when conducting a case study researchers interpret and form judgement objectively

Designing and Conducting Case Studies

This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of records, and collections of writing samples. Starting with a definition of the case study, the guide moves to a brief history of this research method. Using several well documented case studies, the guide then looks at applications and methods including data collection and analysis. A discussion of ways to handle validity, reliability, and generalizability follows, with special attention to case studies as they are applied to composition studies. Finally, this guide examines the strengths and weaknesses of case studies.

Definition and Overview

Case study refers to the collection and presentation of detailed information about a particular participant or small group, frequently including the accounts of subjects themselves. A form of qualitative descriptive research, the case study looks intensely at an individual or small participant pool, drawing conclusions only about that participant or group and only in that specific context. Researchers do not focus on the discovery of a universal, generalizable truth, nor do they typically look for cause-effect relationships; instead, emphasis is placed on exploration and description.

Case studies typically examine the interplay of all variables in order to provide as complete an understanding of an event or situation as possible. This type of comprehensive understanding is arrived at through a process known as thick description, which involves an in-depth description of the entity being evaluated, the circumstances under which it is used, the characteristics of the people involved in it, and the nature of the community in which it is located. Thick description also involves interpreting the meaning of demographic and descriptive data such as cultural norms and mores, community values, ingrained attitudes, and motives.

Unlike quantitative methods of research, like the survey, which focus on the questions of who, what, where, how much, and how many, and archival analysis, which often situates the participant in some form of historical context, case studies are the preferred strategy when how or why questions are asked. Likewise, they are the preferred method when the researcher has little control over the events, and when there is a contemporary focus within a real life context. In addition, unlike more specifically directed experiments, case studies require a problem that seeks a holistic understanding of the event or situation in question using inductive logic--reasoning from specific to more general terms.

In scholarly circles, case studies are frequently discussed within the context of qualitative research and naturalistic inquiry. Case studies are often referred to interchangeably with ethnography, field study, and participant observation. The underlying philosophical assumptions in the case are similar to these types of qualitative research because each takes place in a natural setting (such as a classroom, neighborhood, or private home), and strives for a more holistic interpretation of the event or situation under study.

Unlike more statistically-based studies which search for quantifiable data, the goal of a case study is to offer new variables and questions for further research. F.H. Giddings, a sociologist in the early part of the century, compares statistical methods to the case study on the basis that the former are concerned with the distribution of a particular trait, or a small number of traits, in a population, whereas the case study is concerned with the whole variety of traits to be found in a particular instance" (Hammersley 95).

Case studies are not a new form of research; naturalistic inquiry was the primary research tool until the development of the scientific method. The fields of sociology and anthropology are credited with the primary shaping of the concept as we know it today. However, case study research has drawn from a number of other areas as well: the clinical methods of doctors; the casework technique being developed by social workers; the methods of historians and anthropologists, plus the qualitative descriptions provided by quantitative researchers like LePlay; and, in the case of Robert Park, the techniques of newspaper reporters and novelists.

Park was an ex-newspaper reporter and editor who became very influential in developing sociological case studies at the University of Chicago in the 1920s. As a newspaper professional he coined the term "scientific" or "depth" reporting: the description of local events in a way that pointed to major social trends. Park viewed the sociologist as "merely a more accurate, responsible, and scientific reporter." Park stressed the variety and value of human experience. He believed that sociology sought to arrive at natural, but fluid, laws and generalizations in regard to human nature and society. These laws weren't static laws of the kind sought by many positivists and natural law theorists, but rather, they were laws of becoming--with a constant possibility of change. Park encouraged students to get out of the library, to quit looking at papers and books, and to view the constant experiment of human experience. He writes, "Go and sit in the lounges of the luxury hotels and on the doorsteps of the flophouses; sit on the Gold Coast settees and on the slum shakedowns; sit in the Orchestra Hall and in the Star and Garter Burlesque. In short, gentlemen [sic], go get the seats of your pants dirty in real research."

But over the years, case studies have drawn their share of criticism. In fact, the method had its detractors from the start. In the 1920s, the debate between pro-qualitative and pro-quantitative became quite heated. Case studies, when compared to statistics, were considered by many to be unscientific. From the 1930's on, the rise of positivism had a growing influence on quantitative methods in sociology. People wanted static, generalizable laws in science. The sociological positivists were looking for stable laws of social phenomena. They criticized case study research because it failed to provide evidence of inter subjective agreement. Also, they condemned it because of the few number of cases studied and that the under-standardized character of their descriptions made generalization impossible. By the 1950s, quantitative methods, in the form of survey research, had become the dominant sociological approach and case study had become a minority practice.

Educational Applications

The 1950's marked the dawning of a new era in case study research, namely that of the utilization of the case study as a teaching method. "Instituted at Harvard Business School in the 1950s as a primary method of teaching, cases have since been used in classrooms and lecture halls alike, either as part of a course of study or as the main focus of the course to which other teaching material is added" (Armisted 1984). The basic purpose of instituting the case method as a teaching strategy was "to transfer much of the responsibility for learning from the teacher on to the student, whose role, as a result, shifts away from passive absorption toward active construction" (Boehrer 1990). Through careful examination and discussion of various cases, "students learn to identify actual problems, to recognize key players and their agendas, and to become aware of those aspects of the situation that contribute to the problem" (Merseth 1991). In addition, students are encouraged to "generate their own analysis of the problems under consideration, to develop their own solutions, and to practically apply their own knowledge of theory to these problems" (Boyce 1993). Along the way, students also develop "the power to analyze and to master a tangled circumstance by identifying and delineating important factors; the ability to utilize ideas, to test them against facts, and to throw them into fresh combinations" (Merseth 1991).

In addition to the practical application and testing of scholarly knowledge, case discussions can also help students prepare for real-world problems, situations and crises by providing an approximation of various professional environments (i.e. classroom, board room, courtroom, or hospital). Thus, through the examination of specific cases, students are given the opportunity to work out their own professional issues through the trials, tribulations, experiences, and research findings of others. An obvious advantage to this mode of instruction is that it allows students the exposure to settings and contexts that they might not otherwise experience. For example, a student interested in studying the effects of poverty on minority secondary student's grade point averages and S.A.T. scores could access and analyze information from schools as geographically diverse as Los Angeles, New York City, Miami, and New Mexico without ever having to leave the classroom.

The case study method also incorporates the idea that students can learn from one another "by engaging with each other and with each other's ideas, by asserting something and then having it questioned, challenged and thrown back at them so that they can reflect on what they hear, and then refine what they say" (Boehrer 1990). In summary, students can direct their own learning by formulating questions and taking responsibility for the study.

Types and Design Concerns

Researchers use multiple methods and approaches to conduct case studies.

Types of Case Studies

Under the more generalized category of case study exist several subdivisions, each of which is custom selected for use depending upon the goals and/or objectives of the investigator. These types of case study include the following:

Illustrative Case Studies These are primarily descriptive studies. They typically utilize one or two instances of an event to show what a situation is like. Illustrative case studies serve primarily to make the unfamiliar familiar and to give readers a common language about the topic in question.

Exploratory (or pilot) Case Studies These are condensed case studies performed before implementing a large scale investigation. Their basic function is to help identify questions and select types of measurement prior to the main investigation. The primary pitfall of this type of study is that initial findings may seem convincing enough to be released prematurely as conclusions.

Cumulative Case Studies These serve to aggregate information from several sites collected at different times. The idea behind these studies is the collection of past studies will allow for greater generalization without additional cost or time being expended on new, possibly repetitive studies.

Critical Instance Case Studies These examine one or more sites for either the purpose of examining a situation of unique interest with little to no interest in generalizability, or to call into question or challenge a highly generalized or universal assertion. This method is useful for answering cause and effect questions.

Identifying a Theoretical Perspective

Much of the case study's design is inherently determined for researchers, depending on the field from which they are working. In composition studies, researchers are typically working from a qualitative, descriptive standpoint. In contrast, physicists will approach their research from a more quantitative perspective. Still, in designing the study, researchers need to make explicit the questions to be explored and the theoretical perspective from which they will approach the case. The three most commonly adopted theories are listed below:

Individual Theories These focus primarily on the individual development, cognitive behavior, personality, learning and disability, and interpersonal interactions of a particular subject.

Organizational Theories These focus on bureaucracies, institutions, organizational structure and functions, or excellence in organizational performance.

Social Theories These focus on urban development, group behavior, cultural institutions, or marketplace functions.

Two examples of case studies are used consistently throughout this chapter. The first, a study produced by Berkenkotter, Huckin, and Ackerman (1988), looks at a first year graduate student's initiation into an academic writing program. The study uses participant-observer and linguistic data collecting techniques to assess the student's knowledge of appropriate discourse conventions. Using the pseudonym Nate to refer to the subject, the study sought to illuminate the particular experience rather than to generalize about the experience of fledgling academic writers collectively.

For example, in Berkenkotter, Huckin, and Ackerman's (1988) study we are told that the researchers are interested in disciplinary communities. In the first paragraph, they ask what constitutes membership in a disciplinary community and how achieving membership might affect a writer's understanding and production of texts. In the third paragraph they state that researchers must negotiate their claims "within the context of his sub specialty's accepted knowledge and methodology." In the next paragraph they ask, "How is literacy acquired? What is the process through which novices gain community membership? And what factors either aid or hinder students learning the requisite linguistic behaviors?" This introductory section ends with a paragraph in which the study's authors claim that during the course of the study, the subject, Nate, successfully makes the transition from "skilled novice" to become an initiated member of the academic discourse community and that his texts exhibit linguistic changes which indicate this transition. In the next section the authors make explicit the sociolinguistic theoretical and methodological assumptions on which the study is based (1988). Thus the reader has a good understanding of the authors' theoretical background and purpose in conducting the study even before it is explicitly stated on the fourth page of the study. "Our purpose was to examine the effects of the educational context on one graduate student's production of texts as he wrote in different courses and for different faculty members over the academic year 1984-85." The goal of the study then, was to explore the idea that writers must be initiated into a writing community, and that this initiation will change the way one writes.

The second example is Janet Emig's (1971) study of the composing process of a group of twelfth graders. In this study, Emig seeks to answer the question of what happens to the self as a result educational stimuli in terms of academic writing. The case study used methods such as protocol analysis, tape-recorded interviews, and discourse analysis.

In the case of Janet Emig's (1971) study of the composing process of eight twelfth graders, four specific hypotheses were made:

  • Twelfth grade writers engage in two modes of composing: reflexive and extensive.
  • These differences can be ascertained and characterized through having the writers compose aloud their composition process.
  • A set of implied stylistic principles governs the writing process.
  • For twelfth grade writers, extensive writing occurs chiefly as a school-sponsored activity, or reflexive, as a self-sponsored activity.

In this study, the chief distinction is between the two dominant modes of composing among older, secondary school students. The distinctions are:

  • The reflexive mode, which focuses on the writer's thoughts and feelings.
  • The extensive mode, which focuses on conveying a message.

Emig also outlines the specific questions which guided the research in the opening pages of her Review of Literature , preceding the report.

Designing a Case Study

After considering the different sub categories of case study and identifying a theoretical perspective, researchers can begin to design their study. Research design is the string of logic that ultimately links the data to be collected and the conclusions to be drawn to the initial questions of the study. Typically, research designs deal with at least four problems:

  • What questions to study
  • What data are relevant
  • What data to collect
  • How to analyze that data

In other words, a research design is basically a blueprint for getting from the beginning to the end of a study. The beginning is an initial set of questions to be answered, and the end is some set of conclusions about those questions.

Because case studies are conducted on topics as diverse as Anglo-Saxon Literature (Thrane 1986) and AIDS prevention (Van Vugt 1994), it is virtually impossible to outline any strict or universal method or design for conducting the case study. However, Robert K. Yin (1993) does offer five basic components of a research design:

  • A study's questions.
  • A study's propositions (if any).
  • A study's units of analysis.
  • The logic that links the data to the propositions.
  • The criteria for interpreting the findings.

In addition to these five basic components, Yin also stresses the importance of clearly articulating one's theoretical perspective, determining the goals of the study, selecting one's subject(s), selecting the appropriate method(s) of collecting data, and providing some considerations to the composition of the final report.

Conducting Case Studies

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of approaches and methods. These approaches, methods, and related issues are discussed in depth in this section.

Method: Single or Multi-modal?

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of methods. Some common methods include interviews , protocol analyses, field studies, and participant-observations. Emig (1971) chose to use several methods of data collection. Her sources included conversations with the students, protocol analysis, discrete observations of actual composition, writing samples from each student, and school records (Lauer and Asher 1988).

Berkenkotter, Huckin, and Ackerman (1988) collected data by observing classrooms, conducting faculty and student interviews, collecting self reports from the subject, and by looking at the subject's written work.

A study that was criticized for using a single method model was done by Flower and Hayes (1984). In this study that explores the ways in which writers use different forms of knowing to create space, the authors used only protocol analysis to gather data. The study came under heavy fire because of their decision to use only one method.

Participant Selection

Case studies can use one participant, or a small group of participants. However, it is important that the participant pool remain relatively small. The participants can represent a diverse cross section of society, but this isn't necessary.

For example, the Berkenkotter, Huckin, and Ackerman (1988) study looked at just one participant, Nate. By contrast, in Janet Emig's (1971) study of the composition process of twelfth graders, eight participants were selected representing a diverse cross section of the community, with volunteers from an all-white upper-middle-class suburban school, an all-black inner-city school, a racially mixed lower-middle-class school, an economically and racially mixed school, and a university school.

Often, a brief "case history" is done on the participants of the study in order to provide researchers with a clearer understanding of their participants, as well as some insight as to how their own personal histories might affect the outcome of the study. For instance, in Emig's study, the investigator had access to the school records of five of the participants, and to standardized test scores for the remaining three. Also made available to the researcher was the information that three of the eight students were selected as NCTE Achievement Award winners. These personal histories can be useful in later stages of the study when data are being analyzed and conclusions drawn.

Data Collection

There are six types of data collected in case studies:

  • Archival records.
  • Interviews.
  • Direct observation.
  • Participant observation.

In the field of composition research, these six sources might be:

  • A writer's drafts.
  • School records of student writers.
  • Transcripts of interviews with a writer.
  • Transcripts of conversations between writers (and protocols).
  • Videotapes and notes from direct field observations.
  • Hard copies of a writer's work on computer.

Depending on whether researchers have chosen to use a single or multi-modal approach for the case study, they may choose to collect data from one or any combination of these sources.

Protocols, that is, transcriptions of participants talking aloud about what they are doing as they do it, have been particularly common in composition case studies. For example, in Emig's (1971) study, the students were asked, in four different sessions, to give oral autobiographies of their writing experiences and to compose aloud three themes in the presence of a tape recorder and the investigator.

In some studies, only one method of data collection is conducted. For example, the Flower and Hayes (1981) report on the cognitive process theory of writing depends on protocol analysis alone. However, using multiple sources of evidence to increase the reliability and validity of the data can be advantageous.

Case studies are likely to be much more convincing and accurate if they are based on several different sources of information, following a corroborating mode. This conclusion is echoed among many composition researchers. For example, in her study of predrafting processes of high and low-apprehensive writers, Cynthia Selfe (1985) argues that because "methods of indirect observation provide only an incomplete reflection of the complex set of processes involved in composing, a combination of several such methods should be used to gather data in any one study." Thus, in this study, Selfe collected her data from protocols, observations of students role playing their writing processes, audio taped interviews with the students, and videotaped observations of the students in the process of composing.

It can be said then, that cross checking data from multiple sources can help provide a multidimensional profile of composing activities in a particular setting. Sharan Merriam (1985) suggests "checking, verifying, testing, probing, and confirming collected data as you go, arguing that this process will follow in a funnel-like design resulting in less data gathering in later phases of the study along with a congruent increase in analysis checking, verifying, and confirming."

It is important to note that in case studies, as in any qualitative descriptive research, while researchers begin their studies with one or several questions driving the inquiry (which influence the key factors the researcher will be looking for during data collection), a researcher may find new key factors emerging during data collection. These might be unexpected patterns or linguistic features which become evident only during the course of the research. While not bearing directly on the researcher's guiding questions, these variables may become the basis for new questions asked at the end of the report, thus linking to the possibility of further research.

Data Analysis

As the information is collected, researchers strive to make sense of their data. Generally, researchers interpret their data in one of two ways: holistically or through coding. Holistic analysis does not attempt to break the evidence into parts, but rather to draw conclusions based on the text as a whole. Flower and Hayes (1981), for example, make inferences from entire sections of their students' protocols, rather than searching through the transcripts to look for isolatable characteristics.

However, composition researchers commonly interpret their data by coding, that is by systematically searching data to identify and/or categorize specific observable actions or characteristics. These observable actions then become the key variables in the study. Sharan Merriam (1988) suggests seven analytic frameworks for the organization and presentation of data:

  • The role of participants.
  • The network analysis of formal and informal exchanges among groups.
  • Historical.
  • Thematical.
  • Ritual and symbolism.
  • Critical incidents that challenge or reinforce fundamental beliefs, practices, and values.

There are two purposes of these frameworks: to look for patterns among the data and to look for patterns that give meaning to the case study.

As stated above, while most researchers begin their case studies expecting to look for particular observable characteristics, it is not unusual for key variables to emerge during data collection. Typical variables coded in case studies of writers include pauses writers make in the production of a text, the use of specific linguistic units (such as nouns or verbs), and writing processes (planning, drafting, revising, and editing). In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, researchers coded the participant's texts for use of connectives, discourse demonstratives, average sentence length, off-register words, use of the first person pronoun, and the ratio of definite articles to indefinite articles.

Since coding is inherently subjective, more than one coder is usually employed. In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, three rhetoricians were employed to code the participant's texts for off-register phrases. The researchers established the agreement among the coders before concluding that the participant used fewer off-register words as the graduate program progressed.

Composing the Case Study Report

In the many forms it can take, "a case study is generically a story; it presents the concrete narrative detail of actual, or at least realistic events, it has a plot, exposition, characters, and sometimes even dialogue" (Boehrer 1990). Generally, case study reports are extensively descriptive, with "the most problematic issue often referred to as being the determination of the right combination of description and analysis" (1990). Typically, authors address each step of the research process, and attempt to give the reader as much context as possible for the decisions made in the research design and for the conclusions drawn.

This contextualization usually includes a detailed explanation of the researchers' theoretical positions, of how those theories drove the inquiry or led to the guiding research questions, of the participants' backgrounds, of the processes of data collection, of the training and limitations of the coders, along with a strong attempt to make connections between the data and the conclusions evident.

Although the Berkenkotter, Huckin, and Ackerman (1988) study does not, case study reports often include the reactions of the participants to the study or to the researchers' conclusions. Because case studies tend to be exploratory, most end with implications for further study. Here researchers may identify significant variables that emerged during the research and suggest studies related to these, or the authors may suggest further general questions that their case study generated.

For example, Emig's (1971) study concludes with a section dedicated solely to the topic of implications for further research, in which she suggests several means by which this particular study could have been improved, as well as questions and ideas raised by this study which other researchers might like to address, such as: is there a correlation between a certain personality and a certain composing process profile (e.g. is there a positive correlation between ego strength and persistence in revising)?

Also included in Emig's study is a section dedicated to implications for teaching, which outlines the pedagogical ramifications of the study's findings for teachers currently involved in high school writing programs.

Sharan Merriam (1985) also offers several suggestions for alternative presentations of data:

  • Prepare specialized condensations for appropriate groups.
  • Replace narrative sections with a series of answers to open-ended questions.
  • Present "skimmer's" summaries at beginning of each section.
  • Incorporate headlines that encapsulate information from text.
  • Prepare analytic summaries with supporting data appendixes.
  • Present data in colorful and/or unique graphic representations.

Issues of Validity and Reliability

Once key variables have been identified, they can be analyzed. Reliability becomes a key concern at this stage, and many case study researchers go to great lengths to ensure that their interpretations of the data will be both reliable and valid. Because issues of validity and reliability are an important part of any study in the social sciences, it is important to identify some ways of dealing with results.

Multi-modal case study researchers often balance the results of their coding with data from interviews or writer's reflections upon their own work. Consequently, the researchers' conclusions become highly contextualized. For example, in a case study which looked at the time spent in different stages of the writing process, Berkenkotter concluded that her participant, Donald Murray, spent more time planning his essays than in other writing stages. The report of this case study is followed by Murray's reply, wherein he agrees with some of Berkenkotter's conclusions and disagrees with others.

As is the case with other research methodologies, issues of external validity, construct validity, and reliability need to be carefully considered.

Commentary on Case Studies

Researchers often debate the relative merits of particular methods, among them case study. In this section, we comment on two key issues. To read the commentaries, choose any of the items below:

Strengths and Weaknesses of Case Studies

Most case study advocates point out that case studies produce much more detailed information than what is available through a statistical analysis. Advocates will also hold that while statistical methods might be able to deal with situations where behavior is homogeneous and routine, case studies are needed to deal with creativity, innovation, and context. Detractors argue that case studies are difficult to generalize because of inherent subjectivity and because they are based on qualitative subjective data, generalizable only to a particular context.

Flexibility

The case study approach is a comparatively flexible method of scientific research. Because its project designs seem to emphasize exploration rather than prescription or prediction, researchers are comparatively freer to discover and address issues as they arise in their experiments. In addition, the looser format of case studies allows researchers to begin with broad questions and narrow their focus as their experiment progresses rather than attempt to predict every possible outcome before the experiment is conducted.

Emphasis on Context

By seeking to understand as much as possible about a single subject or small group of subjects, case studies specialize in "deep data," or "thick description"--information based on particular contexts that can give research results a more human face. This emphasis can help bridge the gap between abstract research and concrete practice by allowing researchers to compare their firsthand observations with the quantitative results obtained through other methods of research.

Inherent Subjectivity

"The case study has long been stereotyped as the weak sibling among social science methods," and is often criticized as being too subjective and even pseudo-scientific. Likewise, "investigators who do case studies are often regarded as having deviated from their academic disciplines, and their investigations as having insufficient precision (that is, quantification), objectivity and rigor" (Yin 1989). Opponents cite opportunities for subjectivity in the implementation, presentation, and evaluation of case study research. The approach relies on personal interpretation of data and inferences. Results may not be generalizable, are difficult to test for validity, and rarely offer a problem-solving prescription. Simply put, relying on one or a few subjects as a basis for cognitive extrapolations runs the risk of inferring too much from what might be circumstance.

High Investment

Case studies can involve learning more about the subjects being tested than most researchers would care to know--their educational background, emotional background, perceptions of themselves and their surroundings, their likes, dislikes, and so on. Because of its emphasis on "deep data," the case study is out of reach for many large-scale research projects which look at a subject pool in the tens of thousands. A budget request of $10,000 to examine 200 subjects sounds more efficient than a similar request to examine four subjects.

Ethical Considerations

Researchers conducting case studies should consider certain ethical issues. For example, many educational case studies are often financed by people who have, either directly or indirectly, power over both those being studied and those conducting the investigation (1985). This conflict of interests can hinder the credibility of the study.

The personal integrity, sensitivity, and possible prejudices and/or biases of the investigators need to be taken into consideration as well. Personal biases can creep into how the research is conducted, alternative research methods used, and the preparation of surveys and questionnaires.

A common complaint in case study research is that investigators change direction during the course of the study unaware that their original research design was inadequate for the revised investigation. Thus, the researchers leave unknown gaps and biases in the study. To avoid this, researchers should report preliminary findings so that the likelihood of bias will be reduced.

Concerns about Reliability, Validity, and Generalizability

Merriam (1985) offers several suggestions for how case study researchers might actively combat the popular attacks on the validity, reliability, and generalizability of case studies:

  • Prolong the Processes of Data Gathering on Site: This will help to insure the accuracy of the findings by providing the researcher with more concrete information upon which to formulate interpretations.
  • Employ the Process of "Triangulation": Use a variety of data sources as opposed to relying solely upon one avenue of observation. One example of such a data check would be what McClintock, Brannon, and Maynard (1985) refer to as a "case cluster method," that is, when a single unit within a larger case is randomly sampled, and that data treated quantitatively." For instance, in Emig's (1971) study, the case cluster method was employed, singling out the productivity of a single student named Lynn. This cluster profile included an advanced case history of the subject, specific examination and analysis of individual compositions and protocols, and extensive interview sessions. The seven remaining students were then compared with the case of Lynn, to ascertain if there are any shared, or unique dimensions to the composing process engaged in by these eight students.
  • Conduct Member Checks: Initiate and maintain an active corroboration on the interpretation of data between the researcher and those who provided the data. In other words, talk to your subjects.
  • Collect Referential Materials: Complement the file of materials from the actual site with additional document support. For example, Emig (1971) supports her initial propositions with historical accounts by writers such as T.S. Eliot, James Joyce, and D.H. Lawrence. Emig also cites examples of theoretical research done with regards to the creative process, as well as examples of empirical research dealing with the writing of adolescents. Specific attention is then given to the four stages description of the composing process delineated by Helmoltz, Wallas, and Cowley, as it serves as the focal point in this study.
  • Engage in Peer Consultation: Prior to composing the final draft of the report, researchers should consult with colleagues in order to establish validity through pooled judgment.

Although little can be done to combat challenges concerning the generalizability of case studies, "most writers suggest that qualitative research should be judged as credible and confirmable as opposed to valid and reliable" (Merriam 1985). Likewise, it has been argued that "rather than transplanting statistical, quantitative notions of generalizability and thus finding qualitative research inadequate, it makes more sense to develop an understanding of generalization that is congruent with the basic characteristics of qualitative inquiry" (1985). After all, criticizing the case study method for being ungeneralizable is comparable to criticizing a washing machine for not being able to tell the correct time. In other words, it is unjust to criticize a method for not being able to do something which it was never originally designed to do in the first place.

Annotated Bibliography

Armisted, C. (1984). How Useful are Case Studies. Training and Development Journal, 38 (2), 75-77.

This article looks at eight types of case studies, offers pros and cons of using case studies in the classroom, and gives suggestions for successfully writing and using case studies.

Bardovi-Harlig, K. (1997). Beyond Methods: Components of Second Language Teacher Education . New York: McGraw-Hill.

A compilation of various research essays which address issues of language teacher education. Essays included are: "Non-native reading research and theory" by Lee, "The case for Psycholinguistics" by VanPatten, and "Assessment and Second Language Teaching" by Gradman and Reed.

Bartlett, L. (1989). A Question of Good Judgment; Interpretation Theory and Qualitative Enquiry Address. 70th Annual Meeting of the American Educational Research Association. San Francisco.

Bartlett selected "quasi-historical" methodology, which focuses on the "truth" found in case records, as one that will provide "good judgments" in educational inquiry. He argues that although the method is not comprehensive, it can try to connect theory with practice.

Baydere, S. et. al. (1993). Multimedia conferencing as a tool for collaborative writing: a case study in Computer Supported Collaborative Writing. New York: Springer-Verlag.

The case study by Baydere et. al. is just one of the many essays in this book found in the series "Computer Supported Cooperative Work." Denley, Witefield and May explore similar issues in their essay, "A case study in task analysis for the design of a collaborative document production system."

Berkenkotter, C., Huckin, T., N., & Ackerman J. (1988). Conventions, Conversations, and the Writer: Case Study of a Student in a Rhetoric Ph.D. Program. Research in the Teaching of English, 22, 9-44.

The authors focused on how the writing of their subject, Nate or Ackerman, changed as he became more acquainted or familiar with his field's discourse community.

Berninger, V., W., and Gans, B., M. (1986). Language Profiles in Nonspeaking Individuals of Normal Intelligence with Severe Cerebral Palsy. Augmentative and Alternative Communication, 2, 45-50.

Argues that generalizations about language abilities in patients with severe cerebral palsy (CP) should be avoided. Standardized tests of different levels of processing oral language, of processing written language, and of producing written language were administered to 3 male participants (aged 9, 16, and 40 yrs).

Bockman, J., R., and Couture, B. (1984). The Case Method in Technical Communication: Theory and Models. Texas: Association of Teachers of Technical Writing.

Examines the study and teaching of technical writing, communication of technical information, and the case method in terms of those applications.

Boehrer, J. (1990). Teaching With Cases: Learning to Question. New Directions for Teaching and Learning, 42 41-57.

This article discusses the origins of the case method, looks at the question of what is a case, gives ideas about learning in case teaching, the purposes it can serve in the classroom, the ground rules for the case discussion, including the role of the question, and new directions for case teaching.

Bowman, W. R. (1993). Evaluating JTPA Programs for Economically Disadvantaged Adults: A Case Study of Utah and General Findings . Washington: National Commission for Employment Policy.

"To encourage state-level evaluations of JTPA, the Commission and the State of Utah co-sponsored this report on the effectiveness of JTPA Title II programs for adults in Utah. The technique used is non-experimental and the comparison group was selected from registrants with Utah's Employment Security. In a step-by-step approach, the report documents how non-experimental techniques can be applied and several specific technical issues can be addressed."

Boyce, A. (1993) The Case Study Approach for Pedagogists. Annual Meeting of the American Alliance for Health, Physical Education, Recreation and Dance. (Address). Washington DC.

This paper addresses how case studies 1) bridge the gap between teaching theory and application, 2) enable students to analyze problems and develop solutions for situations that will be encountered in the real world of teaching, and 3) helps students to evaluate the feasibility of alternatives and to understand the ramifications of a particular course of action.

Carson, J. (1993) The Case Study: Ideal Home of WAC Quantitative and Qualitative Data. Annual Meeting of the Conference on College Composition and Communication. (Address). San Diego.

"Increasingly, one of the most pressing questions for WAC advocates is how to keep [WAC] programs going in the face of numerous difficulties. Case histories offer the best chance for fashioning rhetorical arguments to keep WAC programs going because they offer the opportunity to provide a coherent narrative that contextualizes all documents and data, including what is generally considered scientific data. A case study of the WAC program, . . . at Robert Morris College in Pittsburgh demonstrates the advantages of this research method. Such studies are ideal homes for both naturalistic and positivistic data as well as both quantitative and qualitative information."

---. (1991). A Cognitive Process Theory of Writing. College Composition and Communication. 32. 365-87.

No abstract available.

Cromer, R. (1994) A Case Study of Dissociations Between Language and Cognition. Constraints on Language Acquisition: Studies of Atypical Children . Hillsdale: Lawrence Erlbaum Associates, 141-153.

Crossley, M. (1983) Case Study in Comparative and International Education: An Approach to Bridging the Theory-Practice Gap. Proceedings of the 11th Annual Conference of the Australian Comparative and International Education Society. Hamilton, NZ.

Case study research, as presented here, helps bridge the theory-practice gap in comparative and international research studies of education because it focuses on the practical, day-to-day context rather than on the national arena. The paper asserts that the case study method can be valuable at all levels of research, formation, and verification of theories in education.

Daillak, R., H., and Alkin, M., C. (1982). Qualitative Studies in Context: Reflections on the CSE Studies of Evaluation Use . California: EDRS

The report shows how the Center of the Study of Evaluation (CSE) applied qualitative techniques to a study of evaluation information use in local, Los Angeles schools. It critiques the effectiveness and the limitations of using case study, evaluation, field study, and user interview survey methodologies.

Davey, L. (1991). The Application of Case Study Evaluations. ERIC/TM Digest.

This article examines six types of case studies, the type of evaluation questions that can be answered, the functions served, some design features, and some pitfalls of the method.

Deutch, C. E. (1996). A course in research ethics for graduate students. College Teaching, 44, 2, 56-60.

This article describes a one-credit discussion course in research ethics for graduate students in biology. Case studies are focused on within the four parts of the course: 1) major issues, 2 )practical issues in scholarly work, 3) ownership of research results, and 4) training and personal decisions.

DeVoss, G. (1981). Ethics in Fieldwork Research. RIE 27p. (ERIC)

This article examines four of the ethical problems that can happen when conducting case study research: acquiring permission to do research, knowing when to stop digging, the pitfalls of doing collaborative research, and preserving the integrity of the participants.

Driscoll, A. (1985). Case Study of a Research Intervention: the University of Utah’s Collaborative Approach . San Francisco: Far West Library for Educational Research Development.

Paper presented at the annual meeting of the American Association of Colleges of Teacher Education, Denver, CO, March 1985. Offers information of in-service training, specifically case studies application.

Ellram, L. M. (1996). The Use of the Case Study Method in Logistics Research. Journal of Business Logistics, 17, 2, 93.

This article discusses the increased use of case study in business research, and the lack of understanding of when and how to use case study methodology in business.

Emig, J. (1971) The Composing Processes of Twelfth Graders . Urbana: NTCE.

This case study uses observation, tape recordings, writing samples, and school records to show that writing in reflexive and extensive situations caused different lengths of discourse and different clusterings of the components of the writing process.

Feagin, J. R. (1991). A Case For the Case Study . Chapel Hill: The University of North Carolina Press.

This book discusses the nature, characteristics, and basic methodological issues of the case study as a research method.

Feldman, H., Holland, A., & Keefe, K. (1989) Language Abilities after Left Hemisphere Brain Injury: A Case Study of Twins. Topics in Early Childhood Special Education, 9, 32-47.

"Describes the language abilities of 2 twin pairs in which 1 twin (the experimental) suffered brain injury to the left cerebral hemisphere around the time of birth and1 twin (the control) did not. One pair of twins was initially assessed at age 23 mo. and the other at about 30 mo.; they were subsequently evaluated in their homes 3 times at about 6-mo intervals."

Fidel, R. (1984). The Case Study Method: A Case Study. Library and Information Science Research, 6.

The article describes the use of case study methodology to systematically develop a model of online searching behavior in which study design is flexible, subject manner determines data gathering and analyses, and procedures adapt to the study's progressive change.

Flower, L., & Hayes, J. R. (1984). Images, Plans and Prose: The Representation of Meaning in Writing. Written Communication, 1, 120-160.

Explores the ways in which writers actually use different forms of knowing to create prose.

Frey, L. R. (1992). Interpreting Communication Research: A Case Study Approach Englewood Cliffs, N.J.: Prentice Hall.

The book discusses research methodologies in the Communication field. It focuses on how case studies bridge the gap between communication research, theory, and practice.

Gilbert, V. K. (1981). The Case Study as a Research Methodology: Difficulties and Advantages of Integrating the Positivistic, Phenomenological and Grounded Theory Approaches . The Annual Meeting of the Canadian Association for the Study of Educational Administration. (Address) Halifax, NS, Can.

This study on an innovative secondary school in England shows how a "low-profile" participant-observer case study was crucial to the initial observation, the testing of hypotheses, the interpretive approach, and the grounded theory.

Gilgun, J. F. (1994). A Case for Case Studies in Social Work Research. Social Work, 39, 4, 371-381.

This article defines case study research, presents guidelines for evaluation of case studies, and shows the relevance of case studies to social work research. It also looks at issues such as evaluation and interpretations of case studies.

Glennan, S. L., Sharp-Bittner, M. A. & Tullos, D. C. (1991). Augmentative and Alternative Communication Training with a Nonspeaking Adult: Lessons from MH. Augmentative and Alternative Communication, 7, 240-7.

"A response-guided case study documented changes in a nonspeaking 36-yr-old man's ability to communicate using 3 trained augmentative communication modes. . . . Data were collected in videotaped interaction sessions between the nonspeaking adult and a series of adult speaking."

Graves, D. (1981). An Examination of the Writing Processes of Seven Year Old Children. Research in the Teaching of English, 15, 113-134.

Hamel, J. (1993). Case Study Methods . Newbury Park: Sage. .

"In a most economical fashion, Hamel provides a practical guide for producing theoretically sharp and empirically sound sociological case studies. A central idea put forth by Hamel is that case studies must "locate the global in the local" thus making the careful selection of the research site the most critical decision in the analytic process."

Karthigesu, R. (1986, July). Television as a Tool for Nation-Building in the Third World: A Post-Colonial Pattern, Using Malaysia as a Case-Study. International Television Studies Conference. (Address). London, 10-12.

"The extent to which Television Malaysia, as a national mass media organization, has been able to play a role in nation building in the post-colonial period is . . . studied in two parts: how the choice of a model of nation building determines the character of the organization; and how the character of the organization influences the output of the organization."

Kenny, R. (1984). Making the Case for the Case Study. Journal of Curriculum Studies, 16, (1), 37-51.

The article looks at how and why the case study is justified as a viable and valuable approach to educational research and program evaluation.

Knirk, F. (1991). Case Materials: Research and Practice. Performance Improvement Quarterly, 4 (1 ), 73-81.

The article addresses the effectiveness of case studies, subject areas where case studies are commonly used, recent examples of their use, and case study design considerations.

Klos, D. (1976). Students as Case Writers. Teaching of Psychology, 3.2, 63-66.

This article reviews a course in which students gather data for an original case study of another person. The task requires the students to design the study, collect the data, write the narrative, and interpret the findings.

Leftwich, A. (1981). The Politics of Case Study: Problems of Innovation in University Education. Higher Education Review, 13.2, 38-64.

The article discusses the use of case studies as a teaching method. Emphasis is on the instructional materials, interdisciplinarity, and the complex relationships within the university that help or hinder the method.

Mabrito, M. (1991, Oct.). Electronic Mail as a Vehicle for Peer Response: Conversations of High and Low Apprehensive Writers. Written Communication, 509-32.

McCarthy, S., J. (1955). The Influence of Classroom Discourse on Student Texts: The Case of Ella . East Lansing: Institute for Research on Teaching.

A look at how students of color become marginalized within traditional classroom discourse. The essay follows the struggles of one black student: Ella.

Matsuhashi, A., ed. (1987). Writing in Real Time: Modeling Production Processes Norwood, NJ: Ablex Publishing Corporation.

Investigates how writers plan to produce discourse for different purposes to report, to generalize, and to persuade, as well as how writers plan for sentence level units of language. To learn about planning, an observational measure of pause time was used" (ERIC).

Merriam, S. B. (1985). The Case Study in Educational Research: A Review of Selected Literature. Journal of Educational Thought, 19.3, 204-17.

The article examines the characteristics of, philosophical assumptions underlying the case study, the mechanics of conducting a case study, and the concerns about the reliability, validity, and generalizability of the method.

---. (1988). Case Study Research in Education: A Qualitative Approach San Francisco: Jossey Bass.

Merry, S. E., & Milner, N. eds. (1993). The Possibility of Popular Justice: A Case Study of Community Mediation in the United States . Ann Arbor: U of Michigan.

". . . this volume presents a case study of one experiment in popular justice, the San Francisco Community Boards. This program has made an explicit claim to create an alternative justice, or new justice, in the midst of a society ordered by state law. The contributors to this volume explore the history and experience of the program and compare it to other versions of popular justice in the United States, Europe, and the Third World."

Merseth, K. K. (1991). The Case for Cases in Teacher Education. RIE. 42p. (ERIC).

This monograph argues that the case method of instruction offers unique potential for revitalizing the field of teacher education.

Michaels, S. (1987). Text and Context: A New Approach to the Study of Classroom Writing. Discourse Processes, 10, 321-346.

"This paper argues for and illustrates an approach to the study of writing that integrates ethnographic analysis of classroom interaction with linguistic analysis of written texts and teacher/student conversational exchanges. The approach is illustrated through a case study of writing in a single sixth grade classroom during a single writing assignment."

Milburn, G. (1995). Deciphering a Code or Unraveling a Riddle: A Case Study in the Application of a Humanistic Metaphor to the Reporting of Social Studies Teaching. Theory and Research in Education, 13.

This citation serves as an example of how case studies document learning procedures in a senior-level economics course.

Milley, J. E. (1979). An Investigation of Case Study as an Approach to Program Evaluation. 19th Annual Forum of the Association for Institutional Research. (Address). San Diego.

The case study method merged a narrative report focusing on the evaluator as participant-observer with document review, interview, content analysis, attitude questionnaire survey, and sociogram analysis. Milley argues that case study program evaluation has great potential for widespread use.

Minnis, J. R. (1985, Sept.). Ethnography, Case Study, Grounded Theory, and Distance Education Research. Distance Education, 6.2.

This article describes and defines the strengths and weaknesses of ethnography, case study, and grounded theory.

Nunan, D. (1992). Collaborative language learning and teaching . New York: Cambridge University Press.

Included in this series of essays is Peter Sturman’s "Team Teaching: a case study from Japan" and David Nunan’s own "Toward a collaborative approach to curriculum development: a case study."

Nystrand, M., ed. (1982). What Writers Know: The Language, Process, and Structure of Written Discourse . New York: Academic Press.

Owenby, P. H. (1992). Making Case Studies Come Alive. Training, 29, (1), 43-46. (ERIC)

This article provides tips for writing more effective case studies.

---. (1981). Pausing and Planning: The Tempo of Writer Discourse Production. Research in the Teaching of English, 15 (2),113-34.

Perl, S. (1979). The Composing Processes of Unskilled College Writers. Research in the Teaching of English, 13, 317-336.

"Summarizes a study of five unskilled college writers, focusing especially on one of the five, and discusses the findings in light of current pedagogical practice and research design."

Pilcher J. and A. Coffey. eds. (1996). Gender and Qualitative Research . Brookfield: Aldershot, Hants, England.

This book provides a series of essays which look at gender identity research, qualitative research and applications of case study to questions of gendered pedagogy.

Pirie, B. S. (1993). The Case of Morty: A Four Year Study. Gifted Education International, 9 (2), 105-109.

This case study describes a boy from kindergarten through third grade with above average intelligence but difficulty in learning to read, write, and spell.

Popkewitz, T. (1993). Changing Patterns of Power: Social Regulation and Teacher Education Reform. Albany: SUNY Press.

Popkewitz edits this series of essays that address case studies on educational change and the training of teachers. The essays vary in terms of discipline and scope. Also, several authors include case studies of educational practices in countries other than the United States.

---. (1984). The Predrafting Processes of Four High- and Four Low Apprehensive Writers. Research in the Teaching of English, 18, (1), 45-64.

Rasmussen, P. (1985, March) A Case Study on the Evaluation of Research at the Technical University of Denmark. International Journal of Institutional Management in Higher Education, 9 (1).

This is an example of a case study methodology used to evaluate the chemistry and chemical engineering departments at the University of Denmark.

Roth, K. J. (1986). Curriculum Materials, Teacher Talk, and Student Learning: Case Studies in Fifth-Grade Science Teaching . East Lansing: Institute for Research on Teaching.

Roth offers case studies on elementary teachers, elementary school teaching, science studies and teaching, and verbal learning.

Selfe, C. L. (1985). An Apprehensive Writer Composes. When a Writer Can't Write: Studies in Writer's Block and Other Composing-Process Problems . (pp. 83-95). Ed. Mike Rose. NMY: Guilford.

Smith-Lewis, M., R. and Ford, A. (1987). A User's Perspective on Augmentative Communication. Augmentative and Alternative Communication, 3, 12-7.

"During a series of in-depth interviews, a 25-yr-old woman with cerebral palsy who utilized augmentative communication reflected on the effectiveness of the devices designed for her during her school career."

St. Pierre, R., G. (1980, April). Follow Through: A Case Study in Metaevaluation Research . 64th Annual Meeting of the American Educational Research Association. (Address).

The three approaches to metaevaluation are evaluation of primary evaluations, integrative meta-analysis with combined primary evaluation results, and re-analysis of the raw data from a primary evaluation.

Stahler, T., M. (1996, Feb.) Early Field Experiences: A Model That Worked. ERIC.

"This case study of a field and theory class examines a model designed to provide meaningful field experiences for preservice teachers while remaining consistent with the instructor's beliefs about the role of teacher education in preparing teachers for the classroom."

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks: Sage Publications.

This book examines case study research in education and case study methodology.

Stiegelbauer, S. (1984) Community, Context, and Co-curriculum: Situational Factors Influencing School Improvements in a Study of High Schools. Presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Discussion of several case studies: one looking at high school environments, another examining educational innovations.

Stolovitch, H. (1990). Case Study Method. Performance And Instruction, 29, (9), 35-37.

This article describes the case study method as a form of simulation and presents guidelines for their use in professional training situations.

Thaller, E. (1994). Bibliography for the Case Method: Using Case Studies in Teacher Education. RIE. 37 p.

This bibliography presents approximately 450 citations on the use of case studies in teacher education from 1921-1993.

Thrane, T. (1986). On Delimiting the Senses of Near-Synonyms in Historical Semantics: A Case Study of Adjectives of 'Moral Sufficiency' in the Old English Andreas. Linguistics Across Historical and Geographical Boundaries: In Honor of Jacek Fisiak on the Occasion of his Fiftieth Birthday . Berlin: Mouton de Gruyter.

United Nations. (1975). Food and Agriculture Organization. Report on the FAO/UNFPA Seminar on Methodology, Research and Country: Case Studies on Population, Employment and Productivity . Rome: United Nations.

This example case study shows how the methodology can be used in a demographic and psychographic evaluation. At the same time, it discusses the formation and instigation of the case study methodology itself.

Van Vugt, J. P., ed. (1994). Aids Prevention and Services: Community Based Research . Westport: Bergin and Garvey.

"This volume has been five years in the making. In the process, some of the policy applications called for have met with limited success, such as free needle exchange programs in a limited number of American cities, providing condoms to prison inmates, and advertisements that depict same-sex couples. Rather than dating our chapters that deal with such subjects, such policy applications are verifications of the type of research demonstrated here. Furthermore, they indicate the critical need to continue community based research in the various communities threatened by acquired immuno-deficiency syndrome (AIDS) . . . "

Welch, W., ed. (1981, May). Case Study Methodology in Educational Evaluation. Proceedings of the Minnesota Evaluation Conference. Minnesota. (Address).

The four papers in these proceedings provide a comprehensive picture of the rationale, methodology, strengths, and limitations of case studies.

Williams, G. (1987). The Case Method: An Approach to Teaching and Learning in Educational Administration. RIE, 31p.

This paper examines the viability of the case method as a teaching and learning strategy in instructional systems geared toward the training of personnel of the administration of various aspects of educational systems.

Yin, R. K. (1993). Advancing Rigorous Methodologies: A Review of 'Towards Rigor in Reviews of Multivocal Literatures.' Review of Educational Research, 61, (3).

"R. T. Ogawa and B. Malen's article does not meet its own recommended standards for rigorous testing and presentation of its own conclusions. Use of the exploratory case study to analyze multivocal literatures is not supported, and the claim of grounded theory to analyze multivocal literatures may be stronger."

---. (1989). Case Study Research: Design and Methods. London: Sage Publications Inc.

This book discusses in great detail, the entire design process of the case study, including entire chapters on collecting evidence, analyzing evidence, composing the case study report, and designing single and multiple case studies.

Related Links

Consider the following list of related Web sites for more information on the topic of case study research. Note: although many of the links cover the general category of qualitative research, all have sections that address issues of case studies.

  • Sage Publications on Qualitative Methodology: Search here for a comprehensive list of new books being published about "Qualitative Methodology" http://www.sagepub.co.uk/
  • The International Journal of Qualitative Studies in Education: An on-line journal "to enhance the theory and practice of qualitative research in education." On-line submissions are welcome. http://www.tandf.co.uk/journals/tf/09518398.html
  • Qualitative Research Resources on the Internet: From syllabi to home pages to bibliographies. All links relate somehow to qualitative research. http://www.nova.edu/ssss/QR/qualres.html

Becker, Bronwyn, Patrick Dawson, Karen Devine, Carla Hannum, Steve Hill, Jon Leydens, Debbie Matuskevich, Carol Traver, & Mike Palmquist. (2005). Case Studies. Writing@CSU . Colorado State University. https://writing.colostate.edu/guides/guide.cfm?guideid=60

when conducting a case study researchers interpret and form judgement objectively

Case Study: Research in Practice

  • SAGE Publications

Case Study Research in Practice explores the theory and practice of case study. Helen Simons draws on her extensive experience of teaching and conducting case study to provide a comprehensive and practical account of how to design, conduct and communicate case study research. It addresses questions often raised by students and common misconceptions. In four sections the book covers: Rationale, concept and design of case study research Methods, ethics and reflexivity in case study Interpreting, analysing and reporting the case Generalizing and theorizing in case study research Rich with ‘tales from the field’ and summary memos as an aide-memoire to future action, the book provides fresh insights and challenges for researchers to guide their practice of case study research. This is an ideal text for those studying and conducting case study research in education, health and social care, and related social science disciplines. Book jacket.

Source: Publisher

Cover of Case Study Research in Practice by Helen Simons

© Copyright WGU D&D Guidance

  • Advanced search

American Society for Clinical Laboratory Science

Advanced Search

Conducting Case Study Research

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Info & Metrics

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

  • Seward County Community College/Area Technical School, Liberal, KS
  • Address for Correspondence: Suzanne Campbell, PhD, MLS(ASCP) CM , STEM Project Director, Medical Laboratory Technician Program Coordinator, Seward County Community College/Area Technical School, Liberal, KS 67901, 620-417-1403, suzanne.campbell{at}sccc.edu

Describe when the case study approach is the most appropriate qualitative research method.

Outline the components of a case study research method.

Discuss data coding and analysis and how categories and themes are developed.

Identify considerations for reporting the findings of case study research.

INTRODUCTION As medical laboratory professionals, we compare patient results to reference ranges and determine the clinical significance of the findings. Those numbers indicate whether a patient is healthy or will be diagnosed with a disease process. Even after the diagnosis, the numbers still have meaning as they reflect the outcome of the treatment. The result of the analytical process provides the healthcare team vital information regarding diagnosis and treatment. Because of the nature of our profession, quantitative research may be more readily accepted. We incorporate the results of quantitative research when we consider the likelihood of developing the disease, treatment success/failure rate, and prognosis. However, do we ever consider “how” the patient reacts to the diagnosis or “why” some patients have a better prognosis than others? 1 A quantitative research method would not provide the data needed to respond to those questions. Therefore, we should consider conducting a qualitative research method.

As previously identified, there are five approaches to qualitative research methods: narrative inquiry, phenomenological, grounded theory, ethnographic and case study research. 2 It is vital that the researcher consider the research questions and research design so the appropriate qualitative research method is selected. Qualitative research methods are used in psychology, sociology, philosophy, political science, medicine, social science, anthropology, government, business and education. 1,3,4,5 Let us explore in more detail the case study research method.

Case study research is an “…intensive study of a single case where the purpose of that study is… to shed light on a larger class of cases.” 4 Being…

  • Case study research
  • qualitative research methods
  • data coding
  • data validation
  • © Copyright 2015 American Society for Clinical Laboratory Science Inc. All rights reserved.

In this issue

American Society for Clinical Laboratory Science: 28 (3)

  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)

Thank you for your interest in spreading the word on American Society for Clinical Laboratory Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager

Twitter logo

  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

Related articles.

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.

More in this TOC Section

  • A Narrative Approach to Qualitative Inquiry
  • Conducting Qualitative Research Introduction

Similar Articles

  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

when conducting a case study researchers interpret and form judgement objectively

  • < Previous chapter
  • Next chapter >

when conducting a case study researchers interpret and form judgement objectively

5 Conducting Judgment Studies: Some Methodological Issues

  • Published: March 2008
  • Cite Icon Cite
  • Permissions Icon Permissions

‘Judgment studies’ refers most generally to those studies in which behaviors, persons, objects, or concepts are evaluated by one of more judges — the general experts, specialist-experts, members of the general public, college students, and the like. The chapter considers some of the fundamental methodological issues that contemporary researchers will want to consider when they conduct judgment studies including issues of the nature of judgment studies, the reliability of judgments, the selection of judges, the formation of composite variables, and some related topics. Judgment studies may focus on nonverbal behaviors considered as either dependent or independent variables. These studies may employ a variety of metrics, from physical units of measurement to psychological units of measurement. The purpose of judgment studies maybe based on different focus — encoder state or other attributes, the encoder's nonverbal behavior, or the decoder's judgment itself.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 5
November 2022 5
December 2022 4
January 2023 2
February 2023 3
March 2023 5
April 2023 1
May 2023 4
June 2023 3
July 2023 1
August 2023 1
September 2023 2
October 2023 11
November 2023 2
December 2023 5
February 2024 5
March 2024 6
April 2024 11
May 2024 2
June 2024 1
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Textual Analysis

Textual Analysis – Types, Examples and Guide

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Phenomenology

Phenomenology – Methods, Examples and Guide

Applied Research

Applied Research – Types, Methods and Examples

Questionnaire

Questionnaire – Definition, Types, and Examples

when conducting a case study researchers interpret and form judgement objectively

Forum Qualitative Sozialforschung / Forum: Qualitative Social Research (FQS)

ISSN 1438-5627

Creative Common License

Creative Commons Attribution 4.0 International License

Advertisement

Advertisement

Guidelines for conducting and reporting case study research in software engineering

  • Open access
  • Published: 19 December 2008
  • Volume 14 , pages 131–164, ( 2009 )

Cite this article

You have full access to this open access article

when conducting a case study researchers interpret and form judgement objectively

  • Per Runeson 1 &
  • Martin Höst 1  

160k Accesses

2242 Citations

23 Altmetric

Explore all metrics

Case study is a suitable research methodology for software engineering research since it studies contemporary phenomena in its natural context. However, the understanding of what constitutes a case study varies, and hence the quality of the resulting studies. This paper aims at providing an introduction to case study methodology and guidelines for researchers conducting case studies and readers studying reports of such studies. The content is based on the authors’ own experience from conducting and reading case studies. The terminology and guidelines are compiled from different methodology handbooks in other research domains, in particular social science and information systems, and adapted to the needs in software engineering. We present recommended practices for software engineering case studies as well as empirically derived and evaluated checklists for researchers and readers of case study research.

Similar content being viewed by others

when conducting a case study researchers interpret and form judgement objectively

Guidelines for Case Survey Research in Software Engineering

The design science paradigm as a frame for empirical software engineering, data science and empirical software engineering, explore related subjects.

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

1 Introduction

The acceptance of empirical studies in software engineering and their contributions to increasing knowledge is continuously growing. The analytical research paradigm is not sufficient for investigating complex real life issues, involving humans and their interactions with technology. However, the overall share of empirical studies is negligibly small in computer science research; Sjøberg et al. ( 2005 ), found 103 experiments in 5,453 articles Ramesh et al. ( 2004 ) and identified less than 2% experiments with human subjects, and only 0.16% field studies among 628 articles. Further, existing work on empirical research methodology in software engineering has a strong focus on experimental research; the earliest by Moher and Schneider ( 1981 ), Basili et al. ( 1986 ), the first methodology handbook by Wohlin et al. ( 2000 ), and promoted by Tichy ( 1998 ). All have a tendency towards quantitative approaches, although also qualitative approaches are discussed during the later years, e.g. by Seaman ( 1999 ). There exist guidelines for experiments’ conduct (Kitchenham et al. 2002 ; Wohlin et al. 2000 ) and reporting (Jedlitschka and Pfahl 2005 ), measurements (Basili and Weiss 1984 ; Fenton and Pfleeger 1996 ; van Solingen and Berghout 1999 ), and systematic reviews (Kitchenham 2007 ), while only little is written on case studies in software engineering (Höst and Runeson 2007 ; Kitchenham et al. 1995 ; Wohlin et al. 2003 ) and qualitative methods (Dittrich 2007 ; Seaman 1999 ; Sim et al. 2001 ). Recently, a comprehensive view of empirical research issues for software engineering has been presented, edited by Shull et al. ( 2008 ).

The term “case study” appears every now and then in the title of software engineering research papers. However, the presented studies range from very ambitious and well organized studies in the field, to small toy examples that claim to be case studies. Additionally, there are different taxonomies used to classify research. The term case study is used in parallel with terms like field study and observational study, each focusing on a particular aspect of the research methodology. For example, Lethbridge et al. use field studies as the most general term (Lethbridge et al. 2005 ), while Easterbrook et al. ( 2008 ) call case studies one of five “classes of research methods”. Zelkowitz and Wallace propose a terminology that is somewhat different from what is used in other fields, and categorize project monitoring, case study and field study as observational methods (Zelkowitz and Wallace 1998 ). This plethora of terms causes confusion and problems when trying to aggregate multiple empirical studies.

The case study methodology is well suited for many kinds of software engineering research, as the objects of study are contemporary phenomena, which are hard to study in isolation. Case studies do not generate the same results on e.g. causal relationships as controlled experiments do, but they provide deeper understanding of the phenomena under study. As they are different from analytical and controlled empirical studies, case studies have been criticized for being of less value, impossible to generalize from, being biased by researchers etc. This critique can be met by applying proper research methodology practices as well as reconsidering that knowledge is more than statistical significance (Flyvbjerg 2007 ; Lee 1989 ). However, the research community has to learn more about the case study methodology in order to review and judge it properly.

Case study methodology handbooks are superfluously available in e.g. social sciences (Robson 2002 ; Stake 1995 ; Yin 2003 ) which literature also has been used in software engineering. In the field of information systems (IS) research, the case study methodology is also much more mature than in software engineering. For example, Benbasat et al. provide a brief overview of case study research in information systems (Benbasat et al. 1987 ), Lee analyzes case studies from a positivistic perspective (Lee 1989 ) and Klein and Myers do the same from an interpretive perspective (Klein and Myers 1999 ).

It is relevant to raise the question: what is specific for software engineering that motivates specialized research methodology? In addition to the specifics of the examples, the characteristics of software engineering objects of study are different from social science and also to some extent from information systems. The study objects are 1) private corporations or units of public agencies developing software rather than public agencies or private corporations using software systems; 2) project oriented rather than line or function oriented; and 3) the studied work is advanced engineering work conducted by highly educated people rather than routine work. Additionally, the software engineering research community has a pragmatic and result-oriented view on research methodology, rather than a philosophical stand, as noticed by Seaman ( 1999 ).

The purpose of this paper is to provide guidance for the researcher conducting case studies, for reviewers of case study manuscripts and for readers of case study papers. It is synthesized from general methodology handbooks, mainly from the social science field, as well as literature from the information systems field, and adapted to software engineering needs. Existing literature on software engineering case studies is of course included as well. The underlying analysis is done by structuring the information according to a general case study research process (presented in Section 2.4 ). Where different recommendations or terms appear, the ones considered most suited for the software engineering domain are selected, based on the authors’ experience on conducting case studies and reading case study reports. Links to data sources are given by regular references. Specifically, checklists for researchers and readers are derived through a systematic analysis of existing checklists (Höst and Runeson 2007 ), and later evaluated by PhD students as well as by members of the International Software Engineering Research Network and updated accordingly.

This paper does not provide absolute statements for what is considered a “good” case study in software engineering. Rather it focuses on a set of issues that all contribute to the quality of the research. The minimum requirement for each issue must be judged in its context, and will most probably evolve over time. This is similar to the principles by Klein and Myers for IS case studies (Klein and Myers 1999 ), “it is incumbent upon authors, reviewers, and exercise their judgment and discretion in deciding whether, how and which of the principles should be applied”. We do neither assess the current status of case study research in software engineering. This is worth a study on its own, similar to the systematic review on experiments by Sjøberg et al. ( 2005 ). Further, examples are used both to illustrate good practices and lack thereof.

This paper is outlined as follows. We first define a set of terms in the field of empirical research, which we use throughout the paper (Section 2.1 ), set case study research into the context of other research methodologies (Section 2.2 ) and discuss the motivations for software engineering case studies (Section 2.3 ). We define a case study research process (Section 2.4 ) and terminology (Section 2.5 ), which are used for the rest of the paper. Section 3 discusses the design of a case study and planning for data collection. Section 4 describes the process of data collection. In Section 5 issues on data analysis are treated, and reporting is discussed in Section 6 . Section 7 discusses reading and reviewing case study report, and Section 8 summarizes the paper. Checklists for conducting and reading case study research are linked to each step in the case study process, and summarized in the Appendix .

; ) ) ,

2 Background and Definition of Concepts

2.1 research methodology.

In order to set the scope for the type of empirical studies we address in this paper, we put case studies into the context of other research methodologies and refer to general definitions of the term case study according to Robson ( 2002 ), Yin ( 2003 ) and Benbasat et al. ( 1987 ) respectively.

The three definitions agree on that case study is an empirical method aimed at investigating contemporary phenomena in their context . Robson calls it a research strategy and stresses the use of multiple sources of evidence , Yin denotes it an inquiry and remarks that the boundary between the phenomenon and its context may be unclear , while Benbasat et al. make the definitions somewhat more specific, mentioning information gathering from few entities (people, groups, organizations), and the lack of experimental control .

There are three other major research methodologies which are related to case studies:

Survey, which is the “collection of standardized information from a specific population, or some sample from one, usually, but not necessarily by means of a questionnaire or interview” (Robson 2002 ).

Experiment, or controlled experiment, which is characterized by “measuring the effects of manipulating one variable on another variable” (Robson 2002 ) and that “subjects are assigned to treatments by random.”(Wohlin et al. 2000 ). Quasi-experiments are similar to controlled experiments, except that subjects are not randomly assigned to treatments. Quasi-experiments conducted in an industry setting may have many characteristics in common with case studies.

Action research, with its purpose to “influence or change some aspect of whatever is the focus of the research” (Robson 2002 ), is closely related to case study. More strictly, a case study is purely observational while action research is focused on and involved in the change process. In software process improvement (Dittrich et al. 2008 ; Iversen et al. 2004 ) and technology transfer studies (Gorschek et al. 2006 ), the research method should be characterized as action research. However, when studying the effects of a change, e.g. in pre- and post-event studies, we classify the methodology as case study. In IS, where action research is widely used, there is a discussion on finding the balance between action and research, see e.g. (Avison et al. 2001 ; Baskerville and Wood-Harper 1996 ). For the research part of action research, these guidelines apply as well.

Easterbrook et al. ( 2008 ) also count ethnographic studies among the major research methodologies. We prefer to consider ethnographic studies as a specialized type of case studies with focus on cultural practices (Easterbrook et al. 2008 ) or long duration studies with large amounts of participant-observer data (Klein and Myers 1999 ). Zelkowitz and Wallace define four different “observational methods” in software engineering (Zelkowitz and Wallace 1998 ); project monitoring, case study, assertion and field study . Our guidelines apply to all these, except assertion which is not considered a proper research method. In general, the borderline between the types of study is not always distinct. We prefer to see project monitoring as a part of a case study and field studies as multiple case studies. Robson summarizes his view, which seems functional in software engineering as well: “Many flexible design studies, although not explicitly labeled as such, can be usefully viewed as case studies.” (Robson 2002 ) p 185.

Finally, a case study may contain elements of other research methods, e.g. a survey may be conducted within a case study, literature search often precede a case study and archival analyses may be a part of its data collection. Ethnographic methods, like interviews and observations are mostly used for data collection in case studies.

2.2 Characteristics of Research Methodologies

Different research methodologies serve different purposes; one type of research methodology does not fit all purposes. We distinguish between four types of purposes for research based on Robson’s ( 2002 ) classification:

Exploratory—finding out what is happening, seeking new insights and generating ideas and hypotheses for new research.

Descriptive—portraying a situation or phenomenon.

Explanatory—seeking an explanation of a situation or a problem, mostly but not necessary in the form of a causal relationship. Footnote 1

Improving—trying to improve a certain aspect of the studied phenomenon. Footnote 2

Case study methodology was originally used primarily for exploratory purposes, and some researchers still limit case studies for this purpose, as discussed by Flyvbjerg ( 2007 ). However, it is also used for descriptive purposes, if the generality of the situation or phenomenon is of secondary importance. Case studies may be used for explanatory purposes, e.g. in interrupted time series design (pre- and post-event studies) although the isolation of factors may be a problem. This involves testing of existing theories in confirmatory studies. Finally, as indicated above, case studies in the software engineering discipline often take an improvement approach, similar to action research; see e.g. the QA study (Andersson and Runeson 2007b ).

Klein and Myers define three types of case study depending on the research perspective, positivist, critical and interpretive (Klein and Myers 1999 ). A positivist case study searches evidence for formal propositions, measures variables, tests hypotheses and draws inferences from a sample to a stated population, i.e. is close to the natural science research model (Lee 1989 ) and related to Robson’s explanatory category. A critical case study aims at social critique and at being emancipatory, i.e. identifying different forms of social, cultural and political domination that may hinder human ability. Improving case studies may have a character of being critical. An interpretive case study attempts to understand phenomena through the participants’ interpretation of their context, which is similar to Robson’s exploratory and descriptive types. Software engineering case studies tend to lean towards a positivist perspective, especially for explanatory type studies.

Conducting research on real world issues implies a trade-off between level of control and degree of realism. The realistic situation is often complex and non-deterministic, which hinders the understanding of what is happening, especially for studies with explanatory purposes. On the other hand, increasing the control reduces the degree of realism, sometimes leading to the real influential factors being set outside the scope of the study. Case studies are by definition conducted in real world settings, and thus have a high degree of realism, mostly at the expense of the level of control.

The data collected in an empirical study may be quantitative or qualitative. Quantitative data involves numbers and classes, while qualitative data involves words, descriptions, pictures, diagrams etc. Quantitative data is analyzed using statistics, while qualitative data is analyzed using categorization and sorting. Case studies tend mostly to be based on qualitative data, as these provide a richer and deeper description. However, a combination of qualitative and quantitative data often provides better understanding of the studied phenomenon (Seaman 1999 ), i.e. what is sometimes called “mixed methods” (Robson 2002 ).

The research process may be characterized as fixed or flexible according to Anastas and MacDonald ( 1994 ) and Robson ( 2002 ). In a fixed design process, all parameters are defined at the launch of the study, while in a flexible design process key parameters of the study may be changed during the course of the study. Case studies are typically flexible design studies, while experiments and surveys are fixed design studies. Other literature use the terms quantitative and qualitative design studies, for fixed and flexible design studies respectively. We prefer to adhere to the fixed/flexible terminology since it reduces the risk for confusion that a study with qualitative design may collect both qualitative and quantitative data. Otherwise it may be unclear whether the term qualitative refers to the data or the design of the study,

Triangulation is important to increase the precision of empirical research. Triangulation means taking different angles towards the studied object and thus providing a broader picture. The need for triangulation is obvious when relying primarily on qualitative data, which is broader and richer, but less precise than quantitative data. However, it is relevant also for quantitative data, e.g. to compensate for measurement or modeling errors. Four different types of triangulation may be applied (Stake 1995 ):

Data (source) triangulation—using more than one data source or collecting the same data at different occasions.

Observer triangulation—using more than one observer in the study.

Methodological triangulation—combining different types of data collection methods, e.g. qualitative and quantitative methods.

Theory triangulation—using alternative theories or viewpoints.

Table  1 shows an overview of the primary characteristics of the above discussed research methodologies

Yin adds specifically to the characteristics of a case study that it (Yin 2003 ):

“copes with the technically distinctive situation in which there will be many more variables than data points, and as one result

relies on multiple sources of evidence, with data needing to converge in a triangulating fashion, and as another result

benefits from the prior development of theoretical propositions to guide data collection and analysis.”

Hence, a case study will never provide conclusions with statistical significance. On the contrary, many different kinds of evidence, figures, statements, documents, are linked together to support a strong and relevant conclusion.

Perry et al. define similar criteria for a case study (Perry et al. 2005 ). It is expected that a case study:

“Has research questions set out from the beginning of the study

Data is collected in a planned and consistent manner

Inferences are made from the data to answer the research question

Explores a phenomenon, or produces an explanation, description, or causal analysis of it

Threats to validity are addressed in a systematic way.”

In summary, the key characteristics of a case study are that 1) it is of flexible type, coping with the complex and dynamic characteristics of real world phenomena, like software engineering, 2) its conclusions are based on a clear chain of evidence, whether qualitative or quantitative, collected from multiple sources in a planned and consistent manner, and 3) it adds to existing knowledge by being based on previously established theory, if such exist, or by building theory.

2.3 Why Case Studies in Software Engineering?

Case studies are commonly used in areas like psychology, sociology, political science, social work, business, and community planning (e.g. Yin 2003 ). In these areas case studies are conducted with objectives to increase knowledge about individuals, groups, and organizations, and about social, political, and related phenomena. It is therefore reasonable to compare the area of software engineering to those areas where case study research is common, and to compare the research objectives in software engineering to the objectives of case study research in other areas.

The area of software engineering involves development, operation, and maintenance of software and related artifacts, e.g. (Jedlitschka and Pfahl 2005 ). Research on software engineering is to a large extent aimed at investigating how this development, operation, and maintenance are conducted by software engineers and other stakeholders under different conditions. Software development is carried out by individuals, groups and organizations, and social and political questions are of importance for this development. That is, software engineering is a multidisciplinary area involving areas where case studies normally are conducted. This means that many research questions in software engineering are suitable for case study research.

The definition of case study in Section 2.1 focuses on studying phenomena in their context, especially when the boundary between the phenomenon and its context is unclear. This is particularly true in software engineering. Experimentation in software engineering has clearly shown, e.g. when trying to replicate studies, that there are many factors impacting on the outcome of a software engineering activity (Shull et al. 2002 ). Case studies offer an approach which does not need a strict boundary between the studied object and its environment; perhaps the key to understanding is in the interaction between the two?

2.4 Case Study Research Process

When conducting a case study, there are five major process steps to be walked through:

Case study design: objectives are defined and the case study is planned.

Preparation for data collection: procedures and protocols for data collection are defined.

Collecting evidence: execution with data collection on the studied case.

Analysis of collected data

This process is almost the same for any kind of empirical study; compare e.g. to the processes proposed by Wohlin et al. ( 2000 ) and Kitchenham et al. ( 2002 ). However, as case study methodology is a flexible design strategy, there is a significant amount of iteration over the steps (Andersson and Runeson 2007b ). The data collection and analysis may be conducted incrementally. If insufficient data is collected for the analysis, more data collection may be planned etc. However, there is a limit to the flexibility; the case study should have specific objectives set out from the beginning. If the objectives change, it is a new case study rather than a change to the existing one, though this is a matter of judgment as all other classifications. Eisenhardt adds two steps between 4 and 5 above in her process for building theories from case study research (Eisenhardt 1989 ) a) shaping hypotheses and b) enfolding literature, while the rest except for terminological variations are the same as above.

2.5 Definitions

In this paper, we use the following terminology. The overall objective is a statement of what is expected to be achieved in the case study. Others may use goals, aims or purposes as synonyms or hyponyms for objective. The objective is refined into a set of research questions , which are to be answered through the case study analysis. A case may be based on a software engineering theory . It is beyond the scope of this article to discuss in detail what is meant by a theory. However, Sjøberg et al., describe a framework for theories including constructs of interest, relations between constructs, explanations to the relations, and scope of the theory (Sjøberg et al. 2008 ). With this way of describing theories, software engineering theories include at least one construct from software engineering. A research question may be related to a hypothesis (sometimes called a proposition (Yin 2003 )), i.e. a supposed explanation for an aspect of the phenomenon under study. Hypotheses may alternatively be generated from the case study for further research. The case is referred to as the object of the study (e.g. a project), and it contains one or more units of analysis (e.g. subprojects). Data is collected from the subjects of the study, i.e. those providing the information. Data may be quantitative (numbers, measurements) or qualitative (words, descriptions). A case study protocol defines the detailed procedures for collection and analysis of the raw data, sometimes called field procedures .

The guidelines for conducting case studies presented below are organized according to this process. Section 3 is about setting up goals for the case study and preparing for data collection, Section 4 discusses collection of data, Section 5 discusses data analysis and Section 6 provides some guidelines for reporting.

3 Case Study Design and Planning

3.1 defining a case.

Case study research is of flexible type, as mentioned before. This does not mean planning is unnecessary. On the contrary, good planning for a case study is crucial for its success. There are several issues that need to be planned, such as what methods to use for data collection, what departments of an organization to visit, what documents to read, which persons to interview, how often interviews should be conducted, etc. These plans can be formulated in a case study protocol, see Section 3.2 .

A plan for a case study should at least contain the following elements (Robson 2002 ):

Objective—what to achieve?

The case—what is studied?

Theory—frame of reference

Research questions—what to know?

Methods—how to collect data?

Selection strategy—where to seek data?

The objective of the study may be, for example, exploratory, descriptive, explanatory, or improving. The objective is naturally more generally formulated and less precise than in fixed research designs. The objective is initially more like a focus point which evolves during the study. The research questions state what is needed to know in order to fulfill the objective of the study. Similar to the objective, the research questions evolve during the study and are narrowed to specific research questions during the study iterations (Andersson and Runeson 2007b ).

The case may in general be virtually anything which is a “contemporary phenomenon in its real-life context” (Yin 2003 ). In software engineering, the case may be a software development project, which is the most straightforward choice. It may alternatively be an individual, a group of people, a process, a product, a policy, a role in the organization, an event, a technology, etc. The project, individual, group etc. may also constitute a unit of analysis within a case. In the information systems field, the case may be “individuals, groups…or an entire organization. Alternatively, the unit of analysis may be a specific project or decision”(Benbasat et al. 1987 ). Studies on “toy programs” or similarly are of course excluded due to its lack of real-life context. Yin ( 2003 ) distinguishes between holistic case studies , where the case is studied as a whole, and embedded case studies where multiple units of analysis are studied within a case, see Fig.  1 . Whether to define a study consisting of two cases as holistic or embedded depends on what we define as the context and research goals. In our XP example, two projects are studied in two different companies in two different application domains, both using agile practices (Karlström and Runeson 2006 ). The projects may be considered two units of analysis in an embedded case study if the context is software companies in general and the research goal is to study agile practices. On the contrary, if the context is considered being the specific company or application domain, they have to be seen as two separate holistic cases. Benbasat et al. comment on a specific case study, “Even though this study appeared to be a single-case, embedded unit analysis, it could be considered a multiple-case design, due to the centralized nature of the sites.” (Benbasat et al. 1987 ).

Holistic case study ( left ) and embedded case study ( right )

Using theories to develop the research direction is not well established in the software engineering field, as concluded in a systematic review on the topic (Hannay et al. 2007 ; Shull and Feldman 2008 ). However, defining the frame of reference of the study makes the context of the case study research clear, and helps both those conducting the research and those reviewing the results of it. As theories are underdeveloped in software engineering, the frame of reference may alternatively be expressed in terms of the viewpoint taken in the research and the background of the researchers. Grounded theory case studies naturally have no specified theory (Corbin and Strauss 2008 ).

The principal decisions on methods for data collection are defined at design time for the case study, although detailed decisions on data collection procedures are taken later. Lethbridge et al. ( 2005 ) define three categories of methods: direct (e.g. interviews), indirect (e.g. tool instrumentation) and independent (e.g. documentation analysis). These are further elaborated in Section 4 .

In case studies, the case and the units of analysis should be selected intentionally. This is in contrast to surveys and experiments, where subjects are sampled from a population to which the results are intended to be generalized. The purpose of the selection may be to study a case that is expected to be “typical”, “critical”, “revelatory” or “unique” in some respect (Benbasat et al. 1987 ), and the case is selected accordingly. Flyvbjerg defines four variants of information-oriented case study selections: “extreme/deviant”, “maximum variation”, “critical” and “paradigmatic” (Flyvbjerg 2007 ). In a comparative case study, the units of analysis must be selected to have the variation in properties that the study intends to compare. However, in practice, many cases are selected based on availability (Benbasat et al. 1987 ) as is the case for many experiments (Sjøberg et al. 2005 ).

Case selection is particularly important when replicating case studies. A case study may be literally replicated , i.e. the case is selected to predict similar results, or it is theoretically replicated , i.e. the case is selected to predict contrasting results for predictable reasons (Yin 2003 ).

3.2 Case Study Protocol

The case study protocol is a container for the design decisions on the case study as well as field procedures for its carrying through. The protocol is a continuously changed document that is updated when the plans for the case study are changed.

There are several reasons for keeping an updated version of a case study protocol. Firstly, it serves as a guide when conducting the data collection, and in that way prevents the researcher from missing to collect data that were planned to be collected. Secondly, the processes of formulating the protocol makes the research concrete in the planning phase, which may help the researcher to decide what data sources to use and what questions to ask. Thirdly, other researchers and relevant people may review it in order to give feedback on the plans. Feedback on the protocol from other researchers can, for example, lower the risk of missing relevant data sources, interview questions or roles to include in the research and to assure the relation between research questions and interview questions. Finally, it can serve as a log or diary where all conducted data collection and analysis is recorded together with change decisions based on the flexible nature of the research. This can be an important source of information when the case study later on is reported. In order to keep track of changes during the research project, the protocol should be kept under some form of version control.

Pervan and Maimbo propose an outline of a case study protocol, which is summarized in Table  2 . As the proposal shows, the protocol is quite detailed to support a well structured research approach.

)

#

3.3 Ethical Considerations

At design time of a case study, ethical considerations must be made (Singer and Vinson 2002 ). Even though a research study first and foremost is built on trust between the researcher and the case (Amschler Andrews and Pradhan 2001 ), explicit measures must be taken to prevent problems. In software engineering, case studies often include dealing with confidential information in an organization. If it is not clear from the beginning how this kind of information is handled and who is responsible for accepting what information to publish, there may be problems later on. Key ethical factors include:

Informed consent

Review board approval

Confidentiality

Handling of sensitive results

Inducements

Subjects and organizations must explicitly agree to participate in the case study, i.e. give informed consent. In some countries, this is even legally required. It may be tempting for the researcher to collect data e.g. through indirect or independent data collection methods, without asking for consent. However, the ethical standards must be maintained for the long term trust in software engineering research.

Legislation of research ethics differs between countries and continents. In many countries it is mandatory to have the study proposal reviewed and accepted with respect to ethical issues (Seaman 1999 ) by a review board or a similar function at a university. In other countries, there are no such rules. Even if there are no such rules, it is recommended that the case study protocol is reviewed by colleagues to help avoiding pitfalls.

Consent agreements are preferably handled through a form or contract between the researchers and the individual participant, see e.g. Robson ( 2002 ) for an example. In an empirical study conduced by the authors of this paper, the following information were included in this kind of form:

Names of researchers and contact information.

Purpose of empirical study.

Procedures used in the empirical study, i.e. a short description of what the participant should do during the study and what steps the researcher will carry out during these activities.

A text clearly stating that the participation is voluntary, and that collected data will be anonymous.

A list of known risks.

A list of benefits for the participants, in this case for example experience from using a new technique and feedback effectiveness.

A description of how confidentiality will be assured. This includes a description of how collected material will be coded and identified in the study.

Information about approvals from review board.

Date and signatures from participant and researchers.

If the researchers intend to use the data for other, not yet defined purposes, this should be signed separately to allow participants to choose if their contribution is for the current study only, or for possible future studies.

Issues on confidentiality and publication should also be regulated in a contract between the researcher and the studied organization. However, not only can information be sensitive when leaking outside a company. Data collected from and opinions stated by individual employees may be sensitive if presented e.g. to their managers (Singer and Vinson 2002 ). The researchers must have the right to keep their integrity and adhere to agreed procedures in this kind of cases. Companies may not know academic practices for publication and dissemination, and must hence be explicitly informed about those. From a publication point of view, the relevant data to publish is rarely sensitive to the company since data may be made anonymous. However, it is important to remember that it is not always sufficient to remove names of companies or individuals. They may be identified by their characteristics if they are selected from a small set of people or companies.

Results may be sensitive to a company, e.g. by revealing deficiencies in their software engineering practices, or if their product comes out last in a comparison (Amschler Andrews and Pradhan 2001 ). The chance that this may occur must be discussed upfront and made clear to the participants of the case study. In case violations of the law are identified during the case study, these must be reported, even though “whistle-blowers” rarely are rewarded.

The inducements for individuals and organizations to participate in a case study vary, but there are always some kinds of incentives, tangible or intangible. It is preferable to make the inducements explicit, i.e. specify what the incentives are for the participants. Thereby the inducement’s role in threatening the validity of the study may also be analyzed.

Giving feedback to the participants of a study is critical for the long term trust and for the validity of the research. Firstly, transcript of interviews and observations should be sent back to the participants to enable correction of raw data. Secondly, analyses should be presented to them in order to maintain their trust in the research. Participants must not necessarily agree in the outcome of the analysis, but feeding back the analysis results increases the validity of the study.

) Fig.  )

3.4 Checklist

The checklist items for case study design are shown in Table  3 .

4 Collecting Data

4.1 different data sources.

There are several different sources of information that can be used in a case study. It is important to use several data sources in a case study in order to limit the effects of one interpretation of one single data source. If the same conclusion can be drawn from several sources of information, i.e. triangulation (Section 2.2 ), this conclusion is stronger than a conclusion based a single source. In a case study it is also important to take into account viewpoints of different roles, and to investigate differences, for example, between different projects and products. Commonly, conclusions are drawn by analyzing differences between data sources.

According to Lethbridge et al. ( 2005 ) data collection techniques can be divided into three levels:

First degree: Direct methods means that the researcher is in direct contact with the subjects and collect data in real time. This is the case with, for example interviews, focus groups, Delphi surveys (Dalkey and Helmer 1963 ), and observations with “think aloud protocols”.

Second degree: Indirect methods where the researcher directly collects raw data without actually interacting with the subjects during the data collection. This approach is, for example taken in Software Project Telemetry (Johnson et al. 2005 ) where the usage of software engineering tools is automatically monitored, and observed through video recording.

Third degree: Independent analysis of work artifacts where already available and sometimes compiled data is used. This is for example the case when documents such as requirements specifications and failure reports from an organization are analyzed or when data from organizational databases such as time accounting is analyzed.

First degree methods are mostly more expensive to apply than second or third degree methods, since they require significant effort both from the researcher and the subjects. An advantage of first and second degree methods is that the researcher can to a large extent exactly control what data is collected, how it is collected, in what form the data is collected, which the context is etc. Third degree methods are mostly less expensive, but they do not offer the same control to the researcher; hence the quality of the data is not under control either, neither regarding the original data quality nor its use for the case study purpose. In many cases the researcher must, to some extent, base the details of the data collection on what data is available. For third degree methods it should also be noticed that the data has been collected and recorded for another purpose than that of the research study, contrary to general metrics guidelines (van Solingen and Berghout 1999 ). It is not certain that requirements on data validity and completeness were the same when the data was collected as they are in the research study.

In Sections 4.2 – 4.5 we discuss specific data collection methods, where we have found interviews, observations, archival data and metrics being applicable to software engineering case studies (Benbasat et al. 1987 ; Yin 2003 ).

4.2 Interviews

Data collection through interviews is important in case studies. In interview-based data collection, the researcher asks a series of questions to a set of subjects about the areas of interest in the case study. In most cases one interview is conducted with every single subject, but it is possible to conduct group-interviews. The dialogue between the researcher and the subject(s) is guided by a set of interview questions.

The interview questions are based on the topic of interest in the case study. That is, the interview questions are based on the formulated research questions (but they are of course not formulated in the same way). Questions can be open , i.e. allowing and inviting a broad range of answers and issues from the interviewed subject, or closed offering a limited set of alternative answers.

Interviews can, for example, be divided into unstructured , semi-structured and fully structured interviews (Robson 2002 ). In an unstructured interview, the interview questions are formulated as general concerns and interests from the researcher. In this case the interview conversation will develop based on the interest of the subject and the researcher. In a fully structured interview all questions are planned in advance and all questions are asked in the same order as in the plan. In many ways, a fully structured interview is similar to a questionnaire-based survey. In a semi-structured interview, questions are planned, but they are not necessarily asked in the same order as they are listed. The development of the conversation in the interview can decide which order the different questions are handled, and the researcher can use the list of questions to be certain that all questions are handled. Additionally, semi-structured interviews allow for improvisation and exploration of the studied objects. Semi-structured interviews are common in case studies. The different types of interviews are summarized in Table  4 .

An interview session may be divided into a number of phases. First the researcher presents the objectives of the interview and the case study, and explains how the data from the interview will be used. Then a set of introductory questions are asked about the background etc. of the subject, which are relatively simple to answer. After the introduction comes the main interview questions, which take up the largest part of the interview. If the interview contains personal and maybe sensitive questions, e.g. concerning economy, opinions about colleagues, why things went wrong, or questions related to the interviewees own competence (Hove and Anda 2005 ), special care must be taken. In this situation it is important that the interviewee is ensured confidentiality and that the interviewee trusts the interviewer. It is not recommended to start the interview with these questions or to introduce them before a climate of trust has been obtained. It is recommended that the major findings are summarized by the researcher towards the end of the interview, in order to get feedback and avoid misunderstandings.

Interview sessions can be structured according to three general principles, as outlined in Fig.  2 (Caroline Seaman, personal communication). The funnel model begins with open questions and moves towards more specific ones. The pyramid model begins with specific ones, and opens the questions during the course of the interview. The time-glass model begins with open questions, straightens the structure in the middle and opens up again towards the end of the interview.

General principles for interview sessions. a funnel, b pyramid, and c time-glass

During the interview sessions it is recommended to record the discussion in a suitable audio or video format. Even if notes are taken, it is in many cases hard to record all details, and it is impossible to know what is important to record during the interview. Possibly a dedicated and trained scribe may capture sufficient detail in real-time, but the recording should at least be done as a backup (Hove and Anda 2005 ). When the interview has been recorded it needs to be transcribed into text before it is analyzed. This is a time consuming task, but in many cases new insights are made during the transcription, and it is therefore not recommended that this task is conducted by anyone else than the researcher. In some cases it may be advantageous to have the transcripts reviewed by the interview subject. In this way questions about what was actually said can be sorted out, and the interview subject has the chance to point out if she does not agree with the interpretation of what was said or if she simply has changed her mind and wants to rephrase any part of the answers.

During the planning phase of an interview study it is decided whom to interview. Due to the qualitative nature of the case study it is recommended to select subjects based on differences instead of trying to replicate similarities, as discussed in Section 3.1 . This means that it is good to try to involve different roles, personalities, etc in the interview. The number of interviewees has to be decided during the study. One criterion for when sufficient interviews are conducted is “saturation”, i.e. when no new information or viewpoint is gained from new subjects (Corbin and Strauss 2008 ).

) “ ”.

4.3 Observations

Observations can be conducted in order to investigate how a certain task is conducted by software engineers. This is a first or second degree method according to the classification in Section 4.1 . There are many different approaches for observation. One approach is to monitor a group of software engineers with a video recorder and later on analyze the recording, for example through protocol analysis (Owen et al. 2006 ; von Mayrhauser and Vans 1996 ). Another alternative is to apply a “think aloud” protocol, where the researcher are repeatedly asking questions like “What is your strategy?” and “What are you thinking?” to remind the subjects to think aloud. This can be combined with recording of audio and keystrokes as proposed e.g. by Wallace et al. ( 2002 ). Observations in meetings is another type, where meeting attendants interact with each other, and thus generate information about the studied object. An alternative approach is presented by Karahasanović et al. ( 2005 ) where a tool for sampling is used to obtain data and feedback from the participants.

Approaches for observations can be divided into high or low interaction of the researcher and high or low awareness of the subjects of being observed, see Table  5 .

Observations according to case 1 or case 2 are typically conducted in action research or classical ethnographic studies where the researcher is part of the team, and not only seen as a researcher by the other team members. The difference between case 1 and case 2 is that in case 1 the researcher is seen as an “observing participant” by the other subjects, while she is more seen as a “normal participant” in case 2. In case 3 the researcher is seen only as a researcher. The approaches for observation typically include observations with first degree data collection techniques, such as a “think aloud” protocol as described above. In case 4 the subjects are typically observed with a second degree technique such as video recording (sometimes called video ethnography).

An advantage of observations is that they may provide a deep understanding of the phenomenon that is studied. Further, it is particularly relevant to use observations, where it is suspected that there is a deviation between an “official” view of matters and the “real” case (Robinson et al. 2007 ). It should however be noted that it produces a substantial amount of data which makes the analysis time consuming.

)

4.4 Archival Data

Archival data refers to, for example, meeting minutes, documents from different development phases, organizational charts, financial records, and previously collected measurements in an organization. Benbasat et al. ( 1987 ) and Yin ( 2003 ) distinguish between documentation and archival records, while we treat them together and see the borderline rather between qualitative data (minutes, documents, charts) and quantitative data (records, metrics), the latter discussed in Section 4.5 .

Archival data is a third degree type of data that can be collected in a case study. For this type of data a configuration management tool is an important source, since it enables the collection of a number of different documents and different versions of documents. As for other third degree data sources it is important to keep in mind that the documents were not originally developed with the intention to provide data to research in a case study. A document may, for example, include parts that are mandatory according to an organizational template but of lower interest for the project, which may affect the quality of that part. It should also be noted that it is possible that some information that is needed by the researcher may be missing, which means that archival data analysis must be combined with other data collection techniques, e.g. surveys, in order to obtain missing historical factual data (Flynn et al. 1990 ). It is of course hard for the researcher to assess the quality of the data, although some information can be obtained by investigating the purpose of the original data collection, and by interviewing relevant people in the organization.

4.5 Metrics

The above mentioned data collection techniques are mostly focused on qualitative data. However, quantitative data is also important in a case study. Software measurement is the process of representing software entities, like processes, products, and resources, in quantitative numbers (Fenton and Pfleeger 1996 ).

Collected data can either be defined and collected for the purpose of the case study, or already available data can be used in a case study. The first case gives, of course, most flexibility and the data that is most suitable for the research questions under investigation.

The definition of what data to collect should be based on a goal-oriented measurement technique, such as the Goal Question Metric method (GQM) (Basili and Weiss 1984 ; van Solingen and Berghout 1999 ). In GQM, goals are first formulated, and the questions are refined based on these goals, and after that metrics are derived based on the questions. This means that metrics are derived based on goals that are formulated for the measurement activity, and thus that relevant metrics are collected. It also implies that the researcher can control the quality of the collected data and that no unnecessary data is collected.

Examples of already available data are effort data from older projects, sales figures of products, metrics of product quality in terms of failures etc. This kind of data may, for example, be available in a metrics database in an organization. When this kind of data is used it should be noticed that all the problems are apparent that otherwise are solved with a goal oriented measurement approach. The researcher can neither control nor assess the quality of the data, since it was collected for another purpose, and as for other forms of archival analysis there is a risk of missing important data.

4.6 Checklists

The checklist items for preparation and conduct of data collection are shown in Tables  6 and 7 , respectively.

5 Data Analysis

5.1 quantitative data analysis.

Data analysis is conducted differently for quantitative and qualitative data. For quantitative data, the analysis typically includes analysis of descriptive statistics, correlation analysis, development of predictive models, and hypothesis testing. All of these activities are relevant in case study research.

Descriptive statistics, such as mean values, standard deviations, histograms and scatter plots, are used to get an understanding of the data that has been collected. Correlation analysis and development of predictive models are conducted in order to describe how a measurement from a later process activity is related to an earlier process measurement. Hypothesis testing is conducted in order to determine if there is a significant effect of one or several variables (independent variables) on one or several other variables (dependent variables).

It should be noticed that methods for quantitative analysis assume a fixed research design. For example, if a question with a quantitative answer is changed halfway in a series of interviews, this makes it impossible to interpret the mean value of the answers. Further, quantitative data sets from single cases tend to be very small, due to the number of respondents or measurement points, which causes special concerns in the analysis.

Quantitative analysis is not covered any further in this paper, since it is extensively covered in other texts. The rest of this chapter covers qualitative analysis. For more information about quantitative analysis, refer for example to (Wohlin et al. 2000 ; Wohlin and Höst 2001 ; Kitchenham et al. 2002 ).

5.2 Qualitative Data Analysis

Since case study research is a flexible research method, qualitative data analysis methods (Seaman 1999 ) are commonly used. The basic objective of the analysis is to derive conclusions from the data, keeping a clear chain of evidence. The chain of evidence means that a reader should be able to follow the derivation of results and conclusions from the collected data (Yin 2003 ). This means that sufficient information from each step of the study and every decision taken by the researcher must be presented.

In addition to the need to keep a clear chain of evidence in mind, analysis of qualitative research is characterized by having analysis carried out in parallel with the data collection and the need for systematic analysis techniques. Analysis must be carried out in parallel with the data collection since the approach is flexible and that new insights are found during the analysis. In order to investigate these insights, new data must often be collected, and instrumentation such as interview questionnaires must be updated. The need to be systematic is a direct result of that the data collection techniques can be constantly updated, while the same time being required to maintain a chain of evidence.

In order to reduce bias by individual researchers, the analysis benefits from being conducted by multiple researchers. The preliminary results from each individual researcher is merged into a common analysis result in a second step. Keeping track and reporting the cooperation scheme helps increasing the validity of the study.

5.2.1 General Techniques for Analysis

There are two different parts of data analysis of qualitative data, hypothesis generating techniques and hypothesis confirmation techniques (Seaman 1999 ), which can be used for exploratory and explanatory case studies, respectively.

Hypothesis generation is intended to find hypotheses from the data. When using these kinds of techniques, there should not be too many hypotheses defined before the analysis is conducted. Instead the researcher should try to be unbiased and open for whatever hypotheses are to be found in the data. The results of these techniques are the hypotheses as such. Examples of hypotheses generating techniques are “constant comparisons” and “cross-case analysis” (Seaman 1999 ). Hypothesis confirmation techniques denote techniques that can be used to confirm that a hypothesis is really true, e.g. through analysis of more data. Triangulation and replication are examples of approaches for hypothesis confirmation (Seaman 1999 ). Negative case analysis tries to find alternative explanations that reject the hypotheses. These basic types of techniques are used iteratively and in combination. First hypotheses are generated and then they are confirmed. Hypothesis generation may take place within one cycle of a case study, or with data from one unit of analysis, and hypothesis confirmation may be done with data from another cycle or unit of analysis (Andersson and Runeson 2007b ).

This means that analysis of qualitative data is conducted in a series of steps (based on (Robson 2002 ), p. 459). First the data is coded, which means that parts of the text can be given a code representing a certain theme, area, construct, etc. One code is usually assigned to many pieces of text, and one piece of text can be assigned more than one code. Codes can form a hierarchy of codes and sub-codes. The coded material can be combined with comments and reflections by the researcher (i.e. “memos”). When this has been done, the researcher can go through the material to identify a first set of hypotheses. This can, for example, be phrases that are similar in different parts of the material, patterns in the data, differences between sub-groups of subjects, etc. The identified hypotheses can then be used when further data collection is conducted in the field, i.e. resulting in an iterative approach where data collection and analysis is conducted in parallel as described above. During the iterative process a small set of generalizations can be formulated, eventually resulting in a formalized body of knowledge, which is the final result of the research attempt. This is, of course, not a simple sequence of steps. Instead, they are executed iteratively and they affect each other.

The activity where hypotheses are identified requires some more information. This is in no way a simple step that can be carried out by following a detailed, mechanical, approach. Instead it requires ability to generalize, innovative thinking, etc. from the researcher. This can be compared to quantitative analysis, where the majority of the innovative and analytical work of the researcher is in the planning phase (i.e. deciding design, statistical tests, etc). There is, of course, also a need for innovative work in the analysis of quantitative data, but it is not as clear as in the planning phase. In qualitative analysis there are major needs for innovative and analytical work in both phases.

One example of a useful technique for analysis is tabulation, where the coded data is arranged in tables, which makes it possible to get an overview of the data. The data can, for example be organized in a table where the rows represent codes of interest and the columns represent interview subjects. However, how to do this must be decided for every case study.

There are specialized software tools available to support qualitative data analysis, e.g. NVivo and Atlas. However, in some cases standard tools such as word processors and spreadsheet tools are useful when managing the textual data.

)

5.2.2 Level of Formalism

A structured approach is, as described above, important in qualitative analysis. This means, for example, in all cases that a pre-planned approach for analysis must be applied, all decisions taken by the researcher must be recorded, all versions of instrumentation must be kept, links between data, codes, and memos must be explicitly recorded in documentation, etc. However, the analysis can be conducted at different levels of formalism. In (Robson 2002 ) the following approaches are mentioned:

Immersion approaches: These are the least structured approaches, with very low level of structure, more reliant on intuition and interpretive skills of the researcher. These approaches may be hard to combine with requirements on keeping and communicating a chain of evidence.

Editing approaches: These approaches include few a priori codes, i.e. codes are defined based on findings of the researcher during the analysis.

Template approaches: These approaches are more formal and include more a priori based on research questions.

Quasi-statistical approaches: These approaches are much formalized and include, for example, calculation of frequencies of words and phrases.

To our experience editing approaches and template approaches are most suitable in software engineering case studies. It is hard to present and obtain a clear chain of evidence in informal immersion approaches. It is also hard to interpret the result of, for example, frequencies of words in documents and interviews.

Section

5.2.3 Validity

The validity of a study denotes the trustworthiness of the results, to what extent the results are true and not biased by the researchers’ subjective point of view. It is, of course, too late to consider the validity during the analysis. The validity must be addressed during all previous phases of the case study. However, the validity is discussed in this section, since it cannot be finally evaluated until the analysis phase.

There are different ways to classify aspects of validity and threats to validity in the literature. Here we chose a classification scheme which is also used by Yin ( 2003 ) and similar to what is usually used in controlled experiments in software engineering (Wohlin et al. 2000 ). Some researchers have argued for having a different classification scheme for flexible design studies (credibility, transferability, dependability, confirmability), while we prefer to operationalize this scheme for flexible design studies, instead of changing the terms (Robson 2002 ). This scheme distinguishes between four aspects of the validity, which can be summarized as follows:

Construct validity: This aspect of validity reflect to what extent the operational measures that are studied really represent what the researcher have in mind and what is investigated according to the research questions. If, for example, the constructs discussed in the interview questions are not interpreted in the same way by the researcher and the interviewed persons, there is a threat to the construct validity.

Internal validity: This aspect of validity is of concern when causal relations are examined. When the researcher is investigating whether one factor affects an investigated factor there is a risk that the investigated factor is also affected by a third factor. If the researcher is not aware of the third factor and/or does not know to what extent it affects the investigated factor, there is a threat to the internal validity.

External validity: This aspect of validity is concerned with to what extent it is possible to generalize the findings, and to what extent the findings are of interest to other people outside the investigated case. During analysis of external validity, the researcher tries to analyze to what extent the findings are of relevance for other cases. There is no population from which a statistically representative sample has been drawn. However, for case studies, the intention is to enable analytical generalization where the results are extended to cases which have common characteristics and hence for which the findings are relevant, i.e. defining a theory.

Reliability: This aspect is concerned with to what extent the data and the analysis are dependent on the specific researchers. Hypothetically, if another researcher later on conducted the same study, the result should be the same. Threats to this aspect of validity is, for example, if it is not clear how to code collected data or if questionnaires or interview questions are unclear.

It is, as described above, important to consider the validity of the case study from the beginning. Examples of ways to improve validity are triangulation, developing and maintaining a detailed case study protocol, having designs, protocols, etc. reviewed by peer researchers, having collected data and obtained results reviewed by case subjects, spending sufficient time with the case, and giving sufficient concern to analysis of “negative cases”, i.e. looking for theories that contradict your findings.

( ).

5.3 Checklist

The checklist items for analysis of collected data are shown in Table  8 .

6 Reporting

An empirical study cannot be distinguished from its reporting. The report communicates the findings of the study, but is also the main source of information for judging the quality of the study. Reports may have different audiences, such as peer researchers, policy makers, research sponsors, and industry practitioners (Yin 2003 ). This may lead to the need of writing different reports for difference audiences. Here, we focus on reports with peer researchers as main audience, i.e. journal or conference articles and possibly accompanying technical reports. Benbasat et al. propose that due to the extensive amount of data generated in case studies, “books or monographs might be better vehicles to publish case study research” (Benbasat et al. 1987 ).

Guidelines for reporting experiments have been proposed by Jedlitschka and Pfahl ( 2005 ) and evaluated by Kitchenham et al. ( 2008 ). Their work aims at defining a standardized reporting of experiments that enables cross-study comparisons through e.g. systematic reviews. For case studies, the same high-level structure may be used, but since they are more flexible and mostly based on qualitative data, the low-level detail is less standardized and more depending on the individual case. Below, we first discuss the characteristics of a case study report and then a proposed structure.

6.1 Characteristics

Robson defines a set of characteristics which a case study report should have (Robson 2002 ), which in summary implies that it should:

tell what the study was about

communicate a clear sense of the studied case

provide a “history of the inquiry” so the reader can see what was done, by whom and how.

provide basic data in focused form, so the reader can make sure that the conclusions are reasonable

articulate the researcher’s conclusions and set them into a context they affect.

In addition, this must take place under the balance between researcher’s duty and goal to publish their results, and the companies’ and individuals’ integrity (Amschler Andrews and Pradhan 2001 ).

Reporting the case study objectives and research questions is quite straightforward. If they are changed substantially over the course of the study, this should be reported to help understanding the case.

Describing the case might be more sensitive, since this might enable identification of the case or its subjects. For example, “a large telecommunications company in Sweden” is most probably a branch of the Ericsson Corporation. However, the case may be better characterized by other means than application domain and country. Internal characteristics, like size of the studied unit, average age of the personnel, etc may be more interesting than external characteristics like domain and turnover. Either the case constitutes a small subunit of a large corporation, and then it can hardly be identified among the many subunits, or it is a small company and hence it is hard to identify it among many candidates. Still, care must be taken to find this balance.

Providing a “history of the inquiry” requires a level of substantially more detail than pure reporting of used methodologies, e.g. “we launched a case study using semi-structured interviews”. Since the validity of the study is highly related to what is done, by whom and how, it must be reported about the sequence of actions and roles acting in the study process. On the other hand, there is no room for every single detail of the case study conduct, and hence a balance must be found.

Data is collected in abundance in a qualitative study, and the analysis has as its main focus to reduce and organize data to provide a chain of evidence for the conclusions. However, to establish trust in the study, the reader needs relevant snapshots from the data that support the conclusions. These snapshots may be in the form of e.g. citations (typical or special statements), pictures, or narratives with anonymized subjects. Further, categories used in the data classification, leading to certain conclusions may help the reader follow the chain of evidence.

Finally, the conclusions must be reported and set into a context of implications, e.g. by forming theories. A case study can not be generalized in the meaning of being representative of a population, but this is not the only way of achieving and transferring knowledge. Conclusions can be drawn without statistics, and they may be interpreted and related to other cases. Communicating research results in terms of theories is an underdeveloped practice in software engineering (Hannay et al. 2007 ).

6.2 Structure

Yin proposes several alternative structures for reporting case studies in general (Yin 2003 ).

Linear-analytic—the standard research report structure (problem, related work, methods, analysis, conclusions)

Comparative—the same case is repeated twice or more to compare alternative descriptions, explanations or points of view.

Chronological—a structure most suitable for longitudinal studies.

Theory-building—presents the case according to some theory-building logic in order to constitute a chain of evidence for a theory.

Suspense—reverts the linear-analytic structure and reports conclusions first and then backs them up with evidence.

Unsequenced—with none of the above, e.g. when reporting general characteristics of a set of cases.

For the academic reporting of case studies which we focus on, the linear-analytic structure is the most accepted structure. The high level structure for reporting experiments in software engineering proposed by Jedlitschka and Pfahl ( 2005 ) therefore also fits the purpose of case study reporting. However, some changes are needed, based on specific characteristics of case studies and other issues based on an evaluation conducted by Kitchenham et al. ( 2008 ). The resulting structure is presented in Table  9 . The differences and our considerations are presented below.

In a case study, the theory may constitute a framework for the analysis; hence, there are two kinds of related work: a) earlier studies on the topic and b) theories on which the current study is based.

The design section corresponds to the case study protocol, i.e. it reports the planning of the case study including the measures taken to ensure the validity of the study.

Since the case study is of flexible design, and data collection and analysis are more intertwined, these sections may be combined into one. Consequently, the contents at the lower level must be adjusted, as proposed in Table  9 . Specifically for the combined data section, the coding scheme often constitutes a natural subsection structure. Alternatively, for a comparative case study, the data section may be structured according to the compared cases, and for a longitudinal study, the time scale may constitute the structure of the data section. This combined results section also includes an evaluation of the validity of the final results.

) ) ).

6.3 Checklist

The checklist items for reporting are shown in Table  10 .

7 Reading and Reviewing Case Study Research

7.1 reader’s perspective.

The reader of a case study report—independently of whether the intention is to use the findings or to review it for inclusion in a journal—must judge the quality of the study based on the written material. Case study reports tend to be large, firstly since case studies often are based on qualitative data, and hence the data cannot be presented in condensed form, like quantitative data may be in tables, diagrams and statistics. Secondly, the conclusions in qualitative analyses are not based on statistical significance which can be interpreted in terms of a probability for erroneous conclusion, but on reasoning and linking of observations to conclusions.

Reviewing empirical research in general must be done with certain care (Tichy 2000 ). Reading case study reports requires judging the quality of the report, without having the power of strict criteria which govern experimental studies to a larger extent, e.g. statistical confidence levels. This does however not say that any report can do as a case study report. The reader must have a decent chance of finding the information of relevance, both to judge the quality of the case study and to get the findings from the study and set them into practice or build further research on.

The criteria and guidance presented above for performing and reporting case studies are relevant for the reader as well. However, in our work with derivation of checklists for case study research (Höst and Runeson 2007 ), evaluation feedback identified a need for a more condensed checklist for readers and reviewers. This is presented in Table  11 with numbers referring to the items of the other checklists for more in depth criteria.

Case study research is conducted in order to investigate contemporary phenomena in their natural context. That is, no laboratory environment is set up by the researcher, where factors can be controlled. Instead the phenomena are studied in their normal context, allowing the researcher to understand how the phenomena interact with the context. Selection of subjects and objects is not based on statistically representative samples. Instead, research findings are obtained through the analysis in depth of typical or special cases.

Cases study research is conducted by iteration over a set of phases. In the design phase objectives are decided and the case is defined. Data collection is first planned with respect to data collection techniques and data sources, and then conducted in practice. Methods for data collection include, for example, interviews, observation, and usage of archival data. During the analysis phase, insights are both generated and analyzed, e.g. through coding of data and looking for patterns. During the analysis it is important to maintain a chain of evidence from the findings to the original data. The report should include sufficient data and examples to allow the reader to understand the chain of evidence.

This paper aims to provide a frame of reference for researchers when conducting case study research in software engineering, which is based on an analysis of existing case study literature and the author’s own experiences of conducting case studies. As with other guidelines, there is a need to evaluate them through practical usage.

Easterbrook et al. distinguish between exploratory and confirmatory case studies. We interpret Robson’s explanatory category being closely related to Easterbrook’s confirmatory category.

Robson denotes this category “emancipatory” in the social science context, while improvement is our adaptation to an engineering context.

Amschler Andrews A, Pradhan AS (2001) Ethical issues in empirical software engineering: the limits of policy. Empir Softw Eng 6(2):105–110 doi: 10.1023/A:1011442319273

Article   MATH   Google Scholar  

Anastas JW, MacDonald ML (1994) Research design for the social work and the human services. New York, Lexington

Google Scholar  

Andersson C, Runeson P (2007a) A replicated quantitative analysis of fault distribution in complex software systems. IEEE Trans Softw Eng 33(5):273–286 doi: 10.1109/TSE.2007.1005

Article   Google Scholar  

Andersson C, Runeson P (2007b) A spiral process model for case studies on software quality monitoring—method and metrics. Softw Process Improv Pract 12(2):125–140 doi: 10.1002/spip.311

Avison D, Baskerville R, Myers M (2001) Controlling action research projects. Inf Technol People 14(1):28–45 doi: 10.1108/09593840110384762

Basili VR, Weiss DM (1984) A methodology for collecting valid software engineering data. IEEE Trans Softw Eng SE10(6):728–739

Basili VR, Selby RW, Hutchens DH (1986) Experimentation in Software Engineering. IEEE Trans Softw Eng SE12(7):733–744

Baskerville RL, Wood-Harper AT (1996) A critical perspective on action research as method for information systems research. J Inf Technol 11:235–246 doi: 10.1080/026839696345289

Benbasat I, Goldstein DK, Mead M (1987) The case research strategy in studies of information systems. MIS Q 11(3):369–386 doi: 10.2307/248684

Corbin J, Strauss C (2008) Basics of qualitative research, 3rd edn. Sage

Dalkey N, Helmer O (1963) An experimental application of the delphi method to the use of experts. Manage Sci 9(3):458–467

Dittrich Y (ed) (2007) Special issue on qualitative software engineering research. Inf Softw Technol 49(6):531–694. doi: 10.1016/j.infsof.2007.02.009

Dittrich Y, Rönkkö K, Eriksson J, Hansson C, Lindeberg O (2008) Cooperative method development. combining qualitative empirical research with method, technique and process improvement. Empir Softw Eng 13(3):231–260 doi: 10.1007/s10664-007-9057-1

Eisenhardt KM (1989) Building theories form case study research. Acad Manage Rev 14(4):532–550 doi: 10.2307/258557

Easterbrook S, Singer J, Storey M-A, Damian D (2008) Selecting empirical methods for software engineering research, Chapter 11 in Shull et al. (2008)

Fenton N, Pfleeger SG (1996) Software Metrics — A Rigorous and Practical Approach , Thomson Computer

Flynn BB, Sakakibara S, Schroeder RG, Bates K, Flynn EJ (1990) Empirical research methods in operations management. Oper Manage 9(2):250–284 doi: 10.1016/0272-6963(90)90098-X

Flyvbjerg B (2007) Five misunderstandings about case-study research. In Qualitative Research Practice: Concise Paperback Edition . Sage, pp 390–404

Gorschek T, Garre P, Larsson S, Wohlin C (2006) A model for technology transfer in practice. IEEE Softw 23(6):88–95 doi: 10.1109/MS.2006.147

Hannay JE, Sjøberg DIK, Dybå TA (2007) Systematic review of theory use in software engineering experiments. IEEE Trans Softw Eng 33(2):87–107 doi: 10.1109/TSE.2007.12

Hove SE, Anda BCD (2005) Experiences from conducting semi-structured interviews in empirical software engineering research. Proceedings 11th IEEE International Software Metrics Symposium (Metrics 2005) 23:1–10

Höst M, Runeson P (2007) Checklists for Software Engineering Case Study Research, In Proceedings First International Symposium on Empirical Software Engineering and Measurement , pp 479–481

Iversen JH, Mathiassen L, Nielsen PA (2004) Managing risk in software process improvement: an action research approach. MIS Q 28(3):395–433

Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experiments in software engineering, In Proceedings of ACM/IEEE International Symposium on Empirical Software Engineering , pp 95–104, see also Chapter 8 in Shull et al. (2008)

Johnson P, Kou H, Paulding M, Zhang Q, Kagawa A, Yamashita T (2005) Improving software development management through software project telemetry. IEEE Softw 22(4):76–85 doi: 10.1109/MS.2005.95

Karahasanović A, Anda B, Arisholm E, Hove SE, Jørgensen M, Sjøberg DIK, Welland R (2005) Collecting feedback during software engineering experiments. Empir Softw Eng 10:113–147 doi: 10.1007/s10664-004-6189-4

Karlström D (2004) Integrating Management and Engineering Processes in Software Product Development , PhD Thesis ISRN LUTEDX/TETS—1069-SE+230p, Lund University.

Karlström D, Runeson P (2005) Combining agile methods with stage-gate project management. IEEE Softw 22(3):43–49 doi: 10.1109/MS.2005.59

Karlström D, Runeson P (2006) Integrating agile software development into stage-gate product development. Empir Softw Eng 11:203–225 doi: 10.1007/s10664-006-6402-8

Klein HK, Myers MD (1999) A set of principles for conducting and evaluating interpretative field studies in information systems. MIS Q 23(1):67–88 doi: 10.2307/249410

Kitchenham B, Pickard L, Pfleeger SL (1995) Case studies for method and tool evaluation. IEEE Softw 4(12):52–62 doi: 10.1109/52.391832

Kitchenham B, Pfleeger SM, Pickard LM, Jones PW, Hoaglin DC, El Eman K, Rosenberg J (2002) Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28(8):721–734 doi: 10.1109/TSE.2002.1027796

Kitchenham B (2007) Guidelines for performing Systematic Literature Reviews in Software Engineering , Version 2.3, EBSE Technical Report EBSE-2007-01, Keele University and University of Durham

Kitchenham B, Al-Khilidar H, Ali Babar M, Berry M, Cox K, Keung J, Kurniawati F, Staples M, Zhang H, Zhu L (2008) Evaluating guidelines for reporting empirical software engineering studies. Empir Softw Eng 13(1):97–121 doi: 10.1007/s10664-007-9053-5

Lee AS (1989) A scientific methodology for MIS case studies. MIS Q 13(1):33–54 doi: 10.2307/248698

Lethbridge TC, Sim SE, Singer J (2005) Studying software engineers: data collection techniques for software field studies. Empir Softw Eng 10(3):311–341 see also Chapter 1 in Shull et al. (2008)

Moher T, Schneider GM (1981) Methods for improving controlled experimentation in software engineering, Proceedings of the 5th International Conference on Software Engineering pp 224–233

Owen S, Budgen D, Brereton P (2006) Protocol analysis: a neglected practice. Commun ACM 49(2):117–122 doi: 10.1145/1113034.1113039

Perry DE, Sim SE, Easterbrook S (2005) Case studies for software engineers, 29th Annual IEEE/NASA Software Engineering Workshop — Tutorial Notes pp 96–159

Pervan G, Maimbo H (2005) Designing a case study protocol for application in IS research, The Ninth Pacific Conference on Information Systems pp 1281–1292

Ramesh V, Glass RL, Vessey I (2004) Research in computer science: an empirical study. J Syst Softw 70(1–2):165–176 doi: 10.1016/S0164-1212(03)00015-3

Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001) An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software. Requirements Eng 6:51–62 doi: 10.1007/s007660170015

Robinson H, Segal J, Sharp H (2007) Ethnographically-informed empirical studies of software practice. Inf Softw Technol 49:540–551 doi: 10.1016/j.infsof.2007.02.007

Robson C (2002) Real World Research . Blackwell, (2nd edition)

Seaman C (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng 25(4):557–572 see also Chapter 2 in Shull et al. (2008)

Sharp H, Robinson H (2004) An ethnographic study of XP practice. Empir Softw Eng 9(4):353–375 doi: 10.1023/B:EMSE.0000039884.79385.54

Shull F, Feldman RL (2008) Building theories from multiple evidence sources. In: Shull F et al (ed) Guide to advanced empirical software engineering. Springer-Verlag, London

Chapter   Google Scholar  

Shull F, Basili V, Carver J, Maldonado JC, Travassos GH, Mendonca M, Fabbri S (2002) Replicating software engineering experiments: addressing the tacit knowledge problem, Proceedings on International Symposium Empirical Software Engineering pp 7–16

Shull F, Singer J, Sjøberg D (eds) (2008) Guide to Advanced Empirical Software Engineering. Springer-Verlag: London

Sim SE, Singer J, Storey M-A (2001) Beg, borrow, or steal: using multidisciplinary approaches in empirical software engineering research, an ICSE 2000 workshop report. Empir Softw Eng 6(1):85–93 doi: 10.1023/A:1009809824225

Singer J, Vinson NG (2002) Ethical issues in empirical studies of software engineering. IEEE Trans Softw Eng 28(12):1171–1180 doi: 10.1109/TSE.2002.1158289

Sjøberg DIK, Dybå T, Anda BCD, Hannay J (2008) Building theories in software engineering. In: Shull F et al (ed) Guide to advanced empirical software engineering. Springer-Verlag, London

Sjøberg DIK, Hannay JE, Hansen O, Kampenes VB (2005) A survey of controlled experiments in software engineering. IEEE Trans Softw Eng 31(9):733–753 doi: 10.1109/TSE.2005.97

Stake RE (1995) The art of case study research . Sage

Tichy WF (1998) Should computer scientists experiment more? Computer 31(5):32–40 doi: 10.1109/2.675631

Article   MathSciNet   Google Scholar  

Tichy WF (2000) Hints for reviewing empirical work in software engineering. Empir Softw Eng 5(4):309–312 doi: 10.1023/A:1009844119158

van Solingen R, Berghout E (1999) The goal/question/metric method. A practical guide for quality improvement of software development . McGraw-Hill

von Mayrhauser A, Vans AM (1996) Identification of dynamic comprehension processes during large scale maintenance. IEEE Trans Softw Eng 22(6):424–438 doi: 10.1109/32.508315

Wallace C, Cook C, Summet J, Burnett M (2002) Human centric computing languages and environments. Proceeding Symposia on Human Centric Computing Languages and Environments pp 63–65

Wohlin C, Höst M (2001) Special section: controlled experiments in software engineering, guest editorial. Inf Softw Technol 43(15):921–924 doi: 10.1016/S0950-5849(01)00200-2

Wohlin C, Höst M, Ohlsson MC, Regnell B, Runeson P, Wesslén A (2000) Experimentation in software engineering — an introduction . Kluwer

Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering. In: Conradi R, Wang AI (eds) Empirical Methods and Studies in Software Engineering — Experiences from ESERNET , Springer

Yin RK (2003) Case study research. Design and methods, 3rd edn. London, Sage

Zelkowitz MV, Wallace RW (1998) Experimental models for validating technology. IEEE Comput 31(5):23–31

Download references

Acknowledgement

The authors are grateful to the feedback to the checklists from the ISERN members and IASESE attendants in September 2007. A special thank to Professor Claes Wohlin, Mr. Kim Weyns and Mr. Andreas Jedlitschka for their review of an earlier draft of the paper. Thanks also to the anonymous reviewers for proposals on substantial improvements. The work is partly funded by the Swedish Research Council under grant 622-2004-552 for a senior researcher position in software engineering.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and affiliations.

Department Computer Science, Lund University, Box 118, SE-221 00, Lund, Sweden

Per Runeson & Martin Höst

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Per Runeson .

Additional information

Editor: D. Sjoberg

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Runeson, P., Höst, M. Guidelines for conducting and reporting case study research in software engineering. Empir Software Eng 14 , 131–164 (2009). https://doi.org/10.1007/s10664-008-9102-8

Download citation

Published : 19 December 2008

Issue Date : April 2009

DOI : https://doi.org/10.1007/s10664-008-9102-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Research methodology
  • Find a journal
  • Publish with us
  • Track your research

Chapter 12 Interpretive Research

The last chapter introduced interpretive research, or more specifically, interpretive case research. This chapter will explore other kinds of interpretive research. Recall that positivist or deductive methods, such as laboratory experiments and survey research, are those that are specifically intended for theory (or hypotheses) testing, while interpretive or inductive methods, such as action research and ethnography, are intended for theory building. Unlike a positivist method, where the researcher starts with a theory and tests theoretical postulates using empirical data, in interpretive methods, the researcher starts with data and tries to derive a theory about the phenomenon of interest from the observed data.

The term “interpretive research” is often used loosely and synonymously with “qualitative research”, although the two concepts are quite different. Interpretive research is a research paradigm (see Chapter 3) that is based on the assumption that social reality is not singular or objective, but is rather shaped by human experiences and social contexts (ontology), and is therefore best studied within its socio-historic context by reconciling the subjective interpretations of its various participants (epistemology). Because interpretive researchers view social reality as being embedded within and impossible to abstract from their social settings, they “interpret” the reality though a “sense-making” process rather than a hypothesis testing process. This is in contrast to the positivist or functionalist paradigm that assumes that the reality is relatively independent of the context, can be abstracted from their contexts, and studied in a decomposable functional manner using objective techniques such as standardized measures. Whether a researcher should pursue interpretive or positivist research depends on paradigmatic considerations about the nature of the phenomenon under consideration and the best way to study it.

However, qualitative versus quantitative research refers to empirical or data -oriented considerations about the type of data to collect and how to analyze them. Qualitative research relies mostly on non-numeric data, such as interviews and observations, in contrast to quantitative research which employs numeric data such as scores and metrics. Hence, qualitative research is not amenable to statistical procedures such as regression analysis, but is coded using techniques like content analysis. Sometimes, coded qualitative data is tabulated quantitatively as frequencies of codes, but this data is not statistically analyzed. Many puritan interpretive researchers reject this coding approach as a futile effort to seek consensus or objectivity in a social phenomenon which is essentially subjective.

Although interpretive research tends to rely heavily on qualitative data, quantitative data may add more precision and clearer understanding of the phenomenon of interest than qualitative data. For example, Eisenhardt (1989), in her interpretive study of decision making n high-velocity firms (discussed in the previous chapter on case research), collected numeric data on how long it took each firm to make certain strategic decisions (which ranged from 1.5 months to 18 months), how many decision alternatives were considered for each decision, and surveyed her respondents to capture their perceptions of organizational conflict. Such numeric data helped her clearly distinguish the high-speed decision making firms from the low-speed decision makers, without relying on respondents’ subjective perceptions, which then allowed her to examine the number of decision alternatives considered by and the extent of conflict in high-speed versus low-speed firms. Interpretive research should attempt to collect both qualitative and quantitative data pertaining to their phenomenon of interest, and so should positivist research as well. Joint use of qualitative and quantitative data, often called “mixed-mode designs”, may lead to unique insights and are highly prized in the scientific community.

Interpretive research has its roots in anthropology, sociology, psychology, linguistics, and semiotics, and has been available since the early 19 th century, long before positivist techniques were developed. Many positivist researchers view interpretive research as erroneous and biased, given the subjective nature of the qualitative data collection and interpretation process employed in such research. However, the failure of many positivist techniques to generate interesting insights or new knowledge have resulted in a resurgence of interest in interpretive research since the 1970’s, albeit with exacting methods and stringent criteria to ensure the reliability and validity of interpretive inferences.

Distinctions from Positivist Research

In addition to fundamental paradigmatic differences in ontological and epistemological assumptions discussed above, interpretive and positivist research differ in several other ways. First, interpretive research employs a theoretical sampling strategy, where study sites, respondents, or cases are selected based on theoretical considerations such as whether they fit the phenomenon being studied (e.g., sustainable practices can only be studied in organizations that have implemented sustainable practices), whether they possess certain characteristics that make them uniquely suited for the study (e.g., a study of the drivers of firm innovations should include some firms that are high innovators and some that are low innovators, in order to draw contrast between these firms), and so forth. In contrast, positivist research employs random sampling (or a variation of this technique), where cases are chosen randomly from a population, for purposes of generalizability. Hence, convenience samples and small samples are considered acceptable in interpretive research as long as they fit the nature and purpose of the study, but not in positivist research.

Second, the role of the researcher receives critical attention in interpretive research. In some methods such as ethnography, action research, and participant observation, the researcher is considered part of the social phenomenon, and her specific role and involvement in the research process must be made clear during data analysis. In other methods, such as case research, the researcher must take a “neutral” or unbiased stance during the data collection and analysis processes, and ensure that her personal biases or preconceptions does not taint the nature of subjective inferences derived from interpretive research. In positivist research, however, the researcher is considered to be external to and independent of the research context and is not presumed to bias the data collection and analytic procedures.

Third, interpretive analysis is holistic and contextual, rather than being reductionist and isolationist. Interpretive interpretations tend to focus on language, signs, and meanings from the perspective of the participants involved in the social phenomenon, in contrast to statistical techniques that are employed heavily in positivist research. Rigor in interpretive research is viewed in terms of systematic and transparent approaches for data collection and analysis rather than statistical benchmarks for construct validity or significance testing.

Lastly, data collection and analysis can proceed simultaneously and iteratively in interpretive research. For instance, the researcher may conduct an interview and code it before proceeding to the next interview. Simultaneous analysis helps the researcher correct potential flaws in the interview protocol or adjust it to capture the phenomenon of interest better. The researcher may even change her original research question if she realizes that her original research questions are unlikely to generate new or useful insights. This is a valuable but often understated benefit of interpretive research, and is not available in positivist research, where the research project cannot be modified or changed once the data collection has started without redoing the entire project from the start.

Benefits and Challenges of Interpretive Research

Interpretive research has several unique advantages. First, they are well-suited for exploring hidden reasons behind complex, interrelated, or multifaceted social processes, such as inter-firm relationships or inter-office politics, where quantitative evidence may be biased, inaccurate, or otherwise difficult to obtain. Second, they are often helpful for theory construction in areas with no or insufficient a priori theory. Third, they are also appropriate for studying context-specific, unique, or idiosyncratic events or processes. Fourth, interpretive research can also help uncover interesting and relevant research questions and issues for follow-up research.

At the same time, interpretive research also has its own set of challenges. First, this type of research tends to be more time and resource intensive than positivist research in data collection and analytic efforts. Too little data can lead to false or premature assumptions, while too much data may not be effectively processed by the researcher. Second, interpretive research requires well-trained researchers who are capable of seeing and interpreting complex social phenomenon from the perspectives of the embedded participants and reconciling the diverse perspectives of these participants, without injecting their personal biases or preconceptions into their inferences. Third, all participants or data sources may not be equally credible, unbiased, or knowledgeable about the phenomenon of interest, or may have undisclosed political agendas, which may lead to misleading or false impressions. Inadequate trust between participants and researcher may hinder full and honest self-representation by participants, and such trust building takes time. It is the job of the interpretive researcher to

“see through the smoke” (hidden or biased agendas) and understand the true nature of the problem. Fourth, given the heavily contextualized nature of inferences drawn from interpretive research, such inferences do not lend themselves well to replicability or generalizability. Finally, interpretive research may sometimes fail to answer the research questions of interest or predict future behaviors.

Characteristics of Interpretive Research

All interpretive research must adhere to a common set of principles, as described below.

Naturalistic inquiry: Social phenomena must be studied within their natural setting. Because interpretive research assumes that social phenomena are situated within and cannot be isolated from their social context, interpretations of such phenomena must be grounded within their socio-historical context. This implies that contextual variables should be observed and considered in seeking explanations of a phenomenon of interest, even though context sensitivity may limit the generalizability of inferences.

Researcher as instrument: Researchers are often embedded within the social context that they are studying, and are considered part of the data collection instrument in that they must use their observational skills, their trust with the participants, and their ability to extract the correct information. Further, their personal insights, knowledge, and experiences of the social context is critical to accurately interpreting the phenomenon of interest. At the same time, researchers must be fully aware of their personal biases and preconceptions, and not let such biases interfere with their ability to present a fair and accurate portrayal of the phenomenon.

Interpretive analysis: Observations must be interpreted through the eyes of the participants embedded in the social context. Interpretation must occur at two levels. The first level involves viewing or experiencing the phenomenon from the subjective perspectives of the social participants. The second level is to understand the meaning of the participants’ experiences in order to provide a “thick description” or a rich narrative story of the phenomenon of interest that can communicate why participants acted the way they did.

Use of expressive language: Documenting the verbal and non-verbal language of participants and the analysis of such language are integral components of interpretive analysis. The study must ensure that the story is viewed through the eyes of a person, and not a machine, and must depict the emotions and experiences of that person, so that readers can understand and relate to that person. Use of imageries, metaphors, sarcasm, and other figures of speech is very common in interpretive analysis.

Temporal nature: Interpretive research is often not concerned with searching for specific answers, but with understanding or “making sense of” a dynamic social process as it unfolds over time. Hence, such research requires an immersive involvement of the researcher at the study site for an extended period of time in order to capture the entire evolution of the phenomenon of interest.

Hermeneutic circle: Interpretive interpretation is an iterative process of moving back and forth from pieces of observations (text) to the entirety of the social phenomenon (context) to reconcile their apparent discord and to construct a theory that is consistent with the diverse subjective viewpoints and experiences of the embedded participants. Such iterations between the understanding/meaning of a phenomenon and observations must continue until “theoretical saturation” is reached, whereby any additional iteration does not yield any more insight into the phenomenon of interest.

Interpretive Data Collection

Data is collected in interpretive research using a variety of techniques. The most frequently used technique is interviews (face-to-face, telephone, or focus groups). Interview types and strategies are discussed in detail in a previous chapter on survey research. A second technique is observation . Observational techniques include direct observation , where the researcher is a neutral and passive external observer and is not involved in the phenomenon of interest (as in case research), and participant observation , where the researcher is an active participant in the phenomenon and her inputs or mere presence influence the phenomenon being studied (as in action research). A third technique is documentation , where external and internal documents, such as memos, electronic mails, annual reports, financial statements, newspaper articles, websites, may be used to cast further insight into the phenomenon of interest or to corroborate other forms of evidence.

Interpretive Research Designs

Case research . As discussed in the previous chapter, case research is an intensive longitudinal study of a phenomenon at one or more research sites for the purpose of deriving detailed, contextualized inferences and understanding the dynamic process underlying a phenomenon of interest. Case research is a unique research design in that it can be used in an interpretive manner to build theories or in a positivist manner to test theories. The previous chapter on case research discusses both techniques in depth and provides illustrative exemplars. Furthermore, the case researcher is a neutral observer (direct observation) in the social setting rather than an active participant (participant observation). As with any other interpretive approach, drawing meaningful inferences from case research depends heavily on the observational skills and integrative abilities of the researcher.

Action research . Action research is a qualitative but positivist research design aimed at theory testing rather than theory building (discussed in this chapter due to lack of a proper space). This is an interactive design that assumes that complex social phenomena are best understood by introducing changes, interventions, or “actions” into those phenomena and observing the outcomes of such actions on the phenomena of interest. In this method, the researcher is usually a consultant or an organizational member embedded into a social context (such as an organization), who initiates an action in response to a social problem, and examines how her action influences the phenomenon while also learning and generating insights about the relationship between the action and the phenomenon. Examples of actions may include organizational change programs, such as the introduction of new organizational processes, procedures, people, or technology or replacement of old ones, initiated with the goal of improving an organization’s performance or profitability in its business environment. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may bring forth the desired social change. The theory is validated by the extent to which the chosen action is successful in remedying the targeted problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from other research methods (which may not involve problem solving) and from consulting (which may not involve insight generation). Hence, action research is an excellent method for bridging research and practice.

There are several variations of the action research method. The most popular of these method is the participatory action research, designed by Susman and Evered (1978) [13] . This method follows an action research cycle consisting of five phases: (1) diagnosing, (2) action planning, (3) action taking, (4) evaluating, and (5) learning (see Figure 10.1). Diagnosing involves identifying and defining a problem in its social context. Action planning involves identifying and evaluating alternative solutions to the problem, and deciding on a future course of action (based on theoretical rationale). Action taking is the implementation of the planned course of action. The evaluation stage examines the extent to which the initiated action is successful in resolving the original problem, i.e., whether theorized effects are indeed realized in practice. In the learning phase, the experiences and feedback from action evaluation are used to generate insights about the problem and suggest future modifications or improvements to the action. Based on action evaluation and learning, the action may be modified or adjusted to address the problem better, and the action research cycle is repeated with the modified action sequence. It is suggested that the entire action research cycle be traversed at least twice so that learning from the first cycle can be implemented in the second cycle. The primary mode of data collection is participant observation, although other techniques such as interviews and documentary evidence may be used to corroborate the researcher’s observations.

when conducting a case study researchers interpret and form judgement objectively

Figure 10.1. Action research cycle

Ethnography . The ethnographic research method, derived largely from the field of anthropology, emphasizes studying a phenomenon within the context of its culture. The researcher must be deeply immersed in the social culture over an extended period of time (usually 8 months to 2 years) and should engage, observe, and record the daily life of the studied culture and its social participants within their natural setting. The primary mode of data collection is participant observation, and data analysis involves a “sense-making” approach. In addition, the researcher must take extensive field notes, and narrate her experience in descriptive detail so that readers may experience the same culture as the researcher. In this method, the researcher has two roles: rely on her unique knowledge and engagement to generate insights (theory), and convince the scientific community of the trans-situational nature of the studied phenomenon.

The classic example of ethnographic research is Jane Goodall’s study of primate behaviors, where she lived with chimpanzees in their natural habitat at Gombe National Park in Tanzania, observed their behaviors, interacted with them, and shared their lives. During that process, she learnt and chronicled how chimpanzees seek food and shelter, how they socialize with each other, their communication patterns, their mating behaviors, and so forth. A more contemporary example of ethnographic research is Myra Bluebond-Langer’s (1996) [14] study of decision making in families with children suffering from life-threatening illnesses, and the physical, psychological, environmental, ethical, legal, and cultural issues that influence such decision-making. The researcher followed the experiences of approximately 80 children with incurable illnesses and their families for a period of over two years. Data collection involved participant observation and formal/informal conversations with children, their parents and relatives, and health care providers to document their lived experience.

Phenomenology. Phenomenology is a research method that emphasizes the study of conscious experiences as a way of understanding the reality around us. It is based on the ideas of German philosopher Edmund Husserl in the early 20 th century who believed that human experience is the source of all knowledge. Phenomenology is concerned with the systematic reflection and analysis of phenomena associated with conscious experiences, such as human judgment, perceptions, and actions, with the goal of (1) appreciating and describing social reality from the diverse subjective perspectives of the participants involved, and (2) understanding the symbolic meanings (“deep structure”) underlying these subjective experiences. Phenomenological inquiry requires that researchers eliminate any prior assumptions and personal biases, empathize with the participant’s situation, and tune into existential dimensions of that situation, so that they can fully understand the deep structures that drives the conscious thinking, feeling, and behavior of the studied participants.

when conducting a case study researchers interpret and form judgement objectively

Figure 10.2. The existential phenomenological research method

Some researchers view phenomenology as a philosophy rather than as a research method. In response to this criticism, Giorgi and Giorgi (2003) [15] developed an existential phenomenological research method to guide studies in this area. This method, illustrated in Figure 10.2, can be grouped into data collection and data analysis phases. In the data collection phase, participants embedded in a social phenomenon are interviewed to capture their subjective experiences and perspectives regarding the phenomenon under investigation.

Examples of questions that may be asked include “can you describe a typical day” or “can you describe that particular incident in more detail?” These interviews are recorded and transcribed for further analysis. During data analysis , the researcher reads the transcripts to:

(1) get a sense of the whole, and (2) establish “units of significance” that can faithfully represent participants’ subjective experiences. Examples of such units of significance are concepts such as “felt space” and “felt time,” which are then used to document participants’ psychological experiences. For instance, did participants feel safe, free, trapped, or joyous when experiencing a phenomenon (“felt-space”)? Did they feel that their experience was pressured, slow, or discontinuous (“felt-time”)? Phenomenological analysis should take into account the participants’ temporal landscape (i.e., their sense of past, present, and future), and the researcher must transpose herself in an imaginary sense in the participant’s situati on (i.e., temporarily live the participant’s life). The participants’ lived experience is described in form of a narrative or using emergent themes. The analysis then delves into these themes to identify multiple layers of meaning while retaining the fragility and ambiguity of subjects’ lived experiences.

Rigor in Interpretive Research

While positivist research employs a “reductionist” approach by simplifying social reality into parsimonious theories and laws, interpretive research attempts to interpret social reality through the subjective viewpoints of the embedded participants within the context where the reality is situated. These interpretations are heavily contextualized, and are naturally less generalizable to other contexts. However, because interpretive analysis is subjective and sensitive to the experiences and insight of the embedded researcher, it is often considered less rigorous by many positivist (functionalist) researchers. Because interpretive research is based on different set of ontological and epistemological assumptions about social phenomenon than positivist research, the positivist notions of rigor, such as reliability, internal validity, and generalizability, do not apply in a similar manner. However, Lincoln and Guba (1985) [16] provide an alternative set of criteria that can be used to judge the rigor of interpretive research.

Dependability. Interpretive research can be viewed as dependable or authentic if two researchers assessing the same phenomenon using the same set of evidence independently arrive at the same conclusions or the same researcher observing the same or a similar phenomenon at different times arrives at similar conclusions. This concept is similar to that of reliability in positivist research, with agreement between two independent researchers being similar to the notion of inter-rater reliability, and agreement between two observations of the same phenomenon by the same researcher akin to test -retest reliability. To ensure dependability, interpretive researchers must provide adequate details about their phenomenon of interest and the social context in which it is embedded so as to allow readers to independently authenticate their interpretive inferences.

Credibility. Interpretive research can be considered credible if readers find its inferences to be believable. This concept is akin to that of internal validity in functionalistic research. The credibility of interpretive research can be improved by providing evidence of the researcher’s extended engagement in the field, by demonstrating data triangulation across subjects or data collection techniques, and by maintaining meticulous data management and analytic procedures, such as verbatim transcription of interviews, accurate records of contacts and interviews, and clear notes on theoretical and methodological decisions, that can allow an independent audit of data collection and analysis if needed.

Confirmability. Confirmability refers to the extent to which the findings reported in interpretive research can be independently confirmed by others (typically, participants). This is similar to the notion of objectivity in functionalistic research. Since interpretive research rejects the notion of an objective reality, confirmability is demonstrated in terms of “inter-subjectivity”, i.e., if the study’s participants agree with the inferences derived by the researcher. For instance, if a study’s participants generally agree with the inferences drawn by a researcher about a phenomenon of interest (based on a review of the research paper or report), then the findings can be viewed as confirmable.

Transferability. Transferability in interpretive research refers to the extent to which the findings can be generalized to other settings. This idea is similar to that of external validity in functionalistic research. The researcher must provide rich, detailed descriptions of the research context (“thick description”) and thoroughly describe the structures, assumptions, and processes revealed from the data so that readers can independently assess whether and to what extent are the reported findings transferable to other settings.

[13] Susman, G.I. and Evered, R.D. (1978). “An Assessment of the Scientific Merits of Action Research,”

Administrative Science Quarterly , (23), 582-603.

[14] Bluebond-Langer, M. (1996). In the Shadow of Illness: Parents and Siblings of the Chronically Ill Child . Princeton, NJ: Princeton University Press.

[15] Giorgi, A and Giorgi, B (2003) Phenomenology. In J A Smith (ed.) Qualitative Psychology: A Practical Guide to Research Methods . London: Sage Publications.

[16] Lincoln, Y. S., and Guba, E. G. (1985). Naturalistic Inquiry . Beverly Hills, CA: Sage Publications.

  • Social Science Research: Principles, Methods, and Practices. Authored by : Anol Bhattacherjee. Provided by : University of South Florida. Located at : http://scholarcommons.usf.edu/oa_textbooks/3/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

IMAGES

  1. 3: STAGES OF CONDUCTING A CASE STUDY

    when conducting a case study researchers interpret and form judgement objectively

  2. Steps in Conducting a Case Study

    when conducting a case study researchers interpret and form judgement objectively

  3. Case Study Methodology- Four Major Steps For Conducting A Case Study (2022)

    when conducting a case study researchers interpret and form judgement objectively

  4. What is Case Study? Why and When to Conduct Case Study? Steps of Case Study

    when conducting a case study researchers interpret and form judgement objectively

  5. Multiple Case Study Method

    when conducting a case study researchers interpret and form judgement objectively

  6. conducting case studies

    when conducting a case study researchers interpret and form judgement objectively

VIDEO

  1. OTJ Short

  2. Multiple Linear Regression and Interpreting the Output in SPSS

  3. Harvard Case Study on The Power of Visualization

  4. IMPORTANCE OF CASE LAWS

  5. LETHAL FSL REPORT NOT SMASHED IN CROSS EXAMINATION CRUEL JUDGE IPC CRPC EVIDENCE ACT NI ACT DV ACT

  6. What does Audit mean? #audit #auditingstandards #auditing #auditor #independence #misstatement

COMMENTS

  1. Designing and Conducting Case Studies

    Designing and Conducting Case Studies. This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of ...

  2. Case Study Method: A Step-by-Step Guide for Business Researchers

    Case Study Method: A Step-by-Step Guide for Business ...

  3. Toward Developing a Framework for Conducting Case Study Research

    Toward Developing a Framework for Conducting Case Study ...

  4. Case Study Methodology of Qualitative Research: Key Attributes and

    Case Study Methodology of Qualitative Research

  5. How to Conduct a Case Study: A Guide for Novice Researchers

    Stake's book describes the "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" (Stake, 1995, p. xi) as the interpretive orientation of the study case approach. Sharan Merriam, the case study approach's third major contributor, expanded on the work of both Stake and Yin.

  6. Case Study: Research in Practice

    View the Resource. Case Study Research in Practice explores the theory and practice of case study. Helen Simons draws on her extensive experience of teaching and conducting case study to provide a comprehensive and practical account of how to design, conduct and communicate case study research. It addresses questions often raised by students ...

  7. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  8. Conducting Case Study Research

    Case study research is an "…intensive study of a single case where the purpose of that study is… to shed light on a larger class of cases."4 Being… 1. Describe when the case study approach is the most appropriate qualitative research method. 2. Outline the components of a case study research method. 3.

  9. Case Study Research: In-Depth Understanding in Context

    Abstract. This chapter explores case study as a major approach to research and evaluation. After first noting various contexts in which case studies are commonly used, the chapter focuses on case study research directly Strengths and potential problematic issues are outlined and then key phases of the process.

  10. Conducting Judgment Studies:: Some Methodological Issues

    The chapter considers some of the fundamental methodological issues that contemporary researchers will want to consider when they conduct judgment studies including issues of the nature of judgment studies, the reliability of judgments, the selection of judges, the formation of composite variables, and some related topics.

  11. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  12. The Use of Qualitative Content Analysis in Case Study Research

    Volume 7, No. 1, Art. 21 - January 2006 . The Use of Qualitative Content Analysis in Case Study Research. Florian Kohlbacher. Abstract: This paper aims at exploring and discussing the possibilities of applying qualitative content analysis as a (text) interpretation method in case study research. First, case study research as a research strategy within qualitative social research is briefly ...

  13. PDF Case study as a research method

    Category of case study. There are several categories of case study. Yin (1984) notes three categories, namely exploratory, descriptive and explanatory case studies. First, exploratory case studies set to explore any phenomenon in the data which serves as a point of interest to the researcher. For instance, a researcher conducting an exploratory ...

  14. Case Study Method: A Step-by-Step Guide for Business Researchers

    First is to provide a step-by-step guideline to research students for conducting case study. Second, an analysis of authors' multiple case studies is presented in order to provide an application of step-by-step guideline. This article has been divided into two sections. First section discusses a checklist with four phases that are vital for ...

  15. PDF How to Improve the Validity and Reliability of a Case Study Approach

    Several methods can be employed in qualitative methodology, as indicated by Queirós et al. (2017): (i) observation; (ii) ethnography; (iii) field research; (iv) focus groups; or (v) case studies. The case study is a qualitative method that generally consists of a way to deepen an individual unit.

  16. Guidelines for conducting and reporting case study research in software

    Case study is a suitable research methodology for software engineering research since it studies contemporary phenomena in its natural context. However, the understanding of what constitutes a case study varies, and hence the quality of the resulting studies. This paper aims at providing an introduction to case study methodology and guidelines for researchers conducting case studies and ...

  17. Conducting Case Study Research: A Concise Practical Guidance for

    Abstract. This article demonstrates, with real world examples, the holistic. approach to case study research as a concise practical guide for. management research students. It attempts to ...

  18. (PDF) The case study as a type of qualitative research

    (PDF) The case study as a type of qualitative research

  19. Research Methods for the Social Sciences

    Chapter 12 Interpretive Research. The last chapter introduced interpretive research, or more specifically, interpretive case research. This chapter will explore other kinds of interpretive research. Recall that positivist or deductive methods, such as laboratory experiments and survey research, are those that are specifically intended for ...

  20. XBRL Viewer

    Please enable JavaScript to use the EDGAR Inline XBRL Viewer.