Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Quasi-Experimental Design | Definition, Types & Examples

Quasi-Experimental Design | Definition, Types & Examples

Published on July 31, 2020 by Lauren Thomas . Revised on January 22, 2024.

Like a true experiment , a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable .

However, unlike a true experiment, a quasi-experiment does not rely on random assignment . Instead, subjects are assigned to groups based on non-random criteria.

Quasi-experimental design is a useful tool in situations where true experiments cannot be used for ethical or practical reasons.

Quasi-experimental design vs. experimental design

Table of contents

Differences between quasi-experiments and true experiments, types of quasi-experimental designs, when to use quasi-experimental design, advantages and disadvantages, other interesting articles, frequently asked questions about quasi-experimental designs.

There are several common differences between true and quasi-experimental designs.

True experimental design Quasi-experimental design
Assignment to treatment The researcher subjects to control and treatment groups. Some other, method is used to assign subjects to groups.
Control over treatment The researcher usually . The researcher often , but instead studies pre-existing groups that received different treatments after the fact.
Use of Requires the use of . Control groups are not required (although they are commonly used).

Example of a true experiment vs a quasi-experiment

However, for ethical reasons, the directors of the mental health clinic may not give you permission to randomly assign their patients to treatments. In this case, you cannot run a true experiment.

Instead, you can use a quasi-experimental design.

You can use these pre-existing groups to study the symptom progression of the patients treated with the new therapy versus those receiving the standard course of treatment.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Many types of quasi-experimental designs exist. Here we explain three of the most common types: nonequivalent groups design, regression discontinuity, and natural experiments.

Nonequivalent groups design

In nonequivalent group design, the researcher chooses existing groups that appear similar, but where only one of the groups experiences the treatment.

In a true experiment with random assignment , the control and treatment groups are considered equivalent in every way other than the treatment. But in a quasi-experiment where the groups are not random, they may differ in other ways—they are nonequivalent groups .

When using this kind of design, researchers try to account for any confounding variables by controlling for them in their analysis or by choosing groups that are as similar as possible.

This is the most common type of quasi-experimental design.

Regression discontinuity

Many potential treatments that researchers wish to study are designed around an essentially arbitrary cutoff, where those above the threshold receive the treatment and those below it do not.

Near this threshold, the differences between the two groups are often so minimal as to be nearly nonexistent. Therefore, researchers can use individuals just below the threshold as a control group and those just above as a treatment group.

However, since the exact cutoff score is arbitrary, the students near the threshold—those who just barely pass the exam and those who fail by a very small margin—tend to be very similar, with the small differences in their scores mostly due to random chance. You can therefore conclude that any outcome differences must come from the school they attended.

Natural experiments

In both laboratory and field experiments, researchers normally control which group the subjects are assigned to. In a natural experiment, an external event or situation (“nature”) results in the random or random-like assignment of subjects to the treatment group.

Even though some use random assignments, natural experiments are not considered to be true experiments because they are observational in nature.

Although the researchers have no control over the independent variable , they can exploit this event after the fact to study the effect of the treatment.

However, as they could not afford to cover everyone who they deemed eligible for the program, they instead allocated spots in the program based on a random lottery.

Although true experiments have higher internal validity , you might choose to use a quasi-experimental design for ethical or practical reasons.

Sometimes it would be unethical to provide or withhold a treatment on a random basis, so a true experiment is not feasible. In this case, a quasi-experiment can allow you to study the same causal relationship without the ethical issues.

The Oregon Health Study is a good example. It would be unethical to randomly provide some people with health insurance but purposely prevent others from receiving it solely for the purposes of research.

However, since the Oregon government faced financial constraints and decided to provide health insurance via lottery, studying this event after the fact is a much more ethical approach to studying the same problem.

True experimental design may be infeasible to implement or simply too expensive, particularly for researchers without access to large funding streams.

At other times, too much work is involved in recruiting and properly designing an experimental intervention for an adequate number of subjects to justify a true experiment.

In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government).

Quasi-experimental designs have various pros and cons compared to other types of studies.

  • Higher external validity than most true experiments, because they often involve real-world interventions instead of artificial laboratory settings.
  • Higher internal validity than other non-experimental types of research, because they allow you to better control for confounding variables than other types of studies do.
  • Lower internal validity than true experiments—without randomization, it can be difficult to verify that all confounding variables have been accounted for.
  • The use of retrospective data that has already been collected for other purposes can be inaccurate, incomplete or difficult to access.

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2024, January 22). Quasi-Experimental Design | Definition, Types & Examples. Scribbr. Retrieved June 18, 2024, from https://www.scribbr.com/methodology/quasi-experimental-design/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, guide to experimental design | overview, steps, & examples, random assignment in experiments | introduction & examples, control variables | what are they & why do they matter, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Quasi Experimental Design Overview & Examples

By Jim Frost Leave a Comment

What is a Quasi Experimental Design?

A quasi experimental design is a method for identifying causal relationships that does not randomly assign participants to the experimental groups. Instead, researchers use a non-random process. For example, they might use an eligibility cutoff score or preexisting groups to determine who receives the treatment.

Image illustrating a quasi experimental design.

Quasi-experimental research is a design that closely resembles experimental research but is different. The term “quasi” means “resembling,” so you can think of it as a cousin to actual experiments. In these studies, researchers can manipulate an independent variable — that is, they change one factor to see what effect it has. However, unlike true experimental research, participants are not randomly assigned to different groups.

Learn more about Experimental Designs: Definition & Types .

When to Use Quasi-Experimental Design

Researchers typically use a quasi-experimental design because they can’t randomize due to practical or ethical concerns. For example:

  • Practical Constraints : A school interested in testing a new teaching method can only implement it in preexisting classes and cannot randomly assign students.
  • Ethical Concerns : A medical study might not be able to randomly assign participants to a treatment group for an experimental medication when they are already taking a proven drug.

Quasi-experimental designs also come in handy when researchers want to study the effects of naturally occurring events, like policy changes or environmental shifts, where they can’t control who is exposed to the treatment.

Quasi-experimental designs occupy a unique position in the spectrum of research methodologies, sitting between observational studies and true experiments. This middle ground offers a blend of both worlds, addressing some limitations of purely observational studies while navigating the constraints often accompanying true experiments.

A significant advantage of quasi-experimental research over purely observational studies and correlational research is that it addresses the issue of directionality, determining which variable is the cause and which is the effect. In quasi-experiments, an intervention typically occurs during the investigation, and the researchers record outcomes before and after it, increasing the confidence that it causes the observed changes.

However, it’s crucial to recognize its limitations as well. Controlling confounding variables is a larger concern for a quasi-experimental design than a true experiment because it lacks random assignment.

In sum, quasi-experimental designs offer a valuable research approach when random assignment is not feasible, providing a more structured and controlled framework than observational studies while acknowledging and attempting to address potential confounders.

Types of Quasi-Experimental Designs and Examples

Quasi-experimental studies use various methods, depending on the scenario.

Natural Experiments

This design uses naturally occurring events or changes to create the treatment and control groups. Researchers compare outcomes between those whom the event affected and those it did not affect. Analysts use statistical controls to account for confounders that the researchers must also measure.

Natural experiments are related to observational studies, but they allow for a clearer causality inference because the external event or policy change provides both a form of quasi-random group assignment and a definite start date for the intervention.

For example, in a natural experiment utilizing a quasi-experimental design, researchers study the impact of a significant economic policy change on small business growth. The policy is implemented in one state but not in neighboring states. This scenario creates an unplanned experimental setup, where the state with the new policy serves as the treatment group, and the neighboring states act as the control group.

Researchers are primarily interested in small business growth rates but need to record various confounders that can impact growth rates. Hence, they record state economic indicators, investment levels, and employment figures. By recording these metrics across the states, they can include them in the model as covariates and control them statistically. This method allows researchers to estimate differences in small business growth due to the policy itself, separate from the various confounders.

Nonequivalent Groups Design

This method involves matching existing groups that are similar but not identical. Researchers attempt to find groups that are as equivalent as possible, particularly for factors likely to affect the outcome.

For instance, researchers use a nonequivalent groups quasi-experimental design to evaluate the effectiveness of a new teaching method in improving students’ mathematics performance. A school district considering the teaching method is planning the study. Students are already divided into schools, preventing random assignment.

The researchers matched two schools with similar demographics, baseline academic performance, and resources. The school using the traditional methodology is the control, while the other uses the new approach. Researchers are evaluating differences in educational outcomes between the two methods.

They perform a pretest to identify differences between the schools that might affect the outcome and include them as covariates to control for confounding. They also record outcomes before and after the intervention to have a larger context for the changes they observe.

Regression Discontinuity

This process assigns subjects to a treatment or control group based on a predetermined cutoff point (e.g., a test score). The analysis primarily focuses on participants near the cutoff point, as they are likely similar except for the treatment received. By comparing participants just above and below the cutoff, the design controls for confounders that vary smoothly around the cutoff.

For example, in a regression discontinuity quasi-experimental design focusing on a new medical treatment for depression, researchers use depression scores as the cutoff point. Individuals with depression scores just above a certain threshold are assigned to receive the latest treatment, while those just below the threshold do not receive it. This method creates two closely matched groups: one that barely qualifies for treatment and one that barely misses out.

By comparing the mental health outcomes of these two groups over time, researchers can assess the effectiveness of the new treatment. The assumption is that the only significant difference between the groups is whether they received the treatment, thereby isolating its impact on depression outcomes.

Controlling Confounders in a Quasi-Experimental Design

Accounting for confounding variables is a challenging but essential task for a quasi-experimental design.

In a true experiment, the random assignment process equalizes confounders across the groups to nullify their overall effect. It’s the gold standard because it works on all confounders, known and unknown.

Unfortunately, the lack of random assignment can allow differences between the groups to exist before the intervention. These confounding factors might ultimately explain the results rather than the intervention.

Consequently, researchers must use other methods to equalize the groups roughly using matching and cutoff values or statistically adjust for preexisting differences they measure to reduce the impact of confounders.

A key strength of quasi-experiments is their frequent use of “pre-post testing.” This approach involves conducting initial tests before collecting data to check for preexisting differences between groups that could impact the study’s outcome. By identifying these variables early on and including them as covariates, researchers can more effectively control potential confounders in their statistical analysis.

Additionally, researchers frequently track outcomes before and after the intervention to better understand the context for changes they observe.

Statisticians consider these methods to be less effective than randomization. Hence, quasi-experiments fall somewhere in the middle when it comes to internal validity , or how well the study can identify causal relationships versus mere correlation . They’re more conclusive than correlational studies but not as solid as true experiments.

In conclusion, quasi-experimental designs offer researchers a versatile and practical approach when random assignment is not feasible. This methodology bridges the gap between controlled experiments and observational studies, providing a valuable tool for investigating cause-and-effect relationships in real-world settings. Researchers can address ethical and logistical constraints by understanding and leveraging the different types of quasi-experimental designs while still obtaining insightful and meaningful results.

Cook, T. D., & Campbell, D. T. (1979).  Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin

Share this:

quasi experimental research topics examples

Reader Interactions

Comments and questions cancel reply.

helpful professor logo

5 Quasi-Experimental Design Examples

5 Quasi-Experimental Design Examples

Dave Cornell (PhD)

Learn about our Editorial Process

quasi-experimental design, explained below

Quasi-experimental design refers to a type of experimental design that uses pre-existing groups of people rather than random groups.

Because the groups of research participants already exist, they cannot be randomly assigned to a cohort . This makes inferring a causal relationship between the treatment and observed/criterion variable difficult.

Quasi-experimental designs are generally considered inferior to true experimental designs.

Limitations of Quasi-Experimental Design

Since participants cannot be randomly assigned to the grouping variable (male/female; high education/low education), the internal validity of the study is questionable.

Extraneous variables may exist that explain the results. For example, with quasi-experimental studies involving gender, there are numerous cultural and biological variables that distinguish males and females other than gender alone.

Each one of those variables may be able to explain the results without the need to refer to gender.

See More Research Limitations Here

Quasi-Experimental Design Examples

1. smartboard apps and math.

A school has decided to supplement their math resources with smartboard applications. The math teachers research the apps available and then choose two apps for each grade level. Before deciding on which apps to purchase, the school contacts the seller and asks for permission to demo/test the apps before purchasing the licenses.

The study involves having different teachers use the apps with their classes. Since there are two math teachers at each grade level, each teacher will use one of the apps in their classroom for three months. At the end of three months, all students will take the same math exams. Then the school can simply compare which app improved the students’ math scores the most.

The reason this is called a quasi-experiment is because the school did not randomly assign students to one app or the other. The students were already in pre-existing groups/classes.

Although it was impractical to randomly assign students to use one version or the other of the apps, it creates difficulty interpreting the results.

For instance, if students in teacher A’s class did better than the students in teacher B’s class, then can we really say the difference was due to the app? There may be other differences between the two teachers that account for the results. This poses a serious threat to the study’s internal validity.

2. Leadership Training

There is reason to believe that teaching entrepreneurs modern leadership techniques will improve their performance and shorten how long it takes for them to reach profitability. Team members will feel better appreciated and work harder, which should translate to increased productivity and innovation.

This hypothetical study took place in a third-world country in a mid-sized city. The researchers marketed the training throughout the city and received interest from 5 start-ups in the tech sector and 5 in the textile industry. The leaders of each company then attended six weeks of workshops on employee motivation, leadership styles, and effective team management.

At the end of one year, the researchers returned. They conducted a standard assessment of each start-up’s growth trajectory and administered various surveys to employees.

The results indicated that tech start-ups were further along in their growth paths than textile start-ups. The data also showed that tech work teams reported greater job satisfaction and company loyalty than textile work teams.

Although the results appear straightforward, because the researchers used a quasi-experimental design, they cannot say that the training caused the results.

The two groups may differ in ways that could explain the results. For instance, perhaps there is less growth potential in the textile industry in that city, or perhaps tech leaders are more progressive and willing to accept new leadership strategies.

3. Parenting Styles and Academic Performance   

Psychologists are very interested in factors that affect children’s academic performance. Since parenting styles affect a variety of children’s social and emotional profiles, it stands to reason that it may affect academic performance as well. The four parenting styles under study are: authoritarian, authoritative, permissive, and neglectful/uninvolved.

To examine this possible relationship, researchers assessed the parenting style of 120 families with third graders in a large metropolitan city. Trained raters made two-hour home visits to conduct observations of parent/child interactions. That data was later compared with the children’s grades.

The results revealed that children raised in authoritative households had the highest grades of all the groups.

However, because the researchers were not able to randomly assign children to one of the four parenting styles, the internal validity is called into question.

There may be other explanations for the results other than parenting style. For instance, maybe parents that practice authoritative parenting also come from a higher SES demographic than the other parents.

Because they have higher income and education levels, they may put more emphasis on their child’s academic performance. Or, because they have greater financial resources, their children attend STEM camps, co-curricular and other extracurricular academic-orientated classes.

4. Government Reforms and Economic Impact

Government policies can have a tremendous impact on economic development. Making it easier for small businesses to open and reducing bank loans are examples of policies that can have immediate results. So, a third-world country decides to test policy reforms in two mid-sized cities. One city receives reforms directed at small businesses, while the other receives reforms directed at luring foreign investment.  

The government was careful to choose two cities that were similar in terms of size and population demographics.

Over the next five years, economic growth data were collected at the end of each fiscal year. The measures consisted of housing sells, local GDP, and unemployment rates.

At the end of five years the results indicated that small business reforms had a much larger impact on economic growth than foreign investment. The city which received small business reforms saw an increase in housing sells and GDP, but a drop in unemployment. The other city saw stagnant sells and GDP, and a slight increase in unemployment.

On the surface, it appears that small business reform is the better way to go. However, a more careful analysis revealed that the economic improvement observed in the one city was actually the result of two multinational real estate firms entering the market. The two firms specialize in converting dilapidated warehouses into shopping centers and residential properties.

5. Gender and Meditation

Meditation can help relieve stress and reduce symptoms of depression and anxiety. It is a simple and easy to use technique that just about anyone can try. However, are the benefits real or is it just that people believe it can help? To find out, a team of counselors designed a study to put it to a test.

Since they believe that women are more likely to benefit than men, they recruit both males and females to be in their study.

Both groups were trained in meditation by a licensed professional. The training took place over three weekends. Participants were instructed to practice at home at least four times a week for the next three months and keep a journal each time they meditate.

At the end of the three months, physical and psychological health data were collected on all participants. For physical health, participants’ blood pressure was measured. For psychological health, participants filled out a happiness scale and the emotional tone of their diaries were examined.

The results showed that meditation worked better for women than men. Women had lower blood pressure, scored higher on the happiness scale, and wrote more positive statements in their diaries.

Unfortunately, the researchers noticed that men apparently did not actually practice meditation as much as they should. They had very few journal entries and in post-study interviews, a vast majority of men admitted that they only practiced meditation about half the time.

The lack of practice is an extraneous variable. Perhaps if men had adhered to the study instructions, their scores on the physical and psychological measures would have been higher than women’s measures.

The quasi-experiment is used when researchers want to study the effects of a variable/treatment on different groups of people. Groups can be defined based on gender, parenting style, SES demographics, or any number of other variables.

The problem is that when interpreting the results, even clear differences between the groups cannot be attributed to the treatment.

The groups may differ in ways other than the grouping variables. For example, leadership training in the study above may have improved the textile start-ups’ performance if the techniques had been applied at all. Similarly, men may have benefited from meditation as much as women, if they had just tried.

Baumrind, D. (1991). Parenting styles and adolescent development. In R. M. Lerner, A. C. Peterson, & J. Brooks-Gunn (Eds.), Encyclopedia of Adolescence (pp. 746–758). New York: Garland Publishing, Inc.

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin.

Matthew L. Maciejewski (2020) Quasi-experimental design. Biostatistics & Epidemiology, 4 (1), 38-47. https://doi.org/10.1080/24709360.2018.1477468

Thyer, Bruce. (2012). Quasi-Experimental Research Designs . Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195387384.001.0001

Dave

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Cooperative Play Examples

Chris

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Theory of Planned Behavior Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 18 Adaptive Behavior Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Cooperative Play Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

quasi experimental research topics examples

Home Market Research Research Tools and Apps

Quasi-experimental Research: What It Is, Types & Examples

quasi-experimental research is research that appears to be experimental but is not.

Much like an actual experiment, quasi-experimental research tries to demonstrate a cause-and-effect link between a dependent and an independent variable. A quasi-experiment, on the other hand, does not depend on random assignment, unlike an actual experiment. The subjects are sorted into groups based on non-random variables.

What is Quasi-Experimental Research?

“Resemblance” is the definition of “quasi.” Individuals are not randomly allocated to conditions or orders of conditions, even though the regression analysis is changed. As a result, quasi-experimental research is research that appears to be experimental but is not.

The directionality problem is avoided in quasi-experimental research since the regression analysis is altered before the multiple regression is assessed. However, because individuals are not randomized at random, there are likely to be additional disparities across conditions in quasi-experimental research.

As a result, in terms of internal consistency, quasi-experiments fall somewhere between correlational research and actual experiments.

The key component of a true experiment is randomly allocated groups. This means that each person has an equivalent chance of being assigned to the experimental group or the control group, depending on whether they are manipulated or not.

Simply put, a quasi-experiment is not a real experiment. A quasi-experiment does not feature randomly allocated groups since the main component of a real experiment is randomly assigned groups. Why is it so crucial to have randomly allocated groups, given that they constitute the only distinction between quasi-experimental and actual  experimental research ?

Let’s use an example to illustrate our point. Let’s assume we want to discover how new psychological therapy affects depressed patients. In a genuine trial, you’d split half of the psych ward into treatment groups, With half getting the new psychotherapy therapy and the other half receiving standard  depression treatment .

And the physicians compare the outcomes of this treatment to the results of standard treatments to see if this treatment is more effective. Doctors, on the other hand, are unlikely to agree with this genuine experiment since they believe it is unethical to treat one group while leaving another untreated.

A quasi-experimental study will be useful in this case. Instead of allocating these patients at random, you uncover pre-existing psychotherapist groups in the hospitals. Clearly, there’ll be counselors who are eager to undertake these trials as well as others who prefer to stick to the old ways.

These pre-existing groups can be used to compare the symptom development of individuals who received the novel therapy with those who received the normal course of treatment, even though the groups weren’t chosen at random.

If any substantial variations between them can be well explained, you may be very assured that any differences are attributable to the treatment but not to other extraneous variables.

As we mentioned before, quasi-experimental research entails manipulating an independent variable by randomly assigning people to conditions or sequences of conditions. Non-equivalent group designs, pretest-posttest designs, and regression discontinuity designs are only a few of the essential types.

What are quasi-experimental research designs?

Quasi-experimental research designs are a type of research design that is similar to experimental designs but doesn’t give full control over the independent variable(s) like true experimental designs do.

In a quasi-experimental design, the researcher changes or watches an independent variable, but the participants are not put into groups at random. Instead, people are put into groups based on things they already have in common, like their age, gender, or how many times they have seen a certain stimulus.

Because the assignments are not random, it is harder to draw conclusions about cause and effect than in a real experiment. However, quasi-experimental designs are still useful when randomization is not possible or ethical.

The true experimental design may be impossible to accomplish or just too expensive, especially for researchers with few resources. Quasi-experimental designs enable you to investigate an issue by utilizing data that has already been paid for or gathered by others (often the government). 

Because they allow better control for confounding variables than other forms of studies, they have higher external validity than most genuine experiments and higher  internal validity  (less than true experiments) than other non-experimental research.

Is quasi-experimental research quantitative or qualitative?

Quasi-experimental research is a quantitative research method. It involves numerical data collection and statistical analysis. Quasi-experimental research compares groups with different circumstances or treatments to find cause-and-effect links. 

It draws statistical conclusions from quantitative data. Qualitative data can enhance quasi-experimental research by revealing participants’ experiences and opinions, but quantitative data is the method’s foundation.

Quasi-experimental research types

There are many different sorts of quasi-experimental designs. Three of the most popular varieties are described below: Design of non-equivalent groups, Discontinuity in regression, and Natural experiments.

Design of Non-equivalent Groups

Example: design of non-equivalent groups, discontinuity in regression, example: discontinuity in regression, natural experiments, example: natural experiments.

However, because they couldn’t afford to pay everyone who qualified for the program, they had to use a random lottery to distribute slots.

Experts were able to investigate the program’s impact by utilizing enrolled people as a treatment group and those who were qualified but did not play the jackpot as an experimental group.

How QuestionPro helps in quasi-experimental research?

QuestionPro can be a useful tool in quasi-experimental research because it includes features that can assist you in designing and analyzing your research study. Here are some ways in which QuestionPro can help in quasi-experimental research:

Design surveys

Randomize participants, collect data over time, analyze data, collaborate with your team.

With QuestionPro, you have access to the most mature market research platform and tool that helps you collect and analyze the insights that matter the most. By leveraging InsightsHub, the unified hub for data management, you can ​​leverage the consolidated platform to organize, explore, search, and discover your  research data  in one organized data repository . 

Optimize Your quasi-experimental research with QuestionPro. Get started now!

FREE TRIAL         LEARN MORE

MORE LIKE THIS

CX Platforms

CX Platform: Top 13 CX Platforms to Drive Customer Success

Jun 17, 2024

quasi experimental research topics examples

How to Know Whether Your Employee Initiatives are Working

Weighting Survey Data

How to Weighting Survey Data to Enhance Your Data Quality?

Jun 12, 2024

stay interviews

Stay Interviews: What Is It, How to Conduct, 15 Questions

Jun 11, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.3 Quasi-Experimental Research

Learning objectives.

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.

Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

Pretest-Posttest Design

In a pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001). Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Does Psychotherapy Work?

Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952). But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here:

http://psychclassics.yorku.ca/Eysenck/psychotherapy.htm

Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980). They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.

Han Eysenck

In a classic 1952 article, researcher Hans Eysenck pointed out the shortcomings of the simple pretest-posttest design for evaluating the effectiveness of psychotherapy.

Wikimedia Commons – CC BY-SA 3.0.

Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979). Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.

Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.5 “A Hypothetical Interrupted Time-Series Design” shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Figure 7.5 A Hypothetical Interrupted Time-Series Design

A Hypothetical Interrupted Time-Series Design - The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not

The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

Key Takeaways

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

Discussion: Imagine that a group of obese children is recruited for a study in which their weight is measured, then they participate for 3 months in a program that encourages them to be more active, and finally their weight is measured again. Explain how each of the following might affect the results:

  • regression to the mean
  • spontaneous remission

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin.

Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324.

Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146.

Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Privacy Policy

Research Method

Home » Quasi-Experimental Research Design – Types, Methods

Quasi-Experimental Research Design – Types, Methods

Table of Contents

Quasi-Experimental Design

Quasi-Experimental Design

Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable(s) that is available in a true experimental design.

In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to the experimental and control groups. Instead, the groups are selected based on pre-existing characteristics or conditions, such as age, gender, or the presence of a certain medical condition.

Types of Quasi-Experimental Design

There are several types of quasi-experimental designs that researchers use to study causal relationships between variables. Here are some of the most common types:

Non-Equivalent Control Group Design

This design involves selecting two groups of participants that are similar in every way except for the independent variable(s) that the researcher is testing. One group receives the treatment or intervention being studied, while the other group does not. The two groups are then compared to see if there are any significant differences in the outcomes.

Interrupted Time-Series Design

This design involves collecting data on the dependent variable(s) over a period of time, both before and after an intervention or event. The researcher can then determine whether there was a significant change in the dependent variable(s) following the intervention or event.

Pretest-Posttest Design

This design involves measuring the dependent variable(s) before and after an intervention or event, but without a control group. This design can be useful for determining whether the intervention or event had an effect, but it does not allow for control over other factors that may have influenced the outcomes.

Regression Discontinuity Design

This design involves selecting participants based on a specific cutoff point on a continuous variable, such as a test score. Participants on either side of the cutoff point are then compared to determine whether the intervention or event had an effect.

Natural Experiments

This design involves studying the effects of an intervention or event that occurs naturally, without the researcher’s intervention. For example, a researcher might study the effects of a new law or policy that affects certain groups of people. This design is useful when true experiments are not feasible or ethical.

Data Analysis Methods

Here are some data analysis methods that are commonly used in quasi-experimental designs:

Descriptive Statistics

This method involves summarizing the data collected during a study using measures such as mean, median, mode, range, and standard deviation. Descriptive statistics can help researchers identify trends or patterns in the data, and can also be useful for identifying outliers or anomalies.

Inferential Statistics

This method involves using statistical tests to determine whether the results of a study are statistically significant. Inferential statistics can help researchers make generalizations about a population based on the sample data collected during the study. Common statistical tests used in quasi-experimental designs include t-tests, ANOVA, and regression analysis.

Propensity Score Matching

This method is used to reduce bias in quasi-experimental designs by matching participants in the intervention group with participants in the control group who have similar characteristics. This can help to reduce the impact of confounding variables that may affect the study’s results.

Difference-in-differences Analysis

This method is used to compare the difference in outcomes between two groups over time. Researchers can use this method to determine whether a particular intervention has had an impact on the target population over time.

Interrupted Time Series Analysis

This method is used to examine the impact of an intervention or treatment over time by comparing data collected before and after the intervention or treatment. This method can help researchers determine whether an intervention had a significant impact on the target population.

Regression Discontinuity Analysis

This method is used to compare the outcomes of participants who fall on either side of a predetermined cutoff point. This method can help researchers determine whether an intervention had a significant impact on the target population.

Steps in Quasi-Experimental Design

Here are the general steps involved in conducting a quasi-experimental design:

  • Identify the research question: Determine the research question and the variables that will be investigated.
  • Choose the design: Choose the appropriate quasi-experimental design to address the research question. Examples include the pretest-posttest design, non-equivalent control group design, regression discontinuity design, and interrupted time series design.
  • Select the participants: Select the participants who will be included in the study. Participants should be selected based on specific criteria relevant to the research question.
  • Measure the variables: Measure the variables that are relevant to the research question. This may involve using surveys, questionnaires, tests, or other measures.
  • Implement the intervention or treatment: Implement the intervention or treatment to the participants in the intervention group. This may involve training, education, counseling, or other interventions.
  • Collect data: Collect data on the dependent variable(s) before and after the intervention. Data collection may also include collecting data on other variables that may impact the dependent variable(s).
  • Analyze the data: Analyze the data collected to determine whether the intervention had a significant impact on the dependent variable(s).
  • Draw conclusions: Draw conclusions about the relationship between the independent and dependent variables. If the results suggest a causal relationship, then appropriate recommendations may be made based on the findings.

Quasi-Experimental Design Examples

Here are some examples of real-time quasi-experimental designs:

  • Evaluating the impact of a new teaching method: In this study, a group of students are taught using a new teaching method, while another group is taught using the traditional method. The test scores of both groups are compared before and after the intervention to determine whether the new teaching method had a significant impact on student performance.
  • Assessing the effectiveness of a public health campaign: In this study, a public health campaign is launched to promote healthy eating habits among a targeted population. The behavior of the population is compared before and after the campaign to determine whether the intervention had a significant impact on the target behavior.
  • Examining the impact of a new medication: In this study, a group of patients is given a new medication, while another group is given a placebo. The outcomes of both groups are compared to determine whether the new medication had a significant impact on the targeted health condition.
  • Evaluating the effectiveness of a job training program : In this study, a group of unemployed individuals is enrolled in a job training program, while another group is not enrolled in any program. The employment rates of both groups are compared before and after the intervention to determine whether the training program had a significant impact on the employment rates of the participants.
  • Assessing the impact of a new policy : In this study, a new policy is implemented in a particular area, while another area does not have the new policy. The outcomes of both areas are compared before and after the intervention to determine whether the new policy had a significant impact on the targeted behavior or outcome.

Applications of Quasi-Experimental Design

Here are some applications of quasi-experimental design:

  • Educational research: Quasi-experimental designs are used to evaluate the effectiveness of educational interventions, such as new teaching methods, technology-based learning, or educational policies.
  • Health research: Quasi-experimental designs are used to evaluate the effectiveness of health interventions, such as new medications, public health campaigns, or health policies.
  • Social science research: Quasi-experimental designs are used to investigate the impact of social interventions, such as job training programs, welfare policies, or criminal justice programs.
  • Business research: Quasi-experimental designs are used to evaluate the impact of business interventions, such as marketing campaigns, new products, or pricing strategies.
  • Environmental research: Quasi-experimental designs are used to evaluate the impact of environmental interventions, such as conservation programs, pollution control policies, or renewable energy initiatives.

When to use Quasi-Experimental Design

Here are some situations where quasi-experimental designs may be appropriate:

  • When the research question involves investigating the effectiveness of an intervention, policy, or program : In situations where it is not feasible or ethical to randomly assign participants to intervention and control groups, quasi-experimental designs can be used to evaluate the impact of the intervention on the targeted outcome.
  • When the sample size is small: In situations where the sample size is small, it may be difficult to randomly assign participants to intervention and control groups. Quasi-experimental designs can be used to investigate the impact of an intervention without requiring a large sample size.
  • When the research question involves investigating a naturally occurring event : In some situations, researchers may be interested in investigating the impact of a naturally occurring event, such as a natural disaster or a major policy change. Quasi-experimental designs can be used to evaluate the impact of the event on the targeted outcome.
  • When the research question involves investigating a long-term intervention: In situations where the intervention or program is long-term, it may be difficult to randomly assign participants to intervention and control groups for the entire duration of the intervention. Quasi-experimental designs can be used to evaluate the impact of the intervention over time.
  • When the research question involves investigating the impact of a variable that cannot be manipulated : In some situations, it may not be possible or ethical to manipulate a variable of interest. Quasi-experimental designs can be used to investigate the relationship between the variable and the targeted outcome.

Purpose of Quasi-Experimental Design

The purpose of quasi-experimental design is to investigate the causal relationship between two or more variables when it is not feasible or ethical to conduct a randomized controlled trial (RCT). Quasi-experimental designs attempt to emulate the randomized control trial by mimicking the control group and the intervention group as much as possible.

The key purpose of quasi-experimental design is to evaluate the impact of an intervention, policy, or program on a targeted outcome while controlling for potential confounding factors that may affect the outcome. Quasi-experimental designs aim to answer questions such as: Did the intervention cause the change in the outcome? Would the outcome have changed without the intervention? And was the intervention effective in achieving its intended goals?

Quasi-experimental designs are useful in situations where randomized controlled trials are not feasible or ethical. They provide researchers with an alternative method to evaluate the effectiveness of interventions, policies, and programs in real-life settings. Quasi-experimental designs can also help inform policy and practice by providing valuable insights into the causal relationships between variables.

Overall, the purpose of quasi-experimental design is to provide a rigorous method for evaluating the impact of interventions, policies, and programs while controlling for potential confounding factors that may affect the outcome.

Advantages of Quasi-Experimental Design

Quasi-experimental designs have several advantages over other research designs, such as:

  • Greater external validity : Quasi-experimental designs are more likely to have greater external validity than laboratory experiments because they are conducted in naturalistic settings. This means that the results are more likely to generalize to real-world situations.
  • Ethical considerations: Quasi-experimental designs often involve naturally occurring events, such as natural disasters or policy changes. This means that researchers do not need to manipulate variables, which can raise ethical concerns.
  • More practical: Quasi-experimental designs are often more practical than experimental designs because they are less expensive and easier to conduct. They can also be used to evaluate programs or policies that have already been implemented, which can save time and resources.
  • No random assignment: Quasi-experimental designs do not require random assignment, which can be difficult or impossible in some cases, such as when studying the effects of a natural disaster. This means that researchers can still make causal inferences, although they must use statistical techniques to control for potential confounding variables.
  • Greater generalizability : Quasi-experimental designs are often more generalizable than experimental designs because they include a wider range of participants and conditions. This can make the results more applicable to different populations and settings.

Limitations of Quasi-Experimental Design

There are several limitations associated with quasi-experimental designs, which include:

  • Lack of Randomization: Quasi-experimental designs do not involve randomization of participants into groups, which means that the groups being studied may differ in important ways that could affect the outcome of the study. This can lead to problems with internal validity and limit the ability to make causal inferences.
  • Selection Bias: Quasi-experimental designs may suffer from selection bias because participants are not randomly assigned to groups. Participants may self-select into groups or be assigned based on pre-existing characteristics, which may introduce bias into the study.
  • History and Maturation: Quasi-experimental designs are susceptible to history and maturation effects, where the passage of time or other events may influence the outcome of the study.
  • Lack of Control: Quasi-experimental designs may lack control over extraneous variables that could influence the outcome of the study. This can limit the ability to draw causal inferences from the study.
  • Limited Generalizability: Quasi-experimental designs may have limited generalizability because the results may only apply to the specific population and context being studied.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Applied Research

Applied Research – Types, Methods and Examples

Experimental Research Design

Experimental Design – Types, Methods, Guide

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Selecting and Improving Quasi-Experimental Designs in Effectiveness and Implementation Research

Margaret a. handley.

1 Department of Epidemiology and Biostatistics, Division of Infectious Disease Epidemiology, University of California, San Francisco, CA

2 General Internal Medicine and UCSF Center for Vulnerable Populations, San Francisco Zuckerberg General Hospital and Trauma Center, University of California, San Francisco, CA, 1001 Potrero Avenue, Box 1364, San Francisco, CA 94110

Courtney Lyles

Charles mcculloch, adithya cattamanchi.

3 Division of Pulmonary and Critical Care Medicine and UCSF Center for Vulnerable Populations, San Francisco Zuckerberg General Hospital and Trauma Center, University of California, San Francisco, CA, 1001 Potrero Avenue, San Francisco, CA 94110

Interventional researchers face many design challenges when assessing intervention implementation in real-world settings. Intervention implementation requires ‘holding fast’ on internal validity needs while incorporating external validity considerations (such as uptake by diverse sub-populations, acceptability, cost, sustainability). Quasi-experimental designs (QEDs) are increasingly employed to achieve a better balance between internal and external validity. Although these designs are often referred to and summarized in terms of logistical benefits versus threats to internal validity, there is still uncertainty about: (1) how to select from among various QEDs, and (2) strategies to strengthen their internal and external validity. We focus on commonly used QEDs (pre-post designs with non-equivalent control groups, interrupted time series, and stepped wedge designs) and discuss several variants that maximize internal and external validity at the design, execution, and analysis stages.

INTRODUCTION

Public health practice involves implementation or adaptation of evidence-based interventions into new settings in order to improve health for individuals and populations. Such interventions typically include on one or more of the “7 Ps” (programs, practices, principles, procedures, products, pills, and policies) ( 9 ). Increasingly, both public health and clinical research have sought to generate practice-based evidence on a wide range of interventions, which in turn has led to a greater focus on intervention research designs that can be applied in real-world settings ( 2 , 8 , 9 , 20 , 25 , 26 , 10 , 2 ).

Randomized controlled trials (RCTs) in which individuals are assigned to intervention or control (standard-of-care or placebo) arms are considered the gold standard for assessing causality and as such are a first choice for most intervention research. Random allocation minimizes selection bias and maximizes the likelihood that measured and unmeasured confounding variables are distributed equally, enabling any difference in outcomes between intervention and control arms to be attributed to the intervention under study. RCTs can also involve random assignment of groups (e.g., clinics, worksites or communities) to intervention and control arms, but a large number of groups are required in order to realize the full benefits of randomization. Traditional RCTs strongly prioritize internal validity over external validity by employing strict eligibility criteria and rigorous data collection methods.

Alternative research methods are needed to test interventions for their effectiveness in many real-world settings—and later when evidence-based interventions are known, for spreading or scaling up these interventions to new settings and populations ( 23 , 40 ). In real-world settings, random allocation of the intervention may not be possible or fully under the control of investigators because of practical, ethical, social, or logistical constraints. For example, when partnering with communities or organizations to deliver a public health intervention, it might not be acceptable that only half of individuals or sites receive an intervention. As well, the timing of intervention roll-out might be determined by an external process outside the control of the investigator, such as a mandated policy. Also, when self-selected groups are expected to participate in a program as part of routine care, there would arise ethical concerns associated with random assignment – for example, the withholding or delaying of a potentially effective treatment or the provision of a less effective treatment for one group of participants ( 49 ). As described by Peters et al “implementation research seeks to understand and work within real world conditions, rather than trying to control for these conditions or to remove their influence as causal effects. “ ( 40 ). For all of these reasons, a blending of the design components of clinical effectiveness trials and implementation research is feasible and desirable, and this review covers both. Such blending of effectiveness and implementation components within a study can provide benefits beyond either research approach alone ( 14 ), for example by leading to faster uptake of interventions by simultaneously testing implementation strategies.

Since assessment of intervention effectiveness and implementation in real-world settings requires increased focus on external validity (including consideration of factors enhancing intervention uptake by diverse sub-populations, acceptability to a wide range of stakeholders, cost, and sustainability) ( 34 ), interventional research designs are needed that are more relevant to the potential, ‘hoped for’ treatment population than a RCT, and that achieve a better balance between internal and external validity. Quasi-experimental designs (QEDs), which first gained prominence in social science research ( 11 ), are increasingly being employed to fill this need. [ BOX 1 HERE: Definitions used in this review].

DEFINITIONS AND TERMS USED IN PAPER

Terms and Definitions
Quasi-Experimental Design:QEDs include a wide range of nonrandomized or partially randomized pre-post intervention studies
Pre-Post DesignA QED with data collected before and after an intervention is introduced, and then the compared. An added control group can be added for a Pre-Post Design with a Non-Equivalent control group
Non-Equivalent Control GroupA control group that is not randomly assigned to receive or not receive the intervention. Usually, an intact group is selected that is thought to be similar to the intervention group.
Interrupted Time Series DesignMultiple observations are evaluated for several consecutive points in time before and after intervention within the same individual or group
Stepped Wedge DesignA type of crossover design where the time of crossover is randomized
Wash out periodTime period for which a prior practice or intervention is stopped, and a new one is implemented, for which both interventions may be operating, and thus the data is excluded.
Inverse Roll-OutSites are rolled out to receive the intervention using a structured approach to create balance between the sites over the roll-out time period, using a sample characteristic that is ordered (and then reverse ordered). Commonly size or geography may be used. (e.g. 1,2,3,4 for size followed by 4,3,2,1)
Partial RandomizationA type of stratified randomization, with strata constructed for potential confounding variables and randomization occurs separately within each stratum (also called blocked randomization)
Internal ValidityInternal validity refers to the extent to which a study is capable of establishing causality is related to the degree it minimizes error or bias
External ValidityExternal validity describes the extent to which a research conclusion can be generalized to the population or to other settings

QEDs test causal hypotheses but, in lieu of fully randomized assignment of the intervention, seek to define a comparison group or time period that reflects the counter-factual ( i.e., outcomes if the intervention had not been implemented) ( 43 ). QEDs seek to identify a comparison group or time period that is as similar as possible to the treatment group or time period in terms of baseline (pre-intervention) characteristics. QEDs can include partial randomization such as in stepped wedge designs (SWD) when there is pre-determined (and non-random) stratification of sites, but the order in which sites within each strata receive the intervention is assigned randomly. For example, strata that are determined by size or perceived ease of implementation may be assigned to receive the intervention first. However, within those strata the specific sites themselves are randomly selected to receive the intervention across the time intervals included in the study). In all cases, the key threat to internal validity of QEDs is a lack of similarity between the comparison and intervention groups or time periods due to differences in characteristics of the people, sites, or time periods involved.

Previous reviews in this journal have focused on the importance and use of QEDs and other methods to enhance causal inference when evaluating the impact of an intervention that has already been implemented ( 4 , 8 , 9 , 18 ). Design approaches in this case often include creating a post-hoc comparison group for a natural experiment or identifying pre and post-intervention data to then conduct an interrupted time series study. Analysis phase approaches often utilize techniques such as pre-post, regression adjustment, scores, difference-in-differences, synthetic controls, interrupted time series, regression discontinuity, and instrumental variables ( 4 , 9 , 18 ). Although these articles summarize key components of QEDs (e.g. interrupted time series), as well as analysis-focused strategies (regression adjustment, propensity scores, difference-in-differences, synthetic controls, and instrumental variables) there is still uncertainty about: (1) how to select from among various QEDs in the pre-implementation design phase, and (2) strategies to strengthen internal and external validity before and during the implementation phase.

In this paper we discuss the a priori choice of a QED when evaluating the impact of an intervention or policy for which the investigator has some element of design control related to 1) order of intervention allocation (including random and non-random approaches); 2) selecting sites or individuals; and/or 3) timing and frequency of data collection. In the next section, we discuss the main QEDs used for prospective evaluations of interventions in real-world settings and their advantages and disadvantages with respect to addressing threats to internal validity [ BOX 2 HERE Common Threats to Internal Validty of Quasi-Experimental Designs Evaluating Interventions in ‘Real World’ Settings]. Following this summary, we discuss opportunities to strengthen their internal validity, illustrated with examples from the literature. Then we propose a decision framework for key decision points that lead to different QED options. We conclude with a brief discussion of incorporating additional design elements to capture the full range of relevant implementation outcomes in order to maximize external validity.

Common Threats to Internal Validty of Quasi-Experimental Designs Evaluating Interventions in ‘Real World’ Settings

History BiasEvents other than the intervetion occuring at the same time may influence the results
Selection BiasSystematic differences in subject characteristics between intervention and control groups that are related to the outcome
Maturation BiasOccurs when changes occur to individuals in the groups, differently, over time resulting in effects, in addition to (or rather than) the treatment condition, that may change the performance of participants in the post-test relative to the pre-test
Lack of BlindingAwareness of group assignement can influence those delivering or receiving the intervetion
Differential Drop-OutAttrition that may affect either intervention or control groups differently and result in selection bias and/or loss of statistical power
Variability in interactive effectsImplementation of intervention with multiple components may vary across the implementation process and by sites

QUASI-EXPERIMENTAL DESIGNS FOR PROSPECTIVE EVALUTION OF INTERVENTIONS

Table 1 summarizes the main QEDs that have been used for prospective evaluation of health intervention in real-world settings; pre-post designs with a non-equivalent control group, interrupted time series and stepped wedge designs. We do not include pre-post designs without a control group in this review, as in general, QEDs are primarily those designs that identify a comparison group or time period that is as similar as possible to the treatment group or time period in terms of baseline (pre-intervention) characteristics ( 50 ). Below, we describe features of each QED, considering strengths and limitations and providing examples of their use.

Overview of Commonly Used QED in Intervention Research*

QED DesignKey Design ElementsAdvantagesDisadvantages
Pre-Post with Non-equivalent control groupComparison of those receiving the intervention with those not receiving it.

Analysis is usually based on estimating the difference in the amount of change over time in the outcome of interest between the two groups, beginning with the intervention and moving forward in time;

The two groups can also be a different group examined using a before and after intervention cohort
Simplicity of data collection, when smaller number of time points, and associated lower cost; less cumbersome to implement than other designsTemporal biases are a substantial risk and may result in regression to the mean or over-interpretation of intervention effects; quality of data may vary in different time periods resulting in measurement error; non-equivalent sites may not be comparable for important covariates
Interrupted Time SeriesMultiple observations are assessed for a number of consecutive points in time before and after intervention within the same individual or groupUseful for when there is a small number of communities or groups, as each group acts as their own control

May be only option for studying impacts of large scale health policies
Requires a large number of measurements, may not be feasible for geographically dispersed areas
Stepped Wedge DesignIntervention is rolled out over time, usually at the site level. Participants who initially do not receive the intervention later-cross over to receive the intervention. Those that wait, provide control data during the time others receive the intervention, reducing the risk of bias due to time and time-dependent covariates.

Can either be based on serial cross-sectional data collected by sites for different time periods (sites cross over) or by following a cohort of same individuals over time (individuals cross over)
All clusters or wait list groups eventually receives the intervention;

Do not need to supply intervention in all sites in a short time frame “staggered implementation”
May not be able to randomly assign roll-out of sites, thereby potentially jeopardizing internal validity

Cannot guarantee everyone in each cluster or list will receive the intervention during the time that cluster is receiving the intervention

-Often takes longer than other designs to implement

-Control data must be collected or ascertained from sites or participants

-Site differences and implementation processes can vary significantly over time

-Risk of contamination in later sites or intervention fatigue – both can wash out potential intervention effects

1. Pre-Post With Non-Equivalent Control Group

The first type of QED highlighted in this review is perhaps the most straightforward type of intervention design: the pre-post comparison study with a non-equivalent control group. In this design, the intervention is introduced at a single point in time to one or more sites, for which there is also a pre-test and post-test evaluation period, The pre-post differences between these two sites is then compared. In practice, interventions using this design are often delivered at a higher level, such as to entire communities or organizations 1 [ Figure 1 here]. In this design the investigators identify additional site(s) that are similar to the intervention site to serve as a comparison/control group. However, these control sites are different in some way than the intervention site(s) and thus the term “non-equivalent” is important, and clarifies that there are inherent differences in the treatment and control groups ( 15 ).

An external file that holds a picture, illustration, etc.
Object name is nihms-1671041-f0001.jpg

Illustration of the Pre-Post Non-Equivalent Control Group Design

The strengths of pre-post designs are mainly based in their simplicity, such as data collection is usually only at a few points (although sometimes more). However, pre-post designs can be affected by several of the threats to internal validity of QEDs presented here. The largest challenges are related to 1) ‘history bias’ in which events unrelated to the intervention occur (also referred to as secular trends) before or during the intervention period and have an effect on the outcome (either positive or negative) that are not related to the intervention ( 39 ); and 2) differences between the intervention and control sites because the non-equivalent control groups are likely to differ from the intervention sites in a number of meaningful ways that impact the outcome of interest and can bias results (selection bias).

At this design stage, the first step at improving internal validity would be focused on selection of a non-equivalent control group(s) for which some balance in the distribution of known risk factors is established. This can be challenging as there may not be adequate information available to determine how ‘equivalent’ the comparison group is regarding relevant covariates.

It can be useful to obtain pre-test data or baseline characteristics to improve the comparability of the two groups. In the most controlled situations within this design, the investigators might include elements of randomization or matching for individuals in the intervention or comparison site, to attempt to balance the covariate distribution. Implicit in this approach is the assumption that the greater the similarity between groups, the smaller the likelihood that confounding will threaten inferences of causality of effect for the intervention ( 33 , 47 ). Thus, it is important to select this group or multiple groups with as much specificity as possible.

In order to enhance the causal inference for pre-post designs with non-equivalent control groups, the best strategies improve the comparability of the control group with regards to potential covariates related to the outcome of interest but are not under investigation. One strategy involves creating a cohort, and then using targeted sampling to inform matching of individuals within the cohort. Matching can be based on demographic and other important factors (e.g. measures of health care access or time-period). This design in essence creates a matched, nested case-control design.

Collection of additional data once sites are selected cannot in itself reduce bias, but can inform the examination of the association of interest, and provide data supporting interpretation consistent with the reduced likelihood of bias. These data collection strategies include: 1) extra data collection points at additional pre- or post- time points (to get closer to an interrupted time series design in effect and examine potential threats of maturation and history bias), and 2) collection of data on other dependent variables with a priori assessment of how they will ‘react’ with time dependent variables. A detailed analysis can then provide information on the potential affects on the outcome of interest (to understand potential underlying threats due to history bias).

Additionally, there are analytic strategies that can improve the interpretation of this design, such as: 1) analysis for multiple non-equivalent control groups, to determine if the intervention effects are robust across different conditions or settings (.e.g. using sensitivity analysis), 2) examination within a smaller critical window of the study in which the intervention would be plausibly expected to make the most impact, and 3) identification of subgroups of individuals within the intervention community who are known to have received high vs. low exposure to the intervention, to be able to investigate a potential “dose-response” effect. Table 2 provides examples of studies using the pre-post non-equivalent control group designs that have employed one or more of these improvement approaches to improve the internal study’s validity.

Improving Quasi-Experimental Designs-Internal and External Validity Considerations

Study/General DesignInterventionDesign Strategy to Improve Internal ValidityDesign Strategy to Improve External Validity
Pre-Post Designs with Non-Equivalent Control Group
Cousins et al 2016Campus Watch program targeting problem drinking and violence at 1 university campus with 5 control campuses in New Zealand

 • Standardization of independent repeat sampling, survey and follow-up methods across all sites (5 control and 1 intervention site)



• 5 sites as controls studies aggregate and individually as controls



 • Consumption and harms data from national surveys to compare data trends over time
Over-sampling of indigenous groups to extend interpretation of findings
Chronic disease management program with pharmacist-based patient coaching within a health care insurance plan in Cincinnati, US


 • Matching of participants with non-participants on demographic and health care access measures (using propensity score matching)
Distribution of bed nets to prevent malaria and reduce malaria mortality in Gambia

41 sites receiving intervention compared to external villages (which differed by size and ethnic distribution)


 • Examination of data trends during the highest infection times of the year (i.e., rainy season vs dry season) to see if rates were higher then.



• Detailed study of those using bed nets within intervention villages (i.e., guaranteed exposure “dose”, to examine dose-response in intervention arm
Interrupted Time Series
Study/General DesignInterventionDesign Strategy to Improve Internal ValidityDesign Strategy to Improve External Validity
Pellegrin 2016

Interrupted time series with comparison group
Formal transfer of high-risk patients being discharged from hospital to a community-based pharmacist follow-up program for up to 1 year post-hospitalization (6 intervention and 5 control sites)

 • Long baseline period (12 pre-intervention data points)





 • Intervention roll-out staggered based on staff availability (site 1 had eight post-intervention data points while site 8 had two)
Detailed implementation-related process measures monitored (and provided to individual community-based pharmacists regarding their performance) over entire study period
Robinson 2015

Interrupted time series without control group
New hospital discharge program to support high-risk patients with nurse telephone follow-up and referral to specific services (such as pharmacists for medication reconciliation and review)


 • Additionally examined regression discontinuity during the intervention period to determine if the risk score used to determine eligibility for the program influenced the outcome

Measured implementation outcomes of whether the intervention was delivered with high fidelity to the protocols


Interrupted time series with comparison group
Removal of direct payment at point of health care services for children under 5, very low income individuals and pregnant women re: consultations, medications and hospitalizations


Built into a pilot to collect control data, and then extend this work to include additional districts, one intervention and one non-intervention district, along with 6 additional years of observation.

Examined sustainability over 72 months of follow-up, and associations with clinic characteristics, such as density of workforce.
Stepped Wedge Design
Study/General DesignInterventionDesign Strategy to Improve Internal ValidityDesign Strategy to Improve External Validity


Non-randomized stepped wedge cluster trial
Site-level roll out of integrated antiretroviral treatment (ART) intervention in 8 public sector clinics, to achieve more rapid treatment initiation among women with HIV in Zambia, than the existing referral method used for initiation of treatment.

 • The 8 sites were matched into four pairs based on the number of HIV-infected pregnant women expected in each site.



 • The intervention roll out was done for one member of the least busy pair, one member of the second busiest pair, one member of the third busiest pair, and one member of the busiest pair. Rollout to the remaining pairs proceeded in reverse order.



 • A transition cohort was established that was later excluded from the analysis. It included women who were identified as eligible in the control period of time close to the time the intervention was starting.


See also:

Randomized stepped wedge cluster trial
Multi-faceted quality improvement intervention with a passive and an active phase among 6 regional emergency medical services systems and 32 academic and community hospitals in Ontario, Canada. The intervention focused on comparing interventions to improve the implementation of targeted temperature management following out-of-hospital cardiac arrest through passive (education, generic protocol, order set, local champions) versus additional active quality improvement interventions (nurse specialist providing site-specific interven- tions, monthly audit-feedback, network educational events, inter- net blog) versus no intervention (baseline standard of care). :

• Randomization at the level of the hospital, rather than the patient to minimize contamination, since the intervention targeted groups of clinicians.

• Hospitals were stratified by number of Intensive Care Unit beds ((< 10 beds vs ≥ 10 beds as a proxy for hospital size). Randomization was done within strata.



• Formalized a transition cohort for which a more passive intervention strategy was tested. This also allowed more time for sites to adopt all elements of the complex intervention before crossing over to the active intervention group.
Characterization of system and organizational factors that might affect adoption:

Collection of longitudinal data relevant to implementation processes that could impact interpretation of findings such as academic vs community affiliation, urban vs rural (bed size)


Randomized stepped wedge cluster trial
Seasonal malaria prophylaxis for children up to age 10 in central Senegal given to households monthly through health system staff led home visits during the malaria season.

The first two phases of implementation focused on children under age 5 years and the last phase included children up to age 10 years, and maintained a control only group of sites during this period.
:

• Constrained randomization of program roll-out across 54 health posts catchment areas and center-covered regions,

 • More sites received the intervention later stages (n=18) than in beginning (n=9).

 • To achieve balance within settings for potential confounders (since they did not have data on malaria incidence), such as distance from river, distance from health center, population size and number of villages, assessment of ability to implement.



 • Included nine clinics as control sites throughout the study period.
Characterization of factors that might affect usage and adherence made with longitudinal data: Independent evaluations of malaria prophylaxis usage, adherence, and acceptance were included prospectively, using routine health cards at family level and with external assessments from community surveys. In-depth interviews conducted across community levels to understand acceptability and other responses to the intervention

Included an embedded study broadening inclusion criteria, to focus on a wider age group of at risk children


Wait-list randomized stepped wedge design
Enrollment of 1,655 male mine employees with HIV infection randomized over a short period of time into an intervention to prevent TB infection (use of isoniazid preventive therapy), among individuals with HIV. Treatment was self-administered for 6 months or for 12 months and results were based on cohort analyses.

• Employees were invited in random sequence to attend a workplace HIV clinic.
Enumeration of at risk cohort and estimation of spill-over effect beyond those enrolled:

Since they used an enrollment list, they were able to estimate the effect of the intervention (the provision of clinic services) among the entire eligible population, not just those enrolled in the intervention over the study period.
Ratanawongsa et al; Handley et al 2011

Wait-list randomized stepped wedge design
Enrollment of 362 patients with diabetes into a health-IT enabled self-management support telephone coaching program, using a wait-list generated from a regional health plan, delivered in 3 languages.

 • Patients were identified from an actively maintained diabetes registry covering 4 safety net health clinics in the United States, and randomized to receive the coaching intervention immediately or after 6 moths.



 • Patients were randomized to balance enrolment for English, Cantonese, and Spanish, over the study period.
External validity-related measures for acceptability among patients as well as fidelity measures, for the health IT-enabled health coaching intervention were assessed using a fidelity framework.
Bailet et al 2011Literacy intervention for pre-kindergarten children at risk for reading failure in a southern US city administered in child care and pre-school sites, delivered twice a week for 9 weeks.

For large sites, did not randomize at site level, but split the schools, so all children could be taught in the intervention period, either fall or spring. At-risk children in these “split” schools received intervention at only one of the two time points (as did their “non-split school” peers); however, the randomization to treatment group occurred at the child level.


• Random assignment of clusters (schools).



• Matched pairs of child care centers by zip code and percentage of children receiving a state-sponsored financial subsidy. Within these groups random assignment to receive either immediate or deferred enrolment into the intervention.
External validity was enhanced in years 2–3 with a focus on teacher training for ensuring measures fidelity, completion of each week of the curriculum to enhance assessment of a potential dose-response.

Refined intervention applied in years 2–3, based on initial data.
Mexican Government randomly chose 320 early intervention and 186 late (approximately one year later) intervention communities in seven states for Oportunidades, which provided cash transfers to families conditional on children attending school and family members obtaining preventive medical care and attending —education talks on health-related topics. :

 • More communities randomized to an early intervention period

Cousins et al utilized a non-equivalent control selection strategy to leverage a recent cross-sectional survey among six universities in New Zealand regarding drinking among college-age students ( 16 ). In the original survey, there were six sites, and for the control group, five were selected to provide non-equivalent control group data for the one intervention campus. The campus intervention targeted young adult drinking-related problems and other outcomes, such as aggressive behavior, using an environmental intervention with a community liaison and a campus security program (also know as a Campus Watch program). The original cross-sectional survey was administered nationally to students using a web-based format, and was repeated in the years soon after the Campus Watch intervention was implemented in one site. Benefits of the design include: a consistent sampling frame at each control sites, such that sites could be combined as well as evaluated separately and collection of additional data on alcohol sales and consumption over the study period, to support inference. In a study by Wertz et al ( 48 ), a non-equivalent control group was created using matching for those who were eligible for a health coaching program and opted out of the program (to be compared with those who opted in) among insured patients with diabetes and/or hypertension. Matching was based on propensity scores among those patients using demographic and socioeconomic factors and medical center location and a longitudinal cohort was created prior to the intervention (see Basu et al 2017 for more on this approach).

In the pre-post malaria-prevention intervention example from Gambia, the investigators were studying the introduction of bed nets treated with insecticide on malaria rates in Gambia, and collected additional data to evaluate the internal validity assumptions within their design ( 1 ). In this study, the investigators introduced bed nets at the village level, using communities not receiving the bed nets as control sites. To strengthen the internal validity they collected additional data that enabled them to: 1) determine whether the reduction in malaria rates were most pronounced during the rainy season within the intervention communities, as this was a biologically plausible exposure period in which they could expect the largest effect size difference between intervention and control sites, and 2) examine use patterns for the bed nets, based on how much insecticide was present in the bed nets over time (after regular washing occurred), which aided in calculating a “dose-response” effect of exposure to the bed net among a subsample of individuals in the intervention community.

2. Interrupted Time Series

An interrupted time series (ITS) design involves collection of outcome data at multiple time points before and after an intervention is introduced at a given point in time at one or more sites ( 6 , 13 ). The pre-intervention outcome data is used to establish an underlying trend that is assumed to continue unchanged in the absence of the intervention under study ( i.e., the counterfactual scenario). Any change in outcome level or trend from the counter-factual scenario in the post-intervention period is then attributed to the impact of the intervention. The most basic ITS design utilizes a regression model that includes only three time-based covariates to estimate the pre-intervention slope (outcome trend before the intervention), a “step” or change in level (difference between observed and predicted outcome level at the first post-intervention time point), and a change in slope (difference between post- and pre-intervention outcome trend) ( 13 , 32 ) [ Figure 2 here].

An external file that holds a picture, illustration, etc.
Object name is nihms-1671041-f0002.jpg

Interrupted Time Series Design

Whether used for evaluating a natural experiment or, as is the focus here, for prospective evaluation of an intervention, the appropriateness of an ITS design depends on the nature of the intervention and outcome, and the type of data available. An ITS design requires the pre- and post-intervention periods to be clearly differentiated. When used prospectively, the investigator therefore needs to have control over the timing of the intervention. ITS analyses typically involve outcomes that are expected to change soon after an intervention is introduced or after a well-defined lag period. For example, for outcomes such as cancer or incident tuberculosis that develop long after an intervention is introduced and at a variable rate, it is difficult to clearly separate the pre- and post-intervention periods. Last, an ITS analysis requires at least three time points in the pre- and post-intervention periods to assess trends. In general, a larger number of time points is recommended, particularly when the expected effect size is smaller, data are more similar at closer together time points ( i.e., auto-correlation), or confounding effects ( e.g., seasonality) are present. It is also important for investigators to consider any changes to data collection or recording over time, particularly if such changes are associated with introduction of the intervention.

In comparison to simple pre-post designs in which the average outcome level is compared between the pre- and post-intervention periods, the key advantage of ITS designs is that they evaluate for intervention effect while accounting for pre-intervention trends. Such trends are common due to factors such as changes in the quality of care, data collection and recording, and population characteristics over time. In addition, ITS designs can increase power by making full use of longitudinal data instead of collapsing all data to single pre- and post-intervention time points. The use of longitudinal data can also be helpful for assessing whether intervention effects are short-lived or sustained over time.

While the basic ITS design has important strengths, the key threat to internal validity is the possibility that factors other than the intervention are affecting the observed changes in outcome level or trend. Changes over time in factors such as the quality of care, data collection and recording, and population characteristics may not be fully accounted for by the pre-intervention trend. Similarly, the pre-intervention time period, particularly when short, may not capture seasonal changes in an outcome.

Detailed reviews have been published of variations on the basic ITS design that can be used to enhance causal inference. In particular, the addition of a control group can be particularly useful for assessing for the presence of seasonal trends and other potential time-varying confounders ( 52 ). Zombre et al ( 52 ) maintained a large number of control number of sites during the extended study period and were able to look at variations in seasonal trends as well as clinic-level characteristics, such as workforce density and sustainability. In addition to including a control group, several analysis phase strategies can be employed to strengthen causal inference including adjustment for time varying confounders and accounting for auto correlation.

3. Stepped Wedge Designs

Stepped wedge designs (SWDs) involve a sequential roll-out of an intervention to participants (individuals or clusters) over several distinct time periods ( 5 , 7 , 22 , 24 , 29 , 30 , 38 ). SWDs can include cohort designs (with the same individuals in each cluster in the pre and post intervention steps), and repeated cross-sectional designs (with different individuals in each cluster in the pre and post intervention steps) ( 7 ). In the SWD, there is a unidirectional, sequential roll- out of an intervention to clusters (or individuals) that occurs over different time periods. Initially all clusters (or individuals) are unexposed to the intervention, and then at regular intervals, selected clusters cross over (or ‘step’) into a time period where they receive the intervention [ Figure 3 here]. All clusters receive the intervention by the last time interval (although not all individuals within clusters necessarily receive the intervention). Data is collected on all clusters such that they each contribute data during both control and intervention time periods. The order in which clusters receive the intervention can be assigned randomly or using some other approach when randomization is not possible. For example, in settings with geographically remote or difficult-to-access populations, a non-random order can maximize efficiency with respect to logistical considerations.

An external file that holds a picture, illustration, etc.
Object name is nihms-1671041-f0003.jpg

Illustration of the stepped wedge study design-Intervention Roll-Out Over Time*

* Adapted from Turner et al 2017

The practical and social benefits of the stepped wedge design have been summarized in recent reviews ( 5 , 22 , 24 , 27 , 29 , 36 , 38 , 41 , 42 , 45 , 46 , 51 ). In addition to addressing general concerns with RCTs discussed earlier, advantages of SWDs include the logistical convenience of staggered roll-out of the intervention, which enables a.smaller staff to be distributed across different implementation start times and allows for multi-level interventions to be integrated into practice or ‘real world’ settings (referred to as the feasibility benefit). This benefit also applies to studies of de-implementation, prior to a new approach being introduced. For example, with a staggered roll-out it is possible to build in a transition cohort, such that sites can adjust to the integration of the new intervention, and also allow for a switching over in sites to de-implementing a prior practice. For a specified time period there may be ‘mixed’ or incomplete data, which can be excluded from the data analysis. However, associated with a longer duration of roll-out for practical reasons such as this switching, are associated costs in threats to internal validity, discussed below.

There are several limitations to the SWD. These generally involve consequences of the trade-offs related to having design control for the intervention roll-out, often due to logistical reasons on the one hand, but then having ‘down the road’ threats to internal validity. These roll-out related threats include potential lagged intervention effects for non-acute outcomes; possible fatigue and associated higher drop-out rates of waiting for the cross-over among clusters assigned to receive the intervention later; fidelity losses for key intervention components over time; and potential contamination of later clusters ( 22 ). Another drawback of the SWD is that it involves data assessment at each point when a new cluster receives the intervention, substantially increasing the burden of data collection and costs unless data collection can be automated or uses existing data sources. Because the SWD often has more clusters receiving the intervention towards the end of the intervention period than in previous time periods, there is a potential concern that there can be temporal confounding at this stage. The SWD is also not as suited for evaluating intervention effects on delayed health outcomes (such as chronic disease incidence), and is most appropriate when outcomes that occur relatively soon after each cluster starts receiving the intervention. Finally, as logistical necessity often dictates selecting a design with smaller numbers of clusters, there are relatedly challenges in the statistical analysis. To use standard software, the common recommendation is to have at least 20 to 30 clusters ( 35 ).

Stepped wedge designs can embed improvements that can enhance internal validity, mimicking the strength of RCTs. These generally focus on efforts to either reduce bias or achieve balance in covariates across sites and over time; and/or compensate as much as possible for practical decisions made at the implementation stage, which affect the distribution of the intervention over time and by sites. The most widely used approaches are discussed in order of benefit to internal validity: 1) partial randomization; 2) stratification and matching; 3) embedding data collection at critical points in time, such as with a phasing-in of intervention components, and 4) creating a transition cohort or wash-out period. The most important of these SWD elements is random assignment of clusters as to when they will cross over into the intervention period. As well, utilizing data regarding time-varying covariates/confounders, either to stratify clusters and then randomize within strata (partial randomization) or to match clusters on known covariates in the absence of randomization, are techniques often employed to minimize bias and reduce confounding. Finally, maintaining control over the number and timing of data collection points over the study period can be beneficial in several ways. First, it can allow for data analysis strategies that can incorporate cyclical temporal trends (such as seasonality-mediated risk for the outcome, such as with flu or malaria) or other underlying temporal trends. Second, it can enable phased interventions to be studied for the contribution of different components included in the phases (e.g. passive then active intervention components), or can enable ‘pausing’ time, as when there is a structured wash out or transition cohort created for practical reasons (e.g. one intervention or practice is stopped/de-implemented, and a new one is introduced) (see Figure 4 ).

An external file that holds a picture, illustration, etc.
Object name is nihms-1671041-f0004.jpg

Illustration of the stepped wedge study design- Summary of Exposed and Unexposed Cluster Time*

Adapted from Hemming 2015

Table 2 provides examples of studies using SWD that have used one or more of the design approaches described above to improve the internal validity of the study. In the study by Killam et al 2010 ( 31 ), a non-randomized SWD was used to evaluate a complex clinic-based intervention for integrating anti-retro viral (ART) treatment into routine antenatal care in Zambia for post-partum women. The design involved matching clinics by size and an inverse roll-out, to balance out the sizes across the four groups. The inverse roll-out involved four strata of clinics, grouped by size with two clinics in each strata. The roll-out was sequenced across these eight clinics, such that one smaller clinics began earlier, with three clinics of increasing size getting the intervention afterwards. This was then followed by a descending order of clinics by size for the remaining roll-out, ending with the smallest clinic. This inverse roll-out enabled the investigators to start with a smaller clinic, to work out the logistical considerations, but then influence the roll-out such as to avoid clustering of smaller or larger clinics in any one step of the intervention.

A second design feature of this study involved the use of a transition cohort or wash-out period (see Figure 4 ) (also used in the Morrison et al 2015 study)( 19 , 37 ). This approach can be used when an existing practice is being replaced with the new intervention, but there is ambiguity as to which group an individual would be assigned to while integration efforts were underway. In the Killam study, the concern was regarding women who might be identified as ART-eligible in the control period but actually enroll into and initiate ART at an antenatal clinic during the intervention period. To account for the ambiguity of this transition period, patients with an initial antenatal visit more than 60 days prior to the date of implementing the ART in the intervention sites were excluded. For analysis of the primary outcome, patients were categorized into three mutually exclusive categories: a referral to ART cohort, an integrated ART in the antenatal clinics cohort, and a transition cohort. It is important to note that the time period for a transition cohort can add considerable time to an intervention roll-out, especially when there is to be a de-implementation of an existing practice that involves a wide range or staff or activities. As well, the exclusion of the data during this phase can reduce the study’s power if not built into the sample size considerations at the design phase.

Morrison et al 2015 ( 37 ) used a randomized cluster design, with additional stratification and randomization within relevant sub-groups to examine a two-part quality improvement intervention focusing on clinician uptake of patient cooling procedures for post-cardiac care in hospital settings (referred to as Targeted Temperature Management). In this study, 32 hospitals were stratified into two groups based on intensive care unit size (< 10 beds vs ≥ 10 beds), and then randomly assigned into four different time periods to receive the intervention. The phased intervention implementation included both passive (generic didactic training components regarding the intervention) and an active (tailored support to site-specific barriers identified in passive phase) components. This study exemplifies some of the best uses of SWD in the context of QI interventions that have either multiple components of for which there may be a passive and active phase, as is often the case with interventions that are layered onto systems change requirements (e.g. electronic records improvements/customization) or relate to sequenced guidelines implementation (as in this example).

Studies using a wait-list partial randomization design are also included in Table 2 ( 24 , 27 , 42 ). These types of studies are well-suited to settings where there is routine enumeration of a cohort based on a specific eligibility criteria, such as enrolment in a health plan or employment group, or from a disease-based registry, such as for diabetes ( 27 , 42 ). It has also been reported that this design can increase efficiency and statistical power in contrast to cluster-based trials, a crucial consideration when the number of participating individuals or groups is small ( 22 ).

The study by Grant et al et al uses a variant of the SWD for which individuals within a setting are enumerated and then randomized to get the intervention. In this example, employees who had previously screened positive for HIV at the company clinic as part of mandatory testing, were invited in random sequence to attend a workplace HIV clinic at a large mining facility in South Africa to initiate a preventive treatment for TB during the years prior to the time when ARTs were more widely available. Individuals contributed follow-up time to the “pre-clinic” phase from the baseline date established for the cohort until the actual date of their first clinic visit, and also to the “post- clinic” phase thereafter. Clinic visits every 6 months were used to identify incident TB events. Because they were looking at reduction in TB incidence among the workers at the mine and not just those in the study, the effect of the intervention (the provision of clinic services) was estimated for the entire study population (incidence rate ratio), irrespective of whether they actually received isoniazid.

CONSIDERATIONS IN CHOOSING BETWEEN QED

We present a decision ‘map’ approach based on a Figure 5 to assist in considering decisions in selecting among QEDs and for which features you can pay particular attention to in the design [ Figure 5 here].

An external file that holds a picture, illustration, etc.
Object name is nihms-1671041-f0005.jpg

Quasi-Experimental Design Decision-Making Map

First, at the top of the flow diagram ( 1 ), consider if you can have multiple time points you can collect data for in the pre and post intervention periods. Ideally, you will be able to select more than two time points. If you cannot, then multiple sites would allow for a non-equivalent pre-post design. If you can have more than the two time points for the study assessments, you next need to determine if you can include multiple sites ( 2 ). If not, then you can consider a single site point ITS. If you can have multiple sites, you can choose between a SWD and a multiple site ITS based on whether or not you observe the roll-out over multiple time points, (SWD) or if you have only one intervention time point (controlled multiple site ITS)

STRATEGIES TO STRENGTHEN EXTERNAL VALIDITY

In a recent article in this journal ( 26 ), the following observation was made that there is an unavoidable trade-off between these two forms of validity such that with a higher control of a study, there is stronger evidence for internal validity but that control may jeopardize some of the external validity of that stronger evidence. Nonetheless, there are design strategies for non-experimental studies that can be undertaken to improve the internal validity while not eliminating considerations of external validity. These are described below across all three study designs.

1. Examine variation of acceptability and reach among diverse sub-populations

One of the strengths of QEDs is that they are often employed to examine intervention effects in real world settings and often, for more diverse populations and settings. Consequently, if there is adequate examination of characteristics of participants and setting-related factors it can be possible to interpret findings among critical groups for which there may be no existing evidence of an intervention effect for. For example in the Campus Watch intervention ( 16 ), the investigator over-sampled the Maori indigenous population in order to be able to stratify the results and investigate whether the program was effective for this under-studied group. In the study by Zombré et al ( 52 ) on health care access in Burkina Faso, the authors examined clinic density characteristics to determine its impact on sustainability.

2. Characterize fidelity and measures of implementation processes

Some of the most important outcomes for examination in these QED studies include whether the intervention was delivered as intended (i.e., fidelity), maintained over the entire study period (i.e., sustainability), and if the outcomes could be specifically examined by this level of fidelity within or across sites. As well, when a complex intervention is related to a policy or guideline shift and implementation requires logistical adjustments (such as phased roll-outs to embed the intervention or to train staff), QEDs more truly mimic real world constraints. As a result, capturing processes of implementation are critical as they can describe important variation in uptake, informing interpretation of the findings for external validity. As described by Prost et al ( 41 ), for example, it is essential to capture what occurs during such phased intervention roll-outs, as with following established guidelines for the development of complex interventions including efforts to define and protocolize activities before their implementation ( 17 , 18 , 28 ). However, QEDs are often conducted by teams with strong interests in adapting the intervention or ‘learning by doing’, which can limit interpretation of findings if not planned into the design. As done in the study by Bailet et al ( 3 ), the investigators refined intervention, based on year 1 data, and then applied in years 2–3, at this later time collecting additional data on training and measurement fidelity. This phasing aspect of implementation generates a tension between protocolizing interventions and adapting them as they go along. When this is the case, additional designs for the intervention roll-out, such as adaptive or hybrid designs can also be considered.

3. Conduct community or cohort-based sampling to improve inference

External validity can be improved when the intervention is applied to entire communities, as with some of the community-randomized studies described in Table 2 ( 12 , 21 ). In these cases, the results are closer to the conditions that would apply if the interventions were conducted ‘at scale’, with a large proportion of a population receiving the intervention. In some cases QEDs also afford greater access for some intervention research to be conducted in remote or difficult to reach communities, where the cost and logistical requirements of an RCT may become prohibitive or may require alteration of the intervention or staffing support to levels that would never be feasible in real world application.

4. Employ a model or framework that covers both internal and external validity

Frameworks can be helpful to enhances interpretability of many kinds of studies, including QEDs and can help ensure that information on essential implementation strategies are included in the results ( 44 ). Although several of the case studies summarized in this article included measures that can improve external validity (such as sub-group analysis of which participants were most impacted, process and contextual measures that can affect variation in uptake), none formally employ an implementation framework. Green and Glasgow (2006) ( 25 ) have outlined several useful criteria for gaging the extent to which an evaluation study also provides measures that enhance interpretation of external validity, for which those employing QEDs could identify relevant components and frameworks to include in reported findings.

It has been observed that it is more difficult to conduct a good quasi-experiment than to conduct a good randomized trial ( 43 ). Although QEDs are increasingly used, it is important to note that randomized designs are still preferred over quasi-experiments except where randomization is not possible. In this paper we present three important QEDs and variants nested within them that can increase internal validity while also improving external validity considerations, and present case studies employing these techniques.

1 It is important to note that if such randomization would be possible at the site level based on similar sites, a cluster randomized control trial would be an option.

LITERATURE CITED

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Experimental and Quasi-Experimental Research

Guide Title: Experimental and Quasi-Experimental Research Guide ID: 64

You approach a stainless-steel wall, separated vertically along its middle where two halves meet. After looking to the left, you see two buttons on the wall to the right. You press the top button and it lights up. A soft tone sounds and the two halves of the wall slide apart to reveal a small room. You step into the room. Looking to the left, then to the right, you see a panel of more buttons. You know that you seek a room marked with the numbers 1-0-1-2, so you press the button marked "10." The halves slide shut and enclose you within the cubicle, which jolts upward. Soon, the soft tone sounds again. The door opens again. On the far wall, a sign silently proclaims, "10th floor."

You have engaged in a series of experiments. A ride in an elevator may not seem like an experiment, but it, and each step taken towards its ultimate outcome, are common examples of a search for a causal relationship-which is what experimentation is all about.

You started with the hypothesis that this is in fact an elevator. You proved that you were correct. You then hypothesized that the button to summon the elevator was on the left, which was incorrect, so then you hypothesized it was on the right, and you were correct. You hypothesized that pressing the button marked with the up arrow would not only bring an elevator to you, but that it would be an elevator heading in the up direction. You were right.

As this guide explains, the deliberate process of testing hypotheses and reaching conclusions is an extension of commonplace testing of cause and effect relationships.

Basic Concepts of Experimental and Quasi-Experimental Research

Discovering causal relationships is the key to experimental research. In abstract terms, this means the relationship between a certain action, X, which alone creates the effect Y. For example, turning the volume knob on your stereo clockwise causes the sound to get louder. In addition, you could observe that turning the knob clockwise alone, and nothing else, caused the sound level to increase. You could further conclude that a causal relationship exists between turning the knob clockwise and an increase in volume; not simply because one caused the other, but because you are certain that nothing else caused the effect.

Independent and Dependent Variables

Beyond discovering causal relationships, experimental research further seeks out how much cause will produce how much effect; in technical terms, how the independent variable will affect the dependent variable. You know that turning the knob clockwise will produce a louder noise, but by varying how much you turn it, you see how much sound is produced. On the other hand, you might find that although you turn the knob a great deal, sound doesn't increase dramatically. Or, you might find that turning the knob just a little adds more sound than expected. The amount that you turned the knob is the independent variable, the variable that the researcher controls, and the amount of sound that resulted from turning it is the dependent variable, the change that is caused by the independent variable.

Experimental research also looks into the effects of removing something. For example, if you remove a loud noise from the room, will the person next to you be able to hear you? Or how much noise needs to be removed before that person can hear you?

Treatment and Hypothesis

The term treatment refers to either removing or adding a stimulus in order to measure an effect (such as turning the knob a little or a lot, or reducing the noise level a little or a lot). Experimental researchers want to know how varying levels of treatment will affect what they are studying. As such, researchers often have an idea, or hypothesis, about what effect will occur when they cause something. Few experiments are performed where there is no idea of what will happen. From past experiences in life or from the knowledge we possess in our specific field of study, we know how some actions cause other reactions. Experiments confirm or reconfirm this fact.

Experimentation becomes more complex when the causal relationships they seek aren't as clear as in the stereo knob-turning examples. Questions like "Will olestra cause cancer?" or "Will this new fertilizer help this plant grow better?" present more to consider. For example, any number of things could affect the growth rate of a plant-the temperature, how much water or sun it receives, or how much carbon dioxide is in the air. These variables can affect an experiment's results. An experimenter who wants to show that adding a certain fertilizer will help a plant grow better must ensure that it is the fertilizer, and nothing else, affecting the growth patterns of the plant. To do this, as many of these variables as possible must be controlled.

Matching and Randomization

In the example used in this guide (you'll find the example below), we discuss an experiment that focuses on three groups of plants -- one that is treated with a fertilizer named MegaGro, another group treated with a fertilizer named Plant!, and yet another that is not treated with fetilizer (this latter group serves as a "control" group). In this example, even though the designers of the experiment have tried to remove all extraneous variables, results may appear merely coincidental. Since the goal of the experiment is to prove a causal relationship in which a single variable is responsible for the effect produced, the experiment would produce stronger proof if the results were replicated in larger treatment and control groups.

Selecting groups entails assigning subjects in the groups of an experiment in such a way that treatment and control groups are comparable in all respects except the application of the treatment. Groups can be created in two ways: matching and randomization. In the MegaGro experiment discussed below, the plants might be matched according to characteristics such as age, weight and whether they are blooming. This involves distributing these plants so that each plant in one group exactly matches characteristics of plants in the other groups. Matching may be problematic, though, because it "can promote a false sense of security by leading [the experimenter] to believe that [the] experimental and control groups were really equated at the outset, when in fact they were not equated on a host of variables" (Jones, 291). In other words, you may have flowers for your MegaGro experiment that you matched and distributed among groups, but other variables are unaccounted for. It would be difficult to have equal groupings.

Randomization, then, is preferred to matching. This method is based on the statistical principle of normal distribution. Theoretically, any arbitrarily selected group of adequate size will reflect normal distribution. Differences between groups will average out and become more comparable. The principle of normal distribution states that in a population most individuals will fall within the middle range of values for a given characteristic, with increasingly fewer toward either extreme (graphically represented as the ubiquitous "bell curve").

Differences between Quasi-Experimental and Experimental Research

Thus far, we have explained that for experimental research we need:

  • a hypothesis for a causal relationship;
  • a control group and a treatment group;
  • to eliminate confounding variables that might mess up the experiment and prevent displaying the causal relationship; and
  • to have larger groups with a carefully sorted constituency; preferably randomized, in order to keep accidental differences from fouling things up.

But what if we don't have all of those? Do we still have an experiment? Not a true experiment in the strictest scientific sense of the term, but we can have a quasi-experiment, an attempt to uncover a causal relationship, even though the researcher cannot control all the factors that might affect the outcome.

A quasi-experimenter treats a given situation as an experiment even though it is not wholly by design. The independent variable may not be manipulated by the researcher, treatment and control groups may not be randomized or matched, or there may be no control group. The researcher is limited in what he or she can say conclusively.

The significant element of both experiments and quasi-experiments is the measure of the dependent variable, which it allows for comparison. Some data is quite straightforward, but other measures, such as level of self-confidence in writing ability, increase in creativity or in reading comprehension are inescapably subjective. In such cases, quasi-experimentation often involves a number of strategies to compare subjectivity, such as rating data, testing, surveying, and content analysis.

Rating essentially is developing a rating scale to evaluate data. In testing, experimenters and quasi-experimenters use ANOVA (Analysis of Variance) and ANCOVA (Analysis of Co-Variance) tests to measure differences between control and experimental groups, as well as different correlations between groups.

Since we're mentioning the subject of statistics, note that experimental or quasi-experimental research cannot state beyond a shadow of a doubt that a single cause will always produce any one effect. They can do no more than show a probability that one thing causes another. The probability that a result is the due to random chance is an important measure of statistical analysis and in experimental research.

Example: Causality

Let's say you want to determine that your new fertilizer, MegaGro, will increase the growth rate of plants. You begin by getting a plant to go with your fertilizer. Since the experiment is concerned with proving that MegaGro works, you need another plant, using no fertilizer at all on it, to compare how much change your fertilized plant displays. This is what is known as a control group.

Set up with a control group, which will receive no treatment, and an experimental group, which will get MegaGro, you must then address those variables that could invalidate your experiment. This can be an extensive and exhaustive process. You must ensure that you use the same plant; that both groups are put in the same kind of soil; that they receive equal amounts of water and sun; that they receive the same amount of exposure to carbon-dioxide-exhaling researchers, and so on. In short, any other variable that might affect the growth of those plants, other than the fertilizer, must be the same for both plants. Otherwise, you can't prove absolutely that MegaGro is the only explanation for the increased growth of one of those plants.

Such an experiment can be done on more than two groups. You may not only want to show that MegaGro is an effective fertilizer, but that it is better than its competitor brand of fertilizer, Plant! All you need to do, then, is have one experimental group receiving MegaGro, one receiving Plant! and the other (the control group) receiving no fertilizer. Those are the only variables that can be different between the three groups; all other variables must be the same for the experiment to be valid.

Controlling variables allows the researcher to identify conditions that may affect the experiment's outcome. This may lead to alternative explanations that the researcher is willing to entertain in order to isolate only variables judged significant. In the MegaGro experiment, you may be concerned with how fertile the soil is, but not with the plants'; relative position in the window, as you don't think that the amount of shade they get will affect their growth rate. But what if it did? You would have to go about eliminating variables in order to determine which is the key factor. What if one receives more shade than the other and the MegaGro plant, which received more shade, died? This might prompt you to formulate a plausible alternative explanation, which is a way of accounting for a result that differs from what you expected. You would then want to redo the study with equal amounts of sunlight.

Methods: Five Steps

Experimental research can be roughly divided into five phases:

Identifying a research problem

The process starts by clearly identifying the problem you want to study and considering what possible methods will affect a solution. Then you choose the method you want to test, and formulate a hypothesis to predict the outcome of the test.

For example, you may want to improve student essays, but you don't believe that teacher feedback is enough. You hypothesize that some possible methods for writing improvement include peer workshopping, or reading more example essays. Favoring the former, your experiment would try to determine if peer workshopping improves writing in high school seniors. You state your hypothesis: peer workshopping prior to turning in a final draft will improve the quality of the student's essay.

Planning an experimental research study

The next step is to devise an experiment to test your hypothesis. In doing so, you must consider several factors. For example, how generalizable do you want your end results to be? Do you want to generalize about the entire population of high school seniors everywhere, or just the particular population of seniors at your specific school? This will determine how simple or complex the experiment will be. The amount of time funding you have will also determine the size of your experiment.

Continuing the example from step one, you may want a small study at one school involving three teachers, each teaching two sections of the same course. The treatment in this experiment is peer workshopping. Each of the three teachers will assign the same essay assignment to both classes; the treatment group will participate in peer workshopping, while the control group will receive only teacher comments on their drafts.

Conducting the experiment

At the start of an experiment, the control and treatment groups must be selected. Whereas the "hard" sciences have the luxury of attempting to create truly equal groups, educators often find themselves forced to conduct their experiments based on self-selected groups, rather than on randomization. As was highlighted in the Basic Concepts section, this makes the study a quasi-experiment, since the researchers cannot control all of the variables.

For the peer workshopping experiment, let's say that it involves six classes and three teachers with a sample of students randomly selected from all the classes. Each teacher will have a class for a control group and a class for a treatment group. The essay assignment is given and the teachers are briefed not to change any of their teaching methods other than the use of peer workshopping. You may see here that this is an effort to control a possible variable: teaching style variance.

Analyzing the data

The fourth step is to collect and analyze the data. This is not solely a step where you collect the papers, read them, and say your methods were a success. You must show how successful. You must devise a scale by which you will evaluate the data you receive, therefore you must decide what indicators will be, and will not be, important.

Continuing our example, the teachers' grades are first recorded, then the essays are evaluated for a change in sentence complexity, syntactical and grammatical errors, and overall length. Any statistical analysis is done at this time if you choose to do any. Notice here that the researcher has made judgments on what signals improved writing. It is not simply a matter of improved teacher grades, but a matter of what the researcher believes constitutes improved use of the language.

Writing the paper/presentation describing the findings

Once you have completed the experiment, you will want to share findings by publishing academic paper (or presentations). These papers usually have the following format, but it is not necessary to follow it strictly. Sections can be combined or not included, depending on the structure of the experiment, and the journal to which you submit your paper.

  • Abstract : Summarize the project: its aims, participants, basic methodology, results, and a brief interpretation.
  • Introduction : Set the context of the experiment.
  • Review of Literature : Provide a review of the literature in the specific area of study to show what work has been done. Should lead directly to the author's purpose for the study.
  • Statement of Purpose : Present the problem to be studied.
  • Participants : Describe in detail participants involved in the study; e.g., how many, etc. Provide as much information as possible.
  • Materials and Procedures : Clearly describe materials and procedures. Provide enough information so that the experiment can be replicated, but not so much information that it becomes unreadable. Include how participants were chosen, the tasks assigned them, how they were conducted, how data were evaluated, etc.
  • Results : Present the data in an organized fashion. If it is quantifiable, it is analyzed through statistical means. Avoid interpretation at this time.
  • Discussion : After presenting the results, interpret what has happened in the experiment. Base the discussion only on the data collected and as objective an interpretation as possible. Hypothesizing is possible here.
  • Limitations : Discuss factors that affect the results. Here, you can speculate how much generalization, or more likely, transferability, is possible based on results. This section is important for quasi-experimentation, since a quasi-experiment cannot control all of the variables that might affect the outcome of a study. You would discuss what variables you could not control.
  • Conclusion : Synthesize all of the above sections.
  • References : Document works cited in the correct format for the field.

Experimental and Quasi-Experimental Research: Issues and Commentary

Several issues are addressed in this section, including the use of experimental and quasi-experimental research in educational settings, the relevance of the methods to English studies, and ethical concerns regarding the methods.

Using Experimental and Quasi-Experimental Research in Educational Settings

Charting causal relationships in human settings.

Any time a human population is involved, prediction of casual relationships becomes cloudy and, some say, impossible. Many reasons exist for this; for example,

  • researchers in classrooms add a disturbing presence, causing students to act abnormally, consciously or unconsciously;
  • subjects try to please the researcher, just because of an apparent interest in them (known as the Hawthorne Effect); or, perhaps
  • the teacher as researcher is restricted by bias and time pressures.

But such confounding variables don't stop researchers from trying to identify causal relationships in education. Educators naturally experiment anyway, comparing groups, assessing the attributes of each, and making predictions based on an evaluation of alternatives. They look to research to support their intuitive practices, experimenting whenever they try to decide which instruction method will best encourage student improvement.

Combining Theory, Research, and Practice

The goal of educational research lies in combining theory, research, and practice. Educational researchers attempt to establish models of teaching practice, learning styles, curriculum development, and countless other educational issues. The aim is to "try to improve our understanding of education and to strive to find ways to have understanding contribute to the improvement of practice," one writer asserts (Floden 1996, p. 197).

In quasi-experimentation, researchers try to develop models by involving teachers as researchers, employing observational research techniques. Although results of this kind of research are context-dependent and difficult to generalize, they can act as a starting point for further study. The "educational researcher . . . provides guidelines and interpretive material intended to liberate the teacher's intelligence so that whatever artistry in teaching the teacher can achieve will be employed" (Eisner 1992, p. 8).

Bias and Rigor

Critics contend that the educational researcher is inherently biased, sample selection is arbitrary, and replication is impossible. The key to combating such criticism has to do with rigor. Rigor is established through close, proper attention to randomizing groups, time spent on a study, and questioning techniques. This allows more effective application of standards of quantitative research to qualitative research.

Often, teachers cannot wait to for piles of experimentation data to be analyzed before using the teaching methods (Lauer and Asher 1988). They ultimately must assess whether the results of a study in a distant classroom are applicable in their own classrooms. And they must continuously test the effectiveness of their methods by using experimental and qualitative research simultaneously. In addition to statistics (quantitative), researchers may perform case studies or observational research (qualitative) in conjunction with, or prior to, experimentation.

Relevance to English Studies

Situations in english studies that might encourage use of experimental methods.

Whenever a researcher would like to see if a causal relationship exists between groups, experimental and quasi-experimental research can be a viable research tool. Researchers in English Studies might use experimentation when they believe a relationship exists between two variables, and they want to show that these two variables have a significant correlation (or causal relationship).

A benefit of experimentation is the ability to control variables, such as the amount of treatment, when it is given, to whom and so forth. Controlling variables allows researchers to gain insight into the relationships they believe exist. For example, a researcher has an idea that writing under pseudonyms encourages student participation in newsgroups. Researchers can control which students write under pseudonyms and which do not, then measure the outcomes. Researchers can then analyze results and determine if this particular variable alone causes increased participation.

Transferability-Applying Results

Experimentation and quasi-experimentation allow for generating transferable results and accepting those results as being dependent upon experimental rigor. It is an effective alternative to generalizability, which is difficult to rely upon in educational research. English scholars, reading results of experiments with a critical eye, ultimately decide if results will be implemented and how. They may even extend that existing research by replicating experiments in the interest of generating new results and benefiting from multiple perspectives. These results will strengthen the study or discredit findings.

Concerns English Scholars Express about Experiments

Researchers should carefully consider if a particular method is feasible in humanities studies, and whether it will yield the desired information. Some researchers recommend addressing pertinent issues combining several research methods, such as survey, interview, ethnography, case study, content analysis, and experimentation (Lauer and Asher, 1988).

Advantages and Disadvantages of Experimental Research: Discussion

In educational research, experimentation is a way to gain insight into methods of instruction. Although teaching is context specific, results can provide a starting point for further study. Often, a teacher/researcher will have a "gut" feeling about an issue which can be explored through experimentation and looking at causal relationships. Through research intuition can shape practice .

A preconception exists that information obtained through scientific method is free of human inconsistencies. But, since scientific method is a matter of human construction, it is subject to human error . The researcher's personal bias may intrude upon the experiment , as well. For example, certain preconceptions may dictate the course of the research and affect the behavior of the subjects. The issue may be compounded when, although many researchers are aware of the affect that their personal bias exerts on their own research, they are pressured to produce research that is accepted in their field of study as "legitimate" experimental research.

The researcher does bring bias to experimentation, but bias does not limit an ability to be reflective . An ethical researcher thinks critically about results and reports those results after careful reflection. Concerns over bias can be leveled against any research method.

Often, the sample may not be representative of a population, because the researcher does not have an opportunity to ensure a representative sample. For example, subjects could be limited to one location, limited in number, studied under constrained conditions and for too short a time.

Despite such inconsistencies in educational research, the researcher has control over the variables , increasing the possibility of more precisely determining individual effects of each variable. Also, determining interaction between variables is more possible.

Even so, artificial results may result . It can be argued that variables are manipulated so the experiment measures what researchers want to examine; therefore, the results are merely contrived products and have no bearing in material reality. Artificial results are difficult to apply in practical situations, making generalizing from the results of a controlled study questionable. Experimental research essentially first decontextualizes a single question from a "real world" scenario, studies it under controlled conditions, and then tries to recontextualize the results back on the "real world" scenario. Results may be difficult to replicate .

Perhaps, groups in an experiment may not be comparable . Quasi-experimentation in educational research is widespread because not only are many researchers also teachers, but many subjects are also students. With the classroom as laboratory, it is difficult to implement randomizing or matching strategies. Often, students self-select into certain sections of a course on the basis of their own agendas and scheduling needs. Thus when, as often happens, one class is treated and the other used for a control, the groups may not actually be comparable. As one might imagine, people who register for a class which meets three times a week at eleven o'clock in the morning (young, no full-time job, night people) differ significantly from those who register for one on Monday evenings from seven to ten p.m. (older, full-time job, possibly more highly motivated). Each situation presents different variables and your group might be completely different from that in the study. Long-term studies are expensive and hard to reproduce. And although often the same hypotheses are tested by different researchers, various factors complicate attempts to compare or synthesize them. It is nearly impossible to be as rigorous as the natural sciences model dictates.

Even when randomization of students is possible, problems arise. First, depending on the class size and the number of classes, the sample may be too small for the extraneous variables to cancel out. Second, the study population is not strictly a sample, because the population of students registered for a given class at a particular university is obviously not representative of the population of all students at large. For example, students at a suburban private liberal-arts college are typically young, white, and upper-middle class. In contrast, students at an urban community college tend to be older, poorer, and members of a racial minority. The differences can be construed as confounding variables: the first group may have fewer demands on its time, have less self-discipline, and benefit from superior secondary education. The second may have more demands, including a job and/or children, have more self-discipline, but an inferior secondary education. Selecting a population of subjects which is representative of the average of all post-secondary students is also a flawed solution, because the outcome of a treatment involving this group is not necessarily transferable to either the students at a community college or the students at the private college, nor are they universally generalizable.

When a human population is involved, experimental research becomes concerned if behavior can be predicted or studied with validity. Human response can be difficult to measure . Human behavior is dependent on individual responses. Rationalizing behavior through experimentation does not account for the process of thought, making outcomes of that process fallible (Eisenberg, 1996).

Nevertheless, we perform experiments daily anyway . When we brush our teeth every morning, we are experimenting to see if this behavior will result in fewer cavities. We are relying on previous experimentation and we are transferring the experimentation to our daily lives.

Moreover, experimentation can be combined with other research methods to ensure rigor . Other qualitative methods such as case study, ethnography, observational research and interviews can function as preconditions for experimentation or conducted simultaneously to add validity to a study.

We have few alternatives to experimentation. Mere anecdotal research , for example is unscientific, unreplicatable, and easily manipulated. Should we rely on Ed walking into a faculty meeting and telling the story of Sally? Sally screamed, "I love writing!" ten times before she wrote her essay and produced a quality paper. Therefore, all the other faculty members should hear this anecdote and know that all other students should employ this similar technique.

On final disadvantage: frequently, political pressure drives experimentation and forces unreliable results. Specific funding and support may drive the outcomes of experimentation and cause the results to be skewed. The reader of these results may not be aware of these biases and should approach experimentation with a critical eye.

Advantages and Disadvantages of Experimental Research: Quick Reference List

Experimental and quasi-experimental research can be summarized in terms of their advantages and disadvantages. This section combines and elaborates upon many points mentioned previously in this guide.

gain insight into methods of instruction

subject to human error

intuitive practice shaped by research

personal bias of researcher may intrude

teachers have bias but can be reflective

sample may not be representative

researcher can have control over variables

can produce artificial results

humans perform experiments anyway

results may only apply to one situation and may be difficult to replicate

can be combined with other research methods for rigor

groups may not be comparable

use to determine what is best for population

human response can be difficult to measure

provides for greater transferability than anecdotal research

political pressure may skew results

Ethical Concerns

Experimental research may be manipulated on both ends of the spectrum: by researcher and by reader. Researchers who report on experimental research, faced with naive readers of experimental research, encounter ethical concerns. While they are creating an experiment, certain objectives and intended uses of the results might drive and skew it. Looking for specific results, they may ask questions and look at data that support only desired conclusions. Conflicting research findings are ignored as a result. Similarly, researchers, seeking support for a particular plan, look only at findings which support that goal, dismissing conflicting research.

Editors and journals do not publish only trouble-free material. As readers of experiments members of the press might report selected and isolated parts of a study to the public, essentially transferring that data to the general population which may not have been intended by the researcher. Take, for example, oat bran. A few years ago, the press reported how oat bran reduces high blood pressure by reducing cholesterol. But that bit of information was taken out of context. The actual study found that when people ate more oat bran, they reduced their intake of saturated fats high in cholesterol. People started eating oat bran muffins by the ton, assuming a causal relationship when in actuality a number of confounding variables might influence the causal link.

Ultimately, ethical use and reportage of experimentation should be addressed by researchers, reporters and readers alike.

Reporters of experimental research often seek to recognize their audience's level of knowledge and try not to mislead readers. And readers must rely on the author's skill and integrity to point out errors and limitations. The relationship between researcher and reader may not sound like a problem, but after spending months or years on a project to produce no significant results, it may be tempting to manipulate the data to show significant results in order to jockey for grants and tenure.

Meanwhile, the reader may uncritically accept results that receive validity by being published in a journal. However, research that lacks credibility often is not published; consequentially, researchers who fail to publish run the risk of being denied grants, promotions, jobs, and tenure. While few researchers are anything but earnest in their attempts to conduct well-designed experiments and present the results in good faith, rhetorical considerations often dictate a certain minimization of methodological flaws.

Concerns arise if researchers do not report all, or otherwise alter, results. This phenomenon is counterbalanced, however, in that professionals are also rewarded for publishing critiques of others' work. Because the author of an experimental study is in essence making an argument for the existence of a causal relationship, he or she must be concerned not only with its integrity, but also with its presentation. Achieving persuasiveness in any kind of writing involves several elements: choosing a topic of interest, providing convincing evidence for one's argument, using tone and voice to project credibility, and organizing the material in a way that meets expectations for a logical sequence. Of course, what is regarded as pertinent, accepted as evidence, required for credibility, and understood as logical varies according to context. If the experimental researcher hopes to make an impact on the community of professionals in their field, she must attend to the standards and orthodoxy's of that audience.

Related Links

Contrasts: Traditional and computer-supported writing classrooms. This Web presents a discussion of the Transitions Study, a year-long exploration of teachers and students in computer-supported and traditional writing classrooms. Includes description of study, rationale for conducting the study, results and implications of the study.

http://kairos.technorhetoric.net/2.2/features/reflections/page1.htm

Annotated Bibliography

A cozy world of trivial pursuits? (1996, June 28) The Times Educational Supplement . 4174, pp. 14-15.

A critique discounting the current methods Great Britain employs to fund and disseminate educational research. The belief is that research is performed for fellow researchers not the teaching public and implications for day to day practice are never addressed.

Anderson, J. A. (1979, Nov. 10-13). Research as argument: the experimental form. Paper presented at the annual meeting of the Speech Communication Association, San Antonio, TX.

In this paper, the scientist who uses the experimental form does so in order to explain that which is verified through prediction.

Anderson, Linda M. (1979). Classroom-based experimental studies of teaching effectiveness in elementary schools . (Technical Report UTR&D-R- 4102). Austin: Research and Development Center for Teacher Education, University of Texas.

Three recent large-scale experimental studies have built on a database established through several correlational studies of teaching effectiveness in elementary school.

Asher, J. W. (1976). Educational research and evaluation methods . Boston: Little, Brown.

Abstract unavailable by press time.

Babbie, Earl R. (1979). The Practice of Social Research . Belmont, CA: Wadsworth.

A textbook containing discussions of several research methodologies used in social science research.

Bangert-Drowns, R.L. (1993). The word processor as instructional tool: a meta-analysis of word processing in writing instruction. Review of Educational Research, 63 (1), 69-93.

Beach, R. (1993). The effects of between-draft teacher evaluation versus student self-evaluation on high school students' revising of rough drafts. Research in the Teaching of English, 13 , 111-119.

The question of whether teacher evaluation or guided self-evaluation of rough drafts results in increased revision was addressed in Beach's study. Differences in the effects of teacher evaluations, guided self-evaluation (using prepared guidelines,) and no evaluation of rough drafts were examined. The final drafts of students (10th, 11th, and 12th graders) were compared with their rough drafts and rated by judges according to degree of change.

Beishuizen, J. & Moonen, J. (1992). Research in technology enriched schools: a case for cooperation between teachers and researchers . (ERIC Technical Report ED351006).

This paper describes the research strategies employed in the Dutch Technology Enriched Schools project to encourage extensive and intensive use of computers in a small number of secondary schools, and to study the effects of computer use on the classroom, the curriculum, and school administration and management.

Borg, W. P. (1989). Educational Research: an Introduction . (5th ed.). New York: Longman.

An overview of educational research methodology, including literature review and discussion of approaches to research, experimental design, statistical analysis, ethics, and rhetorical presentation of research findings.

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research . Boston: Houghton Mifflin.

A classic overview of research designs.

Campbell, D.T. (1988). Methodology and epistemology for social science: selected papers . ed. E. S. Overman. Chicago: University of Chicago Press.

This is an overview of Campbell's 40-year career and his work. It covers in seven parts measurement, experimental design, applied social experimentation, interpretive social science, epistemology and sociology of science. Includes an extensive bibliography.

Caporaso, J. A., & Roos, Jr., L. L. (Eds.). Quasi-experimental approaches: Testing theory and evaluating policy. Evanston, WA: Northwestern University Press.

A collection of articles concerned with explicating the underlying assumptions of quasi-experimentation and relating these to true experimentation. With an emphasis on design. Includes a glossary of terms.

Collier, R. Writing and the word processor: How wary of the gift-giver should we be? Unpublished manuscript.

Unpublished typescript. Charts the developments to date in computers and composition and speculates about the future within the framework of Willie Sypher's model of the evolution of creative discovery.

Cook, T.D. & Campbell, D.T. (1979). Quasi-experimentation: design and analysis issues for field settings . Boston: Houghton Mifflin Co.

The authors write that this book "presents some quasi-experimental designs and design features that can be used in many social research settings. The designs serve to probe causal hypotheses about a wide variety of substantive issues in both basic and applied research."

Cutler, A. (1970). An experimental method for semantic field study. Linguistic Communication, 2 , N. pag.

This paper emphasizes the need for empirical research and objective discovery procedures in semantics, and illustrates a method by which these goals may be obtained.

Daniels, L. B. (1996, Summer). Eisenberg's Heisenberg: The indeterminancies of rationality. Curriculum Inquiry, 26 , 181-92.

Places Eisenberg's theories in relation to the death of foundationalism by showing that he distorts rational studies into a form of relativism. He looks at Eisenberg's ideas on indeterminacy, methods and evidence, what he is against and what we should think of what he says.

Danziger, K. (1990). Constructing the subject: Historical origins of psychological research. Cambridge: Cambridge University Press.

Danzinger stresses the importance of being aware of the framework in which research operates and of the essentially social nature of scientific activity.

Diener, E., et al. (1972, December). Leakage of experimental information to potential future subjects by debriefed subjects. Journal of Experimental Research in Personality , 264-67.

Research regarding research: an investigation of the effects on the outcome of an experiment in which information about the experiment had been leaked to subjects. The study concludes that such leakage is not a significant problem.

Dudley-Marling, C., & Rhodes, L. K. (1989). Reflecting on a close encounter with experimental research. Canadian Journal of English Language Arts. 12 , 24-28.

Researchers, Dudley-Marling and Rhodes, address some problems they met in their experimental approach to a study of reading comprehension. This article discusses the limitations of experimental research, and presents an alternative to experimental or quantitative research.

Edgington, E. S. (1985). Random assignment and experimental research. Educational Administration Quarterly, 21 , N. pag.

Edgington explores ways on which random assignment can be a part of field studies. The author discusses both non-experimental and experimental research and the need for using random assignment.

Eisenberg, J. (1996, Summer). Response to critiques by R. Floden, J. Zeuli, and L. Daniels. Curriculum Inquiry, 26 , 199-201.

A response to critiques of his argument that rational educational research methods are at best suspect and at worst futile. He believes indeterminacy controls this method and worries that chaotic research is failing students.

Eisner, E. (1992, July). Are all causal claims positivistic? A reply to Francis Schrag. Educational Researcher, 21 (5), 8-9.

Eisner responds to Schrag who claimed that critics like Eisner cannot escape a positivistic paradigm whatever attempts they make to do so. Eisner argues that Schrag essentially misses the point for trying to argue for the paradigm solely on the basis of cause and effect without including the rest of positivistic philosophy. This weakens his argument against multiple modal methods, which Eisner argues provides opportunities to apply the appropriate research design where it is most applicable.

Floden, R.E. (1996, Summer). Educational research: limited, but worthwhile and maybe a bargain. (response to J.A. Eisenberg). Curriculum Inquiry, 26 , 193-7.

Responds to John Eisenberg critique of educational research by asserting the connection between improvement of practice and research results. He places high value of teacher discrepancy and knowledge that research informs practice.

Fortune, J. C., & Hutson, B. A. (1994, March/April). Selecting models for measuring change when true experimental conditions do not exist. Journal of Educational Research, 197-206.

This article reviews methods for minimizing the effects of nonideal experimental conditions by optimally organizing models for the measurement of change.

Fox, R. F. (1980). Treatment of writing apprehension and tts effects on composition. Research in the Teaching of English, 14 , 39-49.

The main purpose of Fox's study was to investigate the effects of two methods of teaching writing on writing apprehension among entry level composition students, A conventional teaching procedure was used with a control group, while a workshop method was employed with the treatment group.

Gadamer, H-G. (1976). Philosophical hermeneutics . (D. E. Linge, Trans.). Berkeley, CA: University of California Press.

A collection of essays with the common themes of the mediation of experience through language, the impossibility of objectivity, and the importance of context in interpretation.

Gaise, S. J. (1981). Experimental vs. non-experimental research on classroom second language learning. Bilingual Education Paper Series, 5 , N. pag.

Aims on classroom-centered research on second language learning and teaching are considered and contrasted with the experimental approach.

Giordano, G. (1983). Commentary: Is experimental research snowing us? Journal of Reading, 27 , 5-7.

Do educational research findings actually benefit teachers and students? Giordano states his opinion that research may be helpful to teaching, but is not essential and often is unnecessary.

Goldenson, D. R. (1978, March). An alternative view about the role of the secondary school in political socialization: A field-experimental study of theory and research in social education. Theory and Research in Social Education , 44-72.

This study concludes that when political discussion among experimental groups of secondary school students is led by a teacher, the degree to which the students' views were impacted is proportional to the credibility of the teacher.

Grossman, J., and J. P. Tierney. (1993, October). The fallibility of comparison groups. Evaluation Review , 556-71.

Grossman and Tierney present evidence to suggest that comparison groups are not the same as nontreatment groups.

Harnisch, D. L. (1992). Human judgment and the logic of evidence: A critical examination of research methods in special education transition literature. In D. L. Harnisch et al. (Eds.), Selected readings in transition.

This chapter describes several common types of research studies in special education transition literature and the threats to their validity.

Hawisher, G. E. (1989). Research and recommendations for computers and composition. In G. Hawisher and C. Selfe. (Eds.), Critical Perspectives on Computers and Composition Instruction . (pp. 44-69). New York: Teacher's College Press.

An overview of research in computers and composition to date. Includes a synthesis grid of experimental research.

Hillocks, G. Jr. (1982). The interaction of instruction, teacher comment, and revision in teaching the composing process. Research in the Teaching of English, 16 , 261-278.

Hillock conducted a study using three treatments: observational or data collecting activities prior to writing, use of revisions or absence of same, and either brief or lengthy teacher comments to identify effective methods of teaching composition to seventh and eighth graders.

Jenkinson, J. C. (1989). Research design in the experimental study of intellectual disability. International Journal of Disability, Development, and Education, 69-84.

This article catalogues the difficulties of conducting experimental research where the subjects are intellectually disables and suggests alternative research strategies.

Jones, R. A. (1985). Research Methods in the Social and Behavioral Sciences. Sunderland, MA: Sinauer Associates, Inc..

A textbook designed to provide an overview of research strategies in the social sciences, including survey, content analysis, ethnographic approaches, and experimentation. The author emphasizes the importance of applying strategies appropriately and in variety.

Kamil, M. L., Langer, J. A., & Shanahan, T. (1985). Understanding research in reading and writing . Newton, Massachusetts: Allyn and Bacon.

Examines a wide variety of problems in reading and writing, with a broad range of techniques, from different perspectives.

Kennedy, J. L. (1985). An Introduction to the Design and Analysis of Experiments in Behavioral Research . Lanham, MD: University Press of America.

An introductory textbook of psychological and educational research.

Keppel, G. (1991). Design and analysis: a researcher's handbook . Englewood Cliffs, NJ: Prentice Hall.

This updates Keppel's earlier book subtitled "a student's handbook." Focuses on extensive information about analytical research and gives a basic picture of research in psychology. Covers a range of statistical topics. Includes a subject and name index, as well as a glossary.

Knowles, G., Elija, R., & Broadwater, K. (1996, Spring/Summer). Teacher research: enhancing the preparation of teachers? Teaching Education, 8 , 123-31.

Researchers looked at one teacher candidate who participated in a class which designed their own research project correlating to a question they would like answered in the teaching world. The goal of the study was to see if preservice teachers developed reflective practice by researching appropriate classroom contexts.

Lace, J., & De Corte, E. (1986, April 16-20). Research on media in western Europe: A myth of sisyphus? Paper presented at the annual meeting of the American Educational Research Association. San Francisco.

Identifies main trends in media research in western Europe, with emphasis on three successive stages since 1960: tools technology, systems technology, and reflective technology.

Latta, A. (1996, Spring/Summer). Teacher as researcher: selected resources. Teaching Education, 8 , 155-60.

An annotated bibliography on educational research including milestones of thought, practical applications, successful outcomes, seminal works, and immediate practical applications.

Lauer. J.M. & Asher, J. W. (1988). Composition research: Empirical designs . New York: Oxford University Press.

Approaching experimentation from a humanist's perspective to it, authors focus on eight major research designs: Case studies, ethnographies, sampling and surveys, quantitative descriptive studies, measurement, true experiments, quasi-experiments, meta-analyses, and program evaluations. It takes on the challenge of bridging language of social science with that of the humanist. Includes name and subject indexes, as well as a glossary and a glossary of symbols.

Mishler, E. G. (1979). Meaning in context: Is there any other kind? Harvard Educational Review, 49 , 1-19.

Contextual importance has been largely ignored by traditional research approaches in social/behavioral sciences and in their application to the education field. Developmental and social psychologists have increasingly noted the inadequacies of this approach. Drawing examples for phenomenology, sociolinguistics, and ethnomethodology, the author proposes alternative approaches for studying meaning in context.

Mitroff, I., & Bonoma, T. V. (1978, May). Psychological assumptions, experimentations, and real world problems: A critique and an alternate approach to evaluation. Evaluation Quarterly , 235-60.

The authors advance the notion of dialectic as a means to clarify and examine the underlying assumptions of experimental research methodology, both in highly controlled situations and in social evaluation.

Muller, E. W. (1985). Application of experimental and quasi-experimental research designs to educational software evaluation. Educational Technology, 25 , 27-31.

Muller proposes a set of guidelines for the use of experimental and quasi-experimental methods of research in evaluating educational software. By obtaining empirical evidence of student performance, it is possible to evaluate if programs are making the desired learning effect.

Murray, S., et al. (1979, April 8-12). Technical issues as threats to internal validity of experimental and quasi-experimental designs . San Francisco: University of California.

The article reviews three evaluation models and analyzes the flaws common to them. Remedies are suggested.

Muter, P., & Maurutto, P. (1991). Reading and skimming from computer screens and books: The paperless office revisited? Behavior and Information Technology, 10 (4), 257-66.

The researchers test for reading and skimming effectiveness, defined as accuracy combined with speed, for written text compared to text on a computer monitor. They conclude that, given optimal on-line conditions, both are equally effective.

O'Donnell, A., Et al. (1992). The impact of cooperative writing. In J. R. Hayes, et al. (Eds.). Reading empirical research studies: The rhetoric of research . (pp. 371-84). Hillsdale, NJ: Lawrence Erlbaum Associates.

A model of experimental design. The authors investigate the efficacy of cooperative writing strategies, as well as the transferability of skills learned to other, individual writing situations.

Palmer, D. (1988). Looking at philosophy . Mountain View, CA: Mayfield Publishing.

An introductory text with incisive but understandable discussions of the major movements and thinkers in philosophy from the Pre-Socratics through Sartre. With illustrations by the author. Includes a glossary.

Phelps-Gunn, T., & Phelps-Terasaki, D. (1982). Written language instruction: Theory and remediation . London: Aspen Systems Corporation.

The lack of research in written expression is addressed and an application on the Total Writing Process Model is presented.

Poetter, T. (1996, Spring/Summer). From resistance to excitement: becoming qualitative researchers and reflective practitioners. Teaching Education , 8109-19.

An education professor reveals his own problematic research when he attempted to institute a educational research component to a teacher preparation program. He encountered dissent from students and cooperating professionals and ultimately was rewarded with excitement towards research and a recognized correlation to practice.

Purves, A. C. (1992). Reflections on research and assessment in written composition. Research in the Teaching of English, 26 .

Three issues concerning research and assessment is writing are discussed: 1) School writing is a matter of products not process, 2) school writing is an ill-defined domain, 3) the quality of school writing is what observers report they see. Purves discusses these issues while looking at data collected in a ten-year study of achievement in written composition in fourteen countries.

Rathus, S. A. (1987). Psychology . (3rd ed.). Poughkeepsie, NY: Holt, Rinehart, and Winston.

An introductory psychology textbook. Includes overviews of the major movements in psychology, discussions of prominent examples of experimental research, and a basic explanation of relevant physiological factors. With chapter summaries.

Reiser, R. A. (1982). Improving the research skills of instructional designers. Educational Technology, 22 , 19-21.

In his paper, Reiser starts by stating the importance of research in advancing the field of education, and points out that graduate students in instructional design lack the proper skills to conduct research. The paper then goes on to outline the practicum in the Instructional Systems Program at Florida State University which includes: 1) Planning and conducting an experimental research study; 2) writing the manuscript describing the study; 3) giving an oral presentation in which they describe their research findings.

Report on education research . (Journal). Washington, DC: Capitol Publication, Education News Services Division.

This is an independent bi-weekly newsletter on research in education and learning. It has been publishing since Sept. 1969.

Rossell, C. H. (1986). Why is bilingual education research so bad?: Critique of the Walsh and Carballo study of Massachusetts bilingual education programs . Boston: Center for Applied Social Science, Boston University. (ERIC Working Paper 86-5).

The Walsh and Carballo evaluation of the effectiveness of transitional bilingual education programs in five Massachusetts communities has five flaws and the five flaws are discussed in detail.

Rubin, D. L., & Greene, K. (1992). Gender-typical style in written language. Research in the Teaching of English, 26.

This study was designed to find out whether the writing styles of men and women differ. Rubin and Green discuss the pre-suppositions that women are better writers than men.

Sawin, E. (1992). Reaction: Experimental research in the context of other methods. School of Education Review, 4 , 18-21.

Sawin responds to Gage's article on methodologies and issues in educational research. He agrees with most of the article but suggests the concept of scientific should not be regarded in absolute terms and recommends more emphasis on scientific method. He also questions the value of experiments over other types of research.

Schoonmaker, W. E. (1984). Improving classroom instruction: A model for experimental research. The Technology Teacher, 44, 24-25.

The model outlined in this article tries to bridge the gap between classroom practice and laboratory research, using what Schoonmaker calls active research. Research is conducted in the classroom with the students and is used to determine which two methods of classroom instruction chosen by the teacher is more effective.

Schrag, F. (1992). In defense of positivist research paradigms. Educational Researcher, 21, (5), 5-8.

The controversial defense of the use of positivistic research methods to evaluate educational strategies; the author takes on Eisner, Erickson, and Popkewitz.

Smith, J. (1997). The stories educational researchers tell about themselves. Educational Researcher, 33 (3), 4-11.

Recapitulates main features of an on-going debate between advocates for using vocabularies of traditional language arts and whole language in educational research. An "impasse" exists were advocates "do not share a theoretical disposition concerning both language instruction and the nature of research," Smith writes (p. 6). He includes a very comprehensive history of the debate of traditional research methodology and qualitative methods and vocabularies. Definitely worth a read by graduates.

Smith, N. L. (1980). The feasibility and desirability of experimental methods in evaluation. Evaluation and Program Planning: An International Journal , 251-55.

Smith identifies the conditions under which experimental research is most desirable. Includes a review of current thinking and controversies.

Stewart, N. R., & Johnson, R. G. (1986, March 16-20). An evaluation of experimental methodology in counseling and counselor education research. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.

The purpose of this study was to evaluate the quality of experimental research in counseling and counselor education published from 1976 through 1984.

Spector, P. E. (1990). Research Designs. Newbury Park, California: Sage Publications.

In this book, Spector introduces the basic principles of experimental and nonexperimental design in the social sciences.

Tait, P. E. (1984). Do-it-yourself evaluation of experimental research. Journal of Visual Impairment and Blindness, 78 , 356-363 .

Tait's goal is to provide the reader who is unfamiliar with experimental research or statistics with the basic skills necessary for the evaluation of research studies.

Walsh, S. M. (1990). The current conflict between case study and experimental research: A breakthrough study derives benefits from both . (ERIC Document Number ED339721).

This paper describes a study that was not experimentally designed, but its major findings were generalizable to the overall population of writers in college freshman composition classes. The study was not a case study, but it provided insights into the attitudes and feelings of small clusters of student writers.

Waters, G. R. (1976). Experimental designs in communication research. Journal of Business Communication, 14 .

The paper presents a series of discussions on the general elements of experimental design and the scientific process and relates these elements to the field of communication.

Welch, W. W. (March 1969). The selection of a national random sample of teachers for experimental curriculum evaluation. Scholastic Science and Math , 210-216.

Members of the evaluation section of Harvard project physics describe what is said to be the first attempt to select a national random sample of teachers, and list 6 steps to do so. Cost and comparison with a volunteer group are also discussed.

Winer, B.J. (1971). Statistical principles in experimental design , (2nd ed.). New York: McGraw-Hill.

Combines theory and application discussions to give readers a better understanding of the logic behind statistical aspects of experimental design. Introduces the broad topic of design, then goes into considerable detail. Not for light reading. Bring your aspirin if you like statistics. Bring morphine is you're a humanist.

Winn, B. (1986, January 16-21). Emerging trends in educational technology research. Paper presented at the Annual Convention of the Association for Educational Communication Technology.

This examination of the topic of research in educational technology addresses four major areas: (1) why research is conducted in this area and the characteristics of that research; (2) the types of research questions that should or should not be addressed; (3) the most appropriate methodologies for finding answers to research questions; and (4) the characteristics of a research report that make it good and ultimately suitable for publication.

Citation Information

Luann Barnes, Jennifer Hauser, Luana Heikes, Anthony J. Hernandez, Paul Tim Richard, Katherine Ross, Guo Hua Yang, and Mike Palmquist. (1994-2024). Experimental and Quasi-Experimental Research. The WAC Clearinghouse. Colorado State University. Available at https://wac.colostate.edu/repository/writing/guides/.

Copyright Information

Copyright © 1994-2024 Colorado State University and/or this site's authors, developers, and contributors . Some material displayed on this site is used with permission.

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 7: Nonexperimental Research

Quasi-Experimental Research

Learning Objectives

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix  quasi  means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). [1] Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.

Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A  nonequivalent groups design , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This design would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

Pretest-Posttest Design

In a  pretest-posttest design , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of  history . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of  maturation . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is  regression to the mean . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study  because  of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is  spontaneous remission . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001) [2] . Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Does Psychotherapy Work?

Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952) [3] . But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate  without  receiving psychotherapy. This parallel suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here: Classics in the History of Psychology .

Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980) [4] . They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.

Interrupted Time Series Design

A variant of the pretest-posttest design is the  interrupted time-series design . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this one is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979) [5] . Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.

Figure 7.3 shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of  Figure 7.3 shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of  Figure 7.3 shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Image description available

Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does  not  receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve  more  than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this change in attitude could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

Key Takeaways

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.
  • regression to the mean
  • spontaneous remission

Image Descriptions

Figure 7.3 image description: Two line graphs charting the number of absences per week over 14 weeks. The first 7 weeks are without treatment and the last 7 weeks are with treatment. In the first line graph, there are between 4 to 8 absences each week. After the treatment, the absences drop to 0 to 3 each week, which suggests the treatment worked. In the second line graph, there is no noticeable change in the number of absences per week after the treatment, which suggests the treatment did not work. [Return to Figure 7.3]

  • Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. ↵
  • Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146. ↵
  • Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324. ↵
  • Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press. ↵

A between-subjects design in which participants have not been randomly assigned to conditions.

The dependent variable is measured once before the treatment is implemented and once after it is implemented.

A category of alternative explanations for differences between scores such as events that happened between the pretest and posttest, unrelated to the study.

An alternative explanation that refers to how the participants might have changed between the pretest and posttest in ways that they were going to anyway because they are growing and learning.

The statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion.

The tendency for many medical and psychological problems to improve over time without any form of treatment.

A set of measurements taken at intervals over a period of time that are interrupted by a treatment.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

quasi experimental research topics examples

quasi experimental research topics examples

Summer is here, and so is the sale. Get a yearly plan with up to 65% off today! 🌴🌞

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

quasi experimental research topics examples

HubSpot CRM

quasi experimental research topics examples

Google Sheets

quasi experimental research topics examples

Google Analytics

quasi experimental research topics examples

Microsoft Excel

quasi experimental research topics examples

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

quasi experimental research topics examples

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is quasi-experimental research: Types & examples

What is quasi-experimental research: Types & examples

Defne Çobanoğlu

According to the Cambridge Dictionary, the word quasi is “used to show that something is almost, but not completely, the thing described.” And as the name suggests, quasi-experiments are almost experiments because of the way they are conducted. What actually differentiates this type of experiment from true experimental research is the way the subjects are divided.

In a true experiment, sample groups are assigned to an experimental group and to a treatment group randomly. However, there are some studies in which the use of random assignment would not be possible because that would be unethical or impractical. These studies follow a quasi-experimental research design. Let us see exactly what is a quasi-experimental design and give some examples.

  • The definition of quasi-experimental research

Quasi-experimental research is a type of experiment where the researcher does not randomly assigns subjects. Rather, unlike a true experiment, subjects are assigned to groups based on non-random criteria. The researchers may manipulate an independent variable and observe the effect on a dependent variable. However, they cannot randomly assign participants to the groups being studied. 

The reason for this could be a practicality issue or ethical rules, as you can not deliberately deprive someone of treatment or give them intentional harm. As a consequence, quasi-experimental research can suggest cause-and-effect relationships, but it can not do so with the confidence that true experimental research can.

What is quasi-experimental research?

What is quasi-experimental research?

  • Types of quasi-experimental research

Even though it is now quite clear that in quasi-experimental research, researchers do not randomly assign people to control or study groups. There are different aspects that let the experts divide people. These different types are called nonequivalent group design, regression discontinuity, and natural experiments. Here is an explanation of these types and some examples:

Types of quasi-experimental research

Nonequivalent groups design:

In true experimental research, the only variable that divides the two groups is the variable you want. However, in a quasi-experimental approach, the groups may have more than one difference as you can not study them and divide them equally and randomly. Therefore, this is the part where it makes this type nonequivalent. This is the most popular type as it is the one most fits the criteria.

Example of nonequivalent groups:

Let us say there is a new teaching method a school has implemented for its students. And, as a researcher, you want to know if this teaching method has a positive effect. As you can not divide the school in half as you would do in a true experimental design, you can go with pre-existing groups, such as choosing another school that does not implement this method.

Afterward, you can do the research and see if there is a major difference in the outcome of the success of students. However, as there are different confounding variables between the two groups, they could affect the outcomes. To minimize the differences, researchers would need to control for factors such as prior academic performance, student demographics, or teaching experience in their analysis.

Regression discontinuity:

Regression discontinuity means that the researcher does not randomly assign participants to a treatment and control group. Instead, this type of experiment relies on the presence of a natural threshold or dividing point . And only people above or below the threshold get treatment, while the other group does not. As the divide between the two groups is minimal, the differences between them would be minimal as well. Therefore, it provides a good starting point.

Example of regression discontinuity:

A good example of regression discontinuity would be researching the impact of giving financial aid to students who have more than a 3.0 GPA. Only the students whose scores are higher would receive financial aid, and students whose scores are just below 3.0 or similar would be included in the study as a second group. 

Afterward, the next step would be to compare the two group’s outcomes ( e.g., graduation rates, job placements, or incomes ) to estimate the effect of the financial aid program. This is a good example of quasi-experimental research design and how to conduct them without interfering much.

Natural experiments:

Normally, in a true experiment, researchers assign people to either a control group or a treatment group. Instead, a random or irregular assignment of patients to the treatment group takes place in a natural experiment as an external scenario (“nature”). Natural experiments are not qualified as actual experiments because they are observational.

Example of natural experiments:

A birth control shot will be made available to low-income villages in third-world countries. And a number of villages want to receive the treatment for free. However, there are not enough stocks to get to everyone. In that scenario, the experts can do a random lottery to distribute the medicine. 

Experts could investigate the program’s impact by utilizing enrolled villages as a treatment group and those who were qualified but did not get picked as an experimental group.

Applications of quasi-experimental research: When to use & how?

Although true experiments have a higher internal validity, sometimes it would be useful to conduct a quasi-experimental design for different reasons. As you can not deliberately withhold or provide some people with treatment, sometimes conducting an experimental study would be unethical . If there is a cure for an illness, you can not randomly assign people to receive the treatment or not. But, if there is a different reason why not everyone can get the same medicine, that gives you a place to start.

Secondly, conducting a true experiment could be unfeasible, too expensive, or too much work for it to be practical. If the researchers do not have enough funding or experimental subjects, a quasi-experiment could be helpful to do the research. And there are different approaches the researcher can take in an experiment like this.

Secondary Data Collection:

When doing any kind of research, it is a good way to start going through existing data, as someone may have done a similar study already. This can give you a pre-knowledge of what to expect. And it is quite an affordable option.

Online surveys:

Researchers can build online surveys to collect data from study participants in a short amount of time. They can also send periodic surveys to keep collecting data as time passes. It is a very effortless and affordable option, and the participants can answer questions anytime, anywhere.

  • Advantages and disadvantages of quasi-experimental research

Quasi-experimental designs have various pros and cons compared to other types of studies. It is up to the researchers and experts to decide whether to go with a true or quasi-experimental design. And it is important to remember that even though you want to have a true experiment, you can only do one for a variety of reasons. Now, let us go through some of the advantages and disadvantages.

✅Quasi-experimental designs often involve real-world situations instead of artificial laboratory settings, therefore, have higher external validity.

✅Higher internal validity than other non-experimental research types as this allows you to control for confounding variables better than other studies.

✅Because the control or comparison group participants are not randomized, the nonequivalent dependent variables in the research can be more controlled, targeted, and efficient.

✅Allows to make studies in areas where experimenting would be unethical or impractical.

✅When working on a tight budget, a quasi-experiment helps conclude without needing to pay as much for studies.

❌Lack of randomization makes it more challenging, or even impossible, to rule out confounding variables and their effect on the relationship that the research is about. 

❌The use of secondary data already collected for other purposes can be inaccurate, incomplete, or difficult to access.

❌Quasi-experimental studies aren’t as effective in establishing causality. 

❌Because a quasi-experimental design often borrows information from other experimental methods, there’s a chance that the data is not complete or accurate.

In conclusion, quasi-experimental is a type of experiment with its own advantages and disadvantages. It works as an option when doing a true experiment does not work because of different reasons. And online surveys and secondary data collection are good methods to go within this type of experiment. The best tool that can help with any research is forms.app!

forms.app is a great survey maker and is the helper everyone needs. It has more than 1000 ready-to-go templates and is very easy to use. You can check it out today and start doing your own research without any trouble!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

  • Applications of quasi-experimental research: When to use & how?

Related Posts

7 Interactive content ideas for your emails

7 Interactive content ideas for your emails

What is 360-degree feedback? And is it effective?

What is 360-degree feedback? And is it effective?

Eren Eltemur

6 tips for creating a high-converting landing page

6 tips for creating a high-converting landing page

Aaron Haynes

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

quasi experimental research topics examples

Enago Academy's Most Popular Articles

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

quasi experimental research topics examples

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

quasi experimental research topics examples

What would be most effective in reducing research misconduct?

IMAGES

  1. PPT

    quasi experimental research topics examples

  2. PPT

    quasi experimental research topics examples

  3. 5 Quasi-Experimental Design Examples (2024)

    quasi experimental research topics examples

  4. PPT

    quasi experimental research topics examples

  5. PPT

    quasi experimental research topics examples

  6. PPT

    quasi experimental research topics examples

VIDEO

  1. Chapter 5. Alternatives to Experimentation: Correlational and Quasi Experimental Designs

  2. Chapter 12: Quasi Experimental Research Designs

  3. QUASI

  4. Types of Quasi Experimental Research Design

  5. Quasi-Experimental

  6. Chapter 4: Experimental & Quasi-Experimental Research

COMMENTS

  1. Quasi-Experimental Design

    Revised on January 22, 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.

  2. Quasi Experimental Design Overview & Examples

    Quasi-experimental designs occupy a unique position in the spectrum of research methodologies, sitting between observational studies and true experiments. This middle ground offers a blend of both worlds, addressing some limitations of purely observational studies while navigating the constraints often accompanying true experiments. Advertisement.

  3. 5 Quasi-Experimental Design Examples (2024)

    Quasi-Experimental Design Examples. 1. Smartboard Apps and Math. A school has decided to supplement their math resources with smartboard applications. The math teachers research the apps available and then choose two apps for each grade level. Before deciding on which apps to purchase, the school contacts the seller and asks for permission to ...

  4. Quasi-experimental Research: What It Is, Types & Examples

    Quasi-experimental research designs are a type of research design that is similar to experimental designs but doesn't give full control over the independent variable (s) like true experimental designs do. In a quasi-experimental design, the researcher changes or watches an independent variable, but the participants are not put into groups at ...

  5. Quasi-Experimental Design: Types, Examples, Pros, and Cons

    Quasi-Experimental Design: Types, Examples, Pros, and Cons. A quasi-experimental design can be a great option when ethical or practical concerns make true experiments impossible, but the research methodology does have its drawbacks. Learn all the ins and outs of a quasi-experimental design. A quasi-experimental design can be a great option when ...

  6. 7.3 Quasi-Experimental Research

    Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one. The prefix quasi means "resembling.". Thus quasi-experimental research is research that resembles experimental research but is not true experimental research.

  7. Quasi-Experimental Research Design

    Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable (s) that is available in a true experimental design. In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to ...

  8. Quasi-experimental Studies in Health Systems Evidence Synthesis

    Quasi-experimental (QE) studies have a key role in the development of bodies of evidence to both inform health policy decisions and guide investments for health systems strengthening. Studies of this type entail a nonrandomized, quantitative approach to causal inference, which may be applied prospectively (as in a trial) or retrospectively (as in the analysis of routine observational or ...

  9. The Use and Interpretation of Quasi-Experimental Studies in Medical

    In medical informatics, the quasi-experimental, sometimes called the pre-post intervention, design often is used to evaluate the benefits of specific interventions. The increasing capacity of health care institutions to collect routine clinical data has led to the growing use of quasi-experimental study designs in the field of medical ...

  10. Quasi-experiment

    A quasi-experiment is an empirical interventional study used to estimate the causal impact of an intervention on target population without random assignment. Quasi-experimental research shares similarities with the traditional experimental design or randomized controlled trial, but it specifically lacks the element of random assignment to ...

  11. Use of Quasi-Experimental Research Designs in Education Research

    The increasing use of quasi-experimental research designs (QEDs) in education, brought into focus following the "credibility revolution" (Angrist & Pischke, 2010) in economics, which sought to use data to empirically test theoretical assertions, has indeed improved causal claims in education (Loeb et al., 2017).However, more recently, scholars, practitioners, and policymakers have ...

  12. Selecting and Improving Quasi-Experimental Designs in Effectiveness and

    QEDs test causal hypotheses but, in lieu of fully randomized assignment of the intervention, seek to define a comparison group or time period that reflects the counter-factual (i.e., outcomes if the intervention had not been implemented) ().QEDs seek to identify a comparison group or time period that is as similar as possible to the treatment group or time period in terms of baseline (pre ...

  13. Quasi-Experimental Design

    A quasi-experimental design is common in social research when a true experimental design may not be possible. Overall, the design types are very similar, except that quasi-experimental design does ...

  14. Experimental and Quasi-Experimental Research

    Experimental and Quasi-Experimental Research. Guide Title: Experimental and Quasi-Experimental Research Guide ID: 64. You approach a stainless-steel wall, separated vertically along its middle where two halves meet. After looking to the left, you see two buttons on the wall to the right. You press the top button and it lights up.

  15. Quasi-Experimental Research

    The prefix quasi means "resembling." Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). [1] Because the independent variable is manipulated before the dependent variable ...

  16. (PDF) Quasi-Experimental Research Designs

    Quasi-experimental research designs are the most widely used research approach employed to evaluate the outcomes of social work programs and policies. This new volume describes the logic, design ...

  17. A Quasi-experimental Study of The Effect of Mathematics Professional

    In this quasi-experimental study, I examined the effect of a Math and Science Partnership (MSP) PD on student achievement trajectories. ... Moreover, it provides a case study showing how the research design might contribute in important ways to the ability to detect an effect of PD -if one exists- on student achievement. For example, given the ...

  18. What is quasi-experimental research: Types & examples

    The definition of quasi-experimental research. Quasi-experimental research is a type of experiment where the researcher does not randomly assigns subjects. Rather, unlike a true experiment, subjects are assigned to groups based on non-random criteria. The researchers may manipulate an independent variable and observe the effect on a dependent ...

  19. PDF A Quasi-Experimental Research on the Educational Value of Performance

    experimental group participated in the performance assessment based teaching-learning activities for nine weeks. After nine weeks, three post-tests were administered to both the experimental group and control group (More details about the quasi-experimental research procedure may be found within the fourth portion of this section). Table 1.

  20. PDF Quasi-Experimental Designs

    Quasi-Experimental Designs Many types of Research designs beyond the scope of this course Right now, reading and understanding research is the goal To learn more, take more courses, get involved in research (DIS opportunities), read books and articles Psychology is a research-based discipline

  21. quasi-experimental quantitative study: Topics by Science.gov

    Segmented Polynomial Models in Quasi-Experimental Research. ERIC Educational Resources Information Center. Wasik, John L. 1981-01-01. The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research

  22. University of North Florida

    University of North Florida

  23. Experimental Research Designs: Types, Examples & Advantages

    There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design. 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2.