivery of lectures in coming years.

Several tools have already been developed for effective teaching and learning in database systems. However, there is a great room for developing new tools. Recent rise of the notion of “serious games” is marking its success in several domains. Majority of the research work discussed in this review revolves around web-based tools. The success of serious games invites researchers to explore this new paradigm of developing useful tools for learning and practice database systems concepts.

Likewise, due to COVID-19 the world is setting up new norms, which are expected to affect the methods of teaching as well. This invites the researchers to design, develop, and test flexible tools for online teaching in a more interactive manner. At the same time, it is also imperative to devise new techniques for assessments, especially conducting online exams at massive scale. Moreover, the researchers can implement the idea of instructional design in web-based teaching in which an online classroom can be designed around the learners’ unique backgrounds and effectively delivering the concepts that are considered to be highly important by the instructors.

The teaching, learning and assessment methods discussed in this study can help the instructors to improve their methods in order to teach the database system course in a better way. It is noticed that only 16% of authors have the assessment methods as their focus of study, which clearly highlights that there is still plenty of work needed to be done in this particular domain. Assessment techniques in the database course will help the learners to learn from their mistakes. Also, instructors must realize that there is a massive gap between database theory and practice which can only be reduced with maximum practice and real world database projects.

Similarly, the technology is continuously influencing the development and expansion of modern education, whereas the instructors’ abilities to teach using online platforms are critical to the quality of online education.

In the same way, the ideas like flipped classroom in which students have to prepare the lesson prior to the class can be implemented on web-based teaching. This ensures that the class time can be used for further discussion of the lesson, share ideas and allow students to interact in a dynamic learning environment.

The increasing impact of big data systems, and data science and its anticipated impact on the job market invites the researchers to revisit the fundamental course of database systems as well. There is a need to extend the boundaries of existing contents by including the concepts related to distributed big data systems data storage, processing, and transaction management, with possible glimpse of modern tools and technologies.

As a whole, an interesting and long term extension is to establish a generic and comprehensive framework that engages all the stakeholders with the support of technology to make the teaching, learning, practicing, and assessing easier and more effective.

8 Conclusion

This SLR presents review on the research work published in the area of database system education, with particular focus on teaching the first course in database systems. The study was carried out by systematically selecting research papers published between 1995 and 2021. Based on the study, a high level categorization presents a taxonomy of the published under the heads of Tools, Methods, and Curriculum. All the selected articles were evaluated on the basis of a quality criteria. Several methods have been developed to effectively teach the database course. These methods focus on improving learning experience, improve student satisfaction, improve students’ course performance, or support the instructors. Similarly, many tools have been developed, whereby some tools are topic based, while others are general purpose tools that apply for whole course. Similarly, the curriculum development activities have also been discussed, where some guidelines provided by ACM/IEEE along with certain standards have been discussed. Apart from this, the evolution in these three areas has also been presented which shows that the researchers have been presenting many different teaching methods throughout the selected period; however, there is a decrease in research articles that address the curriculum and tools in the past five years. Besides, some guidelines for the instructors have also been shared. Also, this SLR proposes a way forward in DSE by emphasizing on the tools: that need to be developed to facilitate instructors and students especially post Covid-19 era, methods: to be adopted by the instructors to close the gap between the theory and practical, Database curricula update after the introduction of emerging technologies such as big data and data science. We also urge that the recognized publication venues for database research including VLDB, ICDM, EDBT should also consider publishing articles related to DSE. The study also highlights the importance of reviving the curricula, tools, and methodologies to cater for recent advancements in the field of database systems.

Data availability

Not Applicable.

Code availability

Abbasi, S., Kazi, H., Khowaja, K., Abelló Gamazo, A., Burgués Illa, X., Casany Guerrero, M. J., Martin Escofet, C., Quer, C., Rodriguez González, M. E., Romero Moral, Ó., Urpi Tubella, A., Abid, A., Farooq, M. S., Raza, I., Farooq, U., Abid, K., Hussain, N., Abid, K., Ahmad, F., …, Yatim, N. F. M. (2016). Research trends in enterprise service bus (ESB) applications: A systematic mapping study. Journal of Informetrics, 27 (1), 217–220.

Abbasi, S., Kazi, H., & Khowaja, K. (2017). A systematic review of learning object oriented programming through serious games and programming approaches. 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS) , 1–6.

Abelló Gamazo, A., Burgués Illa, X., Casany Guerrero, M. J., Martin Escofet, C., Quer, C., Rodriguez González, M. E., Romero Moral, Ó., & Urpi Tubella, A. (2016). A software tool for E-assessment of relational database skills. International Journal of Engineering Education, 32 (3A), 1289–1312.

Google Scholar  

Abid, A., Farooq, M. S., Raza, I., Farooq, U., & Abid, K. (2015). Variants of teaching first course in database systems. Bulletin of Education and Research, 37 (2), 9–25.

Abid, A., Hussain, N., Abid, K., Ahmad, F., Farooq, M. S., Farooq, U., Khan, S. A., Khan, Y. D., Naeem, M. A., & Sabir, N. (2016). A survey on search results diversification techniques. Neural Computing and Applications, 27 (5), 1207–1229.

Abourezq, M., & Idrissi, A. (2016). Database-as-a-service for big data: An overview. International Journal of Advanced Computer Science and Applications (IJACSA) , 7 (1).

Abut, H., & Ozturk, Y. (1997). Interactive classroom for DSP/communication courses. 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing , 1 , 15–18.

Adams, E. S., Granger, M., Goelman, D., & Ricardo, C. (2004). Managing the introductory database course: What goes in and what comes out? ACM SIGCSE Bulletin, 36 (1), 497–498.

Akbar, R., & Safdar, S. (2015). A short review of global software development (gsd) and latest software development trends. 2015 International Conference on Computer, Communications, and Control Technology (I4CT) , 314–317.

Allsopp, D. H., DeMarie, D., Alvarez-McHatton, P., & Doone, E. (2006). Bridging the gap between theory and practice: Connecting courses with field experiences. Teacher Education Quarterly, 33 (1), 19–35.

Alrumaih, H. (2016). ACM/IEEE-CS information technology curriculum 2017: status report. Proceedings of the 1st National Computing Colleges Conference (NC3 2016) .

Al-Shuaily, H. (2012). Analyzing the influence of SQL teaching and learning methods and approaches. 10 Th International Workshop on the Teaching, Learning and Assessment of Databases , 3.

Amadio, W., Riyami, B., Mansouri, K., Poirier, F., Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., Mahmood, A., Hey, A. J. G., Tansley, S., Tolle, K. M., others, Tehseen, R., Farooq, M. S., Abid, A., …, Fatimazahra, E. (2003). The fourth paradigm: data-intensive scientific discovery. Innovation in Teaching and Learning in Information and Computer Sciences , 1 (1), 823–828. https://www.iso.org/standard/27614.html

Amadio, W. (2003). The dilemma of Team Learning: An assessment from the SQL programming classroom . 823–828.

Ampatzoglou, A., Charalampidou, S., & Stamelos, I. (2013). Research state of the art on GoF design patterns: A mapping study. Journal of Systems and Software, 86 (7), 1945–1964.

Andersson, C., Kroisandt, G., & Logofatu, D. (2019). Including active learning in an online database management course for industrial engineering students. IEEE Global Engineering Education Conference (EDUCON), 2019 , 217–220.

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11 (4), 959–975.

Aziz, O., Farooq, M. S., Abid, A., Saher, R., & Aslam, N. (2020). Research trends in enterprise service bus (ESB) applications: A systematic mapping study. IEEE Access, 8 , 31180–31197.

Bakar, M. A., Jailani, N., Shukur, Z., & Yatim, N. F. M. (2011). Final year supervision management system as a tool for monitoring computer science projects. Procedia-Social and Behavioral Sciences, 18 , 273–281.

Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2008). Motivation in Software Engineering: A systematic literature review. Information and Software Technology, 50 (9–10), 860–878.

Bhogal, J. K., Cox, S., & Maitland, K. (2012). Roadmap for Modernizing Database Curricula. 10 Th International Workshop on the Teaching, Learning and Assessment of Databases , 73.

Bishop, M., Burley, D., Buck, S., Ekstrom, J. J., Futcher, L., Gibson, D., ... & Parrish, A. (2017, May). Cybersecurity curricular guidelines . In IFIP World Conference on Information Security Education (pp. 3–13). Cham: Springer.

Brady, A., Bruce, K., Noonan, R., Tucker, A., & Walker, H. (2004). The 2003 model curriculum for a liberal arts degree in computer science: preliminary report. ACM SIGCSE Bulletin, 36 (1), 282–283.

Brusilovsky, P., Sosnovsky, S., Lee, D. H., Yudelson, M., Zadorozhny, V., & Zhou, X. (2008). An open integrated exploratorium for database courses. AcM SIGcSE Bulletin, 40 (3), 22–26.

Brusilovsky, P., Sosnovsky, S., Yudelson, M. V., Lee, D. H., Zadorozhny, V., & Zhou, X. (2010). Learning SQL programming with interactive tools: From integration to personalization. ACM Transactions on Computing Education (TOCE), 9 (4), 1–15.

Cai, Y., & Gao, T. (2019). Teaching Reform in Database Course for Liberal Arts Majors under the Background of" Internet Plus". 2018 6th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2018) , 208–213.

Calderon, K. R., Vij, R. S., Mattana, J., & Jhaveri, K. D. (2011). Innovative teaching tools in nephrology. Kidney International, 79 (8), 797–799.

Calero, C., Piattini, M., & Ruiz, F. (2003). Towards a database body of knowledge: A study from Spain. ACM SIGMOD Record, 32 (2), 48–53.

Canedo, E. D., Bandeira, I. N., & Costa, P. H. T. (2021). Challenges of database systems teaching amidst the Covid-19 pandemic. In 2021 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE.

Chen, H.-H., Chen, Y.-J., & Chen, K.-J. (2012). The design and effect of a scaffolded concept mapping strategy on learning performance in an undergraduate database course. IEEE Transactions on Education, 56 (3), 300–307.

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63 (8), 1609–1630.

Conklin, M., & Heinrichs, L. (2005). In search of the right database text. Journal of Computing Sciences in Colleges, 21 (2), 305–312.

Connolly, T. M., & Begg, C. E. (2006). A constructivist-based approach to teaching database analysis and design. Journal of Information Systems Education , 17 (1).

Connolly, T. M., Stansfield, M., & McLellan, E. (2005). An online games-based collaborative learning environment to teach database design. Web-Based Education: Proceedings of the Fourth IASTED International Conference(WBE-2005) .

Curricula Computing. (1991). Report of the ACM/IEEE-CS Joint Curriculum Task Force. Technical Report . New York: Association for Computing Machinery.

Cvetanovic, M., Radivojevic, Z., Blagojevic, V., & Bojovic, M. (2010). ADVICE—Educational system for teaching database courses. IEEE Transactions on Education, 54 (3), 398–409.

Damian, D., Hadwin, A., & Al-Ani, B. (2006). Instructional design and assessment strategies for teaching global software development: a framework. Proceedings of the 28th International Conference on Software Engineering , 685–690.

Dean, T. J., & Milani, W. G. (1995). Transforming a database systems and design course for non computer science majors. Proceedings Frontiers in Education 1995 25th Annual Conference. Engineering Education for the 21st Century , 2 , 4b2--17.

Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Journal of Educational Technology \& Society , 18 (3), 75–88.

Dietrich, S. W., Urban, S. D., & Haag, S. (2008). Developing advanced courses for undergraduates: A case study in databases. IEEE Transactions on Education, 51 (1), 138–144.

Dietrich, S. W., Goelman, D., Borror, C. M., & Crook, S. M. (2014). An animated introduction to relational databases for many majors. IEEE Transactions on Education, 58 (2), 81–89.

Dietrich, S. W., & Urban, S. D. (1996). Database theory in practice: learning from cooperative group projects. Proceedings of the Twenty-Seventh SIGCSE Technical Symposium on Computer Science Education , 112–116.

Dominguez, C., & Jaime, A. (2010). Database design learning: A project-based approach organized through a course management system. Computers \& Education , 55 (3), 1312–1320.

Eaglestone, B., & Nunes, M. B. (2004). Pragmatics and practicalities of teaching and learning in the quicksand of database syllabuses. Journal of Innovations in Teaching and Learning for Information and Computer Sciences , 3 (1).

Efendiouglu, A., & Yelken, T. Y. (2010). Programmed instruction versus meaningful learning theory in teaching basic structured query language (SQL) in computer lesson. Computers & Education, 55 (3), 1287–1299.

Elberzhager, F., Münch, J., & Nha, V. T. N. (2012). A systematic mapping study on the combination of static and dynamic quality assurance techniques. Information and Software Technology, 54 (1), 1–15.

Etemad, M., & Küpçü, A. (2018). Verifiable database outsourcing supporting join. Journal of Network and Computer Applications, 115 , 1–19.

Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2019). A Survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access, 7 , 156237–156271.

Farooq, M. S., Riaz, S., Abid, A., Umer, T., & Zikria, Y. B. (2020). Role of IoT technology in agriculture: A systematic literature review. Electronics, 9 (2), 319.

Farooq, U., Rahim, M. S. M., Sabir, N., Hussain, A., & Abid, A. (2021). Advances in machine translation for sign language: Approaches, limitations, and challenges. Neural Computing and Applications, 33 (21), 14357–14399.

Fisher, D., & Khine, M. S. (2006). Contemporary approaches to research on learning environments: Worldviews . World Scientific.

Garcia-Molina, H. (2008). Database systems: the complete book . Pearson Education India.

Garousi, V., Mesbah, A., Betin-Can, A., & Mirshokraie, S. (2013). A systematic mapping study of web application testing. Information and Software Technology, 55 (8), 1374–1396.

Gudivada, V. N., Nandigam, J., & Tao, Y. (2007). Enhancing student learning in database courses with large data sets. 2007 37th Annual Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports , S2D--13.

Hey, A. J. G., Tansley, S., Tolle, K. M., & others. (2009). The fourth paradigm: data-intensive scientific discovery (Vol. 1). Microsoft research Redmond, WA.

Holliday, M. A., & Wang, J. Z. (2009). A multimedia database project and the evolution of the database course. 2009 39th IEEE Frontiers in Education Conference , 1–6.

Hou, S., & Chen, S. (2010). Research on applying the theory of Blending Learning on Access Database Programming Course teaching. 2010 2nd International Conference on Education Technology and Computer , 3 , V3--396.

Irby, D. M., & Wilkerson, L. (2003). Educational innovations in academic medicine and environmental trends. Journal of General Internal Medicine, 18 (5), 370–376.

Ishaq, K., Zin, N. A. M., Rosdi, F., Jehanghir, M., Ishaq, S., & Abid, A. (2021). Mobile-assisted and gamification-based language learning: A systematic literature review. PeerJ Computer Science, 7 , e496.

Joint Task Force on Computing Curricula, A. F. C. M. (acm), & Society, I. C. (2013). Computer science curricula 2013: Curriculum guidelines for undergraduate degree programs in computer science . New York, NY, USA: Association for Computing Machinery.

Juxiang, R., & Zhihong, N. (2012). Taking database design as trunk line of database courses. Fourth International Conference on Computational and Information Sciences, 2012 , 767–769.

Kawash, J., Jarada, T., & Moshirpour, M. (2020). Group exams as learning tools: Evidence from an undergraduate database course. Proceedings of the 51st ACM Technical Symposium on Computer Science Education , 626–632.

Keele, S., et al. (2007). Guidelines for performing systematic literature reviews in software engineering .

Kleiner, C. (2015). New Concepts in Database System Education: Experiences and Ideas. Proceedings of the 46th ACM Technical Symposium on Computer Science Education , 698.

Ko, J., Paek, S., Park, S., & Park, J. (2021). A news big data analysis of issues in higher education in Korea amid the COVID-19 pandemic. Sustainability, 13 (13), 7347.

Kui, X., Du, H., Zhong, P., & Liu, W. (2018). Research and application of flipped classroom in database course. 2018 13th International Conference on Computer Science \& Education (ICCSE) , 1–5.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics , 159–174.

Lunt, B., Ekstrom, J., Gorka, S., Hislop, G., Kamali, R., Lawson, E., ... & Reichgelt, H. (2008). Curriculum guidelines for undergraduate degree programs in information technology . ACM.

Luo, R., Wu, M., Zhu, Y., & Shen, Y. (2008). Exploration of Curriculum Structures and Educational Models of Database Applications. 2008 The 9th International Conference for Young Computer Scientists , 2664–2668.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory programming: a systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education , 55–106.

Manzoor, M. F., Abid, A., Farooq, M. S., Nawaz, N. A., & Farooq, U. (2020). Resource allocation techniques in cloud computing: A review and future directions. Elektronika Ir Elektrotechnika, 26 (6), 40–51. https://doi.org/10.5755/j01.eie.26.6.25865

Article   Google Scholar  

Marshall, L. (2011). Developing a computer science curriculum in the South African context. CSERC , 9–19.

Marshall, L. (2012). A comparison of the core aspects of the acm/ieee computer science curriculum 2013 strawman report with the specified core of cc2001 and cs2008 review. Proceedings of Second Computer Science Education Research Conference , 29–34.

Martin, C., Urpi, T., Casany, M. J., Illa, X. B., Quer, C., Rodriguez, M. E., & Abello, A. (2013). Improving learning in a database course using collaborative learning techniques. The International Journal of Engineering Education, 29 (4), 986–997.

Martinez-González, M. M., & Duffing, G. (2007). Teaching databases in compliance with the European dimension of higher education: Best practices for better competences. Education and Information Technologies, 12 (4), 211–228.

Mateo, P. R., Usaola, M. P., & Alemán, J. L. F. (2012). Validating second-order mutation at system level. IEEE Transactions on Software Engineering, 39 (4), 570–587.

Mathieu, R. G., & Khalil, O. (1997). Teaching Data Quality in the Undergraduate Database Course. IQ , 249–266.

Mcintyre, D. R., Pu, H.-C., & Wolff, F. G. (1995). Use of software tools in teaching relational database design. Computers \& Education , 24 (4), 279–286.

Mehmood, E., Abid, A., Farooq, M. S., & Nawaz, N. A. (2020). Curriculum, teaching and learning, and assessments for introductory programming course. IEEE Access, 8 , 125961–125981.

Meier, R., Barnicki, S. L., Barnekow, W., & Durant, E. (2008). Work in progress-Year 2 results from a balanced, freshman-first computer engineering curriculum. In 38th Annual Frontiers in Education Conference (pp. S1F-17). IEEE.

Meyer, B. (2001). Software engineering in the academy. Computer, 34 (5), 28–35.

MathSciNet   Google Scholar  

Mingyu, L., Jianping, J., Yi, Z., & Cuili, Z. (2017). Research on the teaching reform of database curriculum major in computer in big data era. 2017 12th International Conference on Computer Science and Education (ICCSE) , 570–573.

Morien, R. I. (2006). A Critical Evaluation Database Textbooks, Curriculum and Educational Outcomes. Director , 7 .

Mushtaq, Z., Rasool, G., & Shehzad, B. (2017). Multilingual source code analysis: A systematic literature review. IEEE Access, 5 , 11307–11336.

Myers, M., & Skinner, P. (1997). The gap between theory and practice: A database application case study. Journal of International Information Management, 6 (1), 5.

Naeem, A., Farooq, M. S., Khelifi, A., & Abid, A. (2020). Malignant melanoma classification using deep learning: Datasets, performance measurements, challenges and opportunities. IEEE Access, 8 , 110575–110597.

Nagataki, H., Nakano, Y., Nobe, M., Tohyama, T., & Kanemune, S. (2013). A visual learning tool for database operation. Proceedings of the 8th Workshop in Primary and Secondary Computing Education , 39–40.

Naik, S., & Gajjar, K. (2021). Applying and Evaluating Engagement and Application-Based Learning and Education (ENABLE): A Student-Centered Learning Pedagogy for the Course Database Management System. Journal of Education , 00220574211032319.

Nelson, D., Stirk, S., Patience, S., & Green, C. (2003). An evaluation of a diverse database teaching curriculum and the impact of research. 1st LTSN Workshop on Teaching, Learning and Assessment of Databases, Coventry .

Nelson, D., & Fatimazahra, E. (2010). Review of Contributions to the Teaching, Learning and Assessment of Databases (TLAD) Workshops. Innovation in Teaching and Learning in Information and Computer Sciences, 9 (1), 78–86.

Obaid, I., Farooq, M. S., & Abid, A. (2020). Gamification for recruitment and job training: Model, taxonomy, and challenges. IEEE Access, 8 , 65164–65178.

Pahl, C., Barrett, R., & Kenny, C. (2004). Supporting active database learning and training through interactive multimedia. ACM SIGCSE Bulletin, 36 (3), 27–31.

Park, Y., Tajik, A. S., Cafarella, M., & Mozafari, B. (2017). Database learning: Toward a database that becomes smarter every time. Proceedings of the 2017 ACM International Conference on Management of Data , 587–602.

Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16 (3), 9–20.

Prince, M. J., & Felder, R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education, 95 (2), 123–138.

Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., & Mahmood, A. (2019). A review on state-of-the-art violence detection techniques. IEEE Access, 7 , 107560–107575.

Rashid, T. A., & Al-Radhy, R. S. (2014). Transformations to issues in teaching, learning, and assessing methods in databases courses. 2014 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) , 252–256.

Rashid, T. (2015). Investigation of instructing reforms in databases. International Journal of Scientific \& Engineering Research , 6 (8), 64–72.

Regueras, L. M., Verdú, E., Verdú, M. J., Pérez, M. A., & De Castro, J. P. (2007). E-learning strategies to support databases courses: a case study. First International Conference on Technology, Training and Communication .

Robbert, M. A., & Ricardo, C. M. (2003). Trends in the evolution of the database curriculum. ACM SIGCSE Bulletin, 35 (3), 139–143.

Sahami, M., Guzdial, M., McGettrick, A., & Roach, S. (2011). Setting the stage for computing curricula 2013: computer science--report from the ACM/IEEE-CS joint task force. Proceedings of the 42nd ACM Technical Symposium on Computer Science Education , 161–162.

Sciore, E. (2007). SimpleDB: A simple java-based multiuser syst for teaching database internals. ACM SIGCSE Bulletin, 39 (1), 561–565.

Shebaro, B. (2018). Using active learning strategies in teaching introductory database courses. Journal of Computing Sciences in Colleges, 33 (4), 28–36.

Sibia, N., & Liut, M. (2022, June). The Positive Effects of using Reflective Prompts in a Database Course. In 1st International Workshop on Data Systems Education (pp. 32–37).

Silva, Y. N., Almeida, I., & Queiroz, M. (2016). SQL: From traditional databases to big data. Proceedings of the 47th ACM Technical Symposium on Computing Science Education , 413–418.

Sobel, A. E. K. (2003). Computing Curricula--Software Engineering Volume. Proc. of the Final Draft of the Software Engineering Education Knowledge (SEEK) .

Suryn, W., Abran, A., & April, A. (2003). ISO/IEC SQuaRE: The second generation of standards for software product quality .

Svahnberg, M., Aurum, A., & Wohlin, C. (2008). Using students as subjects-an empirical evaluation. Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement , 288–290.

Swebok evolution: IEEE Computer Society. (n.d.). In IEEE Computer Society SWEBOK Evolution Comments . Retrieved March 24, 2021 https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-committee/swebok-evolution

Taipalus, T., & Seppänen, V. (2020). SQL education: A systematic mapping study and future research agenda. ACM Transactions on Computing Education (TOCE), 20 (3), 1–33.

Taipalus, T., Siponen, M., & Vartiainen, T. (2018). Errors and complications in SQL query formulation. ACM Transactions on Computing Education (TOCE), 18 (3), 1–29.

Taipalus, T., & Perälä, P. (2019). What to expect and what to focus on in SQL query teaching. Proceedings of the 50th ACM Technical Symposium on Computer Science Education , 198–203.

Tehseen, R., Farooq, M. S., & Abid, A. (2020). Earthquake prediction using expert systems: A systematic mapping study. Sustainability, 12 (6), 2420.

Urban, S. D., & Dietrich, S. W. (2001). Advanced database concepts for undergraduates: experience with teaching a second course. Proceedings of the Thirty-Second SIGCSE Technical Symposium on Computer Science Education , 357–361.

Urban, S. D., & Dietrich, S. W. (1997). Integrating the practical use of a database product into a theoretical curriculum. ACM SIGCSE Bulletin, 29 (1), 121–125.

Wang, J., & Chen, H. (2014). Research and practice on the teaching reform of database course. International Conference on Education Reform and Modern Management, ERMM .

Wang, J. Z., Davis, T. A., Westall, J. M., & Srimani, P. K. (2010). Undergraduate database instruction with MeTube. Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education , 279–283.

Yau, G., & Karim, S. W. (2003). Smart classroom: Enhancing collaborative learning using pervasive computing technology. II American Society… .

Yue, K.-B. (2013). Using a semi-realistic database to support a database course. Journal of Information Systems Education, 24 (4), 327.

Yuelan, L., Yiwei, L., Yuyan, H., & Yuefan, L. (2011). Study on teaching methods of database application courses. Procedia Engineering, 15 , 5425–5428.

Zhang, X., Wang, X., Liu, Z., Xue, W., & ZHU, X. (2018). The Exploration and Practice on the Classroom Teaching Reform of the Database Technologies Course in colleges. 2018 3rd International Conference on Modern Management, Education Technology, and Social Science (MMETSS 2018) , 320–323.

Zhanquan, W., Zeping, Y., Chunhua, G., Fazhi, Z., & Weibin, G. (2016). Research of database curriculum construction under the environment of massive open online courses. International Journal of Educational and Pedagogical Sciences, 10 (12), 3873–3877.

Zheng, Y., & Dong, J. (2011). Teaching reform and practice of database principles. 2011 6th International Conference on Computer Science \& Education (ICCSE) , 1460–1462.

Download references

Author information

Authors and affiliations.

Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan

Muhammad Ishaq

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

Department of Computer Science, University of Management and Technology, Lahore, Pakistan

Adnan Abid, Muhammad Shoaib Farooq, Muhammad Faraz Manzoor & Uzma Farooq

Department of Computer Science, Lahore Garrison University, Lahore, Pakistan

Muhammad Faraz Manzoor

Department of Electrical Engineering, University of the Punjab, Lahore, Pakistan

Kamran Abid

Faculty of Information Technology, Al Istiqlal University, Jericho, Palestine

Mamoun Abu Helou

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Adnan Abid .

Ethics declarations

Conflict of interest, additional information, publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Ishaq, M., Abid, A., Farooq, M.S. et al. Advances in database systems education: Methods, tools, curricula, and way forward. Educ Inf Technol 28 , 2681–2725 (2023). https://doi.org/10.1007/s10639-022-11293-0

Download citation

Accepted : 16 August 2022

Published : 31 August 2022

Issue Date : March 2023

DOI : https://doi.org/10.1007/s10639-022-11293-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Higher education
  • Database curriculum
  • Teaching methods
  • Find a journal
  • Publish with us
  • Track your research
  • Frontiers in Medicine
  • Precision Medicine
  • Research Topics

Bridging Tradition and Future: Cutting-edge Exploration and Application of Artificial Intelligence in Comprehensive Diagnosis and Treatment of Lung Diseases

Total Downloads

Total Views and Downloads

About this Research Topic

In recent years, the rapid development of artificial intelligence (AI) and machine learning (ML) has significantly influenced the management of lung diseases, which remain a leading cause of morbidity and mortality worldwide. The accuracy and efficiency of diagnosis, treatment planning, and outcome prediction could be significantly improved by integrating AI and ML into clinical practice. AI-driven approaches are increasingly being utilized to analyze diverse data sources, including but not limited to imaging, pathology, genetic, and clinical data. Utilizing these extensive and diverse datasets, AI models can create predictive tools that tailor treatment strategies to individuals, supporting the overarching objectives of precision medicine. This data-driven approach supports clinicians in making more informed decisions, improving the accuracy and timeliness of patient care. The focus of this Research Topic is to explore the forefront of AI applications in the comprehensive diagnosis and treatment of lung diseases. This includes not only predictive assistance but also the broader integration of AI into clinical workflows, setting the stage for innovative and personalized approaches in lung care. This Research Topic aims at addressing the critical challenges in the diagnosis and treatment of lung diseases through the innovative application of machine learning (ML). Specifically, it seeks to explore how AI-driven methods can be harnessed to analyze diverse and complex data sources, including imaging, pathology, genetic, and clinical data, to develop predictive models that enhance clinical decision-making. The goal is to foster interdisciplinary research that bridges traditional clinical practices with cutting-edge AI technologies, ultimately advancing the precision and personalization of lung care. By bringing together experts from various fields, this Research Topic aspires to generate new insights, methodologies, and tools that can improve patient outcomes and set the stage for the next generation of AI applications in comprehensive lung disease management. This Research Topic invites contributions on a range of innovative themes in lung disease management, focusing on the integration of artificial intelligence and machine learning. Key areas of interest include: • Integrating radiomic and genomic data to enhance precise diagnosis and treatment for lung diseases. • Leveraging AI technologies for the prediction and prognostic modeling of lung diseases to improve patient outcomes. • Combining multi-modal and multi-omics data to enable personalized medical decision-making and risk assessment for lung diseases. • Utilizing AI for real-time surgical planning and risk stratification to increase the safety and effectiveness of surgeries for lung diseases. • Applying deep learning for pathology image analysis and dynamic risk assessment to optimize treatment plans for lung diseases. We encourage submissions that explore these themes, aiming to advance the precision, personalization, and overall effectiveness of lung care.

Keywords : Machine Learning, Radiomics, Cardiothoracic Diseases, Precision Medicine, Predictive Assistance

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, submission deadlines.

Manuscript Summary
Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

IMAGES

  1. Features of Database Management System (DBMS)

    research topics on database management system

  2. Relational Database Management System PowerPoint Presentation Slides

    research topics on database management system

  3. Database Management System

    research topics on database management system

  4. What is Database Management System (DBMS)?

    research topics on database management system

  5. PPT

    research topics on database management system

  6. What is a Database management system? Types, Functions, and Components

    research topics on database management system

VIDEO

  1. Database management system

  2. Introduction to database management system

  3. Introduction to database management system

  4. Introduction to Database management system

  5. Database Management System Introduction // Bijay Sir Meet Online Class

  6. Introduction to Database Management Systems ||DBMS BCA

COMMENTS

  1. 10 Current Database Research Topic Ideas in 2024

    10 Current Database Research Topic Ideas in 2024

  2. 19024 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on DATABASE MANAGEMENT SYSTEMS. Find methods information, sources, references or conduct a literature ...

  3. Database management system performance comparisons: A systematic

    Database management system performance comparisons

  4. Research Area: DBMS

    Faculty and students at Berkeley have repeatedly defined and redefined the broad field of data management, combining deep intellectual impact with the birth of multi-billion dollar industries, including relational databases, RAID storage, scalable Internet search, and big data analytics. Berkeley also gave birth to many of the most widely-used ...

  5. (PDF) Advancements in Database Management Systems: A Comprehensive

    This research paper provides a comprehensive review of advancements in database management systems (DBMS) over the years, encompassing both relational and non-relational databases. By analyzing ...

  6. Database management system performance comparisons: A systematic

    the database is used by one or several software applications via a DBMS. Collectively, the database, the DBMS, and the software application are referred to as a database system [31, p.7][17, p.65]. The separation of the database and the DBMS, especially in the realm of relational databases, is typically impossible without exporting the database ...

  7. Database Systems

    Topics include the types of information systems that use databases, the ownership of data within the organization, database software, network architectures for database systems, the importance of security and privacy issues, and integration with legacy databases. The chapter also includes a list of open source database management systems (DBMSs).

  8. CS 764 Topics in Database Management Systems

    This course covers a number of advanced topics in the development of database management systems (DBMS) and the modern applications of databases. The topics discussed include advanced concurrency control and recovery, query processing and optimization, advanced access methods, parallel and distributed data systems, extensible data systems ...

  9. Dissertations / Theses: 'Database management system (DMS ...

    Within the last few years, the database community sparked a large number of extremely innovative research projects to push the envelope in the context of modern database system architectures. In this paper, we outline requirements and influencing factors to identify some of the hot research topics in database management systems.

  10. Database Management: A Survey

    Abstract. This chapter presents and illustrates the basic concepts of database management, outlines the major research topics, and presents the key results and future directions of database management research. Database concepts and motivations are compared and contrasted with those in Artificial Intelligence.

  11. PDF Recent Progress on Selected Topics in Database Research

    intranets, and sources on the Web. Many research systems (e.g., [10, 11, 13]) have been developed to achieve this goal. These systems adopt a mediation architecture [19], in which a user poses a query to a mediator that retrieves data from underlying sources to answer the query. A wrapper on a source is used to perform data

  12. Database Systems

    Data management is the field of computer science related to managing data as a valuable resource. The database group studies a broad array of topics in data management exploring the algorithms, systems, and theory required for the efficient, effective use of data. Our members study data modeling, conceptual modeling and ontologies, data ...

  13. Research Topics

    Data science is a field that crosscuts many research area of computer science, such as artificial intelligence, machine learning, data mining, databases, and information systems. Our research falls into the last two of these areas and aims at supporting data science at the system level. Data science requires the management of new types of data ...

  14. Research topics

    Our research focus is to develop new theories and algorithms of a novel multi-model database management system to manage both well-structured data and NoSQL data. Our approach will reduce integration issues, simplify operations, and eliminate migration issues between relational and NoSQL data. A video to introduce Multi-model databases: Link

  15. CMPUT 692

    This course covers research topics in advanced database management systems as well as emerging database techonologies, with emphasis on XML data and XML support for object-oriented database management systems. Objectives. Provide background in modern database management systems; Understand current research in the field;

  16. CS 764 Topics in Database Management Systems

    The topics discussed include query processing and optimization, advanced access methods, advanced concurrency control and recovery, parallel and distributed data systems, implications of cloud computing for data platforms, and data processing with emerging hardware. The course material will be drawn from a number of papers in the database ...

  17. Database Management Trends in 2022

    The market for Database Management systems is growing fast and, according to Research and Markets, the global DBMS market was estimated to have reached $63.9 trillion in 2020, and is projected to reach $142.7 trillion by 2027. Increasingly, organizations are merging their data warehouses and data lakes into cloud storage systems.

  18. CS 764 Topics in Database Management Systems

    Course projects: A big component of this course is a research project. For the project, you pick a topic in the area of data management systems, and explore it in depth. Here are lists of suggested project topics created in 2020, 2021, and 2022; but you are encouraged to select a project outside of the list. The course project is a group ...

  19. PDF Principles of Database Management

    This is a very timely book with outstanding coverage of database topics and excellent treatment of database ... education, learning, and research at the highest international levels of excellence. www.cambridge.org ... 1.5 Advantages of Database Systems and Database Management 12 1.5.1 Data Independence 12 1.5.2 Database Modeling 13 1.5.3 ...

  20. Dissertations / Theses on the topic 'Database Management System'

    Consult the top 50 dissertations / theses for your research on the topic 'Database Management System.'. Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard ...

  21. Advances in database systems education: Methods, tools, curricula, and

    The research in database systems education has evolved over the years with respect to modern contents influenced by technological advancements, supportive tools to engage the learners for better learning, and improvisations in teaching and assessment methods. ... Also, other database topics such as transaction management, application ...

  22. Advances in database systems education: Methods, tools ...

    The research in database systems education has evolved over the years with respect to modern contents influenced by technological advancements, supportive tools to engage the learners for better learning, and improvisations in teaching and assessment methods. ... Also, other database topics such as transaction management, application ...

  23. Bridging Tradition and Future: Cutting-edge Exploration and ...

    This Research Topic invites contributions on a range of innovative themes in lung disease management, focusing on the integration of artificial intelligence and machine learning. Key areas of interest include: • Integrating radiomic and genomic data to enhance precise diagnosis and treatment for lung diseases.