40+ Reasons Why Research Is Important in Education

Do you ever wonder why research is so essential in education? What impact does it really have on teaching and learning?

These are questions that plague many students and educators alike.

According to experts, here are the reasons why research is important in the field of education.

Joseph Marc Zagerman, Ed.D. 

Joseph Marc Zagerman

Assistant Professor of Project Management, Harrisburg University of Science and Technology 

Wisdom is knowledge rightly applied. Conducting research is all about gaining wisdom. It can be an exciting part of a college student’s educational journey — be it a simple research paper, thesis, or dissertation. 

Related: What Is the Difference Between Knowledge and Wisdom?

As we know, there is primary research and secondary research: 

  • Primary research is first-hand research where the primary investigator (PI) or researcher uses a quantitative, qualitative, or mixed-methodology approach in gaining original data. The process of conducting primary research is fascinating but beyond the scope of this article. 
  • In contrast, secondary research examines secondhand information by describing or summarizing the work of others. This article focuses on the benefits of conducting secondary research by immersing oneself in the literature.  

Research develops students into becoming more self-sufficient

There are many benefits for college students to engage in scholarly research. For example, the research process itself develops students into becoming more self-sufficient. 

In other words,  students enhance their ability to ferret out information  regarding a specific topic with a more functional deep dive into the subject matter under investigation. 

The educational journey of  conducting research allows students to see the current conversations  taking place regarding a specific topic. One can parse out the congruity and incongruity among scholars about a particular topic. 

Developing one’s  fundamental library skills  is a tremendous upside in becoming self-sufficient. And yet another benefit of conducting scholarly research is reviewing other writing styles, which often enhances one’s reading and writing skills.   

Conducting an annotated bibliography is often a critical first step in conducting scholarly research. Reviewing, evaluating, and synthesizing information from several sources further  develops a student’s critical thinking skills. 

Related: 9 Critical Thinking Examples

Furthermore, in becoming immersed in the literature, students can recognize associated gaps , problems , or opportunities for additional research. 

From a doctoral perspective, Boote & Beile (2005) underscore the importance of conducting a literature review as the foundation for sound research and acquiring the skills and knowledge in analyzing and synthesizing information.  

So, if conducting research is beneficial for college students, why do some college students have problems with the process or believe it doesn’t add value? 

First off, conducting research is hard work . It takes time. Not to make a sweeping generalization, but some college students embrace a  “fast-food”  expectation of academic assignments. 

For example, finish a quiz, complete a discussion board, or watch a YouTube video and check it off your academic to-do list right away. In contrast, conducting a literature review takes time. It’s hard work.

It requires discipline, focus, and effective time management strategies. 

Yet, good, bad, or indifferent, it remains that the process of conducting research is often perceived as a non-value-added activity for many college students. Why is this so? Is there a better way?   

From an educational standpoint, research assignments should not be a “one and done.” Instead, every course should provide opportunities for students to engage in research of some sort. 

If a student must complete a thesis or dissertation as part of their degree requirement, the process should begin early enough in the program. 

But perhaps the most important note for educators is to align the research process with real-world takeaways . That builds value . That is what wisdom is all about. 

Dr. John Clark, PMP 

John Clark

Corporate Faculty (Project Management), Harrisburg University of Science and Technology 

Research provides a path to progress and prosperity

The research integrates the known with the unknown. Research becomes the path to progress and prosperity. Extant knowledge, gathered through previous research, serves as the foundation to attaining new knowledge. 

The essence of research is a continuum.

Only through research is the attainment of new knowledge possible. New knowledge, formed through new research, is contributed back to the knowledge community. In the absence of research, the continuum of knowledge is severed. 

Reminiscent of the continuum of knowledge, the desire and understanding to conduct research must transcend into the next generation. This magnifies the relevance to convey the techniques and the desire to seek new knowledge to the younger generations. 

Humbly, it is argued that education possibly serves to facilitate the importance of research. The synergy between research and education perpetuates the continuum of knowledge. 

Through education, the younger generations are instilled with the inspiration to address the challenges of tomorrow. 

Related: Why Is Education Important in Our Life?

It plants the seeds for scientific inquiry into the next generation

Research, whether qualitative or quantitative , is grounded in scientific methods . Instructing our students in the fundamentals of empirically-based research effectively plants the seeds for scientific inquiry into the next generation. 

The application and pursuit of research catalyze critical thinking . Rather than guiding our students to apply pre-existing and rote answers to yesterday’s challenges, research inspires our students to examine phenomena through new and intriguing lenses. 

The globalized and highly competitive world of today effectively demands the younger generations to think  critically  and  creatively  to respond to the new challenges of the future. 

Consequently, through research and education, the younger generations are  inspired  and  prepared  to find new knowledge that advances our community. Ultimately, the synergy between research and education benefits society for generations to come. 

Professor John Hattie and Kyle Hattie

John Hattie and Kyle Hattie

Authors, “ 10 Steps to Develop Great Learners “

Research serves many purposes

Imagine your doctor or pilot disregarding research and relying on experience, anecdotes, and opinions. Imagine them being proud of not having read a research article since graduation. Imagine them depending on the tips and tricks of colleagues.

Research serves many great purposes, such as:

  • Keeping up to date with critical findings
  • Hearing the critiques of current methods of teaching and running schools
  • Standing on the shoulders of giants to see our world better

Given that so much educational research is now available, reading syntheses of the research, hearing others’ interpretation and implementation of the research, and seeing the research in action helps. 

What matters most is the interpretation of the research — your interpretation, the author’s interpretation, and your colleagues’ interpretation. It is finding research that improves our ways of thinking, our interpretations, and our impact on students. 

There is also much to be gained from reading about the methods of research, which provide ways for us to question our own impact, our own theories of teaching and learning, and help us critique our practice by standing on the shoulders of others. 

Research also helps to know what is exciting, topical, and important.

It enables us to hear other perspectives

Statements without research evidence are but opinions. Research is not only about what is published in journals or books, but what we discover in our own classes and schools, provided we ask,  “What evidence would I accept that I am wrong?” 

This is the defining question separating research from opinion. As humans, we are great at self-confirmation — there are always students who succeed in our class, we are great at finding evidence we were right, and we can use this evidence to justify our teaching. 

But what about those who did not succeed? We can’t be blind about them, and we should not ascribe their lack of improvement to them (poor homes, unmotivated, too far behind) but to us. 

We often need to hear other perspectives of the evidence we collect from our classes and hear more convincing explanations and interpretations about what worked best and what did not; who succeeded and who did not; and were the gains sufficient. 

When we do this with the aim of improving our impact on our students, then everyone is the winner.

It provides explanations and bigger picture interpretations

Research and evaluation on your class and school can be triangulated with research studies in the literature to provide alternative explanations, to help see the importance (or not) of the context of your school. And we can always write our experiences and add to the research.

For example, we have synthesized many studies of how best parents can influence their children to become great learners. Our fundamental interpretation of the large corpus of studies is that it matters more how parents think when engaged in parenting. 

For instance, the expectations, listening and responsive skills, how they react to error and struggle, and whether their feedback was heard, understood, and actionable. 

Research is more than summarizing ; it provides explanations and bigger picture interpretations, which we aimed at in our “10 steps for Parents” book.

Dr. Glenn Mitchell, MPH, CPE, FACEP

Glenn Mitchell

Vice Provost for Institutional Effectiveness , Harrisburg University of Science and Technology 

Research gives us better knowledge workers

There is a tremendous value for our society from student participation in scientific research. At all levels – undergraduate, master’s, and Ph.D. —students learn the scientific method that has driven progress since the Enlightenment over 300 years ago. 

  • They learn to observe carefully and organize collected data efficiently. 
  • They know how to test results for whether or not they should be believed or were just a chance finding. 
  • They learn to estimate the strength of the data they collect and see in other scientists’ published work. 

With its peer review and wide visibility, the publication process demands that the work be done properly , or it will be exposed as flawed or even falsified. 

So students don’t just learn how to do experiments, interviews, or surveys. They learn that the process demands rigor and ethical conduct to obtain valid and reliable results. 

Supporting and educating a new generation of science-minded citizens makes our population more likely to support proven facts and take unproven allegations with a grain of salt until they are rigorously evaluated and reviewed. 

Thus, educating our students about research and involving them with hands-on opportunities to participate in research projects gives us better knowledge workers to advance technology and produce better citizens.

Chris A. Sweigart, Ph.D.

Chris Sweigart

Board Certified Family Physician | Education Consultant, Limened

Research plays a critical role in education as a guide for effective practices, policies, and procedures in our schools. 

Evidence-based practice, which involves educators intentionally engaging in instructional practices and programs with strong evidence for positive outcomes from methodologically sound research, is essential to ensure the greatest probability of achieving desired student outcomes in schools.

It helps educators have greater confidence to help students achieve outcomes

There are extensive options for instructional practices and programs in our schools, many of which are promoted and sold by educational companies. In brief, some of these works benefit students, and others don’t, producing no results or even negatively impacting students.

Educators need ways to filter through the noise to find practices that are most likely to actually produce positive results with students. 

When a practice has been identified as evidence-based, that means an array of valid, carefully controlled research studies have been conducted that show significant, positive outcomes from engaging in the practice. 

By choosing to engage in these practices, educators can have greater confidence in their ability to help students achieve meaningful outcomes.

There are organizations focused on evaluating the research base for programs and practices to determine whether they are evidence-based. 

For example, some websites provide overviews of evidence-based practices in education while my website provides practical guides for teachers on interventions for academic and behavioral challenges with a research rating scale. 

Educators can use these resources to sift through the research, which can sometimes be challenging to access and translate, especially for busy teachers.

It supports vulnerable student populations

Schools may be especially concerned about the success of vulnerable student populations, such as students with disabilities , who are at far greater risk than their peers of poor short and long-term outcomes. 

In many cases, these students are already behind their peers one or more years academically and possibly facing other challenges.

With these vulnerable populations, it’s imperative that we engage in practices that benefit them and do so faster than typical practice—because these students need to catch up! 

That said, every minute and dollar we spend on a practice not supported by research is a gamble on students’ well-being and futures that may only make things worse. 

These populations of students need our best in education, which means choosing practices with sound evidence that are most likely to help.  

If I were going to a doctor for a serious illness, I would want them to engage in practice guided by the cutting edge of medical science to ensure my most significant chance of becoming healthy again. And I want the same for our students who struggle in school.

Will Shaw PhD, MSc

Will Shaw

Sport Scientist and Lecturer | Co-founder, Sport Science Insider

Research creates new knowledge and better ideas

At the foundation of learning is sharing knowledge, ideas, and concepts. However, few concepts are set in stone; instead, they are ever-evolving ideas that hopefully get closer to the truth . 

Research is the process that underpins this search for new and better-defined ideas. For this reason, it is crucial to have very close links between research and teaching. The further the gap, the less informed teaching will become. 

Research provides answers to complicated problems

Another key concept in education is sharing the reality that most problems are complicated — but these are often the most fun to try to solve. Such as, how does the brain control movement? Or how can we optimize skill development in elite athletes?

Here, research can be used to show how many studies can be pulled together to find answers to these challenging problems. But students should also understand that these answers aren’t perfect and should be challenged.

Again, this process creates a deeper learning experience and students who are better equipped for the world we live in.

Basic understanding of research aids students in making informed decisions

We’re already seeing the worlds of tech and data drive many facets of life in a positive direction — this will no doubt continue. However, a byproduct of this is that data and science are commonly misunderstood, misquoted, or, in the worst cases, deliberately misused to tell a false story. 

If students have a basic understanding of research, they can make informed decisions based on reading the source and their own insight. 

This doesn’t mean they have to mean they disregard all headlines instead, they can decide to what extent the findings are trustworthy and dig deeper to find meaning. 

A recent example is this BBC News story  that did an excellent job of reporting a study looking at changes in brain structure as a result of mild COVID. The main finding of a 2% average loss in brain structure after mild COVID sounds alarming and is one of the findings from the study. 

However, if students have the ability to scan the full article  linked in the BBC article, they could learn that: 

  • The measure that decreased by 2% was a ‘proxy’ (estimate) for tissue damage 
  • Adults show 0.2 – 0.3% loss every year naturally
  • Some covid patients didn’t show any loss at all, but the average loss between the COVID and control group was 2%
  • We have no idea currently if these effects last more than a few weeks or months (more research is in progress)

This is an excellent research paper, and it is well-reported, but having the ability to go one step further makes so much more sense of the findings. This ability to understand the basics of research makes the modern world far easier to navigate.

Helen Crabtree

Helen Crabtree

Teacher and Owner, GCSE Masterclass

It enables people to discover different ideas 

Research is crucial to education. It enables people to discover different ideas, viewpoints, theories, and facts. From there, they will weigh up the validity of each theory for themselves. 

Finding these things out for oneself causes a student to think more deeply and come up with their personal perspectives, hypotheses, and even to question widely held facts. This is crucial for independent thought and personal development.

To distortion and manipulation — a frighteningly Orwellian future awaits us if research skills are lost. 

You only need to look at current world events and how freedom of the media and genuine journalistic investigation (or research) is distorting the understanding of the real world in the minds of many people in one of the most powerful countries in the world. 

Only those who are able to conduct research and evaluate the independence of facts can genuinely understand the world. 

Genuine research opens young people’s eyes to facts and opinions

Furthermore, learning how to conduct genuine research instead of merely a Wikipedia or Google search is a skill in itself, allowing students to search through archives and find material that is not widely known about and doesn’t appear at the top of search engines. 

Genuine research will open young people’s eyes to facts and opinions that may otherwise be hidden. This can be demonstrated when we look at social media and its algorithms.

Essentially, if you repeatedly read or “like” pieces with a specific worldview, the algorithm will send you more articles or videos that further back up that view. 

This, in turn, creates an echo chamber whereby your own opinion is repeatedly played back to you with no opposing ideas or facts, reinforcing your view in a one-sided way.

Conducting genuine research is the antidote.

Lastly, by conducting research, people discover how to write articles, dissertations, and conduct their own experiments to justify their ideas. A world without genuine, quality research is a world that is open.

Pritha Gopalan, Ph.D.

Pritha Gopalan

Director of Research and Learning, Newark Trust for Education

It allows us to understand progress and areas of development

Research is vital in education because it helps us be intentional about how we frame and document our practice. At The Trust , we aim to synthesize standards-based and stakeholder-driven frames to ensure that quality also means equity.

Research gives us a lens to look across time and space and concretely understand our progress and areas for improvement. We are  careful  to include all voices through representative and network sampling to include multiple perspectives from different sites.

Good research helps us capture variation in practice, document innovation, and share bright spots and persistent challenges with peers for mutual learning and growth. 

This is key to our work as educators and a city-based voice employing and seeking to amplify asset-based discourses in education.

Research represents stakeholders’ aspirations and needs

When done in  culturally sustaining  and  equitable ways , research powerfully represents stakeholder experiences, interests, aspirations, and needs. Thus, it is critical to informed philanthropy, advocacy, and the continuous improvement of practice. 

Our organization is constantly evolving in our own cultural competence . It embodies this pursuit in our research so that the voices of the educators, families, children, and partners that we work with are harmonized .

This is done to create the “big picture” of where we are and where we need to get together to ensure equitable and quality conditions for learning in Newark.

Get to Know Yourself Better with Our FREE Quizzes! (no email sign-up necessary):

  • How Well Do You Know Yourself?
  • Are You Living Your Full Potential?
  • How Self-Motivated Are You?
  • Is It the Right Time for a Big Change?
  • Are You Living a Balanced Life?
  • Are You Handling Stress Effectively?

Explore our quiz categories: Business Quizzes , Career Quizzes , Personality Quizzes, Relationship Quizzes , Well-Being Quizzes

Jessica Robinson

Jessica Robinson

Educator | Human Resources and Marketing Manager, SpeakingNerd

Research makes the problem clearer

In the words of Stanley Arnold,  “Every problem contains within itself the seeds of its own solution.”  These words truly highlight the nature of problems and solutions. 

If you understand a problem thoroughly, you eventually approach closer to the solution for you begin to see what makes the problem arise. When the root of the problem is clear, the solution becomes obvious. 

For example, if you suffer from headaches frequently, your doctor will get specific tests done to understand the exact problem (which is research). Once the root cause of the headache becomes clear, your doctor will give you suitable medicines to help you heal. 

This implies that to reach a solution, it is crucial for us to understand the problem first. Research helps us with that. By making the problem clearer, it helps us pave closer to the solution. 

As the main aim of education is to produce talented individuals who can generate innovative solutions to the world’s problems, research is of utmost importance. 

Research boosts critical thinking skills

Critical thinking is defined as observing, understanding, analyzing, and interpreting information and arguments to form suitable conclusions. 

In today’s world, critical thinking skills are the most valued skills. Companies look for a candidate’s critical thinking skills before hiring him. This is because critical thinking skills promote innovation, and innovation is the need of the hour in almost every sector. 

Further, research is one of the most effective ways of developing critical thinking skills. When you conduct research, you eventually learn the art of observing, evaluating, analyzing, interpreting information, and deriving conclusions. So, this is another major reason why research is crucial in education. 

Research promotes curiosity

In the words of Albert Einstein ,  “Curiosity is more important than knowledge.”  Now, you may wonder why so? Basically, curiosity is a strong desire to learn or know things. It motivates you to pursue an everlasting journey of learning. 

Every curious individual observes things, experiments, and learns. It seems that knowledge follows curiosity, but the vice versa is not true. An individual may gain a lot of knowledge about multiple things despite not being curious. But, then, he might not use his knowledge to engage in innovation because of the lack of curiosity. 

Hence, his knowledge might become futile, or he may just remain a bookworm. So, curiosity is more important than knowledge, and research promotes curiosity. How? 

The answer is because research helps you plunge into things. You observe what is not visible to everyone. You explore the wonders of nature and other phenomena. The more you know, the more you understand that you don’t know, which ignites curiosity. 

Research boosts confidence and self-esteem

Developing confident individuals is one of the major goals of education. When students undertake the journey of research and come up with important conclusions or results, they develop immense confidence in their knowledge and skills. 

Related: Why is Self Confidence Important?

They feel as if they can do anything. This is another important reason why research is crucial in education. 

Research helps students evolve into independent learners

Most of the time, teachers guide students on the path of learning. But, research opportunities give students chances to pave their own learning path. 

It is like they pursue a journey of learning by themselves. They consult different resources that seem appropriate, use their own methods, and shape the journey on their own. 

This way, they evolve into independent learners, which is excellent as it sets the foundation for lifelong learning. 

Theresa Bertuzzi

Theresa Bertuzzi

Chief Program Development Officer and Co-founder, Tiny Hoppers

Research helps revamp the curriculum and include proven best techniques

Research is critical in education as our world is constantly evolving, so approaches and solutions need to be updated to  best suit  the current educational climate. 

With the influx of child development and psychology studies, educators and child product development experts are  honing  how certain activities, lessons, behavior management, etc., can impact a child’s development.

For example, child development research has led to the development of toy blocks, jigsaws, and shape sorters, which have proven to be linked to: 

  • Spatial thinking
  • Logical reasoning
  • Shape and color recognition

There is  no one-size-fits-all  when approaching educational practices; therefore, we can  revamp  the curriculum and include proven best techniques and methodologies by continuously researching past strategies and looking into new tactics. 

Effective teaching requires practical evidence approaches rather than making it a guessing game. 

The combination of work done by child educators of all ages, and research in child development psychology allow new developments in toys, activities, and practical resources for other educators, child care workers, and parents. Such ensures children can  reap  the benefits of child development research. 

It enables a better understanding of how to adapt methods of instruction

In addition, with all of the various learning styles, researching the diversity in these types will enable a better understanding of how to adapt methods of instruction to all learners’ needs. 

Child development research gives educators, child care workers, and parents the ability to guide the average child at specific age ranges, but  each child is unique in their own needs . 

It is important to note that while this is the average, it is up to the educator and childcare provider to  adapt accordingly  to each child based on their individual needs. 

Scott Winstead

Scott Winstead

Education Technology Expert | Founder, My eLearning World

It’s the most important tool for expanding our knowledge

Research is an integral part of education for teachers and students alike. It’s our most important tool for expanding our knowledge and understanding of different topics and ideas.

  • Educators need to be informed about the latest research to make good decisions and provide students with quality learning opportunities.
  • Research provides educators with valuable information about how students learn best so they can be more effective teachers. 
  • It also helps us develop new methods and techniques for teaching and allows educators to explore different topics and ideas in more detail.
  • For students, research allows them to explore new topics and develop critical thinking skills along with analytical and communication skills.

In short, research is vital in education because it helps us learn more about the world around us and improves the quality of education for everyone involved.

Connor Ondriska

Connor Ondriska

CEO, SpanishVIP

It creates better experiences and improves the quality of education

Research continues to be so important in education because we should constantly be improving as educators. If one of the goals of education is to continually work on making a better world, then the face of education a century ago shouldn’t look the same today. 

You can apply that same logic on a shorter scale, especially with the technological boom . So research is a way that educators can learn about what’s working, what isn’t, and what are the areas we need to focus on. 

For example, we focus purely on distance learning, which means we need to innovate in a field that doesn’t have a ton of research yet. If we’re being generous, we can say that distance education became viable in the 1990s, but people are just now accepting it as a valid way to learn. 

Since you can’t necessarily apply everything you know about traditional pedagogy to an online setting, It’s an entirely different context that requires its own study. 

As more research comes out about the effectiveness and understanding of this type of education, we can adapt as educators to help our students. Ultimately, that research will help us create better experiences and improve the quality of distance education. 

The key here is to make sure that research is available and that teachers actually respond to it. In that sense, ongoing research and continual teacher training can go hand-in-hand. 

It leads to more effective educational approaches

Research in the field of language learning is significant. We’re constantly changing our understanding of how languages are learned. Over just the last century, there have been dozens of new methodologies and approaches. 

Linguists/pedagogues have frequently re-interpreted the language-learning process, and all of this analytical research has revolutionized the way we understand language. 

We started with simple Grammar Translation (how you would learn Latin), and now research focuses on more holistic communication techniques. So we’ve definitely come a long way, but we should keep going. 

Now with distance education, we’re experiencing another shift in language learning. You don’t need to memorize textbook vocabulary. You don’t need to travel abroad to practice with native speakers. 

Thanks to ongoing research, we’ve developed our own method of learning Spanish that’s been shown to be 10x more efficient than traditional classroom experiences. 

So if we’ve been able to do so, then maybe someone will develop an even better methodology in the future. So research and innovation are only leading to more effective educational approaches that benefit the entire society.  

Research helps everyone in the education field to become better

This stands in both the public and private sectors. Even though we’re an education business, public schools should also be adapting to new ways to utilize distance learning. 

As more technology becomes readily available to students, teachers should capitalize on that to ensure everyone receives a better education.

Related: How Important Is Technology in Education  

There is now a vast body of research about technology in the language classroom, so why not take advantage of that research and create better lesson plans? 

So as new research appears, everyone in the education field will become a better teacher. And that statement will stand ten years from now. Education needs to adapt to the needs of society, but we need research to know how we can do that appropriately .  

James Bacon, MSEd

James Bacon

Director of Outreach and Operations, Edficiency

Research gives schools confidence to adopt different practices

Research in education is important to inform teachers, administrators, and even parents about what practices have been shown to impact different outcomes that can be important, like:

  • Student learning outcomes (often measured by test scores)
  • Graduation and/or attendance rates
  • Social-emotional skills 
  • College and/or job matriculation rates, among many others

Research can give insights into which programs, teaching methods, curricula, schedules, and other structures provide which benefits to which groups and thus give schools the confidence to adopt these different practices.

It measures the impact of innovations 

Research in education also enables us to measure different innovations that are tried in schools, which is also essential to push the field of education further. 

It also ensures that students learn individually and collectively more than those we’ve educated in the past, or at least in different ways, to respond to changes and help shape society’s future. 

Research can give us the  formal feedback  to know if innovations happening in classrooms, schools, and districts across the country (and the world) are having the  intended  impact and whether or not they should be continued, expanded, discontinued, or used only in specific contexts.

Without research, we might continue to innovate to the detriment of our students and education system without knowing it.

Loic Bellet

Loic Bellet

Business English Coach, Speak Proper English

It provides numerous advantages to explore profession

Developing a research-based approach to enhance your practice gives you the evidence you need to make changes in your classroom, school, and beyond. 

In the light of the ongoing discussion over what works and why, there are numerous advantages to exploring your profession, whether for immediate improvement via action research and, more broadly, for acquiring awareness and knowledge on topics of interest and significance. 

There are several advantages to incorporating research into your practice. This is why research is a part of teacher education from the beginning. 

Research can be used to:

  • Assist you in discovering solutions to specific issues that may arise in your school or classroom.
  • Support professional knowledge, competence, and understanding of learning
  • Connect you to information sources and expert support networks.
  • When implementing change, such as curriculum, pedagogy, or assessment, it’s important to spell out the goals, processes, and objectives.
  • Improve your organizational, local, and national grasp of your professional and policy environment, allowing you to educate and lead better strategically and effectively.
  • Inside your school and more broadly within the profession, develop your agency, impact, self-efficacy, and voice.
  • Each of these may entail an investigation based on evidence out of your environment and evidence from other sources.

Although research methodologies have progressed significantly, the importance of research alone has grown . 

We’ve seen online research gaining popularity, and the value of research is increasing by the day. As a result, companies are looking for online access researchers to work with them and carry out research for accurate data from the internet. 

Furthermore, research became a requirement for survival. We’ll have to do it nonetheless. We can’t make business judgments, launch businesses, or prove theories without extensive research. There has been a lot of effort to create research a base of info and advancement.

Saikiran Chandha

Saikiran Chandha

CEO and Founder, Typeset

It offers factual or evidence-based learning approach

It’s evident that research and education are intertwined! On a broader spectrum, education is something that you perceive as a fundamental part of your learning process (in your institutions, colleges, school, etc.). 

It improves your skills, knowledge, social and moral values. But on the other hand, research is something that you owe to as it provides you with the scientific and systemic solution to your educational hardships. 

For example: Research aids in implementing different teaching methods, identifying learning difficulties and addressing them, curriculum development, and more. 

Accordingly, research plays a significant role in offering a factual or evidence-based learning approach to academic challenges and concerns. 

And the two primary benefits of research in education are:

Research helps to improve the education system

Yes, the prime focus of research is to excavate, explore and discover a new, innovative, and creative approach to enhance the teaching and learning methods based on the latest educational needs and advancements. 

Research fuels your knowledge bank

Research is all about learning new things, data sourcing, analysis, and more. So, technically, research replenishes your knowledge bank with factual data. 

Thus, it helps educators or teachers develop their subject knowledge, aids in-depth harvest erudition, and increases overall classroom performance.

Chaye McIntosh, MS, LCADC

chaye mcintosh

Clinical Director,  ChoicePoint Health

It improves the learning curve

Research, I believe, is a fundamental part of education, be it by the student or the teacher. 

When you research a topic, you will not just learn and read about stuff related to the topic but also branch out and learn new and different things. This improves the learning curve, and you delve deeper into topics, develop interest and increase your knowledge. 

Academically and personally, I can grow every day and attain the confidence that the abundance of information brings me.

It builds up understanding and perspective

Research can help you build up understanding and perspective regarding the niche of choice; help you evaluate and analyze it with sound theories and a factual basis rather than just learning just for the sake of it.

Educationally, it can help you form informed opinions and sound logic that can be beneficial in school and routinely. Not only this,  when you do proper research on any educational topic and learn about the facts and figures, chances are you will score better than your classmates who only have textbook knowledge.  

So the research will give you an edge over your peers and help you perform better in exams and classroom discussions.

Matthew Carter

Matthew Carter

Attorney,  Inc and Go

Solid research is a skill you need in all careers

That goes double for careers like mine. You might think that attorneys learn all the answers in law school, but in fact, we know how to find the answers we need through research. 

Doctors and accountants will tell you the same thing. No one can ever hold all the knowledge they need. You have to be able to find the correct answer quickly. School is the perfect place to learn that.

Research enables you to weigh sources and find the best ones

How do you know the source you have found is reliable? If you are trained in research, you’ve learned how to weigh sources and find the best ones. 

Comparing ideas and using them to draw bigger conclusions helps you not only in your career but in your life. As we have seen politically in the last few years, it enables you to be a more informed citizen.

Research makes you more persuasive

Want to have more civil conversations with your family over the holidays? Being able to dig into a body of research and pull out answers that you actually understand makes you a more effective speaker. 

People are more likely to believe you when you have formed an opinion through research rather than parroting something you saw on the news. They may even appreciate your efforts to make the conversation more logical and civil.

As for me, I spend a lot of time researching business formation now, and I use that in my writing. 

George Tsagas

George Tsagas

Owner, eMathZone

Research helps build holistic knowledge

Your background will cause you to approach a topic with a preconceived notion. When you take the time to see the full context of a situation, your perspective changes. 

Researching one topic also expands your perspective of other topics. The information you uncover when studying a particular subject can inform other tangential subjects in the future as you build a greater knowledge of the world and how connected it is. 

As a result, any initial research you do will be a building block for future studies. You will begin each subsequent research process with more information. You will continue to broaden your perspective each time.

Research helps you become more empathic

Even if you don’t change your mind on a subject, researching that topic will expose you to other points of view and help you understand why people might feel differently about a situation. 

The more knowledge you gain about how others think, the more likely you are to humanize them and be more empathetic to diverse viewpoints and backgrounds in the future.

Research teaches you how to learn

Through the research process, you discover where you have information gaps and what questions to ask in order to solve them. It helps you approach a subject with curiosity and a willingness to learn rather than thinking you have the right answer from the beginning.

Georgi Georgiev

Georgi Georgiev

Owner, GIGA calculator

It helps us learn about the status quo of existing literature

The starting point of every scientific and non-scientific paper is in-depth literature research.

It helps to:

  • gather casual evidence about a specific research topic
  • answer a specific scientific question
  • learn about the status quo of existing literature
  • identify potential problems and raise new questions

Anyone writing a scientific paper needs evidence based on facts to back up theories, hypotheses, assumptions, and claims. However, since most authors can’t derive all the evidence on their own, they have to rely on the evidence provided by existing scientific (and peer-reviewed) literature. 

Subsequently, comprehensive literature research is inevitable. Only by delving deeply into a research topic will the authors gather the data and evidence necessary for a differentiated examination of the current status quo. 

This, in turn, will allow them to develop new ideas and raise new questions. 

Craig Miller

Craig Miller

Co-Founder,  Academia Labs LLC

Research supplements knowledge gaps

In the academe, research is critical. Our daily lives revolve around research, making research an integral part of education.

If you want to know which restaurant in your area serves the best steak, you’d have to research on the internet and read reviews. If you want to see the procedure for making an omelet, you’d have to research on the internet or ask your parents. Hence, research is part of our lives, whether we want it or not.

It is no secret that there are a lot of knowledge gaps in the knowledge pool. Research is the only thing that can supplement these gaps and answer the questions with no answers.

It will also provide the correct information to long-debated questions like the shape of the Earth and the evolution of man.

With every information readily available to us with just a click and a scroll on the internet, research is crucial in identifying which data are factual and which are just fake news . More than that, it helps transfer correct information from one person to another while combating the spread of false information.

Frequently Asked Questions

What is the importance of research.

Research plays a critical role in advancing our knowledge and understanding of the world around us. Here are some key reasons why research is so important:

• Generates new knowledge : Research is a process of discovering new information and insights. It allows us to explore questions that have not yet been answered, and to generate new ideas and theories that can help us make sense of the world.

• Improves existing knowledge : Research also allows us to build on existing knowledge, by testing and refining theories, and by uncovering new evidence that supports or challenges our understanding of a particular topic.

• Drives innovation : Many of the greatest innovations in history have been driven by research. Whether it’s developing new technologies, discovering new medical treatments, or exploring new frontiers in science, research is essential for pushing the boundaries of what is possible.

• Informs decision-making : Research provides the evidence and data needed to make informed decisions. Whether it’s in business, government, or any other field, research helps us understand the pros and cons of different options, and to choose the course of action that is most likely to achieve our goals.

• Promotes critical thinking : Conducting research requires us to think critically, analyze data, and evaluate evidence. These skills are not only valuable in research, but also in many other areas of life, such as problem-solving, decision-making, and communication.

What is the ultimate goal of a research?

The ultimate goal of research is to uncover new knowledge, insights, and understanding about a particular topic or phenomenon. Through careful investigation, analysis, and interpretation of data, researchers aim to make meaningful contributions to their field of study and advance our collective understanding of the world around us.

There are many different types of research, each with its own specific goals and objectives. Some research seeks to test hypotheses or theories, while others aim to explore and describe a particular phenomenon. Still, others may be focused on developing new technologies or methods for solving practical problems.

Regardless of the specific goals of a given research project, all research shares a common aim: to generate new knowledge and insights that can help us better understand and navigate the complex world we live in.

Of course, conducting research is not always easy or straightforward.

Researchers must contend with a wide variety of challenges, including finding funding, recruiting participants, collecting and analyzing data, and interpreting their results. But despite these obstacles, the pursuit of knowledge and understanding remains a fundamental driving force behind all scientific inquiry.

How can research improve the quality of life?

Research can improve the quality of life in a variety of ways, from advancing medical treatments to informing social policies that promote equality and justice. Here are some specific examples:

• Medical research : Research in medicine and healthcare can lead to the development of new treatments, therapies, and technologies that improve health outcomes and save lives.

For example, research on vaccines and antibiotics has helped to prevent and treat infectious diseases, while research on cancer has led to new treatments and improved survival rates.

• Environmental research : Research on environmental issues can help us to understand the impact of human activities on the planet and develop strategies to mitigate and adapt to climate change.

For example, research on renewable energy sources can help to reduce greenhouse gas emissions and protect the environment for future generations.

• Social research : Research on social issues can help us to understand and address social problems such as poverty, inequality, and discrimination.

For example, research on the effects of poverty on child development can inform policies and programs that support families and promote child well-being.

• Technological research : Research on technology can lead to the development of new products and services that improve quality of life, such as assistive technologies for people with disabilities or smart home systems that promote safety and convenience.

How useful was this post?

Click on a star to rate it!

As you found this post useful...

Share it on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

Photo of author

The Editors

  • Trivia Quizzes
  • Memory Games
  • Spot the Differences
  • Sliding Puzzles
  • Career Development
  • Changing Careers
  • Choosing a Career
  • Unemployment
  • Work Abroad
  • Work from Home
  • Cover Letters
  • CVs & Resumes
  • Finding A Job
  • Interview Preparation
  • Social Media
  • Human Resources
  • Social Recruiting
  • Employee Recognition
  • Handling Conflicts
  • Health & Wellness
  • Productivity
  • Work Culture
  • Work Life Balance
  • Books and Videos
  • Celebrities
  • Entrepreneurship
  • Quotes & Tips
  • Success Stories
  • College & University
  • Courses & Training
  • Internships
  • Skills Development
  • Student Life
  • Book a Demo

wisestep-logo

AI and Automation Powered Recruitment Trends – 2022 Webinar

The biggest challenge of managing remote recruiters, the best chrome extensions for recruiters are, coronavirus and working from home policy best practices, how to write an elite executive resume 10 simple tips, top 30 recruitment mistakes: how to overcome them, what is an interview: definition, objectives, types & guidelines, 20 effective or successful job search strategies & techniques, “text messages – your new recruitment superhero” recorded webinar, find the top 10 it contract jobs employers are hiring in…, the real secret behind the best way to contact a candidate, candidate sourcing: what top recruiters are saying, what is omnichannel recruitment marketing, talent intelligence – what is it how to implement it, remote recruitment: everything you need to know, 4 old school business processes to leave behind in 2022, how to prevent coronavirus by disinfecting your home, the black lives matter movement and the workplace, yoga at workplace: simple yoga stretches to do at your desk, top 63 motivational and inspirational quotes by walt disney, 81 inspirational and motivational quotes by nelson mandela, 65 motivational and inspirational quotes by martin scorsese, most powerful empowering and inspiring quotes by beyonce, what is a credit score how to improve your credit score, who are the highest paid athletes in the world, top careers or jobs that pay $50 an hour, what are the highest paying jobs in new zealand.

Crowdsourcing Solutions

  • Education and Beyond

Why Research is Important for Students, Humans, Education

What is research.

Research means to carefully analyze the problems or to do the detailed study of the specific problems, by making use of special scientific methods.

Research can be done on any topic, be it medical, non-medical, IT, or anything else. In order to do research, first of all, you need to have a topic or the problem on which you can do research. The topic must have relevant questions to answer.

For research, certain steps have to follow like first observation, then background research then preparing of hypothesis, eventually conducting a simple experiment.

Why Research is Important

The Importance of Research:

Study implications:.

The main purpose of the research is to get deep into the topic so that something helpful can churn out, which can be helpful for everybody and used in that particular niche sector.

The quality which you maintain while research should always be high so that the information that you get can be used in certain policies and any future project implications.

Goals of Research:

Working on a research project will obviously be a challenging and rewarding experience, provided you put the best of your expertise and skill in it.

It is an opportunity that helps you to pursue an in-depth or deep original study about any topic which interests you.

The main aim of the goals is to provide the best of the solution to some of the world problems and also to enhance our knowledge.

The “Iterative” Process of Research:

Iteration is one of the keys to successful research. Researches usually do not end, the study goes on deep and deep.

There may be instances when you will take the time to find the expected results but ultimately you will be getting the outcome.

One thing that you will always observe during research, are the questions that arise one after the other. These questions usually lead to new ideas, revisions, and improvements.

All these, in turn, will be very helpful in the research process making data more effective and useful.

How does research impact our daily life:

In simple words, have you ever thought about how would be the world have been without any development of technology or anything?

Well, the life people enjoy now or the things that we do in minutes which earlier looked impossible are all because of the research.

Research not limited to any one sector but has been done for almost every sector.

Some of them are technology, healthcare, defense, precautionary steps against natural calamities and many more.

So research plays a very important role in our day to day life.

Research is the best and reliable way to understand and act on the complexities of various issues that we as humans are facing.

What is Educational Research?

Any kind of educational research requires a few steps of inquiry to provide the solution to any particular research query.

Creswell defines educational research as,

Types of Educational Research:

There are majorly 3 types of educational research.

Descriptive:

This type of research will try to describe things as they presently are.

Correlation:

This type of study will try to identify the relationship between two or more things.

Experimental:

This research tries to display a relation between two or more things. They usually might be groups.

The Importance of Research in the Advancement of Society:

“Human needs never end”

Believe it or not, but it is the truth. We have habituated to adapt to new things, as our desires and wants increases day by day.

As our demands increase, the requirement of research also rises. It can also be said that research is what that makes our life easier. It is just the result of curiosity or a new innovative idea.

When we have any problem, we usually think of a solution or get confused. Several questions arise in our mind like what do you think will the next big thing? or what to do to overcome this problem.

Here comes the role of research. This helps us in many ways and provides us with a complete solution to the problems faced by humans. Now when we humans, satisfied without any problems, this results in the advancement of society. So research overall helps in the advancement and development of society.

Why Research is Important to Students?

The research is important for the students because it helps them to have a detailed analysis of everything. When you have a proper in-depth analysis of any topic, the result comes out to be fruitful and also the knowledge is enhanced. Other benefits of research to the students are as follows:

1. Enhances knowledge:

When you research any topic, you get to know detailed information about that topic. The more the knowledge of the topic, the more successful is the research. So, in order to get good output, the student needs to do maximum research.

2. Clarifies confusion:

The research helps in clarifying the complicated facts and figures. If the student has any doubt on the subject, the student must research and study it in detail so as to remove all sorts of confusion and get a proper understanding of the content.

3. To have a proper understanding of the subject:

To understand the subject, one needs to go in depth of the lines. The scanning of the content will never do any good for the students.

In order to learn the subject and to know the unknown facts, research, detail study, and full analysis are the must.

4. To learn about the methods and issues:

Proper reading , the finding is the only way by which you can learn about the methods and the current issues. Not just the current issues, rather the previous past issues can also learn in detail through the research. The research includes various methods by which it can be done.

5. Understand the published work:

Research is done through the work already published. The experts and the researchers had already done some of the research and the students are asked to go through that published material to understand the idea and the vision of those researchers.

6. Learn to create a balance between collaborative and individual work:

When the students do research, they get to know how to create a balance between the collaborative and the individual work . Individual work in which the student has to do, while the collaborative work means that work which has already been done by the previous researchers.

So, in this manner, the students get to know which points to take into consideration and which points are to be ignored.

7. To know the interest:

The students also get to know their area of interest. Sometimes, the students aspire to become researchers only in their near future which is quite helpful.

So, through this, we come to know that the research not only helps with the accomplishment of the work but also helps in understanding what needs to be done in their future.

8. To know how the original study originated:

Research is performed to understand the concept from scratch. Like, if you wish to know from where has the concept originated, then this could be done only through the research work.

It can also define as an investigation because the student eventually ends up with expanded research.

9. Understanding the rationale:

By engaging in the process of research, the students understand the concept in an easier manner as the rationale of the topic know in a better manner.

For example, by preparing the hypothesis, one truly understands the nuances of the research topic. Not just this, the research also helps in being a source of one on one mentorship which also plays a vital role in the brain development of the individual.

So, above are the reasons by which we come to know the benefits of the research for the students.

What is the Importance of Research to Humankind:

Humankind involves everything from a pin to an elephant. Every bit of information, the things to live and survive are needed for mankind, should be known.

As if the essentials will not be known then we will remain illiterate, unaware of what is happening in the society or around the world. Research is important for humankind because of the various factors:

1. Helps in understanding society:

When one does some research related to society, the human becomes aware and also alert of the good and bad things. In order to know society’s norms, policies, code of conduct, one needs to do proper research or it may become difficult to survive in society.

2. Helps in knowing the culture:

Every society has it’s own culture. In order to understand the culture of a particular society, research about that society needed.

If you do not do research or read maximum about any topic, you will fail to know the hidden meanings and the concepts about society’s culture and will remain unaware of the same. So, if you are curious to know and learn something new , then the research work will help.

3. For more awareness, research needed:

To make yourself aware, reading is the key. Read the published books and the research already done by an expert.

Once you have gone through the research work of great alumni, you feel like being on the top of the world as the information flows into your head. Not just this, if you wish to plan any holiday, you become aware of the weather and the requirements of that particular place. This way also research is very helpful.

4. For making the right choices for a career:

Research needed in all fields, i.e. it is pervasive. For even the smallest information, one needs to research and understand.

For example, if you need to know about careers with greater scope overseas, you will have to research that too. So, this way research is of great importance to everyone, be it a student, a traveler, teacher, professor, researcher himself.

5. Knowing the truth:

If you wish to know the truth about anything like reading, learning, and research is the only way. When you read and research on any topic, you get to know the truth.

The real facts and statistics come across which enlightens the person and also increases one’s knowledge.

6. Update about the technology:

If there comes any new technology, the human gets to know about that also through the research work.

So, basic research is helpful to humans to know what new is coming in the market. Also, it helps in being updated about the present scenario of the society one is living in.

7. Differences between good and bad:

When a person reads the already published material, it builds trust and also enlightens one’s mind. The person is able to differentiate between right and wrong which further helps in the decision making process .

So, above are the reasons which say why one should do research or what is the importance of research. It is for the whole of mankind, which involves individuals from every group and age. Whatever an individual reads, it somewhere and at sometime surely helps as it gets accumulated in the knowledge bank of an individual.

Why is Research Important in Education:

As earlier said, the role of research is important in all fields, in a similar manner, the importance of research in education is very vital. This is because of various reasons like:

1. It is a systematic analysis:

In education, research is essential as it gives a systematic analysis of the topic. Also, the objectives clearly defined in the research process. One needs to study in a systematic and controlled manner, and this is exactly what the research work provides an individual.

2. Leads to great observations:

In the field of education, the research helps in coming to one conclusion. That conclusion can achieve by observing the facts and figures in depth.

So, such in depth knowledge is provided by following various research methods only. In this way, research also assists in leading to greater observations.

3. Results in predictions, theories, and many principles:

The researchers come up with valid predictions, theories, and great results through the observations, hypothesis and research queries. So, this way also helps researchers to come up with great conclusions.

4. Improving practices:

The educational research is important for the students to improve practices and at the same time, it helps in improving those individuals who really wish to bring improvement in those practices.

So, this way educational research helps in the overall improvement of the individual . Be it a student or any teacher who is researching on some topic, it is of great help to them. It acts as a lighthouse and empowers the individual.

5. Develops new understanding related to the learning, teaching, etc:

The educators benefited through various research as it helps them in having a better understanding of the subject. Along with this, it develops greater understanding related to teaching, learning and other educational administration.

The new knowledge further helps in improving the educational practices of the teachers and professors.

6. Helps in initiating the action:

The research you do should result in performing some action or practice. So, the research should aim to produce the highest result which compliments the study. Also, you should make sure your study ensures the applicable findings so as to match the result.

Research helps in performing well and also sheds away all the problems. This way, you are able to understand the role of research which further helps in the decision making process.

7. Helps in decision making:

Good research requires proper time and effort. It prepares the person for taking essential decisions which further necessitates the same from all the participants involved in the process.

For better results, the participants need to consider the required consequences and all the risks involved in the whole process.

8. Brings consistency in the work:

When the work is done with full in-depth analysis, it tends to be right and accurate. The process of research help brings consistency in the work, which lessens the flaws and mistakes in the final outcome of the process.

The consistency needed in all sorts of work or you might have to end up getting the wrong and inaccurate result. The research takes lots of time and effort, so the researcher has to be specific and sure with the facts so that the end result is clean and without any silly mistakes.

9. Motivates others:

Educational research builds patience because it is a lengthy process. In order to get fruitful results, you need to build patience and only then you will be able to motivate others.

Also, if your research is full of the right facts and figures, it will ultimately motivate others. Not just this, accurate research assists in enhancing the reader’s knowledge which might not be possible for any other person.

So, above are some of the benefits that research provides in the field of education. Every kind of research, every kind of method has been always useful and gives a positive result. In case, you find something fishy during the research work, it is advisable to consult someone superior to you, or some expert.

Research is useful in all the fields and is used by all the departments, whether public or private. The research work is done by all age groups, whether the students or the teachers and even humankind in order to understand the society, it’s rules and other policies.

RELATED ARTICLES MORE FROM AUTHOR

What is the difference between analysis and analytics, 12 golden and practical rules to learn a language faster, how to improve concentration and memory easily, what is an internship and what do interns do, how to become a full stack developer, editor picks, popular posts, 150 best inspirational or motivational good morning messages, what can you bring to the company how to answer, popular category.

  • Career Advice 1269
  • Career Development 742
  • Job Search 675
  • WorkPlace 553
  • Management 523
  • Interview Preparation 452
  • Work Culture 330
  • Human Resources 266
  • Copy/Paste Link Link Copied

Using Research and Reason in Education: How Teachers Can Use Scientifically Based Research to Make Curricular & Instructional Decisions

Paula J. Stanovich and Keith E. Stanovich University of Toronto

Produced by RMC Research Corporation, Portsmouth, New Hampshire

This publication was produced under National Institute for Literacy Contract No. ED-00CO-0093 with RMC Research Corporation. Sandra Baxter served as the contracting officer's technical representative. The views expressed herein do not necessarily represent the policies of the National Institute for Literacy. No official endorsement by the National Institute for Literacy or any product, commodity, service, or enterprise is intended or should be inferred.

The National Institute for Literacy

Sandra Baxter, Interim Executive Director Lynn Reddy, Communications Director

To order copies of this booklet, contact the National Institute for Literacy at EdPubs, PO Box 1398, Jessup, MD 20794-1398. Call 800-228-8813 or email [email protected] .

The National Institute for Literacy, an independent federal organization, supports the development of high quality state, regional, and national literacy services so that all Americans can develop the literacy skills they need to succeed at work, at home, and in the community.

The Partnership for Reading, a project administered by the National Institute for Literacy, is a collaborative effort of the National Institute for Literacy, the National Institute of Child Health and Human Development, the U.S. Department of Education, and the U.S. Department of Health and Human Services to make evidence-based reading research available to educators, parents, policy makers, and others with an interest in helping all people learn to read well.

Editorial support provided by C. Ralph Adler and Elizabeth Goldman, and design/production support provided by Diane Draper and Bob Kozman, all of RMC Research Corporation.

Introduction

In the recent move toward standards-based reform in public education, many educational reform efforts require schools to demonstrate that they are achieving educational outcomes with students performing at a required level of achievement. Federal and state legislation, in particular, has codified this standards-based movement and tied funding and other incentives to student achievement.

At first, demonstrating student learning may seem like a simple task, but reflection reveals that it is a complex challenge requiring educators to use specific knowledge and skills. Standards-based reform has many curricular and instructional prerequisites. The curriculum must represent the most important knowledge, skills, and attributes that schools want their students to acquire because these learning outcomes will serve as the basis of assessment instruments. Likewise, instructional methods should be appropriate for the designed curriculum. Teaching methods should lead to students learning the outcomes that are the focus of the assessment standards.

Standards- and assessment-based educational reforms seek to obligate schools and teachers to supply evidence that their instructional methods are effective. But testing is only one of three ways to gather evidence about the effectiveness of instructional methods. Evidence of instructional effectiveness can come from any of the following sources:

  • Demonstrated student achievement in formal testing situations implemented by the teacher, school district, or state;
  • Published findings of research-based evidence that the instructional methods being used by teachers lead to student achievement; or
  • Proof of reason-based practice that converges with a research-based consensus in the scientific literature. This type of justification of educational practice becomes important when direct evidence may be lacking (a direct test of the instructional efficacy of a particular method is absent), but there is a theoretical link to research-based evidence that can be traced.

Each of these methods has its pluses and minuses. While testing seems the most straightforward, it is not necessarily the clear indicator of good educational practice that the public seems to think it is. The meaning of test results is often not immediately clear. For example, comparing averages or other indicators of overall performance from tests across classrooms, schools, or school districts takes no account of the resources and support provided to a school, school district, or individual professional. Poor outcomes do not necessarily indict the efforts of physicians in Third World countries who work with substandard equipment and supplies. Likewise, objective evidence of below-grade or below-standard mean performance of a group of students should not necessarily indict their teachers if essential resources and supports (e.g., curriculum materials, institutional aid, parental cooperation) to support teaching efforts were lacking. However, the extent to which children could learn effectively even in under-equipped schools is not known because evidence-based practices are, by and large, not implemented. That is, there is evidence that children experiencing academic difficulties can achieve more educationally if they are taught with effective methods; sadly, scientific research about what works does not usually find its way into most classrooms.

Testing provides a useful professional calibrator, but it requires great contextual sensitivity in interpretation. It is not the entire solution for assessing the quality of instructional efforts. This is why research-based and reason-based educational practice are also crucial for determining the quality and impact of programs. Teachers thus have the responsibility to be effective users and interpreters of research. Providing a survey and synthesis of the most effective practices for a variety of key curriculum goals (such as literacy and numeracy) would seem to be a helpful idea, but no document could provide all of that information. (Many excellent research syntheses exist, such as the National Reading Panel, 2000; Snow, Burns, & Griffin, 1998; Swanson, 1999, but the knowledge base about effective educational practices is constantly being updated, and many issues remain to be settled.)

As professionals, teachers can become more effective and powerful by developing the skills to recognize scientifically based practice and, when the evidence is not available, use some basic research concepts to draw conclusions on their own. This paper offers a primer for those skills that will allow teachers to become independent evaluators of educational research.

The Formal Scientific Method and Scientific Thinking in Educational Practice

When you go to your family physician with a medical complaint, you expect that the recommended treatment has proven to be effective with many other patients who have had the same symptoms. You may even ask why a particular medication is being recommended for you. The doctor may summarize the background knowledge that led to that recommendation and very likely will cite summary evidence from the drug's many clinical trials and perhaps even give you an overview of the theory behind the drug's success in treating symptoms like yours.

All of this discussion will probably occur in rather simple terms, but that does not obscure the fact that the doctor has provided you with data to support a theory about your complaint and its treatment. The doctor has shared knowledge of medical science with you. And while everyone would agree that the practice of medicine has its "artful" components (for example, the creation of a healing relationship between doctor and patient), we have come to expect and depend upon the scientific foundation that underpins even the artful aspects of medical treatment. Even when we do not ask our doctors specifically for the data, we assume it is there, supporting our course of treatment.

Actually, Vaughn and Dammann (2001) have argued that the correct analogy is to say that teaching is in part a craft, rather than an art. They point out that craft knowledge is superior to alternative forms of knowledge such as superstition and folklore because, among other things, craft knowledge is compatible with scientific knowledge and can be more easily integrated with it. One could argue that in this age of education reform and accountability, educators are being asked to demonstrate that their craft has been integrated with science--that their instructional models, methods, and materials can be likened to the evidence a physician should be able to produce showing that a specific treatment will be effective. As with medicine, constructing teaching practice on a firm scientific foundation does not mean denying the craft aspects of teaching.

Architecture is another professional practice that, like medicine and education, grew from being purely a craft to a craft based firmly on a scientific foundation. Architects wish to design beautiful buildings and environments, but they must also apply many foundational principles of engineering and adhere to structural principles. If they do not, their buildings, however beautiful they may be, will not stand. Similarly, a teacher seeks to design lessons that stimulate students and entice them to learn--lessons that are sometimes a beauty to behold. But if the lessons are not based in the science of pedagogy, they, like poorly constructed buildings, will fail.

Education is informed by formal scientific research through the use of archival research-based knowledge such as that found in peer-reviewed educational journals. Preservice teachers are first exposed to the formal scientific research in their university teacher preparation courses (it is hoped), through the instruction received from their professors, and in their course readings (e.g., textbooks, journal articles). Practicing teachers continue their exposure to the results of formal scientific research by subscribing to and reading professional journals, by enrolling in graduate programs, and by becoming lifelong learners.

Scientific thinking in practice is what characterizes reflective teachers--those who inquire into their own practice and who examine their own classrooms to find out what works best for them and their students. What follows in this document is, first, a "short course" on how to become an effective consumer of the archival literature that results from the conduct of formal scientific research in education and, second, a section describing how teachers can think scientifically in their ongoing reflection about their classroom practice.

Being able to access mechanisms that evaluate claims about teaching methods and to recognize scientific research and its findings is especially important for teachers because they are often confronted with the view that "anything goes" in the field of education--that there is no such thing as best practice in education, that there are no ways to verify what works best, that teachers should base their practice on intuition, or that the latest fad must be the best way to teach, please a principal, or address local school reform. The "anything goes" mentality actually represents a threat to teachers' professional autonomy. It provides a fertile environment for gurus to sell untested educational "remedies" that are not supported by an established research base.

Teachers as independent evaluators of research evidence

One factor that has impeded teachers from being active and effective consumers of educational science has been a lack of orientation and training in how to understand the scientific process and how that process results in the cumulative growth of knowledge that leads to validated educational practice. Educators have only recently attempted to resolve educational disputes scientifically, and teachers have not yet been armed with the skills to evaluate disputes on their own.

Educational practice has suffered greatly because its dominant model for resolving or adjudicating disputes has been more political (with its corresponding factions and interest groups) than scientific. The field's failure to ground practice in the attitudes and values of science has made educators susceptible to the "authority syndrome" as well as fads and gimmicks that ignore evidence-based practice.

When our ancestors needed information about how to act, they would ask their elders and other wise people. Contemporary society and culture are much more complex. Mass communication allows virtually anyone (on the Internet, through self-help books) to proffer advice, to appear to be a "wise elder." The current problem is how to sift through the avalanche of misguided and uninformed advice to find genuine knowledge. Our problem is not information; we have tons of information. What we need are quality control mechanisms.

Peer-reviewed research journals in various disciplines provide those mechanisms. However, even with mechanisms like these in behavioral science and education, it is all too easy to do an "end run" around the quality control they provide. Powerful information dissemination outlets such as publishing houses and mass media frequently do not discriminate between good and bad information. This provides a fertile environment for gurus to sell untested educational "remedies" that are not supported by an established research base and, often, to discredit science, scientific evidence, and the notion of research-based best practice in education. As Gersten (2001) notes, both seasoned and novice teachers are "deluged with misinformation" (p. 45).

We need tools for evaluating the credibility of these many and varied sources of information; the ability to recognize research-based conclusions is especially important. Acquiring those tools means understanding scientific values and learning methods for making inferences from the research evidence that arises through the scientific process. These values and methods were recently summarized by a panel of the National Academy of Sciences convened on scientific inquiry in education (Shavelson & Towne, 2002), and our discussion here will be completely consistent with the conclusions of that NAS panel.

The scientific criteria for evaluating knowledge claims are not complicated and could easily be included in initial teacher preparation programs, but they usually are not (which deprives teachers from an opportunity to become more efficient and autonomous in their work right at the beginning of their careers). These criteria include:

  • the publication of findings in refereed journals (scientific publications that employ a process of peer review),
  • the duplication of the results by other investigators, and
  • a consensus within a particular research community on whether there is a critical mass of studies that point toward a particular conclusion.

In their discussion of the evolution of the American Educational Research Association (AERA) conference and the importance of separating research evidence from opinion when making decisions about instructional practice, Levin and O'Donnell (2000) highlight the importance of enabling teachers to become independent evaluators of research evidence. Being aware of the importance of research published in peer-reviewed scientific journals is only the first step because this represents only the most minimal of criteria. Following is a review of some of the principles of research-based evaluation that teachers will find useful in their work.

Publicly verifiable research conclusions: Replication and Peer Review

Source credibility: the consumer protection of peer reviewed journals..

The front line of defense for teachers against incorrect information in education is the existence of peer-reviewed journals in education, psychology, and other related social sciences. These journals publish empirical research on topics relevant to classroom practice and human cognition and learning. They are the first place that teachers should look for evidence of validated instructional practices.

As a general quality control mechanism, peer review journals provide a "first pass" filter that teachers can use to evaluate the plausibility of educational claims. To put it more concretely, one ironclad criterion that will always work for teachers when presented with claims of uncertain validity is the question: Have findings supporting this method been published in recognized scientific journals that use some type of peer review procedure? The answer to this question will almost always separate pseudoscientific claims from the real thing.

In a peer review, authors submit a paper to a journal for publication, where it is critiqued by several scientists. The critiques are reviewed by an editor (usually a scientist with an extensive history of work in the specialty area covered by the journal). The editor then decides whether the weight of opinion warrants immediate publication, publication after further experimentation and statistical analysis, or rejection because the research is flawed or does not add to the knowledge base. Most journals carry a statement of editorial policy outlining their exact procedures for publication, so it is easy to check whether a journal is in fact, peer-reviewed.

Peer review is a minimal criterion, not a stringent one. Not all information in peer-reviewed scientific journals is necessarily correct, but it has at the very least undergone a cycle of peer criticism and scrutiny. However, it is because the presence of peer-reviewed research is such a minimal criterion that its absence becomes so diagnostic. The failure of an idea, a theory, an educational practice, behavioral therapy, or a remediation technique to have adequate documentation in the peer-reviewed literature of a scientific discipline is a very strong indication to be wary of the practice.

The mechanisms of peer review vary somewhat from discipline to discipline, but the underlying rationale is the same. Peer review is one way (replication of a research finding is another) that science institutionalizes the attitudes of objectivity and public criticism. Ideas and experimentation undergo a honing process in which they are submitted to other critical minds for evaluation. Ideas that survive this critical process have begun to meet the criterion of public verifiability. The peer review process is far from perfect, but it really is the only external consumer protection that teachers have.

The history of reading instruction illustrates the high cost that is paid when the peer-reviewed literature is ignored, when the normal processes of scientific adjudication are replaced with political debates and rhetorical posturing. A vast literature has been generated on best practices that foster children's reading acquisition (Adams, 1990; Anderson, Hiebert, Scott, & Wilkinson, 1985; Chard & Osborn, 1999; Cunningham & Allington, 1994; Ehri, Nunes, Stahl, & Willows, 2001; Moats, 1999; National Reading Panel, 2000; Pearson, 1993; Pressley, 1998; Pressley, Rankin, & Yokol, 1996; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2002; Reading Coherence Initiative, 1999; Snow, Burns, & Griffin, 1998; Spear-Swerling & Sternberg, 2001). Yet much of this literature remains unknown to many teachers, contributing to the frustrating lack of clarity about accepted, scientifically validated findings and conclusions on reading acquisition.

Teachers should also be forewarned about the difference between professional education journals that are magazines of opinion in contrast to journals where primary reports of research, or reviews of research, are peer reviewed. For example, the magazines Phi Delta Kappan and Educational Leadership both contain stimulating discussions of educational issues, but neither is a peer-reviewed journal of original research. In contrast, the American Educational Research Journal (a flagship journal of the AERA) and the Journal of Educational Psychology (a flagship journal of the American Psychological Association) are both peer-reviewed journals of original research. Both are main sources for evidence on validated techniques of reading instruction and for research on aspects of the reading process that are relevant to a teacher's instructional decisions.

This is true, too, of presentations at conferences of educational organizations. Some are data-based presentations of original research. Others are speeches reflecting personal opinion about educational problems. While these talks can be stimulating and informative, they are not a substitute for empirical research on educational effectiveness.

Replication and the importance of public verifiability.

Research-based conclusions about educational practice are public in an important sense: they do not exist solely in the mind of a particular individual but have been submitted to the scientific community for criticism and empirical testing by others. Knowledge considered "special"--the province of the thought of an individual and immune from scrutiny and criticism by others--can never have the status of scientific knowledge. Research-based conclusions, when published in a peer reviewed journal, become part of the public realm, available to all, in a way that claims of "special expertise" are not.

Replication is the second way that science uses to make research-based conclusions concrete and "public." In order to be considered scientific, a research finding must be presented to other researchers in the scientific community in a way that enables them to attempt the same experiment and obtain the same results. When the same results occur, the finding has been replicated . This process ensures that a finding is not the result of the errors or biases of a particular investigator. Replicable findings become part of the converging evidence that forms the basis of a research-based conclusion about educational practice.

John Donne told us that "no man is an island." Similarly, in science, no researcher is an island. Each investigator is connected to the research community and its knowledge base. This interconnection enables science to grow cumulatively and for research-based educational practice to be built on a convergence of knowledge from a variety of sources. Researchers constantly build on previous knowledge in order to go beyond what is currently known. This process is possible only if research findings are presented in such a way that any investigator can use them to build on.

Philosopher Daniel Dennett (1995) has said that science is "making mistakes in public. Making mistakes for all to see, in the hopes of getting the others to help with the corrections" (p. 380). We might ask those proposing an educational innovation for the evidence that they have in fact "made some mistakes in public." Legitimate scientific disciplines can easily provide such evidence. For example, scientists studying the psychology of reading once thought that reading difficulties were caused by faulty eye movements. This hypothesis has been shown to be in error, as has another that followed it, that so-called visual reversal errors were a major cause of reading difficulty. Both hypotheses were found not to square with the empirical evidence (Rayner, 1998; Share & Stanovich, 1995). The hypothesis that reading difficulties can be related to language difficulties at the phonological level has received much more support (Liberman, 1999; National Reading Panel, 2000; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2002; Shankweiler, 1999; Stanovich, 2000).

After making a few such "errors" in public, reading scientists have begun, in the last 20 years, to get it right. But the only reason teachers can have confidence that researchers are now "getting it right" is that researchers made it open, public knowledge when they got things wrong. Proponents of untested and pseudoscientific educational practices will never point to cases where they "got it wrong" because they are not committed to public knowledge in the way that actual science is. These proponents do not need, as Dennett says, "to get others to help in making the corrections" because they have no intention of correcting their beliefs and prescriptions based on empirical evidence.

Education is so susceptible to fads and unproven practices because of its tacit endorsement of a personalistic view of knowledge acquisition--one that is antithetical to the scientific value of the public verifiability of knowledge claims. Many educators believe that knowledge resides within particular individuals--with particularly elite insights--who then must be called upon to dispense this knowledge to others. Indeed, some educators reject public, depersonalized knowledge in social science because they believe it dehumanizes people. Science, however, with its conception of publicly verifiable knowledge, actually democratizes knowledge. It frees practitioners and researchers from slavish dependence on authority.

Subjective, personalized views of knowledge degrade the human intellect by creating conditions that subjugate it to an elite whose "personal" knowledge is not accessible to all (Bronowski, 1956, 1977; Dawkins, 1998; Gross, Levitt, & Lewis, 1997; Medawar, 1982, 1984, 1990; Popper, 1972; Wilson, 1998). Empirical science, by generating knowledge and moving it into the public domain, is a liberating force. Teachers can consult the research and decide for themselves whether the state of the literature is as the expert portrays it. All teachers can benefit from some rudimentary grounding in the most fundamental principles of scientific inference. With knowledge of a few uncomplicated research principles, such as control, manipulation, and randomization, anyone can enter the open, public discourse about empirical findings. In fact, with the exception of a few select areas such as the eye movement research mentioned previously, much of the work described in noted summaries of reading research (e.g., Adams, 1990; Snow, Burns, & Griffin, 1998) could easily be replicated by teachers themselves.

There are many ways that the criteria of replication and peer review can be utilized in education to base practitioner training on research-based best practice. Take continuing teacher education in the form of inservice sessions, for example. Teachers and principals who select speakers for professional development activities should ask speakers for the sources of their conclusions in the form of research evidence in peer-reviewed journals. They should ask speakers for bibliographies of the research evidence published on the practices recommended in their presentations.

The science behind research-based practice relies on systematic empiricism

Empiricism is the practice of relying on observation. Scientists find out about the world by examining it. The refusal by some scientists to look into Galileo's telescope is an example of how empiricism has been ignored at certain points in history. It was long believed that knowledge was best obtained through pure thought or by appealing to authority. Galileo claimed to have seen moons around the planet Jupiter. Another scholar, Francesco Sizi, attempted to refute Galileo, not with observations, but with the following argument:

There are seven windows in the head, two nostrils, two ears, two eyes and a mouth; so in the heavens there are two favorable stars, two unpropitious, two luminaries, and Mercury alone undecided and indifferent. From which and many other similar phenomena of nature such as the seven metals, etc., which it were tedious to enumerate, we gather that the number of planets is necessarily seven...ancient nations, as well as modern Europeans, have adopted the division of the week into seven days, and have named them from the seven planets; now if we increase the number of planets, this whole system falls to the ground...moreover, the satellites are invisible to the naked eye and therefore can have no influence on the earth and therefore would be useless and therefore do not exist. (Holton & Roller, 1958, p. 160)

Three centuries of the demonstrated power of the empirical approach give us an edge on poor Sizi. Take away those years of empiricism, and many of us might have been there nodding our heads and urging him on. In fact, the empirical approach is not necessarily obvious, which is why we often have to teach it, even in a society that is dominated by science.

Empiricism pure and simple is not enough, however. Observation itself is fine and necessary, but pure, unstructured observation of the natural world will not lead to scientific knowledge. Write down every observation you make from the time you get up in the morning to the time you go to bed on a given day. When you finish, you will have a great number of facts, but you will not have a greater understanding of the world. Scientific observation is termed systematic because it is structured so that the results of the observation reveal something about the underlying causal structure of events in the world. Observations are structured so that, depending upon the outcome of the observation, some theories of the causes of the outcome are supported and others rejected.

Teachers can benefit by understanding two things about research and causal inferences. The first is the simple (but sometimes obscured) fact that statements about best instructional practices are statements that contain a causal claim. These statements claim that one type of method or practice causes superior educational outcomes. Second, teachers must understand how the logic of the experimental method provides the critical support for making causal inferences.

Science addresses testable questions

Science advances by positing theories to account for particular phenomena in the world, by deriving predictions from these theories, by testing the predictions empirically, and by modifying the theories based on the tests (the sequence is typically theory -> prediction -> test -> theory modification). What makes a theory testable? A theory must have specific implications for observable events in the natural world.

Science deals only with a certain class of problem: the kind that is empirically solvable. That does not mean that different classes of problems are inherently solvable or unsolvable and that this division is fixed forever. Quite the contrary: some problems that are currently unsolvable may become solvable as theory and empirical techniques become more sophisticated. For example, decades ago historians would not have believed that the controversial issue of whether Thomas Jefferson had a child with his slave Sally Hemings was an empirically solvable question. Yet, by 1998, this problem had become solvable through advances in genetic technology, and a paper was published in the journal Nature (Foster, Jobling, Taylor, Donnelly, Deknijeff, Renemieremet, Zerjal, & Tyler-Smith, 1998) on the question.

The criterion of whether a problem is "testable" is called the falsifiability criterion: a scientific theory must always be stated in such a way that the predictions derived from it can potentially be shown to be false. The falsifiability criterion states that, for a theory to be useful, the predictions drawn from it must be specific. The theory must go out on a limb, so to speak, because in telling us what should happen, the theory must also imply that certain things will not happen. If these latter things do happen, it is a clear signal that something is wrong with the theory. It may need to be modified, or we may need to look for an entirely new theory. Either way, we will end up with a theory that is closer to the truth.

In contrast, if a theory does not rule out any possible observations, then the theory can never be changed, and we are frozen into our current way of thinking with no possibility of progress. A successful theory cannot posit or account for every possible happening. Such a theory robs itself of any predictive power.

What we are talking about here is a certain type of intellectual honesty. In science, the proponent of a theory is always asked to address this question before the data are collected: "What data pattern would cause you to give up, or at least to alter, this theory?" In the same way, the falsifiability criterion is a useful consumer protection for the teacher when evaluating claims of educational effectiveness. Proponents of an educational practice should be asked for evidence; they should also be willing to admit that contrary data will lead them to abandon the practice. True scientific knowledge is held tentatively and is subject to change based on contrary evidence. Educational remedies not based on scientific evidence will often fail to put themselves at risk by specifying what data patterns would prove them false.

Objectivity and intellectual honesty

Objectivity, another form of intellectual honesty in research, means that we let nature "speak for itself" without imposing our wishes on it--that we report the results of experimentation as accurately as we can and that we interpret them as fairly as possible. (The fact that this goal is unattainable for any single human being should not dissuade us from holding objectivity as a value.)

In the language of the general public, open-mindedness means being open to possible theories and explanations for a particular phenomenon. But in science it means that and something more. Philosopher Jonathan Adler (1998) teaches us that science values another aspect of open-mindedness even more highly: "What truly marks an open-minded person is the willingness to follow where evidence leads. The open-minded person is willing to defer to impartial investigations rather than to his own predilections...Scientific method is attunement to the world, not to ourselves" (p. 44).

Objectivity is critical to the process of science, but it does not mean that such attitudes must characterize each and every scientist for science as a whole to work. Jacob Bronowski (1973, 1977) often argued that the unique power of science to reveal knowledge about the world does not arise because scientists are uniquely virtuous (that they are completely objective or that they are never biased in interpreting findings, for example). It arises because fallible scientists are immersed in a process of checks and balances --a process in which scientists are always there to criticize and to root out errors. Philosopher Daniel Dennett (1999/2000) points out that "scientists take themselves to be just as weak and fallible as anybody else, but recognizing those very sources of error in themselvesÉthey have devised elaborate systems to tie their own hands, forcibly preventing their frailties and prejudices from infecting their results" (p. 42). More humorously, psychologist Ray Nickerson (1998) makes the related point that the vanities of scientists are actually put to use by the scientific process, by noting that it is "not so much the critical attitude that individual scientists have taken with respect to their own ideas that has given science its success...but more the fact that individual scientists have been highly motivated to demonstrate that hypotheses that are held by some other scientists are false" (p. 32). These authors suggest that the strength of scientific knowledge comes not because scientists are virtuous, but from the social process where scientists constantly cross-check each others' knowledge and conclusions.

The public criteria of peer review and replication of findings exist in part to keep checks on the objectivity of individual scientists. Individuals cannot hide bias and nonobjectivity by personalizing their claims and keeping them from public scrutiny. Science does not accept findings that have failed the tests of replication and peer review precisely because it wants to ensure that all findings in science are in the public domain, as defined above. Purveyors of pseudoscientific educational practices fail the test of objectivity and are often identifiable by their attempts to do an "end run" around the public mechanisms of science by avoiding established peer review mechanisms and the information-sharing mechanisms that make replication possible. Instead, they attempt to promulgate their findings directly to consumers, such as teachers.

The principle of converging evidence

The principle of converging evidence has been well illustrated in the controversies surrounding the teaching of reading. The methods of systematic empiricism employed in the study of reading acquisition are many and varied. They include case studies, correlational studies, experimental studies, narratives, quasi-experimental studies, surveys, epidemiological studies and many others. The results of many of these studies have been synthesized in several important research syntheses (Adams, 1990; Ehri et al., 2001; National Reading Panel, 2000; Pressley, 1998; Rayner et al., 2002; Reading Coherence Initiative, 1999; Share & Stanovich, 1995; Snow, Burns, & Griffin, 1998; Snowling, 2000; Spear-Swerling & Sternberg, 2001; Stanovich, 2000). These studies were used in a process of establishing converging evidence, a principle that governs the drawing of the conclusion that a particular educational practice is research-based.

The principle of converging evidence is applied in situations requiring a judgment about where the "preponderance of evidence" points. Most areas of science contain competing theories. The extent to which a particular study can be seen as uniquely supporting one particular theory depends on whether other competing explanations have been ruled out. A particular experimental result is never equally relevant to all competing theories. An experiment may be a very strong test of one or two alternative theories but a weak test of others. Thus, research is considered highly convergent when a series of experiments consistently supports a given theory while collectively eliminating the most important competing explanations. Although no single experiment can rule out all alternative explanations, taken collectively, a series of partially diagnostic experiments can lead to a strong conclusion if the data converge.

Contrast this idea of converging evidence with the mistaken view that a problem in science can be solved with a single, crucial experiment, or that a single critical insight can advance theory and overturn all previous knowledge. This view of scientific progress fits nicely with the operation of the news media, in which history is tracked by presenting separate, disconnected "events" in bite-sized units. This is a gross misunderstanding of scientific progress and, if taken too seriously, leads to misconceptions about how conclusions are reached about research-based practices.

One experiment rarely decides an issue, supporting one theory and ruling out all others. Issues are most often decided when the community of scientists gradually begins to agree that the preponderance of evidence supports one alternative theory rather than another. Scientists do not evaluate data from a single experiment that has finally been designed in the perfect way. They most often evaluate data from dozens of experiments, each containing some flaws but providing part of the answer.

Although there are many ways in which an experiment can go wrong (or become confounded ), a scientist with experience working on a particular problem usually has a good idea of what most of the critical factors are, and there are usually only a few. The idea of converging evidence tells us to examine the pattern of flaws running through the research literature because the nature of this pattern can either support or undermine the conclusions that we might draw.

For example, suppose that the findings from a number of different experiments were largely consistent in supporting a particular conclusion. Given the imperfect nature of experiments, we would evaluate the extent and nature of the flaws in these studies. If all the experiments were flawed in a similar way, this circumstance would undermine confidence in the conclusions drawn from them because the consistency of the outcome may simply have resulted from a particular, consistent flaw. On the other hand, if all the experiments were flawed in different ways, our confidence in the conclusions increases because it is less likely that the consistency in the results was due to a contaminating factor that confounded all the experiments. As Anderson and Anderson (1996) note, "When a conceptual hypothesis survives many potential falsifications based on different sets of assumptions, we have a robust effect." (p. 742).

Suppose that five different theoretical summaries (call them A, B, C, D, and E) of a given set of phenomena exist at one time and are investigated in a series of experiments. Suppose that one set of experiments represents a strong test of theories A, B, and C, and that the data largely refute theories A and B and support C. Imagine also that another set of experiments is a particularly strong test of theories C, D, and E, and that the data largely refute theories D and E and support C. In such a situation, we would have strong converging evidence for theory C. Not only do we have data supportive of theory C, but we have data that contradict its major competitors. Note that no one experiment tests all the theories, but taken together, the entire set of experiments allows a strong inference.

In contrast, if the two sets of experiments each represent strong tests of B, C, and E, and the data strongly support C and refute B and E, the overall support for theory C would be less strong than in our previous example. The reason is that, although data supporting theory C have been generated, there is no strong evidence ruling out two viable alternative theories (A and D). Thus research is highly convergent when a series of experiments consistently supports a given theory while collectively eliminating the most important competing explanations. Although no single experiment can rule out all alternative explanations, taken collectively, a series of partially diagnostic experiments can lead to a strong conclusion if the data converge in the manner of our first example.

Increasingly, the combining of evidence from disparate studies to form a conclusion is being done more formally by the use of the statistical technique termed meta-analysis (Cooper & Hedges, 1994; Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Rosenthal, 1995; Schmidt, 1992; Swanson, 1999) which has been used extensively to establish whether various medical practices are research based. In a medical context, meta-analysis:

involves adding together the data from many clinical trials to create a single pool of data big enough to eliminate much of the statistical uncertainty that plagues individual trials...The great virtue of meta-analysis is that clear findings can emerge from a group of studies whose findings are scattered all over the map. (Plotkin,1996, p. 70)

The use of meta-analysis for determining the research validation of educational practices is just the same as in medicine. The effects obtained when one practice is compared against another are expressed in a common statistical metric that allows comparison of effects across studies. The findings are then statistically amalgamated in some standard ways (Cooper & Hedges, 1994; Hedges & Olkin, 1985; Swanson, 1999) and a conclusion about differential efficacy is reached if the amalgamation process passes certain statistical criteria. In some cases, of course, no conclusion can be drawn with confidence, and the result of the meta-analysis is inconclusive.

More and more commentators on the educational research literature are calling for a greater emphasis on meta-analysis as a way of dampening the contentious disputes about conflicting studies that plague education and other behavioral sciences (Kavale & Forness, 1995; Rosnow & Rosenthal, 1989; Schmidt, 1996; Stanovich, 2001; Swanson, 1999). The method is useful for ending disputes that seem to be nothing more than a "he-said, she-said" debate. An emphasis on meta-analysis has often revealed that we actually have more stable and useful findings than is apparent from a perusal of the conflicts in our journals.

The National Reading Panel (2000) found just this in their meta-analysis of the evidence surrounding several issues in reading education. For example, they concluded that the results of a meta-analysis of the results of 66 comparisons from 38 different studies indicated "solid support for the conclusion that systematic phonics instruction makes a bigger contribution to children's growth in reading than alternative programs providing unsystematic or no phonics instruction" (p. 2-84). In another section of their report, the National Reading Panel reported that a meta-analysis of 52 studies of phonemic awareness training indicated that "teaching children to manipulate the sounds in language helps them learn to read. Across the various conditions of teaching, testing, and participant characteristics, the effect sizes were all significantly greater than chance and ranged from large to small, with the majority in the moderate range. Effects of phonemic awareness training on reading lasted well beyond the end of training" (p. 2-5).

A statement by a task force of the American Psychological Association (Wilkinson, 1999) on statistical methods in psychology journals provides an apt summary for this section. The task force stated that investigators should not "interpret a single study's results as having importance independent of the effects reported elsewhere in the relevant literature" (p. 602). Science progresses by convergence upon conclusions. The outcomes of one study can only be interpreted in the context of the present state of the convergence on the particular issue in question.

The logic of the experimental method

Scientific thinking is based on the ideas of comparison, control, and manipulation . In a true experimental study, these characteristics of scientific investigation must be arranged to work in concert.

Comparison alone is not enough to justify a causal inference. In methodology texts, correlational investigations (which involve comparison only) are distinguished from true experimental investigations that warrant much stronger causal inferences because they involve comparison, control, and manipulation. The mere existence of a relationship between two variables does not guarantee that changes in one are causing changes in the other. Correlation does not imply causation.

There are two potential problems with drawing causal inferences from correlational evidence. The first is called the third-variable problem. It occurs when the correlation between the two variables does not indicate a direct causal path between them but arises because both variables are related to a third variable that has not even been measured.

The second reason is called the directionality problem. It creates potential interpretive difficulties because even if two variables have a direct causal relationship, the direction of that relationship is not indicated by the mere presence of the correlation. In short, a correlation between variables A and B could arise because changes in A are causing changes in B or because changes in B are causing changes in A. The mere presence of the correlation does not allow us to decide between these two possibilities.

The heart of the experimental method lies in manipulation and control. In contrast to a correlational study, where the investigator simply observes whether the natural fluctuation in two variables displays a relationship, the investigator in a true experiment manipulates the variable thought to be the cause (the independent variable) and looks for an effect on the variable thought to be the effect (the dependent variable ) while holding all other variables constant by control and randomization. This method removes the third-variable problem because, in the natural world, many different things are related. The experimental method may be viewed as a way of prying apart these naturally occurring relationships. It does so because it isolates one particular variable (the hypothesized cause) by manipulating it and holding everything else constant (control).

When manipulation is combined with a procedure known as random assignment (in which the subjects themselves do not determine which experimental condition they will be in but, instead, are randomly assigned to one of the experimental groups), scientists can rule out alternative explanations of data patterns. By using manipulation, experimental control, and random assignment, investigators construct stronger comparisons so that the outcome eliminates alternative theories and explanations.

The need for both correlational methods and true experiments

As strong as they are methodologically, studies employing true experimental logic are not the only type that can be used to draw conclusions. Correlational studies have value. The results from many different types of investigation, including correlational studies, can be amalgamated to derive a general conclusion. The basis for conclusion rests on the convergence observed from the variety of methods used. This is most certainly true in classroom and curriculum research. It is necessary to amalgamate the results from not only experimental investigations, but correlational studies, nonequivalent control group studies, time series designs, and various other quasi-experimental designs and multivariate correlational designs, All have their strengths and weaknesses. For example, it is often (but not always) the case that experimental investigations are high in internal validity, but limited in external validity, whereas correlational studies are often high in external validity, but low in internal validity.

Internal validity concerns whether we can infer a causal effect for a particular variable. The more a study employs the logic of a true experiment (i.e., includes manipulation, control, and randomization), the more we can make a strong causal inference. External validity concerns the generalizability of the conclusion to the population and setting of interest. Internal and external validity are often traded off across different methodologies. Experimental laboratory investigations are high in internal validity but may not fully address concerns about external validity. Field classroom investigations, on the other hand, are often quite high in external validity but because of the logistical difficulties involved in carrying them out, they are often quite low in internal validity. That is why we need to look for a convergence of results, not just consistency from one method. Convergence increases our confidence in the external and internal validity of our conclusions.

Again, this underscores why correlational studies can contribute to knowledge. First, some variables simply cannot be manipulated for ethical reasons (for instance, human malnutrition or physical disabilities). Other variables, such as birth order, sex, and age, are inherently correlational because they cannot be manipulated, and therefore the scientific knowledge concerning them must be based on correlational evidence. Finally, logistical difficulties in classroom and curriculum research often make it impossible to achieve the logic of the true experiment. However, this circumstance is not unique to educational or psychological research. Astronomers obviously cannot manipulate all the variables affecting the objects they study, yet they are able to arrive at conclusions.

Complex correlational techniques are essential in the absence of experimental research because complex correlational statistics such as multiple regression, path analysis, and structural equation modeling that allow for the partial control of third variables when those variables can be measured. These statistics allow us to recalculate the correlation between two variables after the influence of other variables is removed. If a potential third variable can be measured, complex correlational statistics can help us determine whether that third variable is determining the relationship. These correlational statistics and designs help to rule out certain causal hypotheses, even if they cannot demonstrate the true causal relation definitively.

Stages of scientific investigation: The Role of Case Studies and Qualitative Investigations

The educational literature includes many qualitative investigations that focus less on issues of causal explanation and variable control and more on thick description , in the manner of the anthropologist (Geertz, 1973, 1979). The context of a person's behavior is described as much as possible from the standpoint of the participant. Many different fields (e.g., anthropology, psychology, education) contain case studies where the focus is detailed description and contextualization of the situation of a single participant (or very few participants).

The usefulness of case studies and qualitative investigations is strongly determined by how far scientific investigation has advanced in a particular area. The insights gained from case studies or qualitative investigations may be quite useful in the early stages of an investigation of a certain problem. They can help us determine which variables deserve more intense study by drawing attention to heretofore unrecognized aspects of a person's behavior and by suggesting how understanding of behavior might be sharpened by incorporating the participant's perspective.

However, when we move from the early stages of scientific investigation, where case studies may be very useful, to the more mature stages of theory testing--where adjudicating between causal explanations is the main task--the situation changes drastically. Case studies and qualitative description are not useful at the later stages of scientific investigation because they cannot be used to confirm or disconfirm a particular causal theory. They lack the comparative information necessary to rule out alternative explanations.

Where qualitative investigations are useful relates strongly to a distinction in philosophy of science between the context of discovery and the context of justification . Qualitative research, case studies, and clinical observations support a context of discovery where, as Levin and O'Donnell (2000) note in an educational context, such research must be regarded as "preliminary/exploratory, observational, hypothesis generating" (p. 26). They rightly point to the essential importance of qualitative investigations because "in the early stages of inquiry into a research topic, one has to look before one can leap into designing interventions, making predictions, or testing hypotheses" (p. 26). The orientation provided by qualitative investigations is critical in such cases. Even more important, the results of quantitative investigations--which must sometimes abstract away some of the contextual features of a situation--are often contextualized by the thick situational description provided by qualitative work.

However, in the context of justification, variables must be measured precisely, large groups must be tested to make sure the conclusion generalizes and, most importantly, many variables must be controlled because alternative causal explanations must be ruled out. Gersten (2001) summarizes the value of qualitative research accurately when he says that "despite the rich insights they often provide, descriptive studies cannot be used as evidence for an intervention's efficacy...descriptive research can only suggest innovative strategies to teach students and lay the groundwork for development of such strategies" (p. 47). Qualitative research does, however, help to identify fruitful directions for future experimental studies.

Nevertheless, here is why the sole reliance on qualitative techniques to determine the effectiveness of curricula and instructional strategies has become problematic. As a researcher, you desire to do one of two things.

Objective A

The researcher wishes to make some type of statement about a relationship, however minimal. That is, you at least want to use terms like greater than, or less than, or equal to. You want to say that such and such an educational program or practice is better than another. "Better than" and "worse than" are, of course, quantitative statements--and, in the context of issues about what leads to or fosters greater educational achievement, they are causal statements as well . As quantitative causal statements, the support for such claims obviously must be found in the experimental logic that has been outlined above. To justify such statements, you must adhere to the canons of quantitative research logic.

Objective B

The researcher seeks to adhere to an exclusively qualitative path that abjures statements about relationships and never uses comparative terms of magnitude. The investigator desires to simply engage in thick description of a domain that may well prompt hypotheses when later work moves on to the more quantitative methods that are necessary to justify a causal inference.

Investigators pursuing Objective B are doing essential work. They provide quantitative information with suggestions for richer hypotheses to study. In education, however, investigators sometimes claim to be pursuing Objective B but slide over into Objective A without realizing they have made a crucial switch. They want to make comparative, or quantitative, statements, but have not carried out the proper types of investigation to justify them. They want to say that a certain educational program is better than another (that is, it causes better school outcomes). They want to give educational strictures that are assumed to hold for a population of students, not just to the single or few individuals who were the objects of the qualitative study. They want to condemn an educational practice (and, by inference, deem an alternative quantitatively and causally better). But instead of taking the necessary course of pursuing Objective A, they carry out their investigation in the manner of Objective B.

Let's recall why the use of single case or qualitative description as evidence in support of a particular causal explanation is inappropriate. The idea of alternative explanations is critical to an understanding of theory testing. The goal of experimental design is to structure events so that support of one particular explanation simultaneously disconfirms other explanations. Scientific progress can occur only if the data that are collected rule out some explanations. Science sets up conditions for the natural selection of ideas. Some survive empirical testing and others do not.

This is the honing process by which ideas are sifted so that those that contain the most truth are found. But there must be selection in this process: data collected as support for a particular theory must not leave many other alternative explanations as equally viable candidates. For this reason, scientists construct control or comparison groups in their experimentation. These groups are formed so that, when their results are compared with those from an experimental group, some alternative explanations are ruled out.

Case studies and qualitative description lack the comparative information necessary to prove that a particular theory or educational practice is superior, because they fail to test an alternative; they rule nothing out. Take the seminal work of Jean Piaget for example. His case studies were critical in pointing developmental psychology in new and important directions, but many of his theoretical conclusions and causal explanations did not hold up in controlled experiments (Bjorklund, 1995; Goswami, 1998; Siegler, 1991).

In summary, as educational psychologist Richard Mayer (2000) notes, "the domain of science includes both some quantitative and qualitative methodologies" (p. 39), and the key is to use each where it is most effective (see Kamil, 1995). Likewise, in their recent book on research-based best practices in comprehension instruction, Block and Pressley (2002) argue that future progress in understanding how comprehension works will depend on a healthy interaction between qualitative and quantitative approaches. They point out that getting an initial idea of the comprehension processes involved in hypertext and Web-based environments will involve detailed descriptive studies using think-alouds and assessments of qualitative decision making. Qualitative studies of real reading environments will set the stage for more controlled investigations of causal hypotheses.

The progression to more powerful methods

A final useful concept is the progression to more powerful research methods ("more powerful" in this context meaning more diagnostic of a causal explanation). Research on a particular problem often proceeds from weaker methods (ones less likely to yield a causal explanation) to ones that allow stronger causal inferences. For example, interest in a particular hypothesis may originally emerge from a particular case study of unusual interest. This is the proper role for case studies: to suggest hypotheses for further study with more powerful techniques and to motivate scientists to apply more rigorous methods to a research problem. Thus, following the case studies, researchers often undertake correlational investigations to verify whether the link between variables is real rather than the result of the peculiarities of a few case studies. If the correlational studies support the relationship between relevant variables, then researchers will attempt experiments in which variables are manipulated in order to isolate a causal relationship between the variables.

Summary of principles that support research-based inferences about best practice

Our sketch of the principles that support research-based inferences about best practice in education has revealed that:

  • Science progresses by investigating solvable, or testable, empirical problems.
  • To be testable, a theory must yield predictions that could possible be shown to be wrong.
  • The concepts in the theories in science evolve as evidence accumulates. Scientific knowledge is not infallible knowledge, but knowledge that has at least passed some minimal tests. The theories behind research-based practice can be proven wrong, and therefore they contain a mechanism for growth and advancement.
  • Theories are tested by systematic empiricism. The data obtained from empirical research are in the public domain in the sense that they are presented in a manner that allows replication and criticism by other scientists.
  • Data and theories in science are considered in the public domain only after publication in peer-reviewed scientific journals.
  • Empiricism is systematic because it strives for the logic of control and manipulation that characterizes a true experiment.
  • Correlational techniques are helpful when the logic of an experiment cannot be approximated, but because these techniques only help rule out hypotheses, they are considered weaker than true experimental methods.
  • Researchers use many different methods to arrive at their conclusions, and the strengths and weaknesses of these methods vary. Most often, conclusions are drawn only after a slow accumulation of data from many studies.

Scientific thinking in educational practice: Reason-based practice in the absence of direct evidence

Some areas in educational research, to date, lack a research-based consensus, for a number of reasons. Perhaps the problem or issue has not been researched extensively. Perhaps research into the issue is in the early stages of investigation, where descriptive studies are suggesting interesting avenues, but no controlled research justifying a causal inference has been completed. Perhaps many correlational studies and experiments have been conducted on the issue, but the research evidence has not yet converged in a consistent direction.

Even if teachers know the principles of scientific evaluation described earlier, the research literature sometimes fails to give them clear direction. They will have to fall back on their own reasoning processes as informed by their own teaching experiences. In those cases, teachers still have many ways of reasoning scientifically.

Tracing the link from scientific research to scientific thinking in practice

Scientific thinking in can be done in several ways. Earlier we discussed different types of professional publications that teachers can read to improve their practice. The most important defining feature of these outlets is whether they are peer reviewed. Another defining feature is whether the publication contains primary research rather than presenting opinion pieces or essays on educational issues. If a journal presents primary research, we can evaluate the research using the formal scientific principles outlined above.

If the journal is presenting opinion pieces about what constitutes best practice, we need to trace the link between those opinions and archival peer-reviewed research. We would look to see whether the authors have based their opinions on peer-reviewed research by reading the reference list. Do the authors provide a significant amount of original research citations (is their opinion based on more than one study)? Do the authors cite work other than their own (have the results been replicated)? Are the cited journals peer-reviewed? For example, in the case of best practice for reading instruction, if we came across an article in an opinion-oriented journal such as Intervention in School and Clinic, we might look to see if the authors have cited work that has appeared in such peer-reviewed journals as Journal of Educational Psychology , Elementary School Journal , Journal of Literacy Research , Scientific Studies of Reading , or the Journal of Learning Disabilities .

These same evaluative criteria can be applied to presenters at professional development workshops or papers given at conferences. Are they conversant with primary research in the area on which they are presenting? Can they provide evidence for their methods and does that evidence represent a scientific consensus? Do they understand what is required to justify causal statements? Are they open to the possibility that their claims could be proven false? What evidence would cause them to shift their thinking?

An important principle of scientific evaluation--the connectivity principle (Stanovich, 2001)--can be generalized to scientific thinking in the classroom. Suppose a teacher comes upon a new teaching method, curriculum component, or process. The method is advertised as totally new, which provides an explanation for the lack of direct empirical evidence for the method. A lack of direct empirical evidence should be grounds for suspicion, but should not immediately rule it out. The principle of connectivity means that the teacher now has another question to ask: "OK, there is no direct evidence for this method, but how is the theory behind it (the causal model of the effects it has) connected to the research consensus in the literature surrounding this curriculum area?" Even in the absence of direct empirical evidence on a particular method or technique, there could be a theoretical link to the consensus in the existing literature that would support the method.

For further tips on translating research into classroom practice, see Warby, Greene, Higgins, & Lovitt (1999). They present a format for selecting, reading, and evaluating research articles, and then importing the knowledge gained into the classroom.

Let's take an imaginary example from the domain of treatments for children with extreme reading difficulties. Imagine two treatments have been introduced to a teacher. No direct empirical tests of efficacy have been carried out using either treatment. The first, Treatment A, is a training program to facilitate the awareness of the segmental nature of language at the phonological level. The second, Treatment B, involves giving children training in vestibular sensitivity by having them walk on balance beams while blindfolded. Treatment A and B are equal in one respect--neither has had a direct empirical test of its efficacy, which reflects badly on both. Nevertheless, one of the treatments has the edge when it comes to the principle of connectivity. Treatment A makes contact with a broad consensus in the research literature that children with extraordinary reading difficulties are hampered because of insufficiently developed awareness of the segmental structure of language. Treatment B is not connected to any corresponding research literature consensus. Reason dictates that Treatment A is a better choice, even though neither has been directly tested.

Direct connections with research-based evidence and use of the connectivity principle when direct empirical evidence is absent give us necessary cross-checks on some of the pitfalls that arise when we rely solely on personal experience. Drawing upon personal experience is necessary and desirable in a veteran teacher, but it is not sufficient for making critical judgments about the effectiveness of an instructional strategy or curriculum. The insufficiency of personal experience becomes clear if we consider that the educational judgments--even of veteran teachers--often are in conflict. That is why we have to adjudicate conflicting knowledge claims using the scientific method.

Let us consider two further examples that demonstrate why we need controlled experimentation to verify even the most seemingly definitive personal observations. In the 1990s, considerable media and professional attention were directed at a method for aiding the communicative capacity of autistic individuals. This method is called facilitated communication. Autistic individuals who had previously been nonverbal were reported to have typed highly literate messages on a keyboard when their hands and arms were supported over the typewriter by a so-called facilitator. These startlingly verbal performances by autistic children who had previously shown very limited linguistic behavior raised incredible hopes among many parents of autistic children.

Unfortunately, claims for the efficacy of facilitated communication were disseminated by many media outlets before any controlled studies had been conducted. Since then, many studies have appeared in journals in speech science, linguistics, and psychology and each study has unequivocally demonstrated the same thing: the autistic child's performance is dependent upon tactile cueing from the facilitator. In the experiments, it was shown that when both child and facilitator were looking at the same drawing, the child typed the correct name of the drawing. When the viewing was occluded so that the child and the facilitator were shown different drawings, the child typed the name of the facilitator's drawing, not the one that the child herself was looking at (Beck & Pirovano, 1996; Burgess, Kirsch, Shane, Niederauer, Graham, & Bacon, 1998; Hudson, Melita, & Arnold, 1993; Jacobson, Mulick, & Schwartz, 1995; Wheeler, Jacobson, Paglieri, & Schwartz, 1993). The experimental studies directly contradicted the extensive case studies of the experiences of the facilitators of the children. These individuals invariably deny that they have inadvertently cued the children. Their personal experience, honest and heartfelt though it is, suggests the wrong model for explaining this outcome. The case study evidence told us something about the social connections between the children and their facilitators. But that is something different than what we got from the controlled experimental studies, which provided direct tests of the claim that the technique unlocks hidden linguistic skills in these children. Even if the claim had turned out to be true, the verification of the proof of its truth would not have come from the case studies or personal experiences, but from the necessary controlled studies.

Another example of the need for controlled experimentation to test the insights gleaned from personal experience is provided by the concept of learning styles--the idea that various modality preferences (or variants of this theme in terms of analytic/holistic processing or "learning styles") will interact with instructional methods, allowing teachers to individualize learning. The idea seems to "feel right" to many of us. It does seem to have some face validity, but it has never been demonstrated to work in practice. Its modern incarnation (see Gersten, 2001, Spear-Swerling & Sternberg, 2001) takes a particularly harmful form, one where students identified as auditory learners are matched with phonics instruction and visual and/or kinesthetic learners matched with holistic instruction. The newest form is particularly troublesome because the major syntheses of reading research demonstrate that many children can benefit from phonics-based instruction, not just "auditory" learners (National Reading Panel, 2000; Rayner et al., 2002; Stanovich, 2000). Excluding students identified as "visual/kinesthetic" learners from effective phonics instruction is a bad instructional practice--bad because it is not only not research based, it is actually contradicted by research.

A thorough review of the literature by Arter and Jenkins (1979) found no consistent evidence for the idea that modality strengths and weaknesses could be identified in a reliable and valid way that warranted differential instructional prescriptions. A review of the research evidence by Tarver and Dawson (1978) found likewise that the idea of modality preferences did not hold up to empirical scrutiny. They concluded, "This review found no evidence supporting an interaction between modality preference and method of teaching reading" (p. 17). Kampwirth and Bates (1980) confirmed the conclusions of the earlier reviews, although they stated their conclusions a little more baldly: "Given the rather general acceptance of this idea, and its common-sense appeal, one would presume that there exists a body of evidence to support it. UnfortunatelyÉno such firm evidence exists" (p. 598).

More recently, the idea of modality preferences (also referred to as learning styles, holistic versus analytic processing styles, and right versus left hemispheric processing) has again surfaced in the reading community. The focus of the recent implementations refers more to teaching to strengths, as opposed to remediating weaknesses (the latter being more the focus of the earlier efforts in the learning disabilities field). The research of the 1980s was summarized in an article by Steven Stahl (1988). His conclusions are largely negative because his review of the literature indicates that the methods that have been used in actual implementations of the learning styles idea have not been validated. Stahl concludes: "As intuitively appealing as this notion of matching instruction with learning style may be, past research has turned up little evidence supporting the claim that different teaching methods are more or less effective for children with different reading styles" (p. 317).

Obviously, such research reviews cannot prove that there is no possible implementation of the idea of learning styles that could work. However, the burden of proof in science rests on the investigator who is making a new claim about the nature of the world. It is not incumbent upon critics of a particular claim to show that it "couldn't be true." The question teachers might ask is, "Have the advocates for this new technique provided sufficient proof that it works?" Their burden of responsibility is to provide proof that their favored methods work. Teachers should not allow curricular advocates to avoid this responsibility by introducing confusion about where the burden of proof lies. For example, it is totally inappropriate and illogical to ask "Has anyone proved that it can't work?" One does not "prove a negative" in science. Instead, hypotheses are stated, and then must be tested by those asserting the hypotheses.

Reason-based practice in the classroom

Effective teachers engage in scientific thinking in their classrooms in a variety of ways: when they assess and evaluate student performance, develop Individual Education Plans (IEPs) for their students with disabilities, reflect on their practice, or engage in action research. For example, consider the assessment and evaluation activities in which teachers engage. The scientific mechanisms of systematic empiricism--iterative testing of hypotheses that are revised after the collection of data--can be seen when teachers plan for instruction: they evaluate their students' previous knowledge, develop hypotheses about the best methods for attaining lesson objectives, develop a teaching plan based on those hypotheses, observe the results, and base further instruction on the evidence collected.

This assessment cycle looks even more like the scientific method when teachers (as part of a multidisciplinary team) are developing and implementing an IEP for a student with a disability. The team must assess and evaluate the student's learning strengths and difficulties, develop hypotheses about the learning problems, select curriculum goals and objectives, base instruction on the hypotheses and the goals selected, teach, and evaluate the outcomes of that teaching. If the teaching is successful (goals and objectives are attained), the cycle continues with new goals. If the teaching has been unsuccessful (goals and objectives have not been achieved), the cycle begins again with new hypotheses. We can also see the principle of converging evidence here. No one piece of evidence might be decisive, but collectively the evidence might strongly point in one direction.

Scientific thinking in practice occurs when teachers engage in action research. Action research is research into one's own practice that has, as its main aim, the improvement of that practice. Stokes (1997) discusses how many advances in science came about as a result of "use-inspired research" which draws upon observations in applied settings. According to McNiff, Lomax, and Whitehead (1996), action research shares several characteristics with other types of research: "it leads to knowledge, it provides evidence to support this knowledge, it makes explicit the process of enquiry through which knowledge emerges, and it links new knowledge with existing knowledge" (p. 14). Notice the links to several important concepts: systematic empiricism, publicly verifiable knowledge, converging evidence, and the connectivity principle.

Teachers and Research Commonality in a "what works" epistemology

Many educational researchers have drawn attention to the epistemological commonalities between researchers and teachers (Gersten, Vaughn, Deshler, & Schiller, 1997; Stanovich, 1993/1994). A "what works" epistemology is a critical source of underlying unity in the world views of educators and researchers (Gersten & Dimino, 2001; Gersten, Chard, & Baker, 2000). Empiricism, broadly construed (as opposed to the caricature of white coats, numbers, and test tubes that is often used to discredit scientists) is about watching the world, manipulating it when possible, observing outcomes, and trying to associate outcomes with features observed and with manipulations. This is what the best teachers do. And this is true despite the grain of truth in the statement that "teaching is an art." As Berliner (1987) notes: "No one I know denies the artistic component to teaching. I now think, however, that such artistry should be research-based. I view medicine as an art, but I recognize that without its close ties to science it would be without success, status, or power in our society. Teaching, like medicine, is an art that also can be greatly enhanced by developing a close relationship to science (p. 4)."

In his review of the work of the Committee on the Prevention of Reading Difficulties for the National Research Council of the National Academy of Sciences (Snow, Burns, & Griffin, 1998), Pearson (1999) warned educators that resisting evaluation by hiding behind the "art of teaching" defense will eventually threaten teacher autonomy. Teachers need creativity, but they also need to demonstrate that they know what evidence is, and that they recognize that they practice in a profession based in behavioral science. While making it absolutely clear that he opposes legislative mandates, Pearson (1999) cautions:

We have a professional responsibility to forge best practice out of the raw materials provided by our most current and most valid readings of research...If professional groups wish to retain the privileges of teacher prerogative and choice that we value so dearly, then the price we must pay is constant attention to new knowledge as a vehicle for fine-tuning our individual and collective views of best practice. This is the path that other professions, such as medicine, have taken in order to maintain their professional prerogative, and we must take it, too. My fear is that if the professional groups in education fail to assume this responsibility squarely and openly, then we will find ourselves victims of the most onerous of legislative mandates (p. 245).

Those hostile to a research-based approach to educational practice like to imply that the insights of teachers and those of researchers conflict. Nothing could be farther from the truth. Take reading, for example. Teachers often do observe exactly what the research shows--that most of their children who are struggling with reading have trouble decoding words. In an address to the Reading Hall of Fame at the 1996 meeting of the International Reading Association, Isabel Beck (1996) illustrated this point by reviewing her own intellectual history (see Beck, 1998, for an archival version). She relates her surprise upon coming as an experienced teacher to the Learning Research and Development Center at the University of Pittsburgh and finding "that there were some people there (psychologists) who had not taught anyone to read, yet they were able to describe phenomena that I had observed in the course of teaching reading" (Beck, 1996, p. 5). In fact, what Beck was observing was the triangulation of two empirical approaches to the same issue--two perspectives on the same underlying reality. And she also came to appreciate how these two perspectives fit together: "What I knew were a number of whats--what some kids, and indeed adults, do in the early course of learning to read. And what the psychologists knew were some whys--why some novice readers might do what they do" (pp. 5-6).

Beck speculates on why the disputes about early reading instruction have dragged on so long without resolution and posits that it is due to the power of a particular kind of evidence--evidence from personal observation. The determination of whole language advocates is no doubt sustained because "people keep noticing the fact that some children or perhaps many children--in any event a subset of children--especially those who grow up in print-rich environments, don't seem to need much more of a boost in learning to read than to have their questions answered and to point things out to them in the course of dealing with books and various other authentic literacy acts" (Beck, 1996, p. 8). But Beck points out that it is equally true that proponents of the importance of decoding skills are also fueled by personal observation: "People keep noticing the fact that some children or perhaps many children--in any event a subset of children--don't seem to figure out the alphabetic principle, let alone some of the intricacies involved without having the system directly and systematically presented" (p. 8). But clearly we have lost sight of the basic fact that the two observations are not mutually exclusive--one doesn't negate the other. This is just the type of situation for which the scientific method was invented: a situation requiring a consensual view, triangulated across differing observations by different observers.

Teachers, like scientists, are ruthless pragmatists (Gersten & Dimino, 2001; Gersten, Chard, & Baker, 2000). They believe that some explanations and methods are better than others. They think there is a real world out there--a world in flux, obviously--but still one that is trackable by triangulating observations and observers. They believe that there are valid, if fallible, ways of finding out which educational practices are best. Teachers believe in a world that is predictable and controllable by manipulations that they use in their professional practice, just as scientists do. Researchers and educators are kindred spirits in their approach to knowledge, an important fact that can be used to forge a coalition to bring hard-won research knowledge to light in the classroom.

  • Adams, M. J. (1990). Beginning to read: Thinking and learning about print . Cambridge, MA: MIT Press.
  • Adler, J. E. (1998, January). Open minds and the argument from ignorance. Skeptical Inquirer , 22 (1), 41-44.
  • Anderson, C. A., & Anderson, K. B. (1996). Violent crime rate studies in philosophical context: A destructive testing approach to heat and Southern culture of violence effects. Journal of Personality and Social Psychology , 70 , 740-756.
  • Anderson, R. C., Hiebert, E. H., Scott, J., & Wilkinson, I. (1985). Becoming a nation of readers . Washington, D. C.: National Institute of Education.
  • Arter, A. and Jenkins, J. (1979). Differential diagnosis-prescriptive teaching: A critical appraisal, Review of Educational Research , 49 , 517-555.
  • Beck, A. R., & Pirovano, C. M. (1996). Facilitated communications' performance on a task of receptive language with children and youth with autism. Journal of Autism and Developmental Disorders , 26 , 497-512.
  • Beck, I. L. (1996, April). Discovering reading research: Why I didn't go to law school . Paper presented at the Reading Hall of Fame, International Reading Association, New Orleans.
  • Beck, I. (1998). Understanding beginning reading: A journey through teaching and research. In J. Osborn & F. Lehr (Eds.), Literacy for all: Issues in teaching and learning (pp. 11-31). New York: Guilford Press.
  • Berliner, D. C. (1987). Knowledge is power: A talk to teachers about a revolution in the teaching profession. In D. C. Berliner & B. V. Rosenshine (Eds.), Talks to teachers (pp. 3-33). New York: Random House.
  • Bjorklund, D. F. (1995). Children's thinking: Developmental function and individual differences (Second Edition) . Pacific Grove, CA: Brooks/Cole.
  • Block, C. C., & Pressley, M. (Eds.). (2002). Comprehension instruction: Research-based best practices . New York: Guilford Press.
  • Bronowski, J. (1956). Science and human values . New York: Harper & Row.
  • Bronowski, J. (1973). The ascent of man . Boston: Little, Brown.
  • Bronowski, J. (1977). A sense of the future . Cambridge: MIT Press.
  • Burgess, C. A., Kirsch, I., Shane, H., Niederauer, K., Graham, S., & Bacon, A. (1998). Facilitated communication as an ideomotor response. Psychological Science , 9 , 71-74.
  • Chard, D. J., & Osborn, J. (1999). Phonics and word recognition in early reading programs: Guidelines for accessibility. Learning Disabilities Research & Practice , 14 , 107-117.
  • Cooper, H. & Hedges, L. V. (Eds.), (1994). The handbook of research synthesis . New York: Russell Sage Foundation.
  • Cunningham, P. M., & Allington, R. L. (1994). Classrooms that work: They all can read and write . New York: HarperCollins.
  • Dawkins, R. (1998). Unweaving the rainbow . Boston: Houghton Mifflin.
  • Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life . New York: Simon & Schuster.
  • Dennett, D. C. (1999/2000, Winter). Why getting it right matters. Free Inquiry , 20 (1), 40-43.
  • Ehri, L. C., Nunes, S., Stahl, S., & Willows, D. (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel's Meta-Analysis. Review of Educational Research , 71 , 393-447.
  • Foster, E. A., Jobling, M. A., Taylor, P. G., Donnelly, P., Deknijff, P., Renemieremet, J., Zerjal, T., & Tyler-Smith, C. (1998). Jefferson fathered slave's last child. Nature , 396 , 27-28.
  • Fraenkel, J. R., & Wallen, N. R. (1996). How to design and evaluate research in education (Third Edition). New York: McGraw-Hill.
  • Geertz, C. (1973). The interpretation of cultures . New York: Basic Books.
  • Geertz, C. (1979). From the native's point of view: On the nature of anthropological understanding. In P. Rabinow & W. Sullivan (Eds.), Interpretive social science (pp. 225-242). Berkeley: University of California Press.
  • Gersten, R. (2001). Sorting out the roles of research in the improvement of practice. Learning Disabilities: Research & Practice , 16 (1), 45-50.
  • Gersten, R., Chard, D., & Baker, S. (2000). Factors enhancing sustained use of research-based instructional practices. Journal of Learning Disabilities , 33 (5), 445-457.
  • Gersten, R., & Dimino, J. (2001). The realities of translating research into classroom practice. Learning Disabilities: Research & Practice , 16 (2), 120-130.
  • Gersten, R., Vaughn, S., Deshler, D., & Schiller, E. (1997).What we know about using research findings: Implications for improving special education practice. Journal of Learning Disabilities , 30 (5), 466-476.
  • Goswami, U. (1998). Cognition in children . Hove, England: Psychology Press.
  • Gross, P. R., Levitt, N., & Lewis, M. (1997). The flight from science and reason . New York: New York Academy of Science.
  • Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis . New York: Academic Press.
  • Holton, G., & Roller, D. (1958). Foundations of modern physical science . Reading, MA: Addison-Wesley.
  • Hudson, A., Melita, B., & Arnold, N. (1993). A case study assessing the validity of facilitated communication. Journal of Autism and Developmental Disorders , 23 , 165-173.
  • Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings . Newbury Park, CA: Sage.
  • Jacobson, J. W., Mulick, J. A., & Schwartz, A. A. (1995). A history of facilitated communication: Science, pseudoscience, and antiscience. American Psychologist , 50 , 750-765.
  • Kamil, M. L. (1995). Some alternatives to paradigm wars in literacy research. Journal of Reading Behavior , 27 , 243-261.
  • Kampwirth, R., and Bates, E. (1980). Modality preference and teaching method: A review of the research, Academic Therapy , 15 , 597-605.
  • Kavale, K. A., & Forness, S. R. (1995). The nature of learning disabilities: Critical elements of diagnosis and classification . Mahweh, NJ: Lawrence Erlbaum Associates.
  • Levin, J. R., & O'Donnell, A. M. (2000). What to do about educational research's credibility gaps? Issues in Education: Contributions from Educational Psychology , 5 , 1-87.
  • Liberman, A. M. (1999). The reading researcher and the reading teacher need the right theory of speech. Scientific Studies of Reading , 3 , 95-111.
  • Magee, B. (1985). Philosophy and the real world: An introduction to Karl Popper . LaSalle, IL: Open Court.
  • Mayer, R. E. (2000). What is the place of science in educational research? Educational Researcher , 29 (6), 38-39.
  • McNiff, J.,Lomax, P., & Whitehead, J. (1996). You and your action research project . London: Routledge.
  • Medawar, P. B. (1982). Pluto's republic . Oxford: Oxford University Press.
  • Medawar, P. B. (1984). The limits of science . New York: Harper & Row.
  • Medawar, P. B. (1990). The threat and the glory . New York: Harper Collins.
  • Moats, L. (1999). Teaching reading is rocket science . Washington, DC: American Federation of Teachers.
  • National Reading Panel: Reports of the Subgroups. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction . Washington, DC.
  • Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology , 2 , 175-220.
  • Pearson, P. D. (1993). Teaching and learning to read: A research perspective. Language Arts , 70 , 502-511.
  • Pearson, P. D. (1999). A historically based review of preventing reading difficulties in young children. Reading Research Quarterly , 34 , 231-246.
  • Plotkin, D. (1996, June). Good news and bad news about breast cancer. Atlantic Monthly , 53-82.
  • Popper, K. R. (1972). Objective knowledge . Oxford: Oxford University Press.
  • Pressley, M. (1998). Reading instruction that works: The case for balanced teaching . New York: Guilford Press.
  • Pressley, M., Rankin, J., & Yokol, L. (1996). A survey of the instructional practices of outstanding primary-level literacy teachers. Elementary School Journal , 96 , 363-384.
  • Rayner, K. (1998). Eye movements in reading and information processing: 20 Years of research. Psychological Bulletin , 124 , 372-422.
  • Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S. (2002, March). How should reading be taught? Scientific American , 286 (3), 84-91.
  • Reading Coherence Initiative. (1999). Understanding reading: What research says about how children learn to read . Austin, TX: Southwest Educational Development Laboratory.
  • Rosenthal, R. (1995). Writing meta-analytic reviews. Psychological Bulletin , 118 , 183-192.
  • Rosnow, R. L., & Rosenthal, R. (1989). Statistical procedures and the justification of knowledge in psychological science. American Psychologist , 44 , 1276-1284.
  • Shankweiler, D. (1999). Words to meaning. Scientific Studies of Reading , 3 , 113-127.
  • Share, D. L., & Stanovich, K. E. (1995). Cognitive processes in early reading development: Accommodating individual differences into a model of acquisition. Issues in Education: Contributions from Educational Psychology , 1 , 1-57.
  • Shavelson, R. J., & Towne, L. (Eds.) (2002). Scientific research in education . Washington, DC: National Academy Press.
  • Siegler, R. S. (1991). Children's thinking (Second Edition) . Englewood Cliffs, NJ: Prentice Hall.
  • Snow, C. E., Burns, M. S., & Griffin, P. (Eds.). (1998). Preventing reading difficulties in young children . Washington, DC: National Academy Press.
  • Snowling, M. (2000). Dyslexia (Second Edition) . Oxford: Blackwell.
  • Spear-Swerling, L., & Sternberg, R. J. (2001). What science offers teachers of reading. Learning Disabilities: Research & Practice , 16 (1), 51-57.
  • Stahl, S. (December, 1988). Is there evidence to support matching reading styles and initial reading methods? Phi Delta Kappan , 317-327.
  • Stanovich, K. E. (1993/1994). Romance and reality. The Reading Teacher , 47 (4), 280-291.
  • Stanovich, K. E. (2000). Progress in understanding reading: Scientific foundations and new frontiers . New York: Guilford Press.
  • Stanovich, K. E. (2001). How to think straight about psychology (Sixth Edition). Boston: Allyn & Bacon.
  • Stokes, D. E. (1997). Pasteur's quadrant: Basic science and technological innovation . Washington, DC: Brookings Institution Press.
  • Swanson, H. L. (1999). Interventions for students with learning disabilities: A meta-analysis of treatment outcomes . New York: Guilford Press.
  • Tarver, S. G., & Dawson, E. (1978). Modality preference and the teaching of reading: A review, Journal of Learning Disabilities , 11, 17-29.
  • Vaughn, S., & Dammann, J. E. (2001). Science and sanity in special education. Behavioral Disorders , 27, 21-29.
  • Warby, D. B., Greene, M. T., Higgins, K., & Lovitt, T. C. (1999). Suggestions for translating research into classroom practices. Intervention in School and Clinic , 34 (4), 205-211.
  • Wheeler, D. L., Jacobson, J. W., Paglieri, R. A., & Schwartz, A. A. (1993). An experimental assessment of facilitated communication. Mental Retardation , 31 , 49-60.
  • Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist , 54 , 595-604.
  • Wilson, E. O. (1998). Consilience: The unity of knowledge . New York: Knopf.

For additional copies of this document:

Contact the National Institute for Literacy at ED Pubs PO Box 1398, Jessup, Maryland 20794-1398

Phone 1-800-228-8813 Fax 301-430-1244 [email protected]

NICHD logo

Date Published: 2003 Date Posted: March 2010

Department of Education logo

  • What is Educational Research? + [Types, Scope & Importance]

busayo.longe

Education is an integral aspect of every society and in a bid to expand the frontiers of knowledge, educational research must become a priority. Educational research plays a vital role in the overall development of pedagogy, learning programs, and policy formulation. 

Educational research is a spectrum that bothers on multiple fields of knowledge and this means that it draws from different disciplines. As a result of this, the findings of this research are multi-dimensional and can be restricted by the characteristics of the research participants and the research environment. 

What is Educational Research?

Educational research is a type of systematic investigation that applies empirical methods to solving challenges in education. It adopts rigorous and well-defined scientific processes in order to gather and analyze data for problem-solving and knowledge advancement. 

J. W. Best defines educational research as that activity that is directed towards the development of a science of behavior in educational situations. The ultimate aim of such a science is to provide knowledge that will permit the educator to achieve his goals through the most effective methods.

The primary purpose of educational research is to expand the existing body of knowledge by providing solutions to different problems in pedagogy while improving teaching and learning practices. Educational researchers also seek answers to questions bothering on learner motivation, development, and classroom management. 

Characteristics of Education Research  

While educational research can take numerous forms and approaches, several characteristics define its process and approach. Some of them are listed below:

  • It sets out to solve a specific problem.
  • Educational research adopts primary and secondary research methods in its data collection process . This means that in educational research, the investigator relies on first-hand sources of information and secondary data to arrive at a suitable conclusion. 
  • Educational research relies on empirical evidence . This results from its largely scientific approach.
  • Educational research is objective and accurate because it measures verifiable information.
  • In educational research, the researcher adopts specific methodologies, detailed procedures, and analysis to arrive at the most objective responses
  • Educational research findings are useful in the development of principles and theories that provide better insights into pressing issues.
  • This research approach combines structured, semi-structured, and unstructured questions to gather verifiable data from respondents.
  • Many educational research findings are documented for peer review before their presentation. 
  • Educational research is interdisciplinary in nature because it draws from different fields and studies complex factual relations.

Types of Educational Research 

Educational research can be broadly categorized into 3 which are descriptive research , correlational research , and experimental research . Each of these has distinct and overlapping features. 

Descriptive Educational Research

In this type of educational research, the researcher merely seeks to collect data with regards to the status quo or present situation of things. The core of descriptive research lies in defining the state and characteristics of the research subject being understudied. 

Because of its emphasis on the “what” of the situation, descriptive research can be termed an observational research method . In descriptive educational research, the researcher makes use of quantitative research methods including surveys and questionnaires to gather the required data.

Typically, descriptive educational research is the first step in solving a specific problem. Here are a few examples of descriptive research: 

  • A reading program to help you understand student literacy levels.
  • A study of students’ classroom performance.
  • Research to gather data on students’ interests and preferences. 

From these examples, you would notice that the researcher does not need to create a simulation of the natural environment of the research subjects; rather, he or she observes them as they engage in their routines. Also, the researcher is not concerned with creating a causal relationship between the research variables. 

Correlational Educational Research

This is a type of educational research that seeks insights into the statistical relationship between two research variables. In correlational research, the researcher studies two variables intending to establish a connection between them. 

Correlational research can be positive, negative, or non-existent. Positive correlation occurs when an increase in variable A leads to an increase in variable B, while negative correlation occurs when an increase in variable A results in a decrease in variable B. 

When a change in any of the variables does not trigger a succeeding change in the other, then the correlation is non-existent. Also, in correlational educational research, the research does not need to alter the natural environment of the variables; that is, there is no need for external conditioning. 

Examples of educational correlational research include: 

  • Research to discover the relationship between students’ behaviors and classroom performance.
  • A study into the relationship between students’ social skills and their learning behaviors. 

Experimental Educational Research

Experimental educational research is a research approach that seeks to establish the causal relationship between two variables in the research environment. It adopts quantitative research methods in order to determine the cause and effect in terms of the research variables being studied. 

Experimental educational research typically involves two groups – the control group and the experimental group. The researcher introduces some changes to the experimental group such as a change in environment or a catalyst, while the control group is left in its natural state. 

The introduction of these catalysts allows the researcher to determine the causative factor(s) in the experiment. At the core of experimental educational research lies the formulation of a hypothesis and so, the overall research design relies on statistical analysis to approve or disprove this hypothesis.

Examples of Experimental Educational Research

  • A study to determine the best teaching and learning methods in a school.
  • A study to understand how extracurricular activities affect the learning process. 

Based on functionality, educational research can be classified into fundamental research , applied research , and action research. The primary purpose of fundamental research is to provide insights into the research variables; that is, to gain more knowledge. Fundamental research does not solve any specific problems. 

Just as the name suggests, applied research is a research approach that seeks to solve specific problems. Findings from applied research are useful in solving practical challenges in the educational sector such as improving teaching methods, modifying learning curricula, and simplifying pedagogy. 

Action research is tailored to solve immediate problems that are specific to a context such as educational challenges in a local primary school. The goal of action research is to proffer solutions that work in this context and to solve general or universal challenges in the educational sector. 

Importance of Educational Research

  • Educational research plays a crucial role in knowledge advancement across different fields of study. 
  • It provides answers to practical educational challenges using scientific methods.
  • Findings from educational research; especially applied research, are instrumental in policy reformulation. 
  • For the researcher and other parties involved in this research approach, educational research improves learning, knowledge, skills, and understanding.
  • Educational research improves teaching and learning methods by empowering you with data to help you teach and lead more strategically and effectively.
  • Educational research helps students apply their knowledge to practical situations.

Educational Research Methods 

  • Surveys/Questionnaires

A survey is a research method that is used to collect data from a predetermined audience about a specific research context. It usually consists of a set of standardized questions that help you to gain insights into the experiences, thoughts, and behaviors of the audience. 

Surveys can be administered physically using paper forms, face-to-face conversations, telephone conversations, or online forms. Online forms are easier to administer because they help you to collect accurate data and to also reach a larger sample size. Creating your online survey on data-gathering platforms like Formplus allows you to.also analyze survey respondent’s data easily. 

In order to gather accurate data via your survey, you must first identify the research context and the research subjects that would make up your data sample size. Next, you need to choose an online survey tool like Formplus to help you create and administer your survey with little or no hassles. 

An interview is a qualitative data collection method that helps you to gather information from respondents by asking questions in a conversation. It is typically a face-to-face conversation with the research subjects in order to gather insights that will prove useful to the specific research context. 

Interviews can be structured, semi-structured , or unstructured . A structured interview is a type of interview that follows a premeditated sequence; that is, it makes use of a set of standardized questions to gather information from the research subjects. 

An unstructured interview is a type of interview that is fluid; that is, it is non-directive. During a structured interview, the researcher does not make use of a set of predetermined questions rather, he or she spontaneously asks questions to gather relevant data from the respondents. 

A semi-structured interview is the mid-point between structured and unstructured interviews. Here, the researcher makes use of a set of standardized questions yet, he or she still makes inquiries outside these premeditated questions as dedicated by the flow of the conversations in the research context. 

Data from Interviews can be collected using audio recorders, digital cameras, surveys, and questionnaires. 

  • Observation

Observation is a method of data collection that entails systematically selecting, watching, listening, reading, touching, and recording behaviors and characteristics of living beings, objects, or phenomena. In the classroom, teachers can adopt this method to understand students’ behaviors in different contexts. 

Observation can be qualitative or quantitative in approach . In quantitative observation, the researcher aims at collecting statistical information from respondents and in qualitative information, the researcher aims at collecting qualitative data from respondents. 

Qualitative observation can further be classified into participant or non-participant observation. In participant observation, the researcher becomes a part of the research environment and interacts with the research subjects to gather info about their behaviors. In non-participant observation, the researcher does not actively take part in the research environment; that is, he or she is a passive observer. 

How to Create Surveys and Questionnaires with Formplus

  • On your dashboard, choose the “create new form” button to access the form builder. You can also choose from the available survey templates and modify them to suit your need.
  • Save your online survey to access the form customization section. Here, you can change the physical appearance of your form by adding preferred background images and inserting your organization’s logo.
  • Formplus has a form analytics dashboard that allows you to view insights from your data collection process such as the total number of form views and form submissions. You can also use the reports summary tool to generate custom graphs and charts from your survey data. 

Steps in Educational Research

Like other types of research, educational research involves several steps. Following these steps allows the researcher to gather objective information and arrive at valid findings that are useful to the research context. 

  • Define the research problem clearly. 
  • Formulate your hypothesis. A hypothesis is the researcher’s reasonable guess based on the available evidence, which he or she seeks to prove in the course of the research.
  • Determine the methodology to be adopted. Educational research methods include interviews, surveys, and questionnaires.
  • Collect data from the research subjects using one or more educational research methods. You can collect research data using Formplus forms.
  • Analyze and interpret your data to arrive at valid findings. In the Formplus analytics dashboard, you can view important data collection insights and you can also create custom visual reports with the reports summary tool. 
  • Create your research report. A research report details the entire process of the systematic investigation plus the research findings. 

Conclusion 

Educational research is crucial to the overall advancement of different fields of study and learning, as a whole. Data in educational research can be gathered via surveys and questionnaires, observation methods, or interviews – structured, unstructured, and semi-structured. 

You can create a survey/questionnaire for educational research with Formplu s. As a top-tier data tool, Formplus makes it easy for you to create your educational research survey in the drag-and-drop form builder, and share this with survey respondents using one or more of the form sharing options. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • education research
  • educational research types
  • examples of educational research
  • importance of educational research
  • purpose of educational research
  • busayo.longe

Formplus

You may also like:

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

why research is important in education

Goodhart’s Law: Definition, Implications & Examples

In this article, we will discuss Goodhart’s law in different fields, especially in survey research, and how you can avoid it.

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

User Research: Definition, Methods, Tools and Guide

In this article, you’ll learn to provide value to your target market with user research. As a bonus, we’ve added user research tools and...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

A male and female student work at a desk while a teacher helps other students in the classroom.

How educational research could play a greater role in K-12 school improvement

why research is important in education

Clinical Professor of Applied Human Development, Boston University

Disclosure statement

Detris Honora Adelabu does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Boston University provides funding as a founding partner of The Conversation US.

View all partners

For the past 20 years, I have taught research methods in education to students here in the U.S. and in other countries. While the purpose of the course is to show students how to do effective research, the ultimate goal of the research is to get better academic results for the nation’s K-12 students and schools.

Vast resources are already being spent on this goal. Between 2019 and 2022, the Institute of Educational Sciences , the research and evaluation arm of the U.S. Education Department, distributed US$473 million in 255 grants to improve educational outcomes.

In 2021, colleges and universities spent approximately $1.6 billion on educational research .

The research is not hard to find. The Educational Research Information Center, a federally run repository, houses 1.6 million educational research sources in over 1,000 scholarly journals.

And there are plenty of opportunities for educational researchers to network and collaborate. Each year, for instance, more than 15,000 educators and researchers gather to present or discuss educational research findings at the annual meeting of the American Educational Research Association .

Yet, for all the time, money and effort that have been spent on producing research in the field of education, the nation seems to have little to show for it in terms of improvements in academic achievement.

Growing gaps

Even prior to the COVID-19 pandemic, test scores were beginning to decline. Results from the 2019 National Assessment of Educational Progress, , or NAEP – the most representative assessment of what elementary and middle school students know across specific subjects – show a widening gap between the highest and lowest achievement levels on the NAEP for fourth grade mathematics and eighth grade reading between 2017-19. During the same period, NAEP outcomes show stagnated growth in reading achievement among fourth graders. By eighth grade, there is a greater gap in reading achievement between the highest- and lowest-achieving students.

Some education experts have even suggested that the chances for progress get dimmer for students as they get older. For instance, in a 2019-2020 report to Congress , Mark Schneider, the Institute of Educational Sciences director, wrote: “for science and math, the longer students stay in school, the more likely they are to fail to meet even NAEP’s basic performance level.”

Scores on the International Assessment of Adult Competencies , a measure of literacy, numeracy and problem-solving skills, suggest a similar pattern of achievement. Achievement levels on the assessment show a slight decline in literacy and numeracy between 2012-14 and 2017. Fewer Americans are scoring at the highest levels of proficiency in literacy and numeracy.

As an educational researcher who focuses on academic outcomes for low-income students and students of color , I believe these troubling results raise serious questions about whether educational research is being put to use.

Are school leaders and policymakers actually reading any of the vast amount of educational research that exists? Or does it go largely unnoticed in voluminous virtual vaults? What, if anything, can be done to make sure that educational research findings and recommendations are actually being tried?

Here are four things I believe can be done in order to make sure that educational research is actually being applied.

1. Build better relationships with school leaders

A man in a blue suit accompanies an elementary school-aged boy as they walk down a school hallway.

Educational researchers can reach out to school leaders before doing their research in order to design research based on the needs of schools and schoolchildren. If school leaders can see how educational research can specifically benefit their school community, they may be more likely to implement findings and recommendations from the research.

2. Make policy and practice part of the research process

By implementing new policies and practices based on research findings, researchers can work with school leaders to do further research to see if the new policies and practices actually work.

For example, The Investing in Innovation (i3) Fund was established by the American Recovery and Reinvestment Act of 2009 to fund the implementation and evaluation of education interventions with a record of improving student achievement. Through the fund, $679 million was distributed through 67 grants – and 12 of those 67 funded projects improved student outcomes. The key to success? Having a “tight implementation” plan, which was shown to produce at least one positive student outcome.

3. Rethink how research impact is measured

As part of the national rankings for colleges of education – that is, the schools that prepare schoolteachers for their careers – engagement with public schools could be made a factor in the rankings. The rankings could also include measurable educational impact.

4. Rethink and redefine how research is distributed

Evidence-based instruction can improve student outcomes . However, public school teachers often can’t afford to access the evidence or the time to make sense of it. Research findings written in everyday language could be distributed at conferences frequented by public school teachers and in the periodicals that they read.

If research findings are to make a difference, I believe there has to be a stronger focus on using research to bring about real-world change in public schools.

  • Academic research
  • Education research
  • Academic results
  • Proficiency Level
  • K-12 education
  • Student test scores
  • Higher ed attainment
  • Federal role in K-12 education
  • K-12 schools

why research is important in education

Head of Evidence to Action

why research is important in education

Supply Chain - Assistant/Associate Professor (Tenure-Track)

why research is important in education

Education Research Fellow

why research is important in education

OzGrav Postdoctoral Research Fellow

why research is important in education

Casual Facilitator: GERRIC Student Programs - Arts, Design and Architecture

  • Find My Rep

You are here

What are the benefits of educational research for teachers.

Ask an Expert Rebecca Austin Researching Primary Education

Cultivating a research-based approach to developing your practice provides evidence to effect change in your teaching, your classroom, your school, and beyond. Rebecca Austin, author of Researching Primary Education  and Senior Lecturer at the School of Teacher Education and Development at Canterbury Christchurch University, highlights what the benefits are of research to your practice…

In the context of the debate about what works and why, there is a wide range of benefits to researching your own practice, whether directly feeding into improvement through action research or, more broadly, gaining understanding and knowledge on themes of interest and relevance. This is why research is embedded into initial teacher education. As research becomes embedded in your practice you can gain a range of benefits. Research can:

  • clarify purposes, processes and priorities when introducing change – for example, to  curriculum, pedagogy or assessment  
  • develop your agency, influence, self-efficacy and voice within your own school and  more widely within the profession.

Each of these can involve investigation using evidence from your own setting, along with wider research evidence. 

Chapter Icon

dISCOVER MORE IN EDUCATION

  • Site search

CBT Supervision

The ABC of CBT

CBT for Beginners

CBT Values and Ethics

Reflection in CBT

CBT for Older People

Overcoming Obstacles in CBT

The CBT Handbook

CBT for Personality Disorders

CBMCS Multicultural Training Program

CBMCS Multicultural Reader

CBDNA Journal: Research & Review

An Introduction to CBT Research

CBT for Common Trauma Responses

Person-centred Therapy and CBT

Low-intensity CBT Skills and Interventions

CBT for Depression: An Integrated Approach

CBT with Children, Young People and Families

CBT for Worry and Generalised Anxiety Disorder

Action Research

why research is important in education

Product Type plus Created with Sketch. minus Created with Sketch.

  • Textbook (33) Apply Textbook filter
  • Journal (14) Apply Journal filter
  • Academic Book (5) Apply Academic Book filter
  • Professional Book (4) Apply Professional Book filter
  • Reference Book (4) Apply Reference Book filter

Disciplines plus Created with Sketch. minus Created with Sketch.

  • Education (31) Apply Education filter
  • Counselling and Psychotherapy (General) (19) Apply Counselling and Psychotherapy (General) filter
  • Research Methods & Evaluation (General) (18) Apply Research Methods & Evaluation (General) filter
  • Nursing (7) Apply Nursing filter
  • Public Health (4) Apply Public Health filter
  • Psychology (General) (3) Apply Psychology (General) filter
  • Social Work & Social Policy (General) (3) Apply Social Work & Social Policy (General) filter
  • Clinical Medicine (3) Apply Clinical Medicine filter
  • Business & Management (General) (2) Apply Business & Management (General) filter
  • Anthropology & Archaeology (General) (1) Apply Anthropology & Archaeology (General) filter
  • Arts & Humanities (General) (1) Apply Arts & Humanities (General) filter
  • History (General) (1) Apply History (General) filter
  • Communication and Media Studies (General) (1) Apply Communication and Media Studies (General) filter
  • Cultural Studies (General) (1) Apply Cultural Studies (General) filter
  • Economics & Development Studies (General) (1) Apply Economics & Development Studies (General) filter
  • Life & Biomedical Sciences (1) Apply Life & Biomedical Sciences filter
  • Politics & International Relations (1) Apply Politics & International Relations filter
  • Study Skills (General) (1) Apply Study Skills (General) filter
  • Other Health Specialties (1) Apply Other Health Specialties filter

Status plus Created with Sketch. minus Created with Sketch.

  • Published (44) Apply Published filter
  • Forthcoming (2) Apply Forthcoming filter

More From Forbes

The role of research at universities: why it matters.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

(Photo by William B. Plowman/Getty Images)

Teaching and learning, research and discovery, synthesis and creativity, understanding and engagement, service and outreach. There are many “core elements” to the mission of a great university. Teaching would seem the most obvious, but for those outside of the university, “research” (taken to include scientific research, scholarship more broadly, as well as creative activity) may be the least well understood. This creates misunderstanding of how universities invest resources, especially those deriving from undergraduate tuition and state (or other public) support, and the misperception that those resources are being diverted away from what is believed should be the core (and sole) focus, teaching. This has led to a loss of trust, confidence, and willingness to continue to invest or otherwise support (especially our public) universities.

Why are universities engaged in the conduct of research? Who pays? Who benefits? And why does it all matter? Good questions. Let’s get to some straightforward answers. Because the academic research enterprise really is not that difficult to explain, and its impacts are profound.

So let’s demystify university-based research. And in doing so, hopefully we can begin building both better understanding and a better relationship between the public and higher education, both of which are essential to the future of US higher education.   

Why are universities engaged in the conduct of research?

Universities engage in research as part of their missions around learning and discovery. This, in turn, contributes directly and indirectly to their primary mission of teaching. Universities and many colleges (the exception being those dedicated exclusively to undergraduate teaching) have as part of their mission the pursuit of scholarship. This can come in the form of fundamental or applied research (both are most common in the STEM fields, broadly defined), research-based scholarship or what often is called “scholarly activity” (most common in the social sciences and humanities), or creative activity (most common in the arts). Increasingly, these simple categorizations are being blurred, for all good reasons and to the good of the discovery of new knowledge and greater understanding of complex (transdisciplinary) challenges and the creation of increasingly interrelated fields needed to address them.

It goes without saying that the advancement of knowledge (discovery, innovation, creation) is essential to any civilization. Our nation’s research universities represent some of the most concentrated communities of scholars, facilities, and collective expertise engaged in these activities. But more importantly, this is where higher education is delivered, where students develop breadth and depth of knowledge in foundational and advanced subjects, where the skills for knowledge acquisition and understanding (including contextualization, interpretation, and inference) are honed, and where students are educated, trained, and otherwise prepared for successful careers. Part of that training and preparation derives from exposure to faculty who are engaged at the leading-edge of their fields, through their research and scholarly work. The best faculty, the teacher-scholars, seamlessly weave their teaching and research efforts together, to their mutual benefit, and in a way that excites and engages their students. In this way, the next generation of scholars (academic or otherwise) is trained, research and discovery continue to advance inter-generationally, and the cycle is perpetuated.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024.

University research can be expensive, particularly in laboratory-intensive fields. But the responsibility for much (indeed most) of the cost of conducting research falls to the faculty member. Faculty who are engaged in research write grants for funding (e.g., from federal and state agencies, foundations, and private companies) to support their work and the work of their students and staff. In some cases, the universities do need to invest heavily in equipment, facilities, and personnel to support select research activities. But they do so judiciously, with an eye toward both their mission, their strategic priorities, and their available resources.

Medical research, and medical education more broadly, is expensive and often requires substantial institutional investment beyond what can be covered by clinical operations or externally funded research. But universities with medical schools/medical centers have determined that the value to their educational and training missions as well as to their communities justifies the investment. And most would agree that university-based medical centers are of significant value to their communities, often providing best-in-class treatment and care in midsize and smaller communities at a level more often seen in larger metropolitan areas.

Research in the STEM fields (broadly defined) can also be expensive. Scientific (including medical) and engineering research often involves specialized facilities or pieces of equipment, advanced computing capabilities, materials requiring controlled handling and storage, and so forth. But much of this work is funded, in large part, by federal agencies such as the National Science Foundation, National Institutes of Health, US Department of Energy, US Department of Agriculture, and many others.

Research in the social sciences is often (not always) less expensive, requiring smaller amount of grant funding. As mentioned previously, however, it is now becoming common to have physical, natural, and social scientist teams pursuing large grant funding. This is an exciting and very promising trend for many reasons, not the least of which is the nature of the complex problems being studied.

Research in the arts and humanities typically requires the least amount of funding as it rarely requires the expensive items listed previously. Funding from such organizations as the National Endowment for the Arts, National Endowment for the Humanities, and private foundations may be able to support significant scholarship and creation of new knowledge or works through much more modest grants than would be required in the natural or physical sciences, for example.

Philanthropy may also be directed toward the support of research and scholarly activity at universities. Support from individual donors, family foundations, private or corporate foundations may be directed to support students, faculty, labs or other facilities, research programs, galleries, centers, and institutes.

Who benefits?

Students, both undergraduate and graduate, benefit from studying in an environment rich with research and discovery. Besides what the faculty can bring back to the classroom, there are opportunities to engage with faculty as part of their research teams and even conduct independent research under their supervision, often for credit. There are opportunities to learn about and learn on state-of-the-art equipment, in state-of-the-art laboratories, and from those working on the leading edge in a discipline. There are opportunities to co-author, present at conferences, make important connections, and explore post-graduate pathways.

The broader university benefits from active research programs. Research on timely and important topics attracts attention, which in turn leads to greater institutional visibility and reputation. As a university becomes known for its research in certain fields, they become magnets for students, faculty, grants, media coverage, and even philanthropy. Strength in research helps to define a university’s “brand” in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting new investments.

The community, region, and state benefits from the research activity of the university. This is especially true for public research universities. Research also contributes directly to economic development, clinical, commercial, and business opportunities. Resources brought into the university through grants and contracts support faculty, staff, and student salaries, often adding additional jobs, contributing directly to the tax base. Research universities, through their expertise, reputation, and facilities, can attract new businesses into their communities or states. They can also launch and incubate startup companies, or license and sell their technologies to other companies. Research universities often host meeting and conferences which creates revenue for local hotels, restaurants, event centers, and more. And as mentioned previously, university medical centers provide high-quality medical care, often in midsize communities that wouldn’t otherwise have such outstanding services and state-of-the-art facilities.

(Photo by Justin Sullivan/Getty Images)

And finally, why does this all matter?

Research is essential to advancing society, strengthening the economy, driving innovation, and addressing the vexing and challenging problems we face as a people, place, and planet. It’s through research, scholarship, and discovery that we learn about our history and ourselves, understand the present context in which we live, and plan for and secure our future.

Research universities are vibrant, exciting, and inspiring places to learn and to work. They offer opportunities for students that few other institutions can match – whether small liberal arts colleges, mid-size teaching universities, or community colleges – and while not right for every learner or every educator, they are right for many, if not most. The advantages simply cannot be ignored. Neither can the importance or the need for these institutions. They need not be for everyone, and everyone need not find their way to study or work at our research universities, and we stipulate that there are many outstanding options to meet and support different learning styles and provide different environments for teaching and learning. But it’s critically important that we continue to support, protect, and respect research universities for all they do for their students, their communities and states, our standing in the global scientific community, our economy, and our nation.

David Rosowsky

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

why research is important in education

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

22k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Education Next

  • Federal Policy
  • Teachers and Teaching
  • Vol. 21, No. 2

Making Education Research Relevant

why research is important in education

Daniel T. Willingham

why research is important in education

David B. Daniel

Illustration of a school under a microscope

In this journal, as in others, scientific evidence is regularly invoked in defense of one classroom practice or another. And on occasion, scientific evidence features prominently in federal education policy. It had a star turn in the 2002 No Child Left Behind Act, which used the phrase “scientifically based research” more than 50 times, and an encore in the 2015 Every Student Succeeds Act, which requires that schools implement “evidence-based interventions” and set tiers of academic rigor to identify programs by their proven effectiveness.

Yet teachers, for the most part, ignore these studies. Why?

There’s research about that, too. First, teachers may view research as somewhat removed from the classroom, with further translation needed for the practice to be ready to implement in a live setting. Second, teachers may judge a practice to be classroom-ready in general but delay implementation because their particular students and setting seem significantly different from the research context. Third, teachers may resist trying something new for reasons unrelated to its effectiveness—because it seems excessively demanding, for example, or because it conflicts with deeply held values or beliefs about what works in the classroom. Finally, teachers may be unaware of the latest research because they only rarely read it.

No matter the reason, it seems many teachers don’t think education research is directly useful to them. We think these teachers have it right. And we think the problem lies with researchers, not teachers.

The first three obstacles listed above—two concerning applicability of research and one concerning perceived constraints research puts on practice—are products of the methods researchers use. Research seems irrelevant to practitioners because it does not pose questions that address their needs. Teachers feel constrained by research because they feel pressured to use research-approved methods, and research creates clear winners and losers among practices that may be appropriate in some contexts but not others.

The root of these issues lies in two standard features of most studies: how researchers choose control groups and researchers’ focus on finding statistically significant differences. The norm in education research is that, for a finding to be publishable, the outcomes of students receiving an intervention must be noticeably different from the outcomes of an otherwise similar “control” group that did not receive the intervention. To show that an intervention “works,” you must show that it makes a positive difference relative to the control. But are such comparisons realistic, reasonable, or even helpful for teachers?

No—but they could be. Here’s how.

Better Than Nothing Is Not Enough

Let’s consider the hypothetical case of CM1, a new method of classroom management meant to reduce the frequency of suspensions. Suppose we recruit eight schools to join an experiment to assess the effectiveness of CM1. We randomly assign teachers in half of the participating classrooms to implement it. We could then compare the rate of suspensions from students in those classrooms to the rate observed in the classrooms that are not implementing CM1. This type of comparison is called “business as usual,” because we compare CM1 to whatever the comparison classrooms are already doing. A similar choice would be to compare the rate of suspensions before CM1 is implemented to the rate after it’s implemented within the same schools. This “pre-post” design is comparable to the business-as-usual design, but each school serves as its own control.

If suspension rates are lower with CM1, we can conclude that it “worked.” But with a business-as-usual control group this conclusion is weak, essentially that “something is better than nothing.” Even that may be too optimistic. We might be observing a placebo effect—that is, students behaved differently only because they knew they were being observed, or because something in their classroom changed. Or maybe CM1 isn’t especially effective, just better than whatever the teachers were doing before, which might have been actively harmful.

We can draw a somewhat stronger conclusion if we use an “active control,” which means that control classrooms also adopt a new method of classroom management, but one that researchers don’t expect will affect suspension rates. Active-control designs make researchers more confident that, if a difference in suspension rates is observed, it’s really CM1 that’s responsible, because both CM1 classrooms and control classrooms are doing something new. This model means we need not worry about placebo effects or that CM1 merely prevented ineffective practices. However, even the best-case scenario produces a weak conclusion, because the control method was predicted not to work. It’s still “something is better than nothing.”

Still another type of comparison tests an intervention that’s known to be effective against a newer version of the same intervention. The goal, obviously, is to test whether the new version represents an improvement.

The three research designs we’ve considered answer questions that will often be of interest only to researchers, namely, whether CM1 “works” or, in the case of the old versus new version comparison, whether CM1 has been improved. When “works” is synonymous with “better than nothing,” the answer can be important for distinguishing among theories and hence is of interest to researchers. But is this question relevant to teachers? Practitioners are not interested in theories and so would not ask, “Is this program better than nothing?” They would ask something more like, “What’s the best way to reduce suspensions?”

The answer “CM1 is better than nothing” is useful to them if no other interventions have been tested. But in the real world, classroom teachers—not to mention school and system leaders—are choosing among several possible interventions or courses of action. What about other methods of classroom management intended to reduce suspensions? If, say, hypothetical classroom-management program competitors CM2 and CM3 have each been shown to be better than nothing, practitioners would prefer that researchers compare CM1 to CM2 and CM3 rather than compare it to doing nothing at all. Is one much better than the others? Or are all about equally effective, and it’s up to practitioners to pick whichever one they prefer?

President George W. Bush signing the No Child Left Behind act in 2002

Best Practices—But for Whom?

If we set a goal of finding the best way to reduce suspensions, and there are no successful interventions known, comparing CM1 to business as usual makes sense. However, if there are successful interventions known, researchers should compare CM1 to what is currently thought to be the most successful intervention. We might think of this as the strong definition of the term “best practices.” It indicates that there is one champion method, a single preeminent way of reducing suspensions, and the goal of research is to find it.

But that’s generally not how the world works and indeed, “What’s the best way to reduce suspensions?” is probably not exactly what an educator would ask. Rather, they would ask, “What’s the best way to reduce suspensions at my school, with the particular students, faculty, and administrators found here, and with our peculiar set of assets and liabilities, and without negatively impacting other important instructional goals?”

CM1 may be terrific when it comes to reducing student suspensions, but it may also be expensive, demanding of administrators’ time, or workable only with very experienced teachers or with homogenous student bodies. And maybe CM2 is also terrific, especially for inexperienced teachers, and CM3 is helpful when working with diverse students. Research certainly shows such variability across contexts for some interventions, and teachers know it. As we’ve noted, one reason teachers don’t tend to use research is because they assume that whatever positive impact researchers found would not necessarily be the same for their particular students in their particular school.

If a universal champion “best practice” really emerges, improbable as that seems, it would be useful to know, of course. But teachers would benefit most not by researchers’ identifying one program as the best, but by their identifying or broadening a range of effective interventions from which teachers can then choose. Research can support that goal, but it requires a change in what we take to be an interesting conclusion. Instead of deeming a study interesting if the intervention is better than the comparison group, teachers would be interested in knowing whether a new intervention is at least as good as the best intervention. That would allow them to choose among interventions, all of which are known to be effective, based on which one they believe best fits their unique needs.

Null (and Void) Hypothesis

But that’s not the goal of research studies. Researchers are looking for differences, not sameness, and the bigger the difference, the better. Teachers might be interested in knowing that CM1’s impact is no different than that of another proven classroom-management method, but researchers would not. Researchers call this a null effect, and they are taught that this conclusion is difficult to interpret. Traditionally, research journals have not even published null findings, based on the assumption that they are not of interest.

Consider this from a researcher’s point of view. Suppose a school leader implements CM1 because the leader thinks it reduces suspensions. There are 299 suspensions in the school that year, whereas in the previous year there had been 300. Did CM1 help? A researcher would say one can’t conclude that it did, because the number of suspensions will vary a bit from year to year just by chance. However, if the difference were much larger—say there were 100 fewer suspensions after CM1 were put in place—then the researcher would say that was too large to be a fluke. A “statistically significant difference” is one that would be very unlikely to have occurred by chance.

This logic undergirds nearly all behavioral research, and it leads to an obsession with difference. Saying “I compared X and Y, and I cannot conclude they are different” because the outcomes were similar may be uninteresting to researchers, but it is potentially very interesting to practitioners looking to address a particular challenge. They would be glad to know that a new intervention is at least as good as a proven one.

Null effects matter for another reason. Interventions often spring from laboratory findings. For example, researchers have found that memory is more enduring if study sessions are spread out over time rather than crammed into a short time period. We should not assume that observing that effect in the highly controlled environment of the laboratory means that we’re guaranteed to observe it in the less controlled environment of the classroom. If spacing out study sessions doesn’t work any better in schools than cram sessions, that’s a null effect, but it’s one that’s important to know.

Researchers are right that null effects are not straightforward to interpret. Maybe the intervention can work in schools, but the experimenters didn’t translate it to the classroom in the right way. Or they may have done the translation the right way, but the experiment the wrong way. Nevertheless, null effects are vital to tally and include in a broader evaluation of the potential of the intervention. Researchers can make null effects more readily interpretable through changes in research design, especially by increasing the number of people in the study.

Publication Bias

How do these phenomena play out in recently published research? To find out, we did some research of our own. We examined a sample of articles reporting intervention studies published from 2014 to 2018 in four journals: American Education Research Journal, Educational Researcher, Learning and Instruction, and Journal of Research in Science Teaching. Our analysis looked at the type of control group employed and whether the intervention was reported to be significantly different from the control group. We predicted that most published articles employ weak control groups—those allowing the conclusion “better than nothing”—because these offer the greatest chance of observing a significant difference between intervention and control.

Of 304 studies examined, 91 percent were of the “better than nothing” sort: 49 percent employed business-as-usual designs and 42 percent used as the control group an alternative intervention that researchers expected not to influence the outcome. Some 4.5 percent used a control that was a variant of the intervention with the goal of improving it. Another 4.5 percent used a control group that was either known to have a positive effect or was expected to have a beneficial effect based on existing theory.

Coders also noted whether the key comparison—intervention versus control—was reported as a statistically significant difference and whether a particular interaction was emphasized. For example, perhaps the intervention group performed no better than the control group in early grades, but there was a significant difference in later grades. Alternatively, the key conclusion of the report may have been that the intervention and control group did not differ.

We found that 91 percent of the studies reported that the intervention was significantly different than the control group. Of those that did not, another 4 percent reported a significant interaction—that is, the intervention worked for certain subjects or under certain circumstances. Just 5 percent of studies reported null effects. None of these studies demonstrated that a new intervention is equivalent to another intervention already established as effective.

A More Useful Research Standard

In theory, the goals of education research are to build knowledge and improve decision-making and outcomes for teachers and students. But in practice, education research is shaped by the common practices and priorities of researchers, not teachers or school and system leaders. Most intervention research employs a better-than-nothing control group, and an intervention is deemed worth applying (or, at least, worthy of continued research) only if it makes a measurable and statistically significant difference. The drawback to this pervasive research design is clear: there may well be “research-based” interventions in the marketplace, but educators have no basis on which to compare the alternatives. They have all been shown to be “better”—but better than what, exactly?

Imagine instead that the common research design started with whatever trusted intervention is considered the current “gold standard” for the desired outcome and used that as the control group. Imagine too that the criterion of the comparison would be that a new intervention should be at least as good as the gold standard. In time, a group of proven interventions would emerge, roughly equivalent in effectiveness and known to be superior to other interventions not up to the gold standard. As a result, educators would have a range of high-quality interventions to choose from and could select the one that best fits their school context, skills, and personal preference. In addition, choice itself can be an important component of educational effectiveness—interventions with teacher buy-in tend to be more successful, and research has shown that the pervasive adoption of a single intervention that does not suit the broader array of individual differences may lead to less learning.

We see other benefits to adopting this approach as well. We predict that refocusing research on equivalence as the dissemination criterion will spur innovation. “At least as good as” is actually “better than” if the new intervention has fewer side effects, is less expensive, is less time-consuming, or is easier to implement compared to its predecessor. For example, consider electronic textbooks, which are less expensive to disseminate and easier to update. The salient question for educators and policymakers isn’t whether they are better than other texts, but whether they are associated with learning outcomes equivalent to those of using traditional, more costly textbooks. The research field’s narrow focus on ensuring the intervention is statistically “better than” the control group means that the workaday demands of the intervention in terms of time, money, space, and personnel are not emphasized—in fact, are often not even considered. This disconnect invites skepticism on the part of the teachers charged with implementing supposedly classroom-ready practices.

What will it take to effect this change? We believe researchers are sensitive to the incentives their profession offers. Most education research is conducted in the academy, where the coins of the realm are grants and peer-reviewed publications. There are some encouraging signs that journal editors are taking a greater interest in null effects, such as a recent special issue of Education Researcher dedicated to such studies. But change will most likely come about and endure if the foundations and government agencies that fund research make clear that they will view this change in study designs favorably when reviewing proposals. This would encourage journal editors to publish studies with null effects and reject those that use business-as-usual control groups.

Researchers are, in our experience, frustrated and saddened that teachers do not make greater use of research findings in their practices. But nothing will change until the researchers recognize that their standard methodology is useful for answering research questions, but not for improving practice.

Daniel T. Willingham is a professor of psychology at the University of Virginia. David B. Daniel is a professor of psychology at James Madison University.

For more, please see “ The Top 20 Education Next Articles of 2023 .”

This article appeared in the Spring 2021 issue of Education Next . Suggested citation format:

Willingham, D.T., and Daniel, D.B. (2021). Making Education Research Relevant: How researchers can give teachers more choices . Education Next , 21(2), 28-33.

Last Updated

License this Content

Latest Issue

Summer 2024.

Vol. 24, No. 3

We Recommend You Read

Photo of Daniel T. Willingham

EdNext Podcast: Daniel Willingham on Making Education Research Relevant

The problem with “business as usual” control groups

by Education Next

Link to Forbes

Boston Charter Study Tells Story About Limits of Test Scores

“It is all too common for researchers to misinterpret the policy implications of these experiments, even when they are properly conducted.”

by Jay P. Greene

Lamar Alexander walks to the Senate floor on January 21, 2020.

Leadership Makes a Difference: Lamar Alexander and K–12 Education

As governor, secretary of education, and senator, Alexander had vast influence

by Chester E. Finn, Jr.

Importance of Research in Education

8 Pages Posted: 19 Nov 2020

Mayurakshi Basu

National Council of Educational Research and Training

Date Written: October 2, 2020

Research is a scientific and systematic investigation or inquiry especially through search for new facts in any branch of knowledge. On the other hand education is regarded as the aggregate of all the processes by which a person develops abilities, attitudes and other forms of behavior of practical values in the society in which she or he lives. The core purpose of this paper is to understand the importance of research in education. Research is widely regarded as providing benefits to individuals and to local, regional, national, and international community’s involved in the education system. The thrust areas of this paper are characteristics, purposes of research in education, steps involved in research, importance of research in education and lastly challenges of research in present context.

Keywords: Research Importance Challenges Education

JEL Classification: I

Suggested Citation: Suggested Citation

Mayurakshi Basu (Contact Author)

National council of educational research and training ( email ).

National Council of Educational Research and Trai Regional Institute of Education Bhubaneswar, OR 751022 751022 (Fax)

Do you have a job opening that you would like to promote on SSRN?

Paper statistics, related ejournals, educational administration & leadership ejournal.

Subscribe to this fee journal for more curated articles on this topic

Educational Impact & Evaluation Research eJournal

Subscribe to this free journal for more curated articles on this topic

Information Theory & Research eJournal

Library management & operations ejournal.

Why is research important in education?

Why is research important in education?

Do you ever wonder why research is so essential in education? What impact does it really have on teaching and learning? Three members of the Harrisburg University of Science and Technology faculty contributed to an article on the topic for Up Journey , an online magazine.

The article is found online at https://upjourney.com/reasons-why-research-is-important-in-education

The faculty members included Dr. Glenn Mitchell, Dr. John Clark, and Dr. Joseph Zagerman. 

Hands-on research is a cornerstone of the learning experience at Harrisburg University. Additionally, the University operates many centers that provide experiential opportunities for students across a broad range of interests, issues and industries. More on that is found here https://www.harrisburgu.edu/academics/research/

ABOUT HARRISBURG UNIVERSITY

Accredited by the Middle States Commission on Higher Education, Harrisburg University is a private nonprofit university offering bachelor and graduate degree programs in science, technology, and math fields. For more information on the University’s affordable demand-driven undergraduate and graduate programs, call 717-901-5146 or email, [email protected]. Follow on Twitter (@HarrisburgU) and Facebook (Facebook.com/HarrisburgU.

  • Advancement
  • Career Prep
  • Center for Environment, Energy And Economy (E3)
  • Concert Series
  • Exercise Science
  • Financial Aid
  • Game Design
  • HU Spotlight
  • International Students
  • Internships
  • Online Degrees
  • Partnerships
  • Professional Development
  • Research Publications
  • Scholarships and Grants
  • Student Snapshot
  • Summer Exploration Camps
  • Transferring Credits
  • Uncategorized
  • Undergraduate Admissions

Related News

Steelton-highspire students begin school year with new hands-on learning opportunities.

HARRISBURG, PA – Today marked the first day of classes this academic year for the Steelton-Highspire School District. Students and families...

Harrisburg University to Host Inaugural Board Game Playtest Event

HARRISBURG, PA – Harrisburg University of Science and Technology (HU) will host board gaming professionals and enthusiasts at the first annual Playtest...

J-DAMMIT 2024: What Is It and Who Will Be There?

HARRISBURG, PA – In September, Harrisburg University of Science and Technology (HU) and its Center for Advanced Manufacturing and Materials, STORMWERX,...

Harrisburg University’s Charles Brumlik, PhD, Named a 2024 Fellow by the American Chemical Society (ACS)

HARRISBURG, PA – The American Chemical Society (ACS) has added 37 new names to its roster of ACS Fellows in 2024,...

Harrisburg University Professor Albert Sarvis Talks Effort to Ban Chinese Consumer Drones in US

HARRISBURG, PA – On August 7, Albert Sarvis, Associate Professor of Geospatial Technology at Harrisburg University (HU), sat down with abc27’s...

Harrisburg University and the Technology Council of Central Pennsylvania Host 2024 PA TechCon on August 15

HARRISBURG, PA – Harrisburg University of Science and Technology (HU) will again host PA TechCon, an annual technology conference. Organized by...

Introducing the Harrisburg University Advisory Board on Data Analytics

HARRISBURG, PA – Did you know Harrisburg University of Science and Technology (HU) has an Advisory Board for its Master of Science...

Examining the Impact of Record Summer Heat in Central PA

HARRISBURG, PA – Last month was the fifth-hottest July in Pennsylvania’s recorded history, according to climate scientists. Anthropogenic climate change...

HU Signs Agreement to Provide Tuition Discounts to Commonwealth of Pennsylvania (COPA) Employees and Dependents

Harrisburg, PA – Harrisburg University of Science and Technology (HU) is pleased to announce the signing of an agreement with the...

326 Market St, Harrisburg, PA 17101 P: (717) 901-5100 Contact Us

why research is important in education

The importance of research and its impact on education

The importance of research and its impact on education

Tertiary education is indeed a big investment, so looking for the right university takes time, patience, and dedication. In case you hadn’t noticed, most universities tend to highlight research as one of their most distinguished and competitive strengths. But the question here is why ?

From an individual point of view, the advantages of research extend beyond having an impressive degree certificate. Through detailed research, students develop critical thinking expertise, as well as effective analytical, research, and communication skills that are globally sought-after and incredibly beneficial. Ultimately, research is essential to economic and social development of our globalised society, forming the foundations governmental policies around the world.

“Knowledge generated by research is the basis of sustainable development, which requires that knowledge be placed at the service of development, be converted into applications, and be shared to ensure widespread benefits,” says Mary-Louise Kearney, Director of the UNESCO Forum on Higher Education, Research and Knowledge.

why research is important in education

One institution which understands this is the University of Skovde . Though the university is actually much younger than most, its education and internationally-competitive research are highly respected, particularly within the School of Bioscience . The university has a well-developed collaboration between education, research, the business community, and society on both a national and international level.

The school has three divisions : – The Division for Bioinformatics and Ecology, The Division for Cognitive Neuroscience and Philosophy, and The Division for Molecular Biology; offering a total of 13 academic programs at the undergraduate and advanced levels. Besides providing an impressive array of courses, the school has its own research centre known as the Systems Biology Research Center , where research is conducted in the following areas:- Infection Biology , Bioinformatics , Biotechnology , Cognitive Neuroscience and Philosophy and Ecological Modeling . Here are some examples of what Skovde’s experienced research teams have been working on:

why research is important in education

Infection Biology

Research from the Infection Biology Group focuses on the development of mathematical and statistical models as well as experimental methodology used to help understand the complex systems that make up infection biology. The Group’s current funded projects focus on:

  • Identifying new biomarkers to help diagnose sepsis patients at an early stage
  • Identifying biomarker profiles for immunosuppressive drugs
  • Developing new methods for the detection of plant pathogens

Bioinformatics

Formed by computer science researchers, this area of investigation focuses on the development and application of algorithms for the analysis of biological data. Skovde’s research has incorporated the development of algorithms, software and databases, as well as solving biological research problems with these tools. As part of the research team, students get to work with other researchers such as stem cell and tumour biologists from other groups within the university , industrial partners and other establishments.

Cognitive neuroscience and philosophy

Research in cognitive neuroscience seeks to increase knowledge and understanding of human abilities, reflected in the form of cerebral activity. One of the main goals of the research is to increase our understanding of human consciousness, as well as to study methods that might increase human wellbeing.

why research is important in education

Biotechnology

Defined as the application of biological organisms, systems, or processes by various industries, stakeholders and researchers, Biotechnology encompasses science and life, improving the value of materials and organisms through pharmaceuticals, crops, livestock and the environment. While research in plant biotechnology seeks to identify specific genes to eliminate various forms of arsenic contamination, Skovde’s research projects in microbial biotechnology can also be used to develop microbial bioreactors. The mussel research project that is run together with ecologists includes development of molecular markers that will enable scientists to identify different mussel species.

Skovde’s high-impact research also extends far beyond the laboratory, where the school collaborates with  Life Science companies, public organisations and other universities to strengthen its research. Through these partnerships, the school has access to specific expertise, highly advanced laboratories and equipment, as well as PhD studies.

Additionally, the university works with business partners like AstraZeneca , Abbott Diagnostics AB and EnviroPlanning to teach industrial PhD students, and also conduct research in the interest of the company. Students who register for an industrial PhD will be employed by these companies, and receive PhD training at the School of Bioscience – a great career experience that enhances their CV tremendously.

In short, studying at a university with a reputable research foundation not only gives you a firm platform on which you can continue learning, but the skills you master also provide a real advantage over others in the real-world.

Click here to view Skovde’s recent research publications

Follow University of Skovde on Facebook and YouTube

All images courtesy of University of Skovde

Liked this then you’ll love these….

​The phenomenal growth of Life Sciences in emerging markets

The role of university research in tackling social challenges and driving economic growth

Popular stories

The dark side of russell group universities.

The dark side of Russell Group universities

The greatest cheating scandals in schools and universities of all time

The greatest cheating scandals in schools and universities of all time

This skill will land you a ‘fairytale-like’ internship at Cartier

This skill will land you a ‘fairytale-like’ internship at Cartier

48, rich, and unabashedly successful in the most competitive country in the world

48, rich, and unabashedly successful in the most competitive country in the world

  • Hospitality Industry

Why is research important for an educational institution?

Importance of Research EHL

July 09, 2023 •

9 min reading

Research is typically separated into two different types: fundamental and applied research. While fundamental research aims to bring knowledge from a natural phenomenon and improve our understanding of it, applied research uses existing scientific knowledge to solve real-world problems or address other practical issues. But why are fundamental and applied research so important in our society? Why is it critical for an educational institution to invest its resources in research and development? How does this apply to the hospitality industry?

In today’s world, research is becoming increasingly important. Indeed, the total global spending on research & development (R&D) has increased steadily over the past 25 years and reached USD 2.34 trillion in 2021, according to Statista. i In the European context, Horizon Europe is considered the key funding program for research and innovation, with an overall budget of EUR 95.5 billion (2021-2027) . But why is so much investment poured into research?

The strong impact of research in today's world

Research impact is defined by the Research Excellence Framework as having “an effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment, or quality of life, beyond academia”. ii As a result, educational institutions, with both fundamental and applied research, have a major role to play and can positively contribute to those aspects. In this article, we aim to show in 3 key reasons why it is important for educational institutions to contribute to research. 

1. The role educational institutions play in addressing global problems and fostering innovation via research

“Science lies at the heart of solutions to important problems” and management scholars have a distinctive advantage in tackling significant societal issues. They can confront key obstacles related to individuals, behaviors, organizations, and institutions that frequently arise when addressing society-wide challenges. By overcoming these obstacles, they can help create a more inclusive society. iii  According to a recent study, 36% of researchers believe that solving political, social, economic or environmental problems is one of their most important roles. The European Council Resolution describes European universities as being at the forefront of “Europe’s drive to create a knowledge-based society and economy and improve its competitiveness”. iv  

As a result, educational institutions can make a significant contribution to the economy and society through research, more specifically on companies, cultural and social-health institutions, the authorities and civil society . For example, in 2020, the collaborative efforts of Oxford University and AstraZeneca resulted in the successful development of the Oxford/AstraZeneca Covid-19 Vaccine , offering widespread protection against the global pandemic. Similarly, researchers at University College London made significant strides in breast cancer treatment , showcasing a pioneering therapy that proved to be as effective as traditional approaches.

Addressing complex global challenges requires a comprehensive approach that encompasses effective policymaking. Consequently, it becomes imperative for policy changes to be grounded in rigorous fundamental research, as emphasized by Aurélie Boulos, Head of Faculty Affairs at EHL Hospitality Business School.

Also, the impact of university-industry links on innovation has been studied by scholars in various fields such as management, economics, sociology, science, and technology v and 46% of researchers believe that their main role in society involves “enabling innovation” .  As a result, educational institutions play an important role in technological, cultural and societal innovations and value creation . As mentioned at the 2023 World Economic Forum in Davos: “Fundamental scientific research has laid the foundations for many of today’s most important innovations” , such as the discovery of the structure of DNA or the invention of the internet.

It is also important to develop new knowledge that is both of high quality and reliable in order to foster the innovation of products and services that meet existing needs. vi The European Innovation Council (EIC) supports start-ups, SMEs and research teams in creating innovation, and has a budget of EUR 10.6 billion (2021-2027) for innovation, including European innovation ecosystems . In some cases, research can have a broad impact if it causes a shift in thinking that extends beyond its original scope and is applied to new organizations and institutions. One salient example is the advent of the sharing economy, which has become ubiquitous around the globe in just a few years. vii

2. Educational institutions have an impact on knowledge sharing and dissemination via scientific partnerships

Developing cross-collaborations between universities and industries, and across different fields of expertise, is important to create accurate knowledge and understanding of the world phenomena. Interestingly, 43% of researchers surveyed prefer to involve people outside of their specific field in order to better shape their research . This is therefore not surprising to see that, according to statistics from Horizon 2020, more than 1.5 million research collaborations have been created from more than 150 countries . The Covid-19 pandemic has indeed proven that “science has become a team activity” , and that a strong partnership will only bring better solutions to the current world. Indeed, the complexity of this crisis has encouraged the collaboration of molecular biologists, epidemiologists, clinicians, social scientists, engineers, material scientists, among others .

Creating collaborations is one important thing, sharing new knowledge to the public is another, as a majority (63%) of researchers believe they contribute to “educating others” . Indeed, 57% of Americans are more likely to believe in research if the data is publicly available . The pandemic also had an impact on knowledge sharing, with 78% of researchers surveyed agreeing that the pandemic increased the importance of science bodies and the need for researchers to explain research findings to the public .

EHL Research  Collaborate with our Researchers  Opportunities for collaborative research range from dedicated applied research  projects by selected faculty members to sponsorship of a long-term research  institute at EHL.  Contact us

3. Research contributes to the growth and success of higher education institutions

While the impact of educational institutions’ research on society has been widely explored, it is worth remembering that research also has a strong impact on the institutions themselves. First, research has an impact on teaching that helps “the training of responsible and autonomous professionals, who take a reflective look at their practice and have acquired the ability to constantly develop their skills” . However, the benefits are not only for the teachers but also for the students. Students who engage in research tend to have higher critical thinking and problem-solving skills. viii

Also, research plays a significant role in accreditations as well as the competitiveness of the university, which ultimately enables it to attract top talent in terms of both students and faculty. It has been shown that research productivity is positively correlated with institutional ranking and reputation. ix

The focus is now on finding ways to evaluate and compare the quality and effectiveness of university teaching, learning, and research. Over the past few years, there has been a gradual increase in techniques for assessing higher education activities and results, especially when it comes to university-based research. For example, university rankings have become ubiquitous across the globe. x However, measuring research impact needs to go beyond numbers and understand its overall impact on society. As the world becomes more interconnected, there will be more and more global evaluations of research quality and performance. xi

As a result, a multidimensional system combining indicators and expert knowledge is needed. In order to have a better assessment of universities’ research, combining quantitative data with qualitative information, recognizing disciplinary differences, assessing impact and benefits, and integrating self-evaluation seem to be the key. xii

Collaborations, communication and funding help educational institutions develop research, even in the hospitality industry

Universities play a multifaceted role beyond education, as exemplified earlier. It is crucial for these educational institutions to prioritize research investment, given its profound positive impact on global society. Research can continue to be developed and enhanced through partnerships and collaborations, along with good communication and funding mechanisms . Horizon Europe supports, through the European Research Council (ERC), frontier research, fellowships, doctoral networks, training, and exchanges for researchers. It also develops research infrastructure, with an overall investment budget of EUR 25 billion . At the Swiss level, the Swiss National Science Foundation (SNSF) in 2022 has approved 2,732 new grants with a total of CHF 1.08 billion for researchers in all research institutions .

The hospitality industry also relies on partnerships with the universities for its development. Indeed, the research developed in educational institutions enables “shedding new light on various fields such as management, human behavior, finance, planning, marketing and many more” , which are very relevant to the hospitality industry, particularly in the areas of technology and sustainability. Research in this field is crucial because consumer demand and market conditions are fluctuating all the time, which has a direct impact on the industry. As hospitality is a sector that is fluctuating and—by nature—highly international, research also enables industry players and the general public to have a better understanding of various issues when a crisis erupts, such as the one we faced during the Covid-19 pandemic. xiii By critically evaluating research as a significant scientific endeavor, universities can develop accessible and credible methodologies, addressing current challenges and providing practical solutions. This emphasis on research not only contributes to economic development, but also enhances practices and services in the hospitality sector. xiv

At EHL Hospitality Business School, many fundamental and applied research partnerships are possible within the broad industry of hospitality and tourism. Should you be interested in a potential collaboration in the future, you can use the contact form directly available on the EHL Hospitality Business School research website .

  • https://www.statista.com/study/70627/research-and-development-worldwide/
  • Ozanne, J. L., Davis, B., Murray, J. B., Grier, S., Benmecheddal, A., Downey, H., & Veer, E. (2017). Assessing the societal impact of research: The relational engagement approach. Journal of Public Policy & Marketing, 36(1), 1-14.
  • George, G., Howard-Grenville, J., Joshi, A., & Tihanyi, L. (2016). Understanding and tackling societal grand challenges through management research. Academy of management journal, 59(6), 1880-1895.
  • Hazelkorn, E. (2010). Assessing Europe’s university-based research. Luxembourg: Publications Office of the European Union.
  • Perkmann, M., & Walsh, K. (2007). University–industry relationships and open innovation: Towards a research agenda. International journal of management reviews, 9(4), 259-280.
  • Yuan, R., Yang, M., & Stapleton, P. (2020). Enhancing undergraduates’ critical thinking through research engagement: A practitioner research approach. Thinking Skills and Creativity, 38(July), 100737.
  • Porter, S. R., & Toutkoushian, R. K. (2006). Institutional research productivity and the connection to average student quality and overall reputation. Economics of Education Review, 25(6), 605–617.
  • Baum, T., & Hai, N. T. T. (2020). Hospitality, tourism, human rights and the impact of COVID-19. International Journal of Contemporary Hospitality Management, 32(7), 2397-2407.
  • https://qs-gen.com/the-role-of-research-in-the-hospitality-industry-a-content-analysis-of-the-ijhm-between-2000-and-2005-2/  

Romane Petit

Research Assistant at EHL Hospitality Business School

Keep reading

why research is important in education

Beyond small talk: Deep networking techniques for introverts

Aug 20, 2024

Learning from hospitality strategic

What hospitals can learn from the hospitality industry – The strategic perspective

Aug 15, 2024

employer brand

Crafting a unique employer brand for today's talent market

Aug 14, 2024

why research is important in education

This is a title

This is a text

  • Bachelor Degree in Hospitality
  • Pre-University Courses
  • Master’s Degrees & MBA Programs
  • Executive Education
  • Online Courses
  • Swiss Professional Diplomas
  • Culinary Certificates & Courses
  • Fees & Scholarships
  • Bachelor in Hospitality Admissions
  • EHL Campus Lausanne
  • EHL Campus (Singapore)
  • EHL Campus Passugg
  • Host an Event at EHL
  • Contact our program advisors
  • Join our Open Days
  • Meet EHL Representatives Worldwide
  • Chat with our students
  • Why Study Hospitality?
  • Careers in Hospitality
  • Awards & Rankings
  • EHL Network of Excellence
  • EHL Hospitality Business School
  • Route de Berne 301 1000   Lausanne 25 Switzerland
  • Accreditations & Memberships
  • Privacy Policy
  • Legal Terms

© 2024 EHL Holding SA, Switzerland. All rights reserved.

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

why research is important in education

Understanding Science

How science REALLY works...

Prepare and plan

Educational research.

The teaching resources recommended on our site are consistent with what is known about how students learn the nature and process of science. Educational research suggests that the most effective instruction in this area is explicit and reflective, and provides multiple opportunities for students to work with key concepts in different contexts. But just how do we know that this sort of instruction works? And how do we know which concepts are hardest for students to learn and which are the most difficult misconceptions to address? To find out, browse the links below. Each link summarizes a journal article from the education research literature and helps reveal how we know what we know about how students learn.

  • “That’s what scientists have to do”: Preservice elementary teachers’ conceptions of the nature of science during a moon investigation.  (Abell et al., 2001)
  • Influence of a reflective activity-based approach on elementary teachers’ conceptions of nature of science.  (Akerson et al., 2000)
  • Evaluating knowledge of the nature of (whole) science.  (Allchin, 2011)
  • Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction.  (Clough, 2006)
  • Examining students’ views on the nature of science: Results from Korean 6th, 8th, and 10th graders.  (Kang et al., 2004)
  • Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science.  (Khishfe and Abd-El-Khalick, 2002)
  • Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship.  (Lederman, 1999)
  • Revising instruction to teach nature of science.  (Lederman and Lederman, 2004)
  • Science teachers’ conceptions of the nature of science: Do they really influence teacher behavior?  (Lederman and Zeidler, 1987)
  • Examining student conceptions of the nature of science.  (Moss, 2001)
  • Student conceptualizations of the nature of science in response to a socioscientific issue.  (Sadler et al., 2004)
  • Explicit reflective nature of science instruction: Evolution, intelligent design, and umbrellaology.  (Scharmann et al., 2005)
  • Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry.  (Schwartz et al., 2004)
  • Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas.  (Zeidler et al., 2002)

Abell, S., M. Martini, and M. George. 2001. “That’s what scientists have to do”: Preservice elementary teachers’ conceptions of the nature of science during a moon investigation.  International Journal of Science Education  23(11):1095-1109. Two sections of an undergraduate course in elementary science education were observed during an extended investigation, in which students made observations of the moon and tried to develop explanations for what they saw. Students worked in groups, were engaged in many aspects of the process of science, and were asked to reflect on their own learning regarding the moon. Eleven student journals of the experience, along with interview transcripts from these students, were analyzed for student learning regarding observation in science, the role of creativity and inference in science, and social aspects of science. Major findings include:

  • Students recognized that observations are key in science but didn’t recognize the role that observation plays in science.
  • Students recognized that their own work involved observing, predicting, and coming up with explanations, but they did not generally connect this to the process of science.
  • Students recognized that collaboration facilitated their own learning but did not generally connect this to the process of science.

This research highlights the pedagogical importance of making the nature and process of science explicit: even though students were actively engaged in scientific processes, they did not get many of the key messages that the instructors implicitly conveyed. The researchers also recommend asking students to reflect on how their own understandings of the nature and process of science are changing over time.

Akerson, V.L., F. Abd-El-Khalick, and N.G. Lederman. 2000. Influence of a reflective activity-based approach on elementary teachers’ conceptions of nature of science.  Journal of Research in Science Teaching  37(4):295-317. Fifty undergraduate and graduate students enrolled in a science teaching methods course engaged in six hours of activities designed to target key nature-of-science concepts, consistent with those outlined in Lederman and Lederman (2004). After the initial set of activities and throughout the course, students were encouraged to reflect on those concepts as opportunities arose within the designated pedagogical content, and were assigned two writing tasks focusing on the nature of science. By the end of the course, students were so accustomed to these reflections that they frequently identified such opportunities for themselves. Students were pre- and post-tested with an open-ended questionnaire targeting the key concepts, and a subset of students was interviewed on these topics. Responses were analyzed for key concepts to determine whether students held adequate conceptions in these areas. Major findings include:

  • There were few differences between graduates and undergraduates: most students began the course with largely inadequate conceptions.
  • Students began the course understanding least about the empirical nature of science, the tentative nature of scientific knowledge, the difference between theories and laws, and the role of creativity in science.
  • Significant gains were achieved as a result of instruction. Student conceptions improved most in the areas of the tentative nature of scientific knowledge, the difference between theories and laws, and the difference between observation and inference.

The explicit, reflective instruction was effective, but despite the gains achieved, many students still held inadequate conceptions at the end of the course. This supports the idea that students hold tenacious misconceptions about the nature and process of science, and, the authors argue, suggests that instructors should additionally focus on helping students see the inadequacy of their current conceptions. The authors suggest that the role of subjectivity, as well as of social and cultural factors, in science are best learned through rich historical case studies, which are hard to fit into a methods course. Finally, the authors conclude that nature-of-science instruction is effective in a methods course, but would likely be more effective in a science content course.

Allchin, D. 2011. Evaluating knowledge of the nature of (whole) science.  Science Education  95:518-542. The author argues that commonly used instruments assessing knowledge of the nature of science are inadequate in several ways. They focus too much on declarative knowledge instead of conceptual understanding, are designed for research not classroom assessment, and are inauthentic in the sense that they do not examine student knowledge in contexts similar to those in which we want students to use this knowledge. Furthermore, lists of the tenets of the nature of science (which such assessments are based upon) are oversimplified and incomplete. The author argues that instead of assessing whether students can list the characteristics of scientific knowledge, we should be interested in whether students can effectively analyze information about scientific and socioscientific controversies and assess the reliability of scientific claims that affect their decision making. In order to do this, students need to understand how the process of science lends credibility to scientific ideas. The author proposes an alternative assessment form (based on the AP free responses essay) that requires well-informed analysis on the part of the student, involves authentic contexts, and can be adapted for many different assessment purposes and situations. In it, students are asked to analyze historic and modern case studies of scientific and socioscientific controversies. Prototypes for this type of assessment are provided.

Clough, M. 2006. Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction.  Science Education  15:463-494. The author introduces the idea that many aspects of student learning about the nature and process of science can be explained, and that learning may be improved, by viewing this learning as a process of conceptual change. Just as in learning about Newtonian physics, students often enter an instructional setting with tenacious misconceptions about what science is and how it works — probably resulting from previous instruction (e.g., cookbook labs) and other experiences. Students may then distort new information to fit their existing incorrect knowledge frameworks. The author proposes that this is why explicit, reflective instruction (which provides students with opportunities to assess their previous conceptions) helps students learn about the nature and process of science, while implicit, non-reflective instruction does not. Furthermore, the author argues that explicit instruction on the nature and process of science can be placed along a continuum from decontextualized to highly contextualized. Examples of each are:

  • Decontextualized: black-box activities
  • Moderately contextualized: students reflecting on the process of science in their own labs
  • Highly contextualized: students reflecting on a modern or historic example of science in progress

Highly contextualized activities are useful because they make it difficult for a student to dismiss their learning as applying only to “school science” and because teachers are less likely to view such activities as add-ons. However, decontextualized activities also have advantages because they make it very easy to be explicit and emphasize key concepts. The author concludes that instruction that incorporates instruction from all along the continuum and that draws students’ attention to the connections between the different positions along the continuum is likely to be most effective.

Kang, S., L. Scharmann, and T. Noh. 2004. Examining students’ views on the nature of science: Results from Korean 6th, 8th, and 10th graders.  Science Education  89(2):314-334. A multiple-choice survey (supplemented by open-ended questions) on the nature and process of science was given to a large group of 6th, 8th, and 10th grade students in Korea. Most students thought that:

  • Science is mainly concerned with technological advancement
  • Theories are proven facts
  • Theories can change over time
  • Scientific knowledge is not constructed, but discovered (i.e., can be read off of nature)

Interestingly, Korean students don’t tend to hold the common Western misperception of theories as “just hunches.” The researchers found little improvement in understanding in older students. This suggests that special attention is needed to help students learn about the nature of science. The researchers argue that we should begin instruction in this area early in elementary school.

Khishfe, R., and F. Abd-El-Khalick. 2002. Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science.  Journal of Research in Science Teaching  39(7):551-578. Two sixth grade classes (62 students total) in Lebanon experienced two different versions of a curriculum spanning ten 50 minute segments. One class participated in an inquiry-oriented science curriculum, which included a discussion component that explicitly emphasized how the nature of science was demonstrated through student activities. The other participated in the same inquiry curriculum, but their discussion focused exclusively on science content or the skills students had used in the activity. Both groups completed open-ended questionnaires and participated in interviews regarding their views of the nature of science before and after the intervention. The two groups started off with similar, low levels of understanding, but the students in the class with explicit discussion of the nature of science substantially improved their understanding of key elements of the nature of science (the tentative, empirical, and creative nature of scientific knowledge, as well as the difference between observation and inference) over the course of the intervention. The other group did not. However, even with the enhanced, explicit curriculum, only 24% of the students achieved a consistently accurate understanding of the nature of science. These findings support the idea that inquiry alone is insufficient to improve student understanding of the nature of science; explicit, reflective instruction is necessary as well. The researchers further conclude that this instruction should be incorporated throughout teaching over an extended period of time in order to see gains among a larger fraction of students. The researchers emphasize that explicit, reflective teaching does not mean didactic teaching, but rather instruction that specifically targets nature of science concepts and that provides students with opportunities to relate their own activities to the activities of scientists and the scientific community more broadly.

Lederman, N.G. 1999. Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship.  Journal of Research in Science Teaching  36(8):916-929. Five high school biology teachers were observed weekly for one year to examine whether their conceptions of the nature of science were reflected in their teaching. The researcher also collected data from questionnaires, student and teacher interviews, and classroom materials. All five teachers had accurate understandings of the nature of science. The most experienced teachers used pedagogical techniques consistent with the nature of science, though they weren’t explicitly trying to do so and did not claim to be trying to improve students’ understanding of the nature of science. Less experienced teachers did not teach in a manner consistent with their views of the nature of science. This suggests that an adequate understanding of the nature and process of science and curricular flexibility alone are not sufficient to ensure that teachers will use pedagogical techniques that reflect that understanding. In addition, the researchers found that students in these classrooms gained little understanding of the nature of science, regardless of whether they were taught by a more or less experienced teacher. This lends further support to the idea that teachers need to be explicit about how lessons and activities relate to the nature and process of science in order for students to improve their understandings in this area. The researcher concludes that teacher education programs need to make a concerted effort to help teachers improve their ability to explicitly translate their understanding of the nature of science into their teaching practices. Furthermore, teachers should be encouraged to view an understanding of the nature of science as an important pedagogical objective in its own right.

Lederman, N.G., and J.S. Lederman. 2004. Revising instruction to teach nature of science.  The Science Teacher  71(9):36-39. The authors describe seven aspects of the nature of science that are important for K-12 students to understand:

  • the difference between observation and inference
  • the difference between laws and theories
  • that science is based on observations of the natural world
  • that science involves creativity
  • that scientific knowledge is partially subjective
  • that science is socially and culturally embedded
  • that scientific knowledge is subject to change.

They argue that most lessons can be modified to emphasize one or more of these ideas and provide an example from biology instruction. Many teachers use an activity in which students study a slide of growing tissue and count cells at different stages of mitosis in order to estimate the lengths of these stages. The authors recommend modifying this activity in several ways:

  • asking students to reason about how they know when one stage ends to emphasize the sort of subjectivity with which scientists must deal
  • asking students to grapple with ambiguity in their data
  • asking students to reason about why different groups came up with different estimates and how confident they are in their estimates in order to emphasize the tentativity of scientific knowledge
  • asking students to distinguish between what they directly observed on the slide and what they inferred from those observations.

The authors emphasize that incorporating the nature and process of science into this activity involves, not changing the activity itself, but carefully crafting reflective questions that make explicit relevant aspects of the nature and process of science.

Lederman, N.G., and D.L. Zeidler. 1987. Science teachers’ conceptions of the nature of science: Do they really influence teacher behavior?  Science Education  71(5):721-734. Eighteen high school biology classrooms led by experienced teachers were studied over the course of one semester. Teachers’ understandings of the nature and process of science were assessed at the beginning and end of the semester. In addition, the researchers made extensive observations of each classroom at three different points in the semester and categorized the teachers’ and students’ behaviors along many variables relating to teaching the nature and process of science. The researchers found  no  relationship between a teacher’s knowledge of the nature and process of science and the teacher’s general instructional approach, the nature-of-science content addressed in the classroom, the teacher’s attitude, the classroom atmosphere, or the students’ interactions with the teacher. This finding challenges the widely held assumption that student understanding of the nature and process of science can be improved simply by improving teacher understanding. Instead, the teachers’ level of understanding of this topic was unrelated to classroom performance. The authors emphasize that this doesn’t indicate that a teacher’s ideas don’t matter at all; teachers need at least a basic understanding of the topics they will teach, but this alone isn’t enough. The authors suggest that to improve their teaching in this area, instructors also need to be prepared with strategies designed specifically for teaching the nature and process of science.

Moss, D.M. 2001. Examining student conceptions of the nature of science.  International Journal of Science Education  23(8):771-790. Five 11th and 12th grade students, with a range of academic achievement, taking an environmental science class, were interviewed six times over the course of a year. The class was project-based and engaged students in data collection for real scientific research. Interviews focused on students’ views of selected aspects of the nature and process of science. The researcher coded and interpreted transcripts of the interviews. Major findings include:

  • In contrast to previous studies, most students understood that scientific knowledge builds on itself and is tentative. Students also seemed to understand science as a social activity.
  • Many students didn’t know what makes science science and had trouble distinguishing science from other ways of knowing.
  • Many students viewed science as merely procedural.
  • Most students didn’t understand that scientists regularly generate new research questions as they work.
  • Despite the authentic, project-based nature of the course, there were few shifts in student views of the nature and process of science.

This research supports the view that explicit instruction is necessary to improve student understanding of the nature/process of science. The researcher suggests that this can be done by having students develop their own descriptions of the fundamentals of the nature and process of science. The researcher also suggests that teachers need to focus on helping students understand the boundaries of science, perhaps by explicitly discussing how science compares to other human endeavors.

Sadler, T.D., F.W. Chambers, and D. Zeidler. 2004. Student conceptualizations of the nature of science in response to a socioscientific issue.  International Journal of Science Education  26(4):387-409. A group of average- to below average-achieving high school students was asked to read contradictory reports about the status of the global warming debate and answer a series of open-ended questions that related to the nature and process of science. Each report included data to support its conclusions. The researchers examined and coded students’ oral and written responses. On the positive side, the researchers found that:

  • Most students understood that science and social issues are intertwined.
  • Most students were comfortable with the idea that scientific data can be used to support different conclusions and that ideological positions may influence data interpretation.
  • Almost half of the students were unable to accurately identify and describe data, and some conflated expectations and opinions with data.
  • There was a tendency for students to view the interpretation consistent with their prior opinion as the most persuasive argument – even in cases where they judged the opposite interpretation to have the most scientific merit. This suggests that students may not incorporate scientific information into their decision-making process, dichotomizing their personal beliefs and scientific evidence.

The researchers suggest that instruction should focus on the above two issues and that teachers should encourage students to consider scientific findings when making decisions. In addition, students should be encouraged to deeply reflect on socioscientific issues and consider them from multiple perspectives.

Scharmann, L.C., M.U. Smith, M.C. James, and M. Jensen. 2005. Explicit reflective nature of science instruction: Evolution, intelligent design, and umbrellaology.  Journal of Science Teacher Education  16(1):27-41. Through multiple iterations of a preservice science teacher education course, the researchers designed a 10 hour instructional unit. In the unit, students:

  • attempt to arrange a set of statements along a continuum from more to less scientific
  • develop a set of criteria for making such judgments
  • participate in a set of inquiry activities designed to teach the nature of science (e.g., the black box activity)
  • read and reflect on articles about the nature of science
  • analyze intelligent design, evolutionary biology, and umbrellaology (a satirical description of the field of umbrella studies) in terms of the criteria they developed.

The final iteration of this set of activities was judged by the authors to be highly effective at changing students’ views of the nature of science and perhaps even helping them recognize that intelligent design is less scientific than evolutionary biology. Furthermore, the researchers suggest that using a continuum approach regarding the classification of endeavors as more or less scientific may be helpful for students who have strong religious commitments and that explicit, respectful discussion of religion in relation to science early in instruction is likewise important for these students.

Schwartz, R.S., N.G. Lederman, and B. Crawford. 2004. Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry.  Science Education  88(4):610-645. A group of preservice science teachers participated in a program that included 10 weeks of work with a scientific research group, discussions of research and the nature of science, and writing prompts which asked the preservice teachers to make connections between their research and the process of science. Participants were interviewed and observed, and responded to a questionnaire about the nature of science. Eighty-five percent of the participants improved their understanding of the nature of science over the course of the program. The two participants who did not improve their understanding were the two that focused on the content of their research and did not reflect on how this related to the nature of science. Participants also seemed to gain a better understanding of how to teach the nature and process of science explicitly. The researchers conclude that the research experience alone did little to improve students understanding, but that this experience was important for providing the context in which active reflection about the nature and process of science could occur. They recommend that scientific inquiry in the K-12 classroom incorporate reflective activities and explicit discussions relating the inquiry activity to the nature and process of science.

Zeidler, D.L., K.A. Walker, W.A. Ackett, and M.L. Simmons. 2002. Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas.  Science Education  86(3):343-367. A sample of 248 high school and college students were given open-ended questions eliciting their views of the nature of science. In addition, researchers elicited students’ views on a socioscientific issue (the appropriateness of animal research) using both a Likert scale item and open-ended questions. From this large sample, 42 pairs of students with differing views of the appropriateness of animal research were selected. These pairs of students were allowed to discuss the issue with each other and were probed by an interviewer. Finally, they were presented with data anomalous to their own view and were probed again on their confidence in the data and their willingness to change their view. Researchers analyzed these 82 students’ responses to the open-ended questions using concept mapping and compared their responses to Likert items. They found that students  did  change their views on the issue as a result of discussion and exposure to anomalous data. They also found that younger students tended to be less skeptical of anomalous data presented to them from an official-sounding report. In only a few cases were students’ views of the nature of science obviously related to their analysis of the socioscientific issue. These were mainly situations in which a student expressed a belief that scientists interpret data to suit their personal opinion, and then, correspondingly, the student selectively accepted or rejected evidence according to whether it supported his or her opinion. In addition, many students seemed to believe that all opinions are equally valid and immune to change regardless of the scientific evidence. The authors conclude that instruction on the nature of science should be incorporated throughout science courses and should include discussion in which students are asked to contrast different viewpoints on socioscientific issues and evaluate how different types of data might support or refute those positions.

Thanks to Norm Lederman and Joanne Olson for consultation on relevant research articles.

Correcting misconceptions

Teaching tips

Subscribe to our newsletter

  • Understanding Science 101
  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool
  • Misconceptions

Helping educators answer “Why did we do that?”

Helping educators answer “Why did we do that?”

By Katherine Ouellette

With educational technologies and learning science research evolving so rapidly, deciding how to approach teaching might be daunting. How can educators design curricula that balances effective learning methods, the priorities of their institution or setting, time and budget constraints, and individual learners’ diverse needs?

To ensure learners remain the top priority while designing educational innovations, MIT Open Learning’s Residential Education group created a collaborative decision-tracking tool. The Learning Engineering Evidence and Decision (LEED) tracker is a framework for documenting the complex influences on design choices for learning experiences. The LEED tracker uses the principles of learning engineering to help record the rationale, pedagogical research, and various inputs that lead to the finished product.

Lauren Totino, learning engineer, and Aaron Kessler, associate director of learning sciences and teaching at MIT Open Learning, recently published a short paper about the LEED tracker, “Why did we do that?” A Systematic Approach to Tracking Decisions in the Design and Iteration of Learning Experiences , in the Journal of Applied Instructional Design. They took a break from their work to share why LEED’s holistic design enhances transparency, collaboration, and continual improvement.

Q: What influenced the development of the LEED tracker?

A: The idea of tracking decisions is not new, but what’s novel is our development of a practical tool that incorporates an amalgamation of influences. Each piece of the LEED tracker is connected to the learning engineering process. We see this tool bridging design processes, learning theories, and other decisions of varying magnitudes. It’s not just writing down decisions — it’s also paying attention to things like:

  • keeping learners at the center;
  • instrumenting to collect data; and,
  • iterating based on data and feedback.

Q: How does the LEED tracker fit into the education ecosystem? Who might benefit from using it?

A: The LEED tracker can be adapted for any learning solution design. The processes for design decisions are not always linear or independent of one another. When your context grows more complex, it’s even more important to record decisions in a sharable and reusable form.

Whether used by an individual or a team, LEED offers a systematic way to navigate any level of complexity. It captures decisions and feedback from all stakeholders affected by the challenge and its solution. This holistic view helps teams break down silos of expertise to understand the big picture.

Instructors, instructional designers, learning engineers, learning designers, and other educational stakeholders could use the LEED tracker if they’re designing solutions for:

  • improving the student experience;
  • making learning more effective;
  • optimizing instructor time; and
  • harnessing and building on students’ prior knowledge.

We provide a few general LEED templates in the paper because there’s not one strict way to use it.

Q: What benefits are there to writing down and justifying implementable design decisions? How does this support learners in real-world experiences?

A: Practitioners designing learning experiences might be tempted to base their decisions on “gut” instinct arising from personal experiences. LEED tracking encourages decisions with concrete justifications, whether that’s learning science principles or insights from the learners themselves. Keeping meticulous records makes it easier to recall how each piece of the design goes together and why it works. We’ve received feedback that LEED enables users so “you don’t have to reverse-engineer your own brain.”

The LEED tracker also guides teams through the iterative learning engineering process so they can understand whether the experience is effective for learning, and then make evidence-based improvements. You don’t just set it and forget it. Ideally, you return with data and feedback to either:

  • support the continued implementation of a design element or experience; or
  • iterate based on new information.

You can still honor the original justification. You’re not adding all these net-new decisions; you’re checking why you made a certain decision in the first place.

Q: How does LEED tracking help navigate the complexities of designing for teaching and learning?

A: The LEED tracker, and the learning engineering principles informing it, center educational technology choices around the pedagogical benefits to ensure these tools don’t harm the learning process. Stakeholders can be intentional about what they’re implementing and consider all the possible effects on learners.

Q: What are the potential implications of this work? How do you hope LEED will be used?

A: We’re hoping practitioners learn how LEED’s underlying method of recording, revisiting, and iterating upon actionable design decisions and justifications can be a collaborative way to manage various influences while keeping learners at the center.

We also hope teams gain awareness of how the learning engineering process provides a framework for unpacking, interrogating, and navigating the complex systems of design work. You don’t have to have the title of “learning engineer” to do learning engineering — it’s about embracing practices and tools and developing a mindset.

Open Learning’s Residential Education team enhances teaching and learning at MIT through digital technologies.

why research is important in education

Helping educators answer “Why did we do that?” was originally published in MIT Open Learning on Medium, where people are continuing the conversation by highlighting and responding to this story.

Open Learning newsletter

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Community Eye Health
  • v.35(117); 2022
  • PMC10061254

Why does research matter?

Victor h hu.

Assistant Clinical Professor: International Centre for Eye Health, London School of Hygiene & Tropical Medicine and Consultant Ophthalmologist: Mid Cheshire NHS Hospitals, UK.

A working knowledge of research – both how it is done, and how it can be used – is important for everyone involved in direct patient care and the planning & delivery of eye programmes.

An external file that holds a picture, illustration, etc.
Object name is jceh_35_117_001_f01.jpg

A research coordinator collecting data from a health extension worker. ethiopia

The mention of ‘research’ can be off-putting and may seem irrelevant in the busy environment of a clinic or hospital. However, research is central to all aspects of eye care delivery – both inside and outside the clinic.

Whether we are health workers, public health practitioners, managers, policy makers, or editors – all of us ‘stand on the shoulders of giants’: we rely on the research done by others before us. This can be as simple – and profound – as hand washing between patients; a habit that only became common practice in the 1870s, following the work of the Hungarian physician Ignaz Semmelweis and Scottish surgeon Joseph Lister. Or it can be as complex as making a diagnosis of glaucoma and knowing what treatment to give. All current eye care practice is based on research. Clinical, operational (eye care delivery) and public health practice will continue to be profoundly shaped by new research developments.

What is research?

In its simplest form, research is about investigating the world around us to increase our knowledge, so we can work out how to do things better.

In health care, we use a scientific approach to carry out research; there is a set way of doing things that ensures research is done in a logical way, and that results are published widely, so that other people can scrutinise what has been done. This gives us confidence that the results will be useful in everyday practice.

It is important to critically evaluate research and research findings, including checking that research has been carried out in the proper way, and whether the conclusions that have been made are reasonable and justified. One of the ways in which the scientific community ensures the quality of research is through the process of peer review. Before research papers are accepted for publication in a scientific journal, they are reviewed by other researchers (peer reviewed) to check the quality of the research and the validity of the results and conclusions. Even so, the quality of published research can vary.

This is why systematic reviews and meta-analyses are so valuable: they answer important questions by identifying, evaluating, and summarising good quality evidence from a range of published research papers. Often, systematic reviews conclude that there is not enough evidence to answer a question with absolute certainty, or to produce an answer that will be applicable in different countries or health care settings. This is useful, as it gives researchers guidance about where more research is needed (see article on page 13).

But this can be a challenge for clinicians – how can we make good decisions in the absence of definitive evidence? Clinical experience is very important, but where possible this should be informed by good research – see page 6 for practical tips.

Health care practitioners and managers can also use guidance from professional bodies such as the World Health Organization. The article on page 8 explains the process by which guidelines are developed and shows why we can rely on them.

In conclusion, research is fundamental to the everyday practice of health care professionals, including eye care workers. Research allows us to find out new things and to provide better care for patients. There are many different types of research that can be carried out and these can vary enormously. It is important to ask the right question, as this will determine the type of research that is done (see page 5).

All of us can participate in research: it starts with asking questions and then going to find out the answers. The article on page 10 offers practical suggestions for carrying out small-scale research that is relevant and useful to eye care.

Types of health research

Basic science research, such as in molecular genetics or cell biology, fills the gaps in our understanding of disease mechanisms (pathogenesis).

Clinical research addresses how diseases in individuals can present and be diagnosed, and how a condition progresses and can be managed.

Epidemiological research , which is at the population level (as opposed to the individual level), answers questions about the number of people in the population who have a condition, what factors (called exposures) are causing the condition, and how it can be treated or prevented at the population level.

Going beyond epidemiology, there is also operational and health systems research , which focuses on how best to deliver health interventions, clinical and rehabilitation services, or behaviour change initiatives.

Other types of research , which are also important for public health, include health economics, social science, and statistical modelling.

Finally, systematic literature reviews can be very useful, as they identify and summarise the available evidence on a specific topic.

By Clare Gilbert and GVS Murthy

Examples of research questions and how they have been answered

Can povidone iodine prevent endophthalmitis.

In many eye departments, cataract surgery is a frequently preformed operation. One of the most serious complications is infection within the eye (endophthalmitis) which can lead to loss of vision. Several well conducted randomised controlled clinical trials have shown that instilling 0.5% aqueous povidone iodine eye drops, an antiseptic agent, before surgery reduces the risk of this devastating infection, with the first trial undertaken in 1991. 1

What is the best treatment for primary open-angle glaucoma?

Chronic glaucoma can be a very difficult condition to manage, particularly when patients often only present to eye departments once they have already had significant vision loss. Eye drops which lower intraocular pressure are often prescribed; however, patients may not use the eyedrops because they are expensive, can be difficult to instil, and do not improve their vision. Surgery is an option, but patients can be reluctant to undergo surgery on their only good eye, and there can be postoperative complications. Laser treatment is another option. In a recent study in Tanzania, patients were randomly allocated to Timolol 0.5% eye drops or a form of laser called Selective Laser Trabeculoplasty (SLT). 2 After one year, SLT was found to be superior to drops for high-pressure glaucoma.

Why don't older adults in England have their eyes examined?

Focus group discussions among older adults in England revealed that, despite most participants being eligible for state-funded check-ups, wearing spectacles was associated with the appearance of being frail. They were also afraid of appearing to ‘fail’ tests, and had concerns about the cost of spectacles. 3

How cost effective is a diabetic retinopathy screening programme?

An economic evaluation in South Africa compared alternative interventions. Screening using non-mydriatic retinal photographs taken by a technician supervised by an ophthalmic nurse and read by a general medical officer was cost-effective and the savings made allowed the government to fund disability grants for people who went blind. 4

Acknowledgements

Stephen Gichuhi and Nyawira Mwangi contributed to preliminary work on this article.

medRxiv

Health Data Nexus: An Open Data Platform for AI Research and Education in Medicine

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for January L Adams
  • ORCID record for Muhammad Mamdani
  • ORCID record for Alistair Johnson
  • For correspondence: [email protected]
  • Info/History
  • Preview PDF

We outline the development of the Health Data Nexus, a data platform which enables data storage and access management with a cloud-based computational environment. We describe the importance of this secure platform in an evolving public sector research landscape that utilizes significant quantities of data, particularly clinical data acquired from health systems, as well as the importance of providing meaningful benefits for three targeted user groups: data providers, researchers, and educators. We then describe the implementation of governance practices, technical standards, and data security and privacy protections needed to build this platform, as well as example use-cases highlighting the strengths of the platform in facilitating dataset acquisition, novel research, and hosting educational courses, workshops, and datathons. Finally, we discuss the key principles that informed the platform's development, highlighting the importance of flexible uses, collaborative development, and open-source science.

Competing Interest Statement

The author MM holds non-controlling shares in Signal1 AI. The authors RC, KS, DH, and KR are all employed by Upside Labs.

Funding Statement

Funding for the creation of T-CAIREM and the Health Data Nexus has been supported by the Temerty Foundation through a transformational gift.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

All data produced are available online at https://healthdatanexus.ai/

View the discussion thread.

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Twitter logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
  • Addiction Medicine (342)
  • Allergy and Immunology (665)
  • Anesthesia (180)
  • Cardiovascular Medicine (2625)
  • Dentistry and Oral Medicine (314)
  • Dermatology (222)
  • Emergency Medicine (397)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (930)
  • Epidemiology (12175)
  • Forensic Medicine (10)
  • Gastroenterology (756)
  • Genetic and Genomic Medicine (4064)
  • Geriatric Medicine (385)
  • Health Economics (676)
  • Health Informatics (2625)
  • Health Policy (997)
  • Health Systems and Quality Improvement (979)
  • Hematology (360)
  • HIV/AIDS (845)
  • Infectious Diseases (except HIV/AIDS) (13659)
  • Intensive Care and Critical Care Medicine (790)
  • Medical Education (398)
  • Medical Ethics (109)
  • Nephrology (430)
  • Neurology (3832)
  • Nursing (209)
  • Nutrition (570)
  • Obstetrics and Gynecology (734)
  • Occupational and Environmental Health (690)
  • Oncology (2008)
  • Ophthalmology (581)
  • Orthopedics (238)
  • Otolaryngology (304)
  • Pain Medicine (250)
  • Palliative Medicine (73)
  • Pathology (471)
  • Pediatrics (1107)
  • Pharmacology and Therapeutics (459)
  • Primary Care Research (447)
  • Psychiatry and Clinical Psychology (3400)
  • Public and Global Health (6499)
  • Radiology and Imaging (1390)
  • Rehabilitation Medicine and Physical Therapy (806)
  • Respiratory Medicine (869)
  • Rheumatology (400)
  • Sexual and Reproductive Health (407)
  • Sports Medicine (338)
  • Surgery (441)
  • Toxicology (52)
  • Transplantation (185)
  • Urology (165)

IMAGES

  1. 40+ Reasons Why Research Is Important in Education

    why research is important in education

  2. Importance of Research

    why research is important in education

  3. Why research? Exploring the reasons for The Education Hub’s raison d

    why research is important in education

  4. Why is Research Important for Undergraduate Students?

    why research is important in education

  5. PPT

    why research is important in education

  6. 7 Reasons Why Research Is Important

    why research is important in education

COMMENTS

  1. 40+ Reasons Why Research Is Important in Education

    Research gives us better knowledge workers. There is a tremendous value for our society from student participation in scientific research. At all levels - undergraduate, master's, and Ph.D. —students learn the scientific method that has driven progress since the Enlightenment over 300 years ago.. They learn to observe carefully and organize collected data efficiently.

  2. PDF The Vital Role of Research in Improving Education

    formationThe Vital Role of Research in ImprovingWhen students, parents, educators, and partners have the ri. ht information to make decisions, students excel. One of the most powerful sources of information for families, educators, and policymakers about education is the high-quality analysis and research conducted.

  3. Why Research is Important for Students, Humans, Education

    Why is Research Important in Education: As earlier said, the role of research is important in all fields, in a similar manner, the importance of research in education is very vital. This is because of various reasons like: 1. It is a systematic analysis: In education, research is essential as it gives a systematic analysis of the topic.

  4. Using Research and Reason in Education: How Teachers Can Use ...

    Using Research and Reason in Education: ... Being aware of the importance of research published in peer-reviewed scientific journals is only the first step because this represents only the most minimal of criteria. Following is a review of some of the principles of research-based evaluation that teachers will find useful in their work.

  5. Editorial: Educational Research and Why It's Important

    The New Zealand Journal of Educational Research (NZJES) is aptly named, because the distinction between 'education' research and 'educational' research is critical. As Lingard ( 2013) has argued, "When we use the descriptor 'educational' attached to research, we are arguing that such research has educational or educative purposes ...

  6. What is Educational Research? + [Types, Scope & Importance]

    Research. What is Educational Research? + [Types, Scope & Importance] Education is an integral aspect of every society and in a bid to expand the frontiers of knowledge, educational research must become a priority. Educational research plays a vital role in the overall development of pedagogy, learning programs, and policy formulation.

  7. How educational research could play a greater role in

    If school leaders can see how educational research can specifically benefit their school community, they may be more likely to implement findings and recommendations from the research. 2. Make ...

  8. Introduction to Education Research

    Abstract. Educators rely on the discovery of new knowledge of teaching practices and frameworks to improve and evolve education for trainees. An important consideration that should be made when embarking on a career conducting education research is finding a scholarship niche. An education researcher can then develop the conceptual framework ...

  9. (PDF) Significance of Research in Education

    The significance and importance of research in education are enormous. For Kapur (2018) research in education has enabled substantial progress to be made in curriculum development and reform ...

  10. 7 Reasons Why Research Is Important

    Why Research Is Necessary and Valuable in Our Daily Lives. It's a tool for building knowledge and facilitating learning. It's a means to understand issues and increase public awareness. It helps us succeed in business. It allows us to disprove lies and support truths. It is a means to find, gauge, and seize opportunities.

  11. What are the benefits of educational research for teachers?

    This is why research is embedded into initial teacher education. As research becomes embedded in your practice you can gain a range of benefits. Research can: develop your agency, influence, self-efficacy and voice within your own school and more widely within the profession. Each of these can involve investigation using evidence from your own ...

  12. The Role Of Research At Universities: Why It Matters

    Strength in research helps to define a university's "brand" in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting ...

  13. PDF Educational Psychology: A Tool for Effective Teaching

    Educational psychology is a vast landscape that will take us an entire book to describe. In this introduction, we will explore the field of educational psychology, examine the nature of teaching, consider what is involved in being an effective teacher, and discuss how teachers use educational psychology in their practice.

  14. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  15. Making Education Research Relevant

    A More Useful Research Standard. In theory, the goals of education research are to build knowledge and improve decision-making and outcomes for teachers and students. But in practice, education research is shaped by the common practices and priorities of researchers, not teachers or school and system leaders.

  16. (PDF) The Importance of Research in Schools

    1. The importance of research in schools. As a PhD researcher I thought to take this opportunity to emphasise the importance of. research in our schools. R esearch is too often s een as an ...

  17. Importance of Research in Education by Mayurakshi Basu :: SSRN

    Research is widely regarded as providing benefits to individuals and to local, regional, national, and international community's involved in the education system. The thrust areas of this paper are characteristics, purposes of research in education, steps involved in research, importance of research in education and lastly challenges of ...

  18. Why is research important in education?

    Accredited by the Middle States Commission on Higher Education, Harrisburg University is a private nonprofit university offering bachelor and graduate degree programs in science, technology, and math fields. For more information on the University's affordable demand-driven undergraduate and graduate programs, call 717-901-5146 or email ...

  19. The importance of research and its impact on education

    Through detailed research, students develop critical thinking expertise, as well as effective analytical, research, and communication skills that are globally sought-after and incredibly beneficial. Ultimately, research is essential to economic and social development of our globalised society, forming the foundations governmental policies ...

  20. Why is research important for an educational institution?

    In this article, we aim to show in 3 key reasons why it is important for educational institutions to contribute to research. 1. The role educational institutions play in addressing global problems and fostering innovation via research. "Science lies at the heart of solutions to important problems" and management scholars have a distinctive ...

  21. Educational research

    The teaching resources recommended on our site are consistent with what is known about how students learn the nature and process of science. Educational research suggests that the most effective instruction in this area is explicit and reflective, and provides multiple opportunities for students to work with key concepts in different contexts. But just how

  22. Why is Education Important to Individuals and Societies in 2024?

    Here are more benefits and insight into the importance of education in society. Education dissolves cultural barriers and empowers people all across the world. Countries with high literacy rates progress more in the development of humans and the economy. Countries with higher literacy rates tend to be wealthier.

  23. Helping educators answer "Why did we do that?"

    By Katherine Ouellette With educational technologies and learning science research evolving so rapidly, deciding how to approach teaching might be daunting. How can educators design curricula that balances effective learning methods, the priorities of their institution or setting, time and budget constraints, and individual learners' diverse needs?

  24. How science teachers deal with STEM education: An explorative study

    Then, an inductive approach was employed to answer our research question in terms of three fundamental dimensions: what is STEM education like, why to promote that STEM education, and how to enact it at school. During the open coding process, a line-by-line analysis was conducted to highlight codes related to the three dimensions.

  25. The Importance of Mathematics Specialist Leaders

    Mathematics specialist leaders can provide recommendations to teachers, school administrators, and decision-makers in state education agencies on research-informed approaches to instruction that are more student-centered and that will yield more success in the classroom as measured by increased student achievement.

  26. The impact of early childhood education is widespread, so why doesn't

    The benefits can be wide-ranging. A 2017 metastudy from the RAND Corporation, a think tank in California, examined academic research about the effects of early childhood programs. Its analysis ...

  27. (PDF) The Importance of Education

    The Importance of Education. Education is an important issue in one's life. It is the key to success in the future, and t o. have many opportunities in our life. Education has many advantages ...

  28. Why does research matter?

    Abstract. A working knowledge of research - both how it is done, and how it can be used - is important for everyone involved in direct patient care and the planning & delivery of eye programmes. A research coordinator collecting data from a health extension worker. ethiopia. The mention of 'research' can be off-putting and may seem ...

  29. Struggling for relevance: exploring editors' perceived importance and

    Sampling and data-generating. Purposeful sampling has been employed due to the significant role and responsibility of the editors of Elevkanalen in producing and editing its content, as well as the research interest in their comprehension of Elevkanalen as an educational resource (Creswell and Poth Citation 2018; Østereng Citation 2022).. According to Smith et al., purposeful sampling is only ...

  30. Health Data Nexus: An Open Data Platform for AI Research and Education

    We outline the development of the Health Data Nexus, a data platform which enables data storage and access management with a cloud-based computational environment. We describe the importance of this secure platform in an evolving public sector research landscape that utilizes significant quantities of data, particularly clinical data acquired from health systems, as well as the importance of ...