Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Guide to Experimental Design | Overview, Steps, & Examples

Guide to Experimental Design | Overview, 5 steps & Examples

Published on December 3, 2019 by Rebecca Bevans . Revised on June 21, 2023.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design create a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead. This minimizes several types of research bias, particularly sampling bias , survivorship bias , and attrition bias as time passes.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, other interesting articles, frequently asked questions about experiments.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalized and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomized design vs a randomized block design .
  • A between-subjects design vs a within-subjects design .

Randomization

An experiment can be completely randomized or randomized within blocks (aka strata):

  • In a completely randomized design , every subject is assigned to a treatment group at random.
  • In a randomized block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomized design Randomized block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomization isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs. within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomizing or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomized.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomized.

Prevent plagiarism. Run a free check.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimize research bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalized to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Guide to Experimental Design | Overview, 5 steps & Examples. Scribbr. Retrieved September 11, 2024, from https://www.scribbr.com/methodology/experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, random assignment in experiments | introduction & examples, quasi-experimental design | definition, types & examples, how to write a lab report, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Experimental Design: Definition and Types

By Jim Frost 3 Comments

What is Experimental Design?

An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions.

An experiment is a data collection procedure that occurs in controlled conditions to identify and understand causal relationships between variables. Researchers can use many potential designs. The ultimate choice depends on their research question, resources, goals, and constraints. In some fields of study, researchers refer to experimental design as the design of experiments (DOE). Both terms are synonymous.

Scientist who developed an experimental design for her research.

Ultimately, the design of experiments helps ensure that your procedures and data will evaluate your research question effectively. Without an experimental design, you might waste your efforts in a process that, for many potential reasons, can’t answer your research question. In short, it helps you trust your results.

Learn more about Independent and Dependent Variables .

Design of Experiments: Goals & Settings

Experiments occur in many settings, ranging from psychology, social sciences, medicine, physics, engineering, and industrial and service sectors. Typically, experimental goals are to discover a previously unknown effect , confirm a known effect, or test a hypothesis.

Effects represent causal relationships between variables. For example, in a medical experiment, does the new medicine cause an improvement in health outcomes? If so, the medicine has a causal effect on the outcome.

An experimental design’s focus depends on the subject area and can include the following goals:

  • Understanding the relationships between variables.
  • Identifying the variables that have the largest impact on the outcomes.
  • Finding the input variable settings that produce an optimal result.

For example, psychologists have conducted experiments to understand how conformity affects decision-making. Sociologists have performed experiments to determine whether ethnicity affects the public reaction to staged bike thefts. These experiments map out the causal relationships between variables, and their primary goal is to understand the role of various factors.

Conversely, in a manufacturing environment, the researchers might use an experimental design to find the factors that most effectively improve their product’s strength, identify the optimal manufacturing settings, and do all that while accounting for various constraints. In short, a manufacturer’s goal is often to use experiments to improve their products cost-effectively.

In a medical experiment, the goal might be to quantify the medicine’s effect and find the optimum dosage.

Developing an Experimental Design

Developing an experimental design involves planning that maximizes the potential to collect data that is both trustworthy and able to detect causal relationships. Specifically, these studies aim to see effects when they exist in the population the researchers are studying, preferentially favor causal effects, isolate each factor’s true effect from potential confounders, and produce conclusions that you can generalize to the real world.

To accomplish these goals, experimental designs carefully manage data validity and reliability , and internal and external experimental validity. When your experiment is valid and reliable, you can expect your procedures and data to produce trustworthy results.

An excellent experimental design involves the following:

  • Lots of preplanning.
  • Developing experimental treatments.
  • Determining how to assign subjects to treatment groups.

The remainder of this article focuses on how experimental designs incorporate these essential items to accomplish their research goals.

Learn more about Data Reliability vs. Validity and Internal and External Experimental Validity .

Preplanning, Defining, and Operationalizing for Design of Experiments

A literature review is crucial for the design of experiments.

This phase of the design of experiments helps you identify critical variables, know how to measure them while ensuring reliability and validity, and understand the relationships between them. The review can also help you find ways to reduce sources of variability, which increases your ability to detect treatment effects. Notably, the literature review allows you to learn how similar studies designed their experiments and the challenges they faced.

Operationalizing a study involves taking your research question, using the background information you gathered, and formulating an actionable plan.

This process should produce a specific and testable hypothesis using data that you can reasonably collect given the resources available to the experiment.

  • Null hypothesis : The jumping exercise intervention does not affect bone density.
  • Alternative hypothesis : The jumping exercise intervention affects bone density.

To learn more about this early phase, read Five Steps for Conducting Scientific Studies with Statistical Analyses .

Formulating Treatments in Experimental Designs

In an experimental design, treatments are variables that the researchers control. They are the primary independent variables of interest. Researchers administer the treatment to the subjects or items in the experiment and want to know whether it causes changes in the outcome.

As the name implies, a treatment can be medical in nature, such as a new medicine or vaccine. But it’s a general term that applies to other things such as training programs, manufacturing settings, teaching methods, and types of fertilizers. I helped run an experiment where the treatment was a jumping exercise intervention that we hoped would increase bone density. All these treatment examples are things that potentially influence a measurable outcome.

Even when you know your treatment generally, you must carefully consider the amount. How large of a dose? If you’re comparing three different temperatures in a manufacturing process, how far apart are they? For my bone mineral density study, we had to determine how frequently the exercise sessions would occur and how long each lasted.

How you define the treatments in the design of experiments can affect your findings and the generalizability of your results.

Assigning Subjects to Experimental Groups

A crucial decision for all experimental designs is determining how researchers assign subjects to the experimental conditions—the treatment and control groups. The control group is often, but not always, the lack of a treatment. It serves as a basis for comparison by showing outcomes for subjects who don’t receive a treatment. Learn more about Control Groups .

How your experimental design assigns subjects to the groups affects how confident you can be that the findings represent true causal effects rather than mere correlation caused by confounders. Indeed, the assignment method influences how you control for confounding variables. This is the difference between correlation and causation .

Imagine a study finds that vitamin consumption correlates with better health outcomes. As a researcher, you want to be able to say that vitamin consumption causes the improvements. However, with the wrong experimental design, you might only be able to say there is an association. A confounder, and not the vitamins, might actually cause the health benefits.

Let’s explore some of the ways to assign subjects in design of experiments.

Completely Randomized Designs

A completely randomized experimental design randomly assigns all subjects to the treatment and control groups. You simply take each participant and use a random process to determine their group assignment. You can flip coins, roll a die, or use a computer. Randomized experiments must be prospective studies because they need to be able to control group assignment.

Random assignment in the design of experiments helps ensure that the groups are roughly equivalent at the beginning of the study. This equivalence at the start increases your confidence that any differences you see at the end were caused by the treatments. The randomization tends to equalize confounders between the experimental groups and, thereby, cancels out their effects, leaving only the treatment effects.

For example, in a vitamin study, the researchers can randomly assign participants to either the control or vitamin group. Because the groups are approximately equal when the experiment starts, if the health outcomes are different at the end of the study, the researchers can be confident that the vitamins caused those improvements.

Statisticians consider randomized experimental designs to be the best for identifying causal relationships.

If you can’t randomly assign subjects but want to draw causal conclusions about an intervention, consider using a quasi-experimental design .

Learn more about Randomized Controlled Trials and Random Assignment in Experiments .

Randomized Block Designs

Nuisance factors are variables that can affect the outcome, but they are not the researcher’s primary interest. Unfortunately, they can hide or distort the treatment results. When experimenters know about specific nuisance factors, they can use a randomized block design to minimize their impact.

This experimental design takes subjects with a shared “nuisance” characteristic and groups them into blocks. The participants in each block are then randomly assigned to the experimental groups. This process allows the experiment to control for known nuisance factors.

Blocking in the design of experiments reduces the impact of nuisance factors on experimental error. The analysis assesses the effects of the treatment within each block, which removes the variability between blocks. The result is that blocked experimental designs can reduce the impact of nuisance variables, increasing the ability to detect treatment effects accurately.

Suppose you’re testing various teaching methods. Because grade level likely affects educational outcomes, you might use grade level as a blocking factor. To use a randomized block design for this scenario, divide the participants by grade level and then randomly assign the members of each grade level to the experimental groups.

A standard guideline for an experimental design is to “Block what you can, randomize what you cannot.” Use blocking for a few primary nuisance factors. Then use random assignment to distribute the unblocked nuisance factors equally between the experimental conditions.

You can also use covariates to control nuisance factors. Learn about Covariates: Definition and Uses .

Observational Studies

In some experimental designs, randomly assigning subjects to the experimental conditions is impossible or unethical. The researchers simply can’t assign participants to the experimental groups. However, they can observe them in their natural groupings, measure the essential variables, and look for correlations. These observational studies are also known as quasi-experimental designs. Retrospective studies must be observational in nature because they look back at past events.

Imagine you’re studying the effects of depression on an activity. Clearly, you can’t randomly assign participants to the depression and control groups. But you can observe participants with and without depression and see how their task performance differs.

Observational studies let you perform research when you can’t control the treatment. However, quasi-experimental designs increase the problem of confounding variables. For this design of experiments, correlation does not necessarily imply causation. While special procedures can help control confounders in an observational study, you’re ultimately less confident that the results represent causal findings.

Learn more about Observational Studies .

For a good comparison, learn about the differences and tradeoffs between Observational Studies and Randomized Experiments .

Between-Subjects vs. Within-Subjects Experimental Designs

When you think of the design of experiments, you probably picture a treatment and control group. Researchers assign participants to only one of these groups, so each group contains entirely different subjects than the other groups. Analysts compare the groups at the end of the experiment. Statisticians refer to this method as a between-subjects, or independent measures, experimental design.

In a between-subjects design , you can have more than one treatment group, but each subject is exposed to only one condition, the control group or one of the treatment groups.

A potential downside to this approach is that differences between groups at the beginning can affect the results at the end. As you’ve read earlier, random assignment can reduce those differences, but it is imperfect. There will always be some variability between the groups.

In a  within-subjects experimental design , also known as repeated measures, subjects experience all treatment conditions and are measured for each. Each subject acts as their own control, which reduces variability and increases the statistical power to detect effects.

In this experimental design, you minimize pre-existing differences between the experimental conditions because they all contain the same subjects. However, the order of treatments can affect the results. Beware of practice and fatigue effects. Learn more about Repeated Measures Designs .

Assigned to one experimental condition Participates in all experimental conditions
Requires more subjects Fewer subjects
Differences between subjects in the groups can affect the results Uses same subjects in all conditions.
No order of treatment effects. Order of treatments can affect results.

Design of Experiments Examples

For example, a bone density study has three experimental groups—a control group, a stretching exercise group, and a jumping exercise group.

In a between-subjects experimental design, scientists randomly assign each participant to one of the three groups.

In a within-subjects design, all subjects experience the three conditions sequentially while the researchers measure bone density repeatedly. The procedure can switch the order of treatments for the participants to help reduce order effects.

Matched Pairs Experimental Design

A matched pairs experimental design is a between-subjects study that uses pairs of similar subjects. Researchers use this approach to reduce pre-existing differences between experimental groups. It’s yet another design of experiments method for reducing sources of variability.

Researchers identify variables likely to affect the outcome, such as demographics. When they pick a subject with a set of characteristics, they try to locate another participant with similar attributes to create a matched pair. Scientists randomly assign one member of a pair to the treatment group and the other to the control group.

On the plus side, this process creates two similar groups, and it doesn’t create treatment order effects. While matched pairs do not produce the perfectly matched groups of a within-subjects design (which uses the same subjects in all conditions), it aims to reduce variability between groups relative to a between-subjects study.

On the downside, finding matched pairs is very time-consuming. Additionally, if one member of a matched pair drops out, the other subject must leave the study too.

Learn more about Matched Pairs Design: Uses & Examples .

Another consideration is whether you’ll use a cross-sectional design (one point in time) or use a longitudinal study to track changes over time .

A case study is a research method that often serves as a precursor to a more rigorous experimental design by identifying research questions, variables, and hypotheses to test. Learn more about What is a Case Study? Definition & Examples .

In conclusion, the design of experiments is extremely sensitive to subject area concerns and the time and resources available to the researchers. Developing a suitable experimental design requires balancing a multitude of considerations. A successful design is necessary to obtain trustworthy answers to your research question and to have a reasonable chance of detecting treatment effects when they exist.

Share this:

two features of good experimental design

Reader Interactions

' src=

March 23, 2024 at 2:35 pm

Dear Jim You wrote a superb document, I will use it in my Buistatistics course, along with your three books. Thank you very much! Miguel

' src=

March 23, 2024 at 5:43 pm

Thanks so much, Miguel! Glad this post was helpful and I trust the books will be as well.

' src=

April 10, 2023 at 4:36 am

What are the purpose and uses of experimental research design?

Comments and Questions Cancel reply

Experimental Design: Types, Examples & Methods

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .

Randomisation

An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomised design Randomised block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomised.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomised.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

  • Privacy Policy

Research Method

Home » Experimental Design – Types, Methods, Guide

Experimental Design – Types, Methods, Guide

Table of Contents

Experimental Research Design

Experimental Design

Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.

Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.

Types of Experimental Design

Here are the different types of experimental design:

Completely Randomized Design

In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.

Randomized Block Design

This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.

Factorial Design

In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.

Repeated Measures Design

In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.

Crossover Design

This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.

Split-plot Design

In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.

Nested Design

This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.

Laboratory Experiment

Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.

Field Experiment

Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.

Experimental Design Methods

Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:

Randomization

This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.

Control Group

The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.

Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.

Counterbalancing

This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.

Replication

Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.

This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.

This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.

Data Collection Method

Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:

Direct Observation

This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.

Self-report Measures

Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.

Behavioral Measures

Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.

Physiological Measures

Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.

Archival Data

Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.

Computerized Measures

Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.

Video Recording

Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.

Data Analysis Method

Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:

Descriptive Statistics

Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.

Inferential Statistics

Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.

Regression Analysis

Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.

Factor Analysis

Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.

Structural Equation Modeling (SEM)

SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.

Cluster Analysis

Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.

Time Series Analysis

Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.

Multilevel Modeling

Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.

Applications of Experimental Design 

Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:

  • Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
  • Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
  • Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
  • Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
  • Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
  • Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
  • Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.

Examples of Experimental Design 

Here are some examples of experimental design in different fields:

  • Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
  • Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
  • Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
  • Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
  • Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.

When to use Experimental Research Design 

Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.

Here are some situations where experimental research design may be appropriate:

  • When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
  • When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
  • When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
  • When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
  • When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.

How to Conduct Experimental Research

Here are the steps to conduct Experimental Research:

  • Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
  • Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
  • Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
  • Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
  • Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
  • Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
  • Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
  • Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
  • Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.

Purpose of Experimental Design 

The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.

Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.

Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.

Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.

Advantages of Experimental Design 

Experimental design offers several advantages in research. Here are some of the main advantages:

  • Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
  • Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
  • Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
  • Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
  • Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
  • Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.

Limitations of Experimental Design

Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:

  • Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
  • Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
  • Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
  • Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
  • Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
  • Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
  • Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Survey Research

Survey Research – Types, Methods, Examples

Research Methods

Research Methods – Types, Examples and Guide

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Observational Research

Observational Research – Methods and Guide

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design

notepad

In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Teach yourself statistics

Experimental Design

The term experimental design refers to a plan for assigning experimental units to treatment conditions.

Note: Your browser does not support HTML5 video. If you view this web page on a different browser (e.g., a recent version of Edge, Chrome, Firefox, or Opera), you can watch a video treatment of this lesson.

A good experimental design serves three purposes.

  • Causation . It allows the experimenter to make causal inferences about the relationship between independent variables and a dependent variable .
  • Control . It allows the experimenter to rule out alternative explanations due to the confounding effects of extraneous variables (i.e., variables other than the independent variables).
  • Variability . It reduces variability within treatment conditions, which makes it easier to detect differences in treatment outcomes.

An Experimental Design Example

Consider the following hypothetical experiment. Acme Medicine is conducting an experiment to test a new vaccine, developed to immunize people against the common cold. To test the vaccine, Acme has 1000 volunteers - 500 men and 500 women. The participants range in age from 21 to 70.

In this lesson, we describe three experimental designs - a completely randomized design, a randomized block design, and a matched pairs design. And we show how each design might be applied by Acme Medicine to understand the effect of the vaccine, while ruling out confounding effects of other factors.

Completely Randomized Design

The completely randomized design is probably the simplest experimental design, in terms of data analysis and convenience. With this design, participants are randomly assigned to treatments. A completely randomized design for the Acme Experiment is shown in the table below.

Treatment
Placebo Vaccine
500 500

In this design, the experimenter randomly assigned participants to one of two treatment conditions. They received a placebo or they received the vaccine. The same number of participants (500) were assigned to each treatment condition (although this is not required). The dependent variable is the number of colds reported in each treatment condition. If the vaccine is effective, participants in the "vaccine" condition should report significantly fewer colds than participants in the "placebo" condition.

A completely randomized design relies on randomization to control for the effects of lurking variables variables. Lurking variables are potential causal variables that were not included explicitly in the study. By randomly assigning subjects to treatments, the experimenter assumes that, on averge, lurking variables will affect each treatment condition equally; so any significant differences between conditions can fairly be attributed to the independent variable.

Randomized Block Design

With a randomized block design , the experimenter divides participants into subgroups called blocks , such that the variability within blocks is less than the variability between blocks. Then, participants within each block are randomly assigned to treatment conditions. Because this design reduces variability and potential confounding, it produces a better estimate of treatment effects. The table below shows a randomized block design for the Acme experiment.

Gender Treatment
Placebo Vaccine
Male 250 250
Female 250 250

Participants are assigned to blocks, based on gender. Then, within each block, participants are randomly assigned to treatments. For this design, 250 men get the placebo, 250 men get the vaccine, 250 women get the placebo, and 250 women get the vaccine.

It is known that men and women are physiologically different and react differently to medication. This design ensures that each treatment condition has an equal proportion of men and women. As a result, differences between treatment conditions cannot be attributed to gender. This randomized block design removes gender as a potential source of variability and as a potential confounding variable.

In this Acme example, the randomized block design is an improvement over the completely randomized design. Both designs use randomization to implicitly guard against confounding. But only the randomized block design explicitly controls for gender.

Note 1: In some blocking designs, individual participants may receive multiple treatments. This is called using the participant as his own control . Using the participant as his own control is desirable in some experiments (e.g., research on learning or fatigue). But it can also be a problem (e.g., medical studies where the medicine used in one treatment might interact with the medicine used in another treatment).

Note 2: Blocks perform a similar function in experimental design as strata perform in sampling. Both divide observations into subgroups. However, they are not the same. Blocking is associated with experimental design, and stratification is associated with survey sampling.

Matched Pairs Design

A matched pairs design is a special case of the randomized block design. It is used when the experiment has only two treatment conditions; and participants can be grouped into pairs, based on one or more blocking variables. Then, within each pair, participants are randomly assigned to different treatments. The table below shows a matched pairs design for the Acme experiment.

Pair Treatment
Placebo Vaccine
1 1 1
2 1 1
... ... ...
499 1 1
500 1 1

The 1000 participants are grouped into 500 matched pairs. Each pair is matched on gender and age. For example, Pair 1 might be two women, both age 21. Pair 2 might be two women, both age 22, and so on. This design provides explicit control for two potential lurking variables - age and gender. (And randomization controls for effects of lurking variables that were not included explicitly in the design.)

Test Your Understanding

Which of the following statements are true?

I. A completely randomized design offers no control for lurking variables. II. A randomized block design controls for the placebo effect. III. In a matched pairs design, participants within each pair receive the same treatment.

(A) I only (B) II only (C) III only (D) All of the above. (E) None of the above.

The correct answer is (E). In a completely randomized design , experimental units are randomly assigned to treatment conditions. Randomization provides some control for lurking variables . By itself, a randomized block design does not control for the placebo effect . To control for the placebo effect, the experimenter must include a placebo in one of the treatment levels. In a matched pairs design , experimental units within each pair are assigned to different treatment levels.

Instant insights, infinite possibilities

Experimental design: Guide, steps, examples

Last updated

27 April 2023

Reviewed by

Miroslav Damyanov

Short on time? Get an AI generated summary of this article instead

Experimental research design is a scientific framework that allows you to manipulate one or more variables while controlling the test environment. 

When testing a theory or new product, it can be helpful to have a certain level of control and manipulate variables to discover different outcomes. You can use these experiments to determine cause and effect or study variable associations. 

This guide explores the types of experimental design, the steps in designing an experiment, and the advantages and limitations of experimental design. 

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is experimental research design?

You can determine the relationship between each of the variables by: 

Manipulating one or more independent variables (i.e., stimuli or treatments)

Applying the changes to one or more dependent variables (i.e., test groups or outcomes)

With the ability to analyze the relationship between variables and using measurable data, you can increase the accuracy of the result. 

What is a good experimental design?

A good experimental design requires: 

Significant planning to ensure control over the testing environment

Sound experimental treatments

Properly assigning subjects to treatment groups

Without proper planning, unexpected external variables can alter an experiment's outcome. 

To meet your research goals, your experimental design should include these characteristics:

Provide unbiased estimates of inputs and associated uncertainties

Enable the researcher to detect differences caused by independent variables

Include a plan for analysis and reporting of the results

Provide easily interpretable results with specific conclusions

What's the difference between experimental and quasi-experimental design?

The major difference between experimental and quasi-experimental design is the random assignment of subjects to groups. 

A true experiment relies on certain controls. Typically, the researcher designs the treatment and randomly assigns subjects to control and treatment groups. 

However, these conditions are unethical or impossible to achieve in some situations.

When it's unethical or impractical to assign participants randomly, that’s when a quasi-experimental design comes in. 

This design allows researchers to conduct a similar experiment by assigning subjects to groups based on non-random criteria. 

Another type of quasi-experimental design might occur when the researcher doesn't have control over the treatment but studies pre-existing groups after they receive different treatments.

When can a researcher conduct experimental research?

Various settings and professions can use experimental research to gather information and observe behavior in controlled settings. 

Basically, a researcher can conduct experimental research any time they want to test a theory with variable and dependent controls. 

Experimental research is an option when the project includes an independent variable and a desire to understand the relationship between cause and effect. 

  • The importance of experimental research design

Experimental research enables researchers to conduct studies that provide specific, definitive answers to questions and hypotheses. 

Researchers can test Independent variables in controlled settings to:

Test the effectiveness of a new medication

Design better products for consumers

Answer questions about human health and behavior

Developing a quality research plan means a researcher can accurately answer vital research questions with minimal error. As a result, definitive conclusions can influence the future of the independent variable. 

Types of experimental research designs

There are three main types of experimental research design. The research type you use will depend on the criteria of your experiment, your research budget, and environmental limitations. 

Pre-experimental research design

A pre-experimental research study is a basic observational study that monitors independent variables’ effects. 

During research, you observe one or more groups after applying a treatment to test whether the treatment causes any change. 

The three subtypes of pre-experimental research design are:

One-shot case study research design

This research method introduces a single test group to a single stimulus to study the results at the end of the application. 

After researchers presume the stimulus or treatment has caused changes, they gather results to determine how it affects the test subjects. 

One-group pretest-posttest design

This method uses a single test group but includes a pretest study as a benchmark. The researcher applies a test before and after the group’s exposure to a specific stimulus. 

Static group comparison design

This method includes two or more groups, enabling the researcher to use one group as a control. They apply a stimulus to one group and leave the other group static. 

A posttest study compares the results among groups. 

True experimental research design

A true experiment is the most common research method. It involves statistical analysis to prove or disprove a specific hypothesis . 

Under completely experimental conditions, researchers expose participants in two or more randomized groups to different stimuli. 

Random selection removes any potential for bias, providing more reliable results. 

These are the three main sub-groups of true experimental research design:

Posttest-only control group design

This structure requires the researcher to divide participants into two random groups. One group receives no stimuli and acts as a control while the other group experiences stimuli.

Researchers perform a test at the end of the experiment to observe the stimuli exposure results.

Pretest-posttest control group design

This test also requires two groups. It includes a pretest as a benchmark before introducing the stimulus. 

The pretest introduces multiple ways to test subjects. For instance, if the control group also experiences a change, it reveals that taking the test twice changes the results.

Solomon four-group design

This structure divides subjects into two groups, with two as control groups. Researchers assign the first control group a posttest only and the second control group a pretest and a posttest. 

The two variable groups mirror the control groups, but researchers expose them to stimuli. The ability to differentiate between groups in multiple ways provides researchers with more testing approaches for data-based conclusions. 

Quasi-experimental research design

Although closely related to a true experiment, quasi-experimental research design differs in approach and scope. 

Quasi-experimental research design doesn’t have randomly selected participants. Researchers typically divide the groups in this research by pre-existing differences. 

Quasi-experimental research is more common in educational studies, nursing, or other research projects where it's not ethical or practical to use randomized subject groups.

  • 5 steps for designing an experiment

Experimental research requires a clearly defined plan to outline the research parameters and expected goals. 

Here are five key steps in designing a successful experiment:

Step 1: Define variables and their relationship

Your experiment should begin with a question: What are you hoping to learn through your experiment? 

The relationship between variables in your study will determine your answer.

Define the independent variable (the intended stimuli) and the dependent variable (the expected effect of the stimuli). After identifying these groups, consider how you might control them in your experiment. 

Could natural variations affect your research? If so, your experiment should include a pretest and posttest. 

Step 2: Develop a specific, testable hypothesis

With a firm understanding of the system you intend to study, you can write a specific, testable hypothesis. 

What is the expected outcome of your study? 

Develop a prediction about how the independent variable will affect the dependent variable. 

How will the stimuli in your experiment affect your test subjects? 

Your hypothesis should provide a prediction of the answer to your research question . 

Step 3: Design experimental treatments to manipulate your independent variable

Depending on your experiment, your variable may be a fixed stimulus (like a medical treatment) or a variable stimulus (like a period during which an activity occurs). 

Determine which type of stimulus meets your experiment’s needs and how widely or finely to vary your stimuli. 

Step 4: Assign subjects to groups

When you have a clear idea of how to carry out your experiment, you can determine how to assemble test groups for an accurate study. 

When choosing your study groups, consider: 

The size of your experiment

Whether you can select groups randomly

Your target audience for the outcome of the study

You should be able to create groups with an equal number of subjects and include subjects that match your target audience. Remember, you should assign one group as a control and use one or more groups to study the effects of variables. 

Step 5: Plan how to measure your dependent variable

This step determines how you'll collect data to determine the study's outcome. You should seek reliable and valid measurements that minimize research bias or error. 

You can measure some data with scientific tools, while you’ll need to operationalize other forms to turn them into measurable observations.

  • Advantages of experimental research

Experimental research is an integral part of our world. It allows researchers to conduct experiments that answer specific questions. 

While researchers use many methods to conduct different experiments, experimental research offers these distinct benefits:

Researchers can determine cause and effect by manipulating variables.

It gives researchers a high level of control.

Researchers can test multiple variables within a single experiment.

All industries and fields of knowledge can use it. 

Researchers can duplicate results to promote the validity of the study .

Replicating natural settings rapidly means immediate research.

Researchers can combine it with other research methods.

It provides specific conclusions about the validity of a product, theory, or idea.

  • Disadvantages (or limitations) of experimental research

Unfortunately, no research type yields ideal conditions or perfect results. 

While experimental research might be the right choice for some studies, certain conditions could render experiments useless or even dangerous. 

Before conducting experimental research, consider these disadvantages and limitations:

Required professional qualification

Only competent professionals with an academic degree and specific training are qualified to conduct rigorous experimental research. This ensures results are unbiased and valid. 

Limited scope

Experimental research may not capture the complexity of some phenomena, such as social interactions or cultural norms. These are difficult to control in a laboratory setting.

Resource-intensive

Experimental research can be expensive, time-consuming, and require significant resources, such as specialized equipment or trained personnel.

Limited generalizability

The controlled nature means the research findings may not fully apply to real-world situations or people outside the experimental setting.

Practical or ethical concerns

Some experiments may involve manipulating variables that could harm participants or violate ethical guidelines . 

Researchers must ensure their experiments do not cause harm or discomfort to participants. 

Sometimes, recruiting a sample of people to randomly assign may be difficult. 

  • Experimental research design example

Experiments across all industries and research realms provide scientists, developers, and other researchers with definitive answers. These experiments can solve problems, create inventions, and heal illnesses. 

Product design testing is an excellent example of experimental research. 

A company in the product development phase creates multiple prototypes for testing. With a randomized selection, researchers introduce each test group to a different prototype. 

When groups experience different product designs , the company can assess which option most appeals to potential customers. 

Experimental research design provides researchers with a controlled environment to conduct experiments that evaluate cause and effect. 

Using the five steps to develop a research plan ensures you anticipate and eliminate external variables while answering life’s crucial questions.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

  • Types of experimental

Log in or sign up

Get started for free

Logo for Mavs Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

14.1 What is experimental design and when should you use it?

Learning objectives.

Learners will be able to…

  • Describe the purpose of experimental design research
  • Describe nomethetic causality and the logic of experimental design
  • Identify the characteristics of a basic experiment
  • Discuss the relationship between dependent and independent variables in experiments
  • Identify the three major types of experimental designs

Pre-awareness check (Knowledge)

What are your thoughts on the phrase ‘experiment’ in the realm of social sciences? In an experiment, what is the independent variable?

The basics of experiments

In social work research, experimental design is used to test the effects of treatments, interventions, programs, or other conditions to which individuals, groups, organizations, or communities may be exposed to. There are a lot of experiments social work researchers can use to explore topics such as treatments for depression, impacts of school-based mental health on student outcomes, or prevention of abuse of people with disabilities. The American Psychological Association defines an experiment   as:

a series of observations conducted under controlled conditions to study a relationship with the purpose of drawing causal inferences about that relationship. An experiment involves the manipulation of an independent variable , the measurement of a dependent variable , and the exposure of various participants to one or more of the conditions being studied. Random selection of participants and their random assignment to conditions also are necessary in experiments .

In experimental design, the independent variable is the intervention, treatment, or condition that is being investigated as a potential cause of change (i.e., the experimental condition ). The effect, or outcome, of the experimental condition is the dependent variable. Trying out a new restaurant, dating a new person – we often call these things “experiments.” However, a true social science experiment would include recruitment of a large enough sample, random assignment to control and experimental groups, exposing those in the experimental group to an experimental condition, and collecting observations at the end of the experiment.

Social scientists use this level of rigor and control to maximize the internal validity of their research. Internal validity is the confidence researchers have about whether the independent variable (e.g, treatment) truly produces a change in the dependent, or outcome, variable. The logic and features of experimental design are intended to help establish causality and to reduce threats to internal validity , which we will discuss in Section 14.5 .

Experiments attempt to establish a nomothetic causal relationship between two variables—the treatment and its intended outcome.  We discussed the four criteria for establishing nomothetic causality in Section 4.3 :

  • plausibility,
  • covariation,
  • temporality, and
  • nonspuriousness.

Experiments should establish plausibility , having a plausible reason why their intervention would cause changes in the dependent variable. Usually, a theory framework or previous empirical evidence will indicate the plausibility of a causal relationship.

Covariation can be established for causal explanations by showing that the “cause” and the “effect” change together.  In experiments, the cause is an intervention, treatment, or other experimental condition. Whether or not a research participant is exposed to the experimental condition is the independent variable. The effect in an experiment is the outcome being assessed and is the dependent variable in the study. When the independent and dependent variables covary, they can have a positive association (e.g., those exposed to the intervention have increased self-esteem) or a negative association (e.g., those exposed to the intervention have reduced anxiety).

Since researcher controls when the intervention is administered, they can be assured that changes in the independent variable (the treatment) happens before changes in the dependent variable (the outcome). In this way, experiments assure temporality .

Finally, one of the most important features of experiments is that they allow researchers to eliminate spurious variables to support the criterion of nonspuriousness . True experiments are usually conducted under strictly controlled conditions. The intervention is given in the same way to each person, with a minimal number of other variables that might cause their post-test scores to change.

The logic of experimental design

How do we know that one phenomenon causes another? The complexity of the social world in which we practice and conduct research means that causes of social problems are rarely cut and dry. Uncovering explanations for social problems is key to helping clients address them, and experimental research designs are one road to finding answers.

Just because two phenomena are related in some way doesn’t mean that one causes the other. Ice cream sales increase in the summer, and so does the rate of violent crime; does that mean that eating ice cream is going to make me violent? Obviously not, because ice cream is great. The reality of that association is far more complex—it could be that hot weather makes people more irritable and, at times, violent, while also making people want ice cream. More likely, though, there are other social factors not accounted for in the way we just described this association.

As we have discussed, experimental designs can help clear up at least some of this fog by allowing researchers to isolate the effect of interventions on dependent variables by controlling extraneous variables . In true experimental design (discussed in the next section) and quasi-experimental design, researchers accomplish this w ith a control group or comparison group and the experimental group . The experimental group is sometimes called the treatment group because people in the experimental group receive the treatment or are exposed to the experimental condition (but we will call it the experimental group in this chapter.) The control/comparison group does not receive the treatment or intervention. Instead they may receive what is known as “treatment as usual” or perhaps no treatment at all.

two features of good experimental design

In a well-designed experiment, the control group should look almost identical to the experimental group in terms of demographics and other relevant factors. What if we want to know the effect of CBT on social anxiety, but we have learned in prior research that men tend to have a more difficult time overcoming social anxiety? We would want our control and experimental groups to have a similar portions of men, since ostensibly, both groups’ results would be affected by the men in the group. If your control group has 5 women, 6 men, and 4 non-binary people, then your experimental group should be made up of roughly the same gender balance to help control for the influence of gender on the outcome of your intervention. (In reality, the groups should be similar along other dimensions, as well, and your group will likely be much larger.) The researcher will use the same outcome measures for both groups and compare them, and assuming the experiment was designed correctly, get a pretty good answer about whether the intervention had an effect on social anxiety.

Random assignment [/pb_glossary], also called randomization, entails using a random process to decide which participants are put into the control or experimental group (which participants receive an intervention and which do not). By randomly assigning participants to a group, you can reduce the effect of extraneous variables on your research because there won’t be a systematic difference between the groups.

Do not confuse random assignment with random sampling . Random sampling is a method for selecting a sample from a population and is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other related fields. Random sampling helps a great deal with external validity, or generalizability , whereas random assignment increases internal validity .

Other Features of Experiments that Help Establish Causality

To control for spuriousness (as well as meeting the three other criteria for establishing causality), experiments try to control as many aspects of the research process as possible: using control groups, having large enough sample sizes, standardizing the treatment, etc. Researchers in large experiments often employ clinicians or other research staff to help them. Researchers train their staff members exhaustively, provide pre-scripted responses to common questions, and control the physical environment of the experiment so each person who participates receives the exact same treatment. Experimental researchers also document their procedures, so that others can review them and make changes in future research if they think it will improve on the ability to control for spurious variables.

An interesting example is Bruce Alexander’s (2010) Rat Park experiments. Much of the early research conducted on addictive drugs, like heroin and cocaine, was conducted on animals other than humans, usually mice or rats. The scientific consensus up until Alexander’s experiments was that cocaine and heroin were so addictive that rats, if offered the drugs, would consume them repeatedly until they perished. Researchers claimed this behavior explained how addiction worked in humans, but Alexander was not so sure. He knew rats were social animals and the experimental procedure from previous experiments did not allow them to socialize. Instead, rats were kept isolated in small cages with only food, water, and metal walls. To Alexander, social isolation was a spurious variable, causing changes in addictive behavior not due to the drug itself. Alexander created an experiment of his own, in which rats were allowed to run freely in an interesting environment, socialize and mate with other rats, and of course, drink from a solution that contained an addictive drug. In this environment, rats did not become hopelessly addicted to drugs. In fact, they had little interest in the substance. To Alexander, the results of his experiment demonstrated that social isolation was more of a causal factor for addiction than the drug itself.

One challenge with Alexander’s findings is that subsequent researchers have had mixed success replicating his findings (e.g., Petrie, 1996; Solinas, Thiriet, El Rawas, Lardeux, & Jaber, 2009). Replication involves conducting another researcher’s experiment in the same manner and seeing if it produces the same results. If the causal relationship is real, it should occur in all (or at least most) rigorous replications of the experiment.

Replicability

[INSERT A PARAGRAPH ABOUT REPLICATION/REPRODUCTION HERE. CAN USE/REFERENCE THIS   IF IT’S HELPFUL; include glossary definition as well as other general info]

To allow for easier replication, researchers should describe their experimental methods diligently. Researchers with the Open Science Collaboration (2015) [1] conducted the Reproducibility Project , which caused a significant controversy regarding the validity of psychological studies. The researchers with the project attempted to reproduce the results of 100 experiments published in major psychology journals since 2008. What they found was shocking. Although 97% of the original studies reported significant results, only 36% of the replicated studies had significant findings. The average effect size in the replication studies was half that of the original studies. The implications of the Reproducibility Project are potentially staggering, and encourage social scientists to carefully consider the validity of their reported findings and that the scientific community take steps to ensure researchers do not cherry-pick data or change their hypotheses simply to get published.

Generalizability

Let’s return to Alexander’s Rat Park study and consider the implications of his experiment for substance use professionals.  The conclusions he drew from his experiments on rats were meant to be generalized to the population. If this could be done, the experiment would have a high degree of external validity , which is the degree to which conclusions generalize to larger populations and different situations. Alexander argues his conclusions about addiction and social isolation help us understand why people living in deprived, isolated environments may become addicted to drugs more often than those in more enriching environments. Similarly, earlier rat researchers argued their results showed these drugs were instantly addictive to humans, often to the point of death.

Neither study’s results will match up perfectly with real life. There are clients in social work practice who may fit into Alexander’s social isolation model, but social isolation is complex. Clients can live in environments with other sociable humans, work jobs, and have romantic relationships; does this mean they are not socially isolated? On the other hand, clients may face structural racism, poverty, trauma, and other challenges that may contribute to their social environment. Alexander’s work helps understand clients’ experiences, but the explanation is incomplete. Human existence is more complicated than the experimental conditions in Rat Park.

Effectiveness versus Efficacy

Social workers are especially attentive to how social context shapes social life. This consideration points out a potential weakness of experiments. They can be rather artificial. When an experiment demonstrates causality under ideal, controlled circumstances, it establishes the efficacy of an intervention.

How often do real-world social interactions occur in the same way that they do in a controlled experiment? Experiments that are conducted in community settings by community practitioners are less easily controlled than those conducted in a lab or with researchers who adhere strictly to research protocols delivering the intervention. When an experiment demonstrates causality in a real-world setting that is not tightly controlled, it establishes the effectiveness of the intervention.

The distinction between efficacy and effectiveness demonstrates the tension between internal and external validity. Internal validity and external validity are conceptually linked. Internal validity refers to the degree to which the intervention causes its intended outcomes, and external validity refers to how well that relationship applies to different groups and circumstances than the experiment. However, the more researchers tightly control the environment to ensure internal validity, the more they may risk external validity for generalizing their results to different populations and circumstances. Correspondingly, researchers whose settings are just like the real world will be less able to ensure internal validity, as there are many factors that could pollute the research process. This is not to suggest that experimental research findings cannot have high levels of both internal and external validity, but that experimental researchers must always be aware of this potential weakness and clearly report limitations in their research reports.

Types of Experimental Designs

Experimental design is an umbrella term for a research method that is designed to test hypotheses related to causality under controlled conditions. Table 14.1 describes the three major types of experimental design (pre-experimental, quasi-experimental, and true experimental) and presents subtypes for each. As we will see in the coming sections, some types of experimental design are better at establishing causality than others. It’s also worth considering that true experiments, which most effectively establish causality , are often difficult and expensive to implement. Although the other experimental designs aren’t perfect, they still produce useful, valid evidence and may be more feasible to carry out.

Table 14.1. Types of experimental design and their basic characteristics.
)
A. One-group pretest posttest A. Pre- and posttests are administered, but no comparison group XXXX
B. One-shot case study B. No pretest What is the average level of loneliness among graduates of a peer support training program? What percent of graduates rate their social support as “good” or “excellent”?
)
C. Nonequivalent comparison group design C. Similar to classical experimental design only without random assignment XXXX
D. Static-group design D. No pretest, posttest administered after the intervention

 

E. Natural experiments E. Naturally occurring event becomes “experimental condition”; observational study in which some cases are exposed to condition (which becomes the “experimental condition”) and others are not; changes in “experimental” group can be assessed;  
( ) XXXX
F. Classical experimental design F. Pre- and posttest; control group
G. Posttest only control group G. Does not use a pretest and assumes random assignment results in equivalent groups
H. Solomon four group design H. Random assignment, two experimental and two control groups, pretests for half of the groups and posttests for all

Key Takeaways

  • Experimental designs are useful for establishing causality, but some types of experimental design do this better than others.
  • Experiments help researchers isolate the effect of the independent variable on the dependent variable by controlling for the effect of extraneous variables .
  • Experiments use a control/comparison group and an experimental group to test the effects of interventions. These groups should be as similar to each other as possible in terms of demographics and other relevant factors.
  • True experiments have control groups with randomly assigned participants; quasi-experimental types of experiments have comparison groups to which participants are not randomly assigned; pre-experimental designs do not have a comparison group.

TRACK 1 (IF YOU  ARE  CREATING A RESEARCH PROPOSAL FOR THIS CLASS):

  • Think about the research project you’ve been designing so far. How might you use a basic experiment to answer your question? If your question isn’t explanatory, try to formulate a new explanatory question and consider the usefulness of an experiment.
  • Why is establishing a simple relationship between two variables not indicative of one causing the other?

TRACK 2 (IF YOU  AREN’T  CREATING A RESEARCH PROPOSAL FOR THIS CLASS):

Imagine you are interested in studying child welfare practice. You are interested in learning more about community-based programs aimed to prevent child maltreatment and to prevent out-of-home placement for children.

  • Think about the research project stated above. How might you use a basic experiment to look more into this research topic? Try to formulate an explanatory question and consider the usefulness of an experiment.
  • Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349 (6251), aac4716. Doi: 10.1126/science.aac4716 ↵

an operation or procedure carried out under controlled conditions in order to discover an unknown effect or law, to test or establish a hypothesis, or to illustrate a known law.

treatment, intervention, or experience that is being tested in an experiment (the independent variable) that is received by the experimental group and not by the control group.

Ability to say that one variable "causes" something to happen to another variable. Very important to assess when thinking about studies that examine causation such as experimental or quasi-experimental designs.

circumstances or events that may affect the outcome of an experiment, resulting in changes in the research participants that are not a result of the intervention, treatment, or experimental condition being tested

causal explanations that can be universally applied to groups, such as scientific laws or universal truths

as a criteria for causal relationship, the relationship must make logical sense and seem possible

when the values of two variables change at the same time

as a criteria for causal relationship, the cause must come before the effect

an association between two variables that is NOT caused by a third variable

variables and characteristics that have an effect on your outcome, but aren't the primary variable whose influence you're interested in testing.

the group of participants in our study who do not receive the intervention we are researching in experiments with random assignment

the group of participants in our study who do not receive the intervention we are researching in experiments without random assignment

in experimental design, the group of participants in our study who do receive the intervention we are researching

The ability to apply research findings beyond the study sample to some broader population,

This is a synonymous term for generalizability - the ability to apply the findings of a study beyond the sample to a broader population.

performance of an intervention under ideal and controlled circumstances, such as in a lab or delivered by trained researcher-interventionists

The performance of an intervention under "real-world" conditions that are not closely controlled and ideal

the idea that one event, behavior, or belief will result in the occurrence of another, subsequent event, behavior, or belief

Doctoral Research Methods in Social Work Copyright © by Mavs Open Press. All Rights Reserved.

Share This Book

Logo

Three Principles of Experimental Designs

by Kim Love   1 Comment

Stage 2

Yes, absolutely! Understanding experimental design can help you recognize the questions you can and can’t answer with the data. It will also help you identify possible sources of bias that can lead to undesirable results. Finally, it will help you provide recommendations to make future studies more efficient.

The Three Rs of Experimental Design

An experiment involves one or more treatments, each with two or more conditions. The defining characteristic of an experiment is that the researcher is able to assign subjects to treatment groups.

There are three principles that underlie any experiment. These are often called the three Rs of experimental design , and they are:

Randomization

Replication.

  • Reduction of variance

Let’s look at each principle in the context of a specific experiment.

two features of good experimental design

Randomization is the assignment of the subjects in the study to treatment groups in a random way. This is one of the most important aspects of an experiment.

It ensures that the only systematic difference in groups is the treatment condition. In the training experiment, this would mean that any difference in the outcomes between the two groups is due to the training. In other words, random assignment allows you to demonstrate causation.

Suppose the researcher did not randomize, and assigned men to one group and women to the other group. It should be clear that we won’t know if differences between the treatment groups come from gender or training.

Although in this example our confounding variable , gender, is obvious, that’s not always true. Randomization is the only sure way to avoid accidental confounding and its resulting bias.

Replication refers to having multiple subjects in each group. The more subjects in each group, the easier to determine whether any differences between the groups are due to the treatment and not the characteristics of individuals in the groups.

Suppose the training study had limited resources. Would it be enough to recruit only two people, and compare their times after training? Again, it’s probably obvious you can’t do this. The difference in outcomes would depend as much on those two people as it would on the training method.

There are many considerations that go into determining sample size . Generally, though, more subjects per group means more statistical confidence in the outcomes. Too few subjects in a group makes it very hard to find differences in the outcomes between treatment groups.

Reduction of Variance

Reduction of variance refers to removing or accounting for systematic difference among subjects. This allows you to measure the differences due to the treatment more precisely. There are multiple ways to approach this.

One way is to limit the population of the study so the subjects are more similar. Another way is to incorporate covariates into the analysis. These are variables outside of the experimental design that you can measure.

A third way is blocking. This refers to identifying related subjects and randomly assigning them to different treatments.

In the training experiment, not accounting for gender could make it more difficult to estimate the effects of training. There are at least three ways to account for it in the design and data collection.

  • Only include one gender in the study, and limit the results of the study to that one gender.
  • Measure the participants’ gender and include it in the study as a covariate.
  • Include gender in the experimental design as a block. Randomly assign men and women in equal number to the two groups, and include gender in the analysis.

Application to Analysis

Although there are many types of experimental designs, the three Rs are at the heart of each of them. Advanced experimental designs simply achieve these under complicated circumstances. Understanding these principles, even without advanced knowledge, will make you a better analyst.

Always answer the following questions any time you are analyzing experimental data:

1. How was randomization applied in the experiment? This will help you understand whether you can draw causal conclusions. It will also help you recognize if the general conclusions of the study could be biased.

2. How much replication was there in the experiment? If the number of subjects was small (overall or in certain groups), this could result in a lack of findings.

3. Was variability outside of the scope of the experiment appropriately reduced? If the researcher can account for outside factors in the future, this will make the experiment more efficient.

two features of good experimental design

Reader Interactions

' src=

July 19, 2022 at 3:02 am

Hi Kim, Thanks for this nice article,

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Privacy Overview

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

12.1 Experimental design: What is it and when should it be used?

Learning objectives.

  • Define experiment
  • Identify the core features of true experimental designs
  • Describe the difference between an experimental group and a control group
  • Identify and describe the various types of true experimental designs

Experiments are an excellent data collection strategy for social workers wishing to observe the effects of a clinical intervention or social welfare program. Understanding what experiments are and how they are conducted is useful for all social scientists, whether they actually plan to use this methodology or simply aim to understand findings from experimental studies. An experiment is a method of data collection designed to test hypotheses under controlled conditions. Students in my research methods classes often use the term experiment to describe all kinds of research projects, but in social scientific research, the term has a unique meaning and should not be used to describe all research methodologies.

cartoon including a stopwatch and a pencil marking a checkbox on a clipboard

Experiments have a long and important history in social science. Behaviorists such as John Watson, B. F. Skinner, Ivan Pavlov, and Albert Bandura used experimental design to demonstrate the various types of conditioning. Using strictly controlled environments, behaviorists were able to isolate a single stimulus as the cause of measurable differences in behavior or physiological responses. The foundations of social learning theory and behavior modification are found in experimental research projects. Moreover, behaviorist experiments brought psychology and social science away from the abstract world of Freudian analysis and towards empirical inquiry, grounded in real-world observations and objectively-defined variables. Experiments are used at all levels of social work inquiry, including agency-based experiments that test therapeutic interventions and policy experiments that test new programs.

Several kinds of experimental designs exist. In general, designs considered to be true experiments contain three key features: independent and dependent variables, pretesting and posttesting, and experimental and control groups. In a true experiment, the effect of an intervention is tested by comparing two groups: one that is exposed to the intervention (the experimental group , also known as the treatment group) and another that does not receive the intervention (the control group ).

In some cases, it may be immoral to withhold treatment from a control group within an experiment. If you recruited two groups of people with severe addiction and only provided treatment to one group, the other group would likely suffer. For these cases, researchers use a comparison group that receives “treatment as usual.” Experimenters must clearly define what treatment as usual means. For example, a standard treatment in substance abuse recovery is attending Alcoholics Anonymous or Narcotics Anonymous meetings. A substance abuse researcher conducting an experiment may use twelve-step programs in their comparison group and use their experimental intervention in the experimental group. The results would show whether the experimental intervention worked better than normal treatment, which is useful information. However, using a comparison group is a deviation from true experimental design and is more associated with quasi-experimental designs.

Importantly, participants in a true experiment need to be randomly assigned to either the control or experimental groups. Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups are due to random chance. We will address more of the logic behind random assignment in the next section.

In an experiment, the independent variable is the intervention being tested—for example, a therapeutic technique, prevention program, or access to some service or support. It is less common in of social work research, but social science research may also have a stimulus, rather than an intervention as the independent variable. For example, an electric shock or a reading about death might be used as a stimulus to provoke a response.

The dependent variable is usually the intended effect the researcher wants the intervention to have. If the researcher is testing a new therapy for individuals with binge eating disorder, their dependent variable may be the number of binge eating episodes a participant reports. The researcher likely expects her intervention to decrease the number of binge eating episodes reported by participants. Thus, she must measure the number of episodes that existed prior to the intervention, which is the pretest , and after the intervention, which is the posttest .

Let’s put these concepts in chronological order so we can better understand how an experiment runs from start to finish. Once you’ve collected your sample, you’ll need to randomly assign your participants to the experimental group and control group. You will then give both groups your pretest, which measures your dependent variable, to see what your participants are like before you start your intervention. Next, you will provide your intervention, or independent variable, to your experimental group. Many interventions last a few weeks or months to complete, particularly therapeutic treatments. Finally, you will administer your posttest to both groups to observer any changes in your dependent variable. Together, this is known as the classic experimental design and is the simplest type of true experimental design. All of the designs we review in this section are variations on this approach. Figure 12.1 visually represents these steps.

two features of good experimental design

An interesting example of experimental research can be found in Shannon K. McCoy and Brenda Major’s (2003)  [1] study of peoples’ perceptions of prejudice. In one portion of this multifaceted study, all participants were given a pretest to assess their levels of depression. No significant differences in depression were found between the experimental and control groups during the pretest. Participants in the experimental group were then asked to read an article suggesting that prejudice against their own racial group is severe and pervasive, while participants in the control group were asked to read an article suggesting that prejudice against a racial group other than their own is severe and pervasive. Clearly, these were not meant to be interventions or treatments to help depression, but were stimuli designed to elicit changes in people’s depression levels. Upon measuring depression scores during the posttest period, the researchers discovered that those who had received the experimental stimulus (the article citing prejudice against their same racial group) reported greater depression than those in the control group. This is just one of many examples of social scientific experimental research.

In addition to classic experimental design, there are two other ways of designing experiments that are considered to fall within the purview of “true” experiments (Babbie, 2010; Campbell & Stanley, 1963).  [2] The posttest-only control group design is almost the same as classic experimental design, except it does not use a pretest. Researchers who use posttest-only designs want to eliminate testing effects , in which a participant’s scores on a measure change because they have already been exposed to it. If you took multiple SAT or ACT practice exams before you took the real one you sent to colleges, you’ve taken advantage of testing effects to get a better score. Considering the previous example on racism and depression, participants who are given a pretest about depression before being exposed to the stimulus would likely assume that the intervention is designed to address depression. That knowledge can cause them to answer differently on the posttest than they otherwise would. Participants are not stupid. They are actively trying to figure out what your study is about.

In theory, as long as the control and experimental groups have been determined randomly and are therefore comparable, no pretest is needed. However, most researchers prefer to use pretests so they may assess change over time within both the experimental and control groups. Researchers wishing to account for testing effects but also gather pretest data can use a Solomon four-group design. In the Solomon four-group design , the researcher uses four groups. Two groups are treated as they would be in a classic experiment—pretest, experimental group intervention, and posttest. The other two groups do not receive the pretest, though one receives the intervention. All groups are given the posttest. Table 12.1 illustrates the features of each of the four groups in the Solomon four-group design. By having one set of experimental and control groups that complete the pretest (Groups 1 and 2) and another set that does not complete the pretest (Groups 3 and 4), researchers using the Solomon four-group design can account for testing effects in their analysis.

Table 12.1 Solomon four-group design
Group 1 X X X
Group 2 X X
Group 3 X X
Group 4 X

Solomon four-group designs are challenging to implement in the real world because they are time- and resource-intensive. Researchers must recruit enough participants to create four groups and implement interventions in two of them. Overall, true experimental designs are sometimes difficult to implement in a real-world practice environment. It may be impossible to withhold treatment from a control group or randomly assign participants in a study. In these cases, pre-experimental and quasi-experimental designs can be used. However, the differences in rigor from true experimental designs leave their conclusions more open to critique.

Key Takeaways

  • True experimental designs require random assignment.
  • Control groups do not receive an intervention, and experimental groups receive an intervention.
  • The basic components of a true experiment include a pretest, posttest, control group, and experimental group.
  • Testing effects may cause researchers to use variations on the classic experimental design.
  • Classic experimental design- uses random assignment, an experimental and control group, as well as pre- and posttesting
  • Comparison group- a group in quasi-experimental designs that receives “treatment as usual” instead of no treatment
  • Control group- the group in an experiment that does not receive the intervention
  • Experiment- a method of data collection designed to test hypotheses under controlled conditions
  • Experimental group- the group in an experiment that receives the intervention
  • Posttest- a measurement taken after the intervention
  • Posttest-only control group design- a type of experimental design that uses random assignment, and an experimental and control group, but does not use a pretest
  • Pretest- a measurement taken prior to the intervention
  • Random assignment-using a random process to assign people into experimental and control groups
  • Solomon four-group design- uses random assignment, two experimental and two control groups, pretests for half of the groups, and posttests for all
  • Testing effects- when a participant’s scores on a measure change because they have already been exposed to it
  • True experiments- a group of experimental designs that contain independent and dependent variables, pretesting and post testing, and experimental and control groups

Image attributions

exam scientific experiment by mohamed_hassan CC-0

  • McCoy, S. K., & Major, B. (2003). Group identification moderates emotional response to perceived prejudice. Personality and Social Psychology Bulletin , 29, 1005–1017. ↵
  • Babbie, E. (2010). The practice of social research (12th ed.). Belmont, CA: Wadsworth; Campbell, D., & Stanley, J. (1963). Experimental and quasi-experimental designs for research . Chicago, IL: Rand McNally. ↵

Scientific Inquiry in Social Work Copyright © 2018 by Matthew DeCarlo is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Designing Good Experiments

  • First Online: 29 November 2022

Cite this chapter

two features of good experimental design

  • Patricia Gosling 3 &
  • Bart Noordam 4  

1372 Accesses

In the previous chapter we talked about what it means to ‘think like a scientist’ and how to successfully apply the scientific method to your work. A critical feature of this process involves testing your hypothesis with experiments.

Progress in science comes when experiments contradict theory. — Richard Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and affiliations.

Zurich, Switzerland

Patricia Gosling

ASML (Netherlands), Amsterdam, The Netherlands

Bart Noordam

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Patricia Gosling .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Gosling, P., Noordam, B. (2022). Designing Good Experiments. In: Mastering Your PhD. Springer, Cham. https://doi.org/10.1007/978-3-031-11417-5_5

Download citation

DOI : https://doi.org/10.1007/978-3-031-11417-5_5

Published : 29 November 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-11416-8

Online ISBN : 978-3-031-11417-5

eBook Packages : Physics and Astronomy Physics and Astronomy (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Statistical Design and Analysis of Biological Experiments

Chapter 1 principles of experimental design, 1.1 introduction.

The validity of conclusions drawn from a statistical analysis crucially hinges on the manner in which the data are acquired, and even the most sophisticated analysis will not rescue a flawed experiment. Planning an experiment and thinking about the details of data acquisition is so important for a successful analysis that R. A. Fisher—who single-handedly invented many of the experimental design techniques we are about to discuss—famously wrote

To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ( Fisher 1938 )

(Statistical) design of experiments provides the principles and methods for planning experiments and tailoring the data acquisition to an intended analysis. Design and analysis of an experiment are best considered as two aspects of the same enterprise: the goals of the analysis strongly inform an appropriate design, and the implemented design determines the possible analyses.

The primary aim of designing experiments is to ensure that valid statistical and scientific conclusions can be drawn that withstand the scrutiny of a determined skeptic. Good experimental design also considers that resources are used efficiently, and that estimates are sufficiently precise and hypothesis tests adequately powered. It protects our conclusions by excluding alternative interpretations or rendering them implausible. Three main pillars of experimental design are randomization , replication , and blocking , and we will flesh out their effects on the subsequent analysis as well as their implementation in an experimental design.

An experimental design is always tailored towards predefined (primary) analyses and an efficient analysis and unambiguous interpretation of the experimental data is often straightforward from a good design. This does not prevent us from doing additional analyses of interesting observations after the data are acquired, but these analyses can be subjected to more severe criticisms and conclusions are more tentative.

In this chapter, we provide the wider context for using experiments in a larger research enterprise and informally introduce the main statistical ideas of experimental design. We use a comparison of two samples as our main example to study how design choices affect an analysis, but postpone a formal quantitative analysis to the next chapters.

1.2 A Cautionary Tale

For illustrating some of the issues arising in the interplay of experimental design and analysis, we consider a simple example. We are interested in comparing the enzyme levels measured in processed blood samples from laboratory mice, when the sample processing is done either with a kit from a vendor A, or a kit from a competitor B. For this, we take 20 mice and randomly select 10 of them for sample preparation with kit A, while the blood samples of the remaining 10 mice are prepared with kit B. The experiment is illustrated in Figure 1.1 A and the resulting data are given in Table 1.1 .

Table 1.1: Measured enzyme levels from samples of twenty mice. Samples of ten mice each were processed using a kit of vendor A and B, respectively.
A 8.96 8.95 11.37 12.63 11.38 8.36 6.87 12.35 10.32 11.99
B 12.68 11.37 12.00 9.81 10.35 11.76 9.01 10.83 8.76 9.99

One option for comparing the two kits is to look at the difference in average enzyme levels, and we find an average level of 10.32 for vendor A and 10.66 for vendor B. We would like to interpret their difference of -0.34 as the difference due to the two preparation kits and conclude whether the two kits give equal results or if measurements based on one kit are systematically different from those based on the other kit.

Such interpretation, however, is only valid if the two groups of mice and their measurements are identical in all aspects except the sample preparation kit. If we use one strain of mice for kit A and another strain for kit B, any difference might also be attributed to inherent differences between the strains. Similarly, if the measurements using kit B were conducted much later than those using kit A, any observed difference might be attributed to changes in, e.g., mice selected, batches of chemicals used, device calibration, or any number of other influences. None of these competing explanations for an observed difference can be excluded from the given data alone, but good experimental design allows us to render them (almost) arbitrarily implausible.

A second aspect for our analysis is the inherent uncertainty in our calculated difference: if we repeat the experiment, the observed difference will change each time, and this will be more pronounced for a smaller number of mice, among others. If we do not use a sufficient number of mice in our experiment, the uncertainty associated with the observed difference might be too large, such that random fluctuations become a plausible explanation for the observed difference. Systematic differences between the two kits, of practically relevant magnitude in either direction, might then be compatible with the data, and we can draw no reliable conclusions from our experiment.

In each case, the statistical analysis—no matter how clever—was doomed before the experiment was even started, while simple ideas from statistical design of experiments would have provided correct and robust results with interpretable conclusions.

1.3 The Language of Experimental Design

By an experiment we understand an investigation where the researcher has full control over selecting and altering the experimental conditions of interest, and we only consider investigations of this type. The selected experimental conditions are called treatments . An experiment is comparative if the responses to several treatments are to be compared or contrasted. The experimental units are the smallest subdivision of the experimental material to which a treatment can be assigned. All experimental units given the same treatment constitute a treatment group . Especially in biology, we often compare treatments to a control group to which some standard experimental conditions are applied; a typical example is using a placebo for the control group, and different drugs for the other treatment groups.

The values observed are called responses and are measured on the response units ; these are often identical to the experimental units but need not be. Multiple experimental units are sometimes combined into groupings or blocks , such as mice grouped by litter, or samples grouped by batches of chemicals used for their preparation. More generally, we call any grouping of the experimental material (even with group size one) a unit .

In our example, we selected the mice, used a single sample per mouse, deliberately chose the two specific vendors, and had full control over which kit to assign to which mouse. In other words, the two kits are the treatments and the mice are the experimental units. We took the measured enzyme level of a single sample from a mouse as our response, and samples are therefore the response units. The resulting experiment is comparative, because we contrast the enzyme levels between the two treatment groups.

Three designs to determine the difference between two preparation kits A and B based on four mice. A: One sample per mouse. Comparison between averages of samples with same kit. B: Two samples per mouse treated with the same kit. Comparison between averages of mice with same kit requires averaging responses for each mouse first. C: Two samples per mouse each treated with different kit. Comparison between two samples of each mouse, with differences averaged.

Figure 1.1: Three designs to determine the difference between two preparation kits A and B based on four mice. A: One sample per mouse. Comparison between averages of samples with same kit. B: Two samples per mouse treated with the same kit. Comparison between averages of mice with same kit requires averaging responses for each mouse first. C: Two samples per mouse each treated with different kit. Comparison between two samples of each mouse, with differences averaged.

In this example, we can coalesce experimental and response units, because we have a single response per mouse and cannot distinguish a sample from a mouse in the analysis, as illustrated in Figure 1.1 A for four mice. Responses from mice with the same kit are averaged, and the kit difference is the difference between these two averages.

By contrast, if we take two samples per mouse and use the same kit for both samples, then the mice are still the experimental units, but each mouse now groups the two response units associated with it. Now, responses from the same mouse are first averaged, and these averages are used to calculate the difference between kits; even though eight measurements are available, this difference is still based on only four mice (Figure 1.1 B).

If we take two samples per mouse, but apply each kit to one of the two samples, then the samples are both the experimental and response units, while the mice are blocks that group the samples. Now, we calculate the difference between kits for each mouse, and then average these differences (Figure 1.1 C).

If we only use one kit and determine the average enzyme level, then this investigation is still an experiment, but is not comparative.

To summarize, the design of an experiment determines the logical structure of the experiment ; it consists of (i) a set of treatments (the two kits); (ii) a specification of the experimental units (animals, cell lines, samples) (the mice in Figure 1.1 A,B and the samples in Figure 1.1 C); (iii) a procedure for assigning treatments to units; and (iv) a specification of the response units and the quantity to be measured as a response (the samples and associated enzyme levels).

1.4 Experiment Validity

Before we embark on the more technical aspects of experimental design, we discuss three components for evaluating an experiment’s validity: construct validity , internal validity , and external validity . These criteria are well-established in areas such as educational and psychological research, and have more recently been discussed for animal research ( Würbel 2017 ) where experiments are increasingly scrutinized for their scientific rationale and their design and intended analyses.

1.4.1 Construct Validity

Construct validity concerns the choice of the experimental system for answering our research question. Is the system even capable of providing a relevant answer to the question?

Studying the mechanisms of a particular disease, for example, might require careful choice of an appropriate animal model that shows a disease phenotype and is accessible to experimental interventions. If the animal model is a proxy for drug development for humans, biological mechanisms must be sufficiently similar between animal and human physiologies.

Another important aspect of the construct is the quantity that we intend to measure (the measurand ), and its relation to the quantity or property we are interested in. For example, we might measure the concentration of the same chemical compound once in a blood sample and once in a highly purified sample, and these constitute two different measurands, whose values might not be comparable. Often, the quantity of interest (e.g., liver function) is not directly measurable (or even quantifiable) and we measure a biomarker instead. For example, pre-clinical and clinical investigations may use concentrations of proteins or counts of specific cell types from blood samples, such as the CD4+ cell count used as a biomarker for immune system function.

1.4.2 Internal Validity

The internal validity of an experiment concerns the soundness of the scientific rationale, statistical properties such as precision of estimates, and the measures taken against risk of bias. It refers to the validity of claims within the context of the experiment. Statistical design of experiments plays a prominent role in ensuring internal validity, and we briefly discuss the main ideas before providing the technical details and an application to our example in the subsequent sections.

Scientific Rationale and Research Question

The scientific rationale of a study is (usually) not immediately a statistical question. Translating a scientific question into a quantitative comparison amenable to statistical analysis is no small task and often requires careful consideration. It is a substantial, if non-statistical, benefit of using experimental design that we are forced to formulate a precise-enough research question and decide on the main analyses required for answering it before we conduct the experiment. For example, the question: is there a difference between placebo and drug? is insufficiently precise for planning a statistical analysis and determine an adequate experimental design. What exactly is the drug treatment? What should the drug’s concentration be and how is it administered? How do we make sure that the placebo group is comparable to the drug group in all other aspects? What do we measure and what do we mean by “difference?” A shift in average response, a fold-change, change in response before and after treatment?

The scientific rationale also enters the choice of a potential control group to which we compare responses. The quote

The deep, fundamental question in statistical analysis is ‘Compared to what?’ ( Tufte 1997 )

highlights the importance of this choice.

There are almost never enough resources to answer all relevant scientific questions. We therefore define a few questions of highest interest, and the main purpose of the experiment is answering these questions in the primary analysis . This intended analysis drives the experimental design to ensure relevant estimates can be calculated and have sufficient precision, and tests are adequately powered. This does not preclude us from conducting additional secondary analyses and exploratory analyses , but we are not willing to enlarge the experiment to ensure that strong conclusions can also be drawn from these analyses.

Risk of Bias

Experimental bias is a systematic difference in response between experimental units in addition to the difference caused by the treatments. The experimental units in the different groups are then not equal in all aspects other than the treatment applied to them. We saw several examples in Section 1.2 .

Minimizing the risk of bias is crucial for internal validity and we look at some common measures to eliminate or reduce different types of bias in Section 1.5 .

Precision and Effect Size

Another aspect of internal validity is the precision of estimates and the expected effect sizes. Is the experimental setup, in principle, able to detect a difference of relevant magnitude? Experimental design offers several methods for answering this question based on the expected heterogeneity of samples, the measurement error, and other sources of variation: power analysis is a technique for determining the number of samples required to reliably detect a relevant effect size and provide estimates of sufficient precision. More samples yield more precision and more power, but we have to be careful that replication is done at the right level: simply measuring a biological sample multiple times as in Figure 1.1 B yields more measured values, but is pseudo-replication for analyses. Replication should also ensure that the statistical uncertainties of estimates can be gauged from the data of the experiment itself, without additional untestable assumptions. Finally, the technique of blocking , shown in Figure 1.1 C, can remove a substantial proportion of the variation and thereby increase power and precision if we find a way to apply it.

1.4.3 External Validity

The external validity of an experiment concerns its replicability and the generalizability of inferences. An experiment is replicable if its results can be confirmed by an independent new experiment, preferably by a different lab and researcher. Experimental conditions in the replicate experiment usually differ from the original experiment, which provides evidence that the observed effects are robust to such changes. A much weaker condition on an experiment is reproducibility , the property that an independent researcher draws equivalent conclusions based on the data from this particular experiment, using the same analysis techniques. Reproducibility requires publishing the raw data, details on the experimental protocol, and a description of the statistical analyses, preferably with accompanying source code. Many scientific journals subscribe to reporting guidelines to ensure reproducibility and these are also helpful for planning an experiment.

A main threat to replicability and generalizability are too tightly controlled experimental conditions, when inferences only hold for a specific lab under the very specific conditions of the original experiment. Introducing systematic heterogeneity and using multi-center studies effectively broadens the experimental conditions and therefore the inferences for which internal validity is available.

For systematic heterogeneity , experimental conditions are systematically altered in addition to the treatments, and treatment differences estimated for each condition. For example, we might split the experimental material into several batches and use a different day of analysis, sample preparation, batch of buffer, measurement device, and lab technician for each batch. A more general inference is then possible if effect size, effect direction, and precision are comparable between the batches, indicating that the treatment differences are stable over the different conditions.

In multi-center experiments , the same experiment is conducted in several different labs and the results compared and merged. Multi-center approaches are very common in clinical trials and often necessary to reach the required number of patient enrollments.

Generalizability of randomized controlled trials in medicine and animal studies can suffer from overly restrictive eligibility criteria. In clinical trials, patients are often included or excluded based on co-medications and co-morbidities, and the resulting sample of eligible patients might no longer be representative of the patient population. For example, Travers et al. ( 2007 ) used the eligibility criteria of 17 random controlled trials of asthma treatments and found that out of 749 patients, only a median of 6% (45 patients) would be eligible for an asthma-related randomized controlled trial. This puts a question mark on the relevance of the trials’ findings for asthma patients in general.

1.5 Reducing the Risk of Bias

1.5.1 randomization of treatment allocation.

If systematic differences other than the treatment exist between our treatment groups, then the effect of the treatment is confounded with these other differences and our estimates of treatment effects might be biased.

We remove such unwanted systematic differences from our treatment comparisons by randomizing the allocation of treatments to experimental units. In a completely randomized design , each experimental unit has the same chance of being subjected to any of the treatments, and any differences between the experimental units other than the treatments are distributed over the treatment groups. Importantly, randomization is the only method that also protects our experiment against unknown sources of bias: we do not need to know all or even any of the potential differences and yet their impact is eliminated from the treatment comparisons by random treatment allocation.

Randomization has two effects: (i) differences unrelated to treatment become part of the ‘statistical noise’ rendering the treatment groups more similar; and (ii) the systematic differences are thereby eliminated as sources of bias from the treatment comparison.

Randomization transforms systematic variation into random variation.

In our example, a proper randomization would select 10 out of our 20 mice fully at random, such that the probability of any one mouse being picked is 1/20. These ten mice are then assigned to kit A, and the remaining mice to kit B. This allocation is entirely independent of the treatments and of any properties of the mice.

To ensure random treatment allocation, some kind of random process needs to be employed. This can be as simple as shuffling a pack of 10 red and 10 black cards or using a software-based random number generator. Randomization is slightly more difficult if the number of experimental units is not known at the start of the experiment, such as when patients are recruited for an ongoing clinical trial (sometimes called rolling recruitment ), and we want to have reasonable balance between the treatment groups at each stage of the trial.

Seemingly random assignments “by hand” are usually no less complicated than fully random assignments, but are always inferior. If surprising results ensue from the experiment, such assignments are subject to unanswerable criticism and suspicion of unwanted bias. Even worse are systematic allocations; they can only remove bias from known causes, and immediately raise red flags under the slightest scrutiny.

The Problem of Undesired Assignments

Even with a fully random treatment allocation procedure, we might end up with an undesirable allocation. For our example, the treatment group of kit A might—just by chance—contain mice that are all bigger or more active than those in the other treatment group. Statistical orthodoxy recommends using the design nevertheless, because only full randomization guarantees valid estimates of residual variance and unbiased estimates of effects. This argument, however, concerns the long-run properties of the procedure and seems of little help in this specific situation. Why should we care if the randomization yields correct estimates under replication of the experiment, if the particular experiment is jeopardized?

Another solution is to create a list of all possible allocations that we would accept and randomly choose one of these allocations for our experiment. The analysis should then reflect this restriction in the possible randomizations, which often renders this approach difficult to implement.

The most pragmatic method is to reject highly undesirable designs and compute a new randomization ( Cox 1958 ) . Undesirable allocations are unlikely to arise for large sample sizes, and we might accept a small bias in estimation for small sample sizes, when uncertainty in the estimated treatment effect is already high. In this approach, whenever we reject a particular outcome, we must also be willing to reject the outcome if we permute the treatment level labels. If we reject eight big and two small mice for kit A, then we must also reject two big and eight small mice. We must also be transparent and report a rejected allocation, so that critics may come to their own conclusions about potential biases and their remedies.

1.5.2 Blinding

Bias in treatment comparisons is also introduced if treatment allocation is random, but responses cannot be measured entirely objectively, or if knowledge of the assigned treatment affects the response. In clinical trials, for example, patients might react differently when they know to be on a placebo treatment, an effect known as cognitive bias . In animal experiments, caretakers might report more abnormal behavior for animals on a more severe treatment. Cognitive bias can be eliminated by concealing the treatment allocation from technicians or participants of a clinical trial, a technique called single-blinding .

If response measures are partially based on professional judgement (such as a clinical scale), patient or physician might unconsciously report lower scores for a placebo treatment, a phenomenon known as observer bias . Its removal requires double blinding , where treatment allocations are additionally concealed from the experimentalist.

Blinding requires randomized treatment allocation to begin with and substantial effort might be needed to implement it. Drug companies, for example, have to go to great lengths to ensure that a placebo looks, tastes, and feels similar enough to the actual drug. Additionally, blinding is often done by coding the treatment conditions and samples, and effect sizes and statistical significance are calculated before the code is revealed.

In clinical trials, double-blinding creates a conflict of interest. The attending physicians do not know which patient received which treatment, and thus accumulation of side-effects cannot be linked to any treatment. For this reason, clinical trials have a data monitoring committee not involved in the final analysis, that performs intermediate analyses of efficacy and safety at predefined intervals. If severe problems are detected, the committee might recommend altering or aborting the trial. The same might happen if one treatment already shows overwhelming evidence of superiority, such that it becomes unethical to withhold this treatment from the other patients.

1.5.3 Analysis Plan and Registration

An often overlooked source of bias has been termed the researcher degrees of freedom or garden of forking paths in the data analysis. For any set of data, there are many different options for its analysis: some results might be considered outliers and discarded, assumptions are made on error distributions and appropriate test statistics, different covariates might be included into a regression model. Often, multiple hypotheses are investigated and tested, and analyses are done separately on various (overlapping) subgroups. Hypotheses formed after looking at the data require additional care in their interpretation; almost never will \(p\) -values for these ad hoc or post hoc hypotheses be statistically justifiable. Many different measured response variables invite fishing expeditions , where patterns in the data are sought without an underlying hypothesis. Only reporting those sub-analyses that gave ‘interesting’ findings invariably leads to biased conclusions and is called cherry-picking or \(p\) -hacking (or much less flattering names).

The statistical analysis is always part of a larger scientific argument and we should consider the necessary computations in relation to building our scientific argument about the interpretation of the data. In addition to the statistical calculations, this interpretation requires substantial subject-matter knowledge and includes (many) non-statistical arguments. Two quotes highlight that experiment and analysis are a means to an end and not the end in itself.

There is a boundary in data interpretation beyond which formulas and quantitative decision procedures do not go, where judgment and style enter. ( Abelson 1995 )
Often, perfectly reasonable people come to perfectly reasonable decisions or conclusions based on nonstatistical evidence. Statistical analysis is a tool with which we support reasoning. It is not a goal in itself. ( Bailar III 1981 )

There is often a grey area between exploiting researcher degrees of freedom to arrive at a desired conclusion, and creative yet informed analyses of data. One way to navigate this area is to distinguish between exploratory studies and confirmatory studies . The former have no clearly stated scientific question, but are used to generate interesting hypotheses by identifying potential associations or effects that are then further investigated. Conclusions from these studies are very tentative and must be reported honestly as such. In contrast, standards are much higher for confirmatory studies, which investigate a specific predefined scientific question. Analysis plans and pre-registration of an experiment are accepted means for demonstrating lack of bias due to researcher degrees of freedom, and separating primary from secondary analyses allows emphasizing the main goals of the study.

Analysis Plan

The analysis plan is written before conducting the experiment and details the measurands and estimands, the hypotheses to be tested together with a power and sample size calculation, a discussion of relevant effect sizes, detection and handling of outliers and missing data, as well as steps for data normalization such as transformations and baseline corrections. If a regression model is required, its factors and covariates are outlined. Particularly in biology, handling measurements below the limit of quantification and saturation effects require careful consideration.

In the context of clinical trials, the problem of estimands has become a recent focus of attention. An estimand is the target of a statistical estimation procedure, for example the true average difference in enzyme levels between the two preparation kits. A main problem in many studies are post-randomization events that can change the estimand, even if the estimation procedure remains the same. For example, if kit B fails to produce usable samples for measurement in five out of ten cases because the enzyme level was too low, while kit A could handle these enzyme levels perfectly fine, then this might severely exaggerate the observed difference between the two kits. Similar problems arise in drug trials, when some patients stop taking one of the drugs due to side-effects or other complications.

Registration

Registration of experiments is an even more severe measure used in conjunction with an analysis plan and is becoming standard in clinical trials. Here, information about the trial, including the analysis plan, procedure to recruit patients, and stopping criteria, are registered in a public database. Publications based on the trial then refer to this registration, such that reviewers and readers can compare what the researchers intended to do and what they actually did. Similar portals for pre-clinical and translational research are also available.

1.6 Notes and Summary

The problem of measurements and measurands is further discussed for statistics in Hand ( 1996 ) and specifically for biological experiments in Coxon, Longstaff, and Burns ( 2019 ) . A general review of methods for handling missing data is Dong and Peng ( 2013 ) . The different roles of randomization are emphasized in Cox ( 2009 ) .

Two well-known reporting guidelines are the ARRIVE guidelines for animal research ( Kilkenny et al. 2010 ) and the CONSORT guidelines for clinical trials ( Moher et al. 2010 ) . Guidelines describing the minimal information required for reproducing experimental results have been developed for many types of experimental techniques, including microarrays (MIAME), RNA sequencing (MINSEQE), metabolomics (MSI) and proteomics (MIAPE) experiments; the FAIRSHARE initiative provides a more comprehensive collection ( Sansone et al. 2019 ) .

The problems of experimental design in animal experiments and particularly translation research are discussed in Couzin-Frankel ( 2013 ) . Multi-center studies are now considered for these investigations, and using a second laboratory already increases reproducibility substantially ( Richter et al. 2010 ; Richter 2017 ; Voelkl et al. 2018 ; Karp 2018 ) and allows standardizing the treatment effects ( Kafkafi et al. 2017 ) . First attempts are reported of using designs similar to clinical trials ( Llovera and Liesz 2016 ) . Exploratory-confirmatory research and external validity for animal studies is discussed in Kimmelman, Mogil, and Dirnagl ( 2014 ) and Pound and Ritskes-Hoitinga ( 2018 ) . Further information on pilot studies is found in Moore et al. ( 2011 ) , Sim ( 2019 ) , and Thabane et al. ( 2010 ) .

The deliberate use of statistical analyses and their interpretation for supporting a larger argument was called statistics as principled argument ( Abelson 1995 ) . Employing useless statistical analysis without reference to the actual scientific question is surrogate science ( Gigerenzer and Marewski 2014 ) and adaptive thinking is integral to meaningful statistical analysis ( Gigerenzer 2002 ) .

In an experiment, the investigator has full control over the experimental conditions applied to the experiment material. The experimental design gives the logical structure of an experiment: the units describing the organization of the experimental material, the treatments and their allocation to units, and the response. Statistical design of experiments includes techniques to ensure internal validity of an experiment, and methods to make inference from experimental data efficient.

two features of good experimental design

  • Voxco Online
  • Voxco Panel Management
  • Voxco Panel Portal
  • Voxco Audience
  • Voxco Mobile Offline
  • Voxco Dialer Cloud
  • Voxco Dialer On-premise
  • Voxco TCPA Connect
  • Voxco Analytics
  • Voxco Text & Sentiment Analysis

two features of good experimental design

  • 40+ question types
  • Drag-and-drop interface
  • Skip logic and branching
  • Multi-lingual survey
  • Text piping
  • Question library
  • CSS customization
  • White-label surveys
  • Customizable ‘Thank You’ page
  • Customizable survey theme
  • Reminder send-outs
  • Survey rewards
  • Social media
  • Website surveys
  • Correlation analysis
  • Cross-tabulation analysis
  • Trend analysis
  • Real-time dashboard
  • Customizable report
  • Email address validation
  • Recaptcha validation
  • SSL security

Take a peek at our powerful survey features to design surveys that scale discoveries.

Download feature sheet.

  • Hospitality
  • Academic Research
  • Customer Experience
  • Employee Experience
  • Product Experience
  • Market Research
  • Social Research
  • Data Analysis

Explore Voxco 

Need to map Voxco’s features & offerings? We can help!

Watch a Demo 

Download Brochures 

Get a Quote

  • NPS Calculator
  • CES Calculator
  • A/B Testing Calculator
  • Margin of Error Calculator
  • Sample Size Calculator
  • CX Strategy & Management Hub
  • Market Research Hub
  • Patient Experience Hub
  • Employee Experience Hub
  • NPS Knowledge Hub
  • Market Research Guide
  • Customer Experience Guide
  • Survey Research Guides
  • Survey Template Library
  • Webinars and Events
  • Feature Sheets
  • Try a sample survey
  • Professional Services

two features of good experimental design

Get exclusive insights into research trends and best practices from top experts! Access Voxco’s ‘State of Research Report 2024 edition’ .

We’ve been avid users of the Voxco platform now for over 20 years. It gives us the flexibility to routinely enhance our survey toolkit and provides our clients with a more robust dataset and story to tell their clients.

VP Innovation & Strategic Partnerships, The Logit Group

  • Client Stories
  • Voxco Reviews
  • Why Voxco Research?
  • Careers at Voxco
  • Vulnerabilities and Ethical Hacking

Explore Regional Offices

  • Survey Software The world’s leading omnichannel survey software
  • Online Survey Tools Create sophisticated surveys with ease.
  • Mobile Offline Conduct efficient field surveys.
  • Text Analysis
  • Close The Loop
  • Automated Translations
  • NPS Dashboard
  • CATI Manage high volume phone surveys efficiently
  • Cloud/On-premise Dialer TCPA compliant Cloud on-premise dialer
  • IVR Survey Software Boost productivity with automated call workflows.
  • Analytics Analyze survey data with visual dashboards
  • Panel Manager Nurture a loyal community of respondents.
  • Survey Portal Best-in-class user friendly survey portal.
  • Voxco Audience Conduct targeted sample research in hours.
  • Predictive Analytics
  • Customer 360
  • Customer Loyalty
  • Fraud & Risk Management
  • AI/ML Enablement Services
  • Credit Underwriting

two features of good experimental design

Find the best survey software for you! (Along with a checklist to compare platforms)

Get Buyer’s Guide

  • 100+ question types
  • SMS surveys
  • Financial Services
  • Banking & Financial Services
  • Retail Solution
  • Risk Management
  • Customer Lifecycle Solutions
  • Net Promoter Score
  • Customer Behaviour Analytics
  • Customer Segmentation
  • Data Unification

Explore Voxco 

Watch a Demo 

Download Brochures 

  • CX Strategy & Management Hub
  • The Voxco Guide to Customer Experience
  • Professional services
  • Blogs & White papers
  • Case Studies

Find the best customer experience platform

Uncover customer pain points, analyze feedback and run successful CX programs with the best CX platform for your team.

Get the Guide Now

two features of good experimental design

VP Innovation & Strategic Partnerships, The Logit Group

  • Why Voxco Intelligence?
  • Our clients
  • Client stories
  • Featuresheets

Experimental Research Design Process2

5 components of experimental design you need to know

  • October 15, 2021

SHARE THE ARTICLE ON

What are the 5 components of experimental design?

As we looked at the overview of the experimental design, here 5 major components of the experimental design that we have to pay attention to while conducting our research through experimental design approach:

Observations

We have heard this word many times. Observation is basically the first step towards any scientific research. It is a way for gathering data through observing the subjects. The researcher has to go to the participants’ environment and observe the way they behave, react and respond to the natural phenomenon.

Structured observations are conducted with respect to pre-defined variables and schedule, whereas unstructured observations are conducted in a free manner with no pre-defined variables and schedule. 

Observational approach allows you to have a direct access to the phenomena and helps you have a long term record regarding the same. That being said, there is a high chance that the observation will be influenced by the biases of the observer. Or in other sense, the presence of an observer himself might change the behaviour of the subjects. 

Example: to study the above topic, the researcher will observe the kids who play violent video games on regular basis to study their behaviour and if they show any signs of aggression or impatience. 

New call-to-action

Questions are the important way to gather primary data. Researcher asks questions to the participants about particular topics or points that he wants to cover while studying the research problem. 

Questions can be asked through surveys – which are sent to the participants through various online and offline channels, interviews – where the researcher himself asks questions to the participants on one-on-one basis.

There are two main types of questions asked to the participants:

  • Close-ended question – These questions give quantitative data as result. The questions asked are closed-ended, meaning there is no scope for the respondent to elaborate their answers. They are used when the researcher wants to study a large sample and get numerical data to statistically analyze it. 

For example : On a scale of 1-5, how much did you like our event? 

  • Can be better
  • Open-ended questions – these kinds of questions are asked to get qualitative data on hand. The data gathered from asking open-ended questions is very long and cannot be gathered from a large sample. The researcher will have to code and label the data since it will be very long and descriptive. 

For example: Can you tell us how to improve?

Hypothesis 

When a researcher picks up a topic to research, he formulates a hypothesis. A hypothesis is nothing but an assumption statement that defines the cause-effect relationship between two or more variables. This statement can be proved true or false, depending on the result of the research. 

A researcher will put forth this hypothesis regarding his research topic and will begin to conduct the research. The prime benefit of formulating a hypothesis is, it sets out a guideline for how the research is to be conducted and within what bounds. Hence, the researcher will gather the information that is enough to prove the hypothesis true or false. 

For the same reason, it is important to know how to write a hypothesis that appropriately covers all the concepts in your research topic. Apart from that, there is a fair chance that the researcher’s bias will interfere with the study. This happens when the researcher is personally in favour of a hypothesis being either true or false. 

Example: For the above research topic, its formulated hypothesis can be “Overuse of violent video games affects the behaviour of new generation.”

Explore all the survey question types possible on Voxco

Once the hypothesis is ready, the next challenge for the researcher is to choose a proper research design method to run the entire study through. This will depend on how he wants his research to be conducted. Whether the research wants his sample to be assigned randomly, or not, whether there are any control variables, matters a lot while selecting an approach for the research. 

Depending on their use, there are three main experimental design types:

Pre-experimental design

As the name suggests, pre-experimental design is carried out before a true experiment is conducted. In this, one or more groups are kept under observation after giving them a treatment related to the research study. Depending on the number of groups involved and the performed pre-test post-test techniques, pre-experimental design is further classified into three: Static group comparison, one group pretest-postest design and one-shot case study. 

True experimental design

This is the perfect form of experimental design whose purpose is to test the hypothesis and prove it true or false. It is the most commonly used method of experimental design and its characteristics include random sample assignment, presence of a control group against a treatment group, variable manipulation.

Quasi-experimental design

This method is similar to the true experimental design. Except it doesn’t have randomization of the sample. It has a treatment and control group which the researcher observes to derive the causal relationship between the variables.

The final component that defines an experimental design is, of course, the results. After the observations, surveys and interviews and running the research process through any one of the above-mentioned types of research design, the researcher will have the result of the hypothesis testing. 

This result will be either for or against the hypothesis.

Example: In our example, the researcher observes the behaviour of the children who has a habit of playing violent video games excessively, and he then conducts a survey or interview with their parents regarding their in general behaviour in the family and friends. On conducting the needed research, he found out that the hypothesis that he framed was true. 

Conclusion: The hypothesis “Overuse of violent video games affects the behaviour of new generation” is true. 

Market Research toolkit to start your market research surveys and studies.

What Components Are Necessary for an Experiment to Be Valid?

Researchers carry out an experiment to research a certain decision or result. In order to achieve that, they take their study through various phases of an experimental design right from observation to treating experimental groups and data analysis. While doing so, various things affect the credibility of the conducted research and make the researcher questions the results. 

We are here to help you with some of the components that will ensure the validity of your experiment and its results: 

Control group 

As we know, there are two groups in an experiment namely the treatment group and the control group. A control group is a group that does not receive any treatment concerning the research. This group is then compared to the treatment group which went through the experiment. The results will show how whether the experiment is a fail or a success. 

Example: the treatment group is of people who have a weak vocabulary and are made to read books, while the control group were never made to do so. When the experiment ended, the results show that the treatment group did way better in the post-test than in the pre-tests while the control group were on the same level. 

Independent variable

It is a variable in a hypothesis that affect a dependent variable. This variable is controlled and manipulated by the researcher to see its effect on the experiment. In our example, the independent variable would be the number of books the treatment group was made to read. And to see if the number of books will affect the vocabulary in a significant way. 

Dependent variable

This is a variable that is dependent on the independent variable. As the researcher manipulated the independent variable, and if its result is significant, then it is bound to make the respective changes in the dependent variable as well. In our example , the dependent variable would be the level of the vocabulary of the treatment group and how it differs depending on the manipulation of the independent variable. 

Constant variables

While experimenting, there might be some external variables that influence the dependent variable to change other than the independent variable. In our example , it can be gender, age, grasping ability, etc. Holding these variables constant across the research will minimize the effects they have on the dependent variables. 

See Voxco survey software in action with a Free demo.

The components of experimental design are control, independent variable and dependent variable, constant variables, random assignment and manipulation . These are the components that also help you define if the experiment is valid.

The 5 steps of designing an experiment are literature history, observation, hypothesis, experiment methodology and conclusion . The researcher follows these steps to get the conclusions regarding the research study. 

The experiments are meant to be defect and bias-free when their results come out. Hence the components that ensure these things are control, independent variables, dependent variables and constant variables. 

The experimental questions are supposed to be short, clear, concise, and focused on the purpose of the research study . These questions will be the footing for the entire research process and are treated as guidelines for the same. 

A good and well-conducted experiment design always has these components that define them: Observation, questions, hypothesis formulation, methodology, results . The researcher has to look for any interventions or biases in any of those phases to ensure a defect-free result. 

The four basic principles of experimental design are:

  • Control – Control over the independent variable to examine its effects on the dependent variable.
  • Randomize – random assignment of the participants to ensure they all have an equal chance of getting into the experimental groups. 
  • Replicate – repeating the experiment by applying the treatment to various experimental groups. 

Block – block the external variables that might affect the results of the experiment like age, gender, genetics, etc.

Exclusive Research Guide

See how Amazon,Uber and Apple enhance customer experience at scale.

7db6400b af9b 4c67 9bea fa54cb719713

Explore Voxco Survey Software

Online page new product image3 02.png 1

+ Omnichannel Survey Software 

+ Online Survey Software 

+ CATI Survey Software 

+ IVR Survey Software 

+ Market Research Tool

+ Customer Experience Tool 

+ Product Experience Software 

+ Enterprise Survey Software 

Patient Satisfaction Surveys1

Patient Satisfaction Surveys

Patient Satisfaction Surveys See what question types are possible with a sample survey! Try a Sample Survey Table of Contents 01 What are Patient Satisfaction

Market Segmentation Strategy A boon for Market Research 05

Market Segmentation Strategy: A boon for Market Research

MARKET RESEARCH Market Segmentation Strategy: A boon for Market Research SHARE THE ARTICLE ON Share on facebook Share on twitter Share on linkedin GET DEMO

Customer success manager: Definition, Roles and factors

Customer success manager: Definition, Roles and factors SHARE THE ARTICLE ON Share on facebook Share on twitter Share on linkedin Table of Contents What is

5 components of experimental design you need to know Patient Satisfaction Surveys

How to Deal With Outliers?

Outliers: Definition, Steps To Recognize, Eliminate Outliers, and Steps To Deal SHARE THE ARTICLE ON Share on facebook Share on twitter Share on linkedin Table

Netflix covid 01 scaled

How Netflix’ Employee & Customer Experience has helped them grow double their expectations during the crisis

How Netflix’ Employee & Customer Experience has helped them grow double their expectations during the crisis Read Netflix’s secret to customer experience Get our in-depth

How to Conduct Survey Research3 1

Survey research

An Exhaustive Guide to Different Types of Survey Research Techniques SHARE THE ARTICLE ON Table of Contents In a modern world, where companies run totally

We use cookies in our website to give you the best browsing experience and to tailor advertising. By continuing to use our website, you give us consent to the use of cookies. Read More

Name Domain Purpose Expiry Type
hubspotutk www.voxco.com HubSpot functional cookie. 1 year HTTP
lhc_dir_locale amplifyreach.com --- 52 years ---
lhc_dirclass amplifyreach.com --- 52 years ---
Name Domain Purpose Expiry Type
_fbp www.voxco.com Facebook Pixel advertising first-party cookie 3 months HTTP
__hstc www.voxco.com Hubspot marketing platform cookie. 1 year HTTP
__hssrc www.voxco.com Hubspot marketing platform cookie. 52 years HTTP
__hssc www.voxco.com Hubspot marketing platform cookie. Session HTTP
Name Domain Purpose Expiry Type
_gid www.voxco.com Google Universal Analytics short-time unique user tracking identifier. 1 days HTTP
MUID bing.com Microsoft User Identifier tracking cookie used by Bing Ads. 1 year HTTP
MR bat.bing.com Microsoft User Identifier tracking cookie used by Bing Ads. 7 days HTTP
IDE doubleclick.net Google advertising cookie used for user tracking and ad targeting purposes. 2 years HTTP
_vwo_uuid_v2 www.voxco.com Generic Visual Website Optimizer (VWO) user tracking cookie. 1 year HTTP
_vis_opt_s www.voxco.com Generic Visual Website Optimizer (VWO) user tracking cookie that detects if the user is new or returning to a particular campaign. 3 months HTTP
_vis_opt_test_cookie www.voxco.com A session (temporary) cookie used by Generic Visual Website Optimizer (VWO) to detect if the cookies are enabled on the browser of the user or not. 52 years HTTP
_ga www.voxco.com Google Universal Analytics long-time unique user tracking identifier. 2 years HTTP
_uetsid www.voxco.com Microsoft Bing Ads Universal Event Tracking (UET) tracking cookie. 1 days HTTP
vuid vimeo.com Vimeo tracking cookie 2 years HTTP
Name Domain Purpose Expiry Type
__cf_bm hubspot.com Generic CloudFlare functional cookie. Session HTTP
Name Domain Purpose Expiry Type
_gcl_au www.voxco.com --- 3 months ---
_gat_gtag_UA_3262734_1 www.voxco.com --- Session ---
_clck www.voxco.com --- 1 year ---
_ga_HNFQQ528PZ www.voxco.com --- 2 years ---
_clsk www.voxco.com --- 1 days ---
visitor_id18452 pardot.com --- 10 years ---
visitor_id18452-hash pardot.com --- 10 years ---
lpv18452 pi.pardot.com --- Session ---
lhc_per www.voxco.com --- 6 months ---
_uetvid www.voxco.com --- 1 year ---

Department of Health & Human Services

Module 2: Research Design - Section 2

Module 1

  • Section 1 Discussion
  • Section 2 Discussion

Section 2: Experimental Studies

Unlike a descriptive study, an experiment is a study in which a treatment, procedure, or program is intentionally introduced and a result or outcome is observed. The American Heritage Dictionary of the English Language defines an experiment as "A test under controlled conditions that is made to demonstrate a known truth, to examine the validity of a hypothesis, or to determine the efficacy of something previously untried."

Manipulation, Control, Random Assignment, Random Selection

This means that no matter who the participant is, he/she has an equal chance of getting into all of the groups or treatments in an experiment. This process helps to ensure that the groups or treatments are similar at the beginning of the study so that there is more confidence that the manipulation (group or treatment) "caused" the outcome. More information about random assignment may be found in section Random assignment.

Definition : An experiment is a study in which a treatment, procedure, or program is intentionally introduced and a result or outcome is observed.

Case Example for Experimental Study

Experimental studies — example 1.

Teacher

Experimental Studies — Example 2

A fitness instructor wants to test the effectiveness of a performance-enhancing herbal supplement on students in her exercise class. To create experimental groups that are similar at the beginning of the study, the students are assigned into two groups at random (they can not choose which group they are in). Students in both groups are given a pill to take every day, but they do not know whether the pill is a placebo (sugar pill) or the herbal supplement. The instructor gives Group A the herbal supplement and Group B receives the placebo (sugar pill). The students' fitness level is compared before and after six weeks of consuming the supplement or the sugar pill. No differences in performance ability were found between the two groups suggesting that the herbal supplement was not effective.

PDF

Email Updates

Characteristics of a Good Experimental Design

  • Provides unbiased estimates of the factor effects and associated uncertainties
  • Enables the experimenter to detect important differences
  • Includes the plan for analysis and reporting of the results
  • Gives results that are easy to interpret
  • Permits conclusions that have wide validity
  • Shows the direction of better results
  • Is as simple as possible
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

two features of good experimental design

Home Market Research

Experimental vs Observational Studies: Differences & Examples

Experimental vs Observational Studies: Differences & Examples

Understanding the differences between experimental vs observational studies is crucial for interpreting findings and drawing valid conclusions. Both methodologies are used extensively in various fields, including medicine, social sciences, and environmental studies. 

Researchers often use observational and experimental studies to gather comprehensive data and draw robust conclusions about their investigating phenomena. 

This blog post will explore what makes these two types of studies unique, their fundamental differences, and examples to illustrate their applications.

What is an Experimental Study?

An experimental study is a research design in which the investigator actively manipulates one or more variables to observe their effect on another variable. This type of study often takes place in a controlled environment, which allows researchers to establish cause-and-effect relationships.

Key Characteristics of Experimental Studies:

  • Manipulation: Researchers manipulate the independent variable(s).
  • Control: Other variables are kept constant to isolate the effect of the independent variable.
  • Randomization: Subjects are randomly assigned to different groups to minimize bias.
  • Replication: The study can be replicated to verify results.

Types of Experimental Study

  • Laboratory Experiments: Conducted in a controlled environment where variables can be precisely controlled.
  • Field Research : These are conducted in a natural setting but still involve manipulation and control of variables.
  • Clinical Trials: Used in medical research and the healthcare industry to test the efficacy of new treatments or drugs.

Example of an Experimental Study:

Imagine a study to test the effectiveness of a new drug for reducing blood pressure. Researchers would:

  • Randomly assign participants to two groups: receiving the drug and receiving a placebo.
  • Ensure that participants do not know their group (double-blind procedure).
  • Measure blood pressure before and after the intervention.
  • Compare the changes in blood pressure between the two groups to determine the drug’s effectiveness.

What is an Observational Study?

An observational study is a research design in which the investigator observes subjects and measures variables without intervening or manipulating the study environment. This type of study is often used when manipulating impractical or unethical variables.

Key Characteristics of Observational Studies:

  • No Manipulation: Researchers do not manipulate the independent variable.
  • Natural Setting: Observations are made in a natural environment.
  • Causation Limitations: It is difficult to establish cause-and-effect relationships due to the need for more control over variables.
  • Descriptive: Often used to describe characteristics or outcomes.

Types of Observational Studies: 

  • Cohort Studies : Follow a control group of people over time to observe the development of outcomes.
  • Case-Control Studies: Compare individuals with a specific outcome (cases) to those without (controls) to identify factors that might contribute to the outcome.
  • Cross-Sectional Studies : Collect data from a population at a single point to analyze the prevalence of an outcome or characteristic.

Example of an Observational Study:

Consider a study examining the relationship between smoking and lung cancer. Researchers would:

  • Identify a cohort of smokers and non-smokers.
  • Follow both groups over time to record incidences of lung cancer.
  • Analyze the data to observe any differences in cancer rates between smokers and non-smokers.

Difference Between Experimental vs Observational Studies

TopicExperimental StudiesObservational Studies
ManipulationYesNo
ControlHigh control over variablesLittle to no control over variables
RandomizationYes, often, random assignment of subjectsNo random assignment
EnvironmentControlled or laboratory settingsNatural or real-world settings
CausationCan establish causationCan identify correlations, not causation
Ethics and PracticalityMay involve ethical concerns and be impracticalMore ethical and practical in many cases
Cost and TimeOften more expensive and time-consumingGenerally less costly and faster

Choosing Between Experimental and Observational Studies

The researchers relied on statistical analysis to interpret the results of randomized controlled trials, building upon the foundations established by prior research.

Use Experimental Studies When:

  • Causality is Important: If determining a cause-and-effect relationship is crucial, experimental studies are the way to go.
  • Variables Can Be Controlled: When you can manipulate and control the variables in a lab or controlled setting, experimental studies are suitable.
  • Randomization is Possible: When random assignment of subjects is feasible and ethical, experimental designs are appropriate.

Use Observational Studies When:

  • Ethical Concerns Exist: If manipulating variables is unethical, such as exposing individuals to harmful substances, observational studies are necessary.
  • Practical Constraints Apply: When experimental studies are impractical due to cost or logistics, observational studies can be a viable alternative.
  • Natural Settings Are Required: If studying phenomena in their natural environment is essential, observational studies are the right choice.

Strengths and Limitations

Experimental studies.

  • Establish Causality: Experimental studies can establish causal relationships between variables by controlling and using randomization.
  • Control Over Confounding Variables: The controlled environment allows researchers to minimize the influence of external variables that might skew results.
  • Repeatability: Experiments can often be repeated to verify results and ensure consistency.

Limitations:

  • Ethical Concerns: Manipulating variables may be unethical in certain situations, such as exposing individuals to harmful conditions.
  • Artificial Environment: The controlled setting may not reflect real-world conditions, potentially affecting the generalizability of results.
  • Cost and Complexity: Experimental studies can be costly and logistically complex, especially with large sample sizes.

Observational Studies

  • Real-World Insights: Observational studies provide valuable insights into how variables interact in natural settings.
  • Ethical and Practical: These studies avoid ethical concerns associated with manipulation and can be more practical regarding cost and time.
  • Diverse Applications: Observational studies can be used in various fields and situations where experiments are not feasible.
  • Lack of Causality: It’s easier to establish causation with manipulation, and results are limited to identifying correlations.
  • Potential for Confounding: Uncontrolled external variables may influence the results, leading to biased conclusions.
  • Observer Bias: Researchers may unintentionally influence outcomes through their expectations or interpretations of data.

Examples in Various Fields

  • Experimental Study: Clinical trials testing the effectiveness of a new drug against a placebo to determine its impact on patient recovery.
  • Observational Study: Studying the dietary habits of different populations to identify potential links between nutrition and disease prevalence.
  • Experimental Study: Conducting a lab experiment to test the effect of sleep deprivation on cognitive performance by controlling sleep hours and measuring test scores.
  • Observational Study: Observing social interactions in a public setting to explore natural communication patterns without intervention.

Environmental Science

  • Experimental Study: Testing the impact of a specific pollutant on plant growth in a controlled greenhouse setting.
  • Observational Study: Monitoring wildlife populations in a natural habitat to assess the effects of climate change on species distribution.

How QuestionPro Research Can Help in Experimental vs Observational Studies

Choosing between experimental and observational studies is a critical decision that can significantly impact the outcomes and interpretations of a study. QuestionPro Research offers powerful tools and features that can enhance both types of studies, giving researchers the flexibility and capability to gather, analyze, and interpret data effectively.

Enhancing Experimental Studies with QuestionPro

Experimental studies require a high degree of control over variables, randomization, and, often, repeated trials to establish causal relationships. QuestionPro excels in facilitating these requirements through several key features:

  • Survey Design and Distribution: With QuestionPro, researchers can design intricate surveys tailored to their experimental needs. The platform supports random assignment of participants to different groups, ensuring unbiased distribution and enhancing the study’s validity.
  • Data Collection and Management: Real-time data collection and management tools allow researchers to monitor responses as they come in. This is crucial for experimental studies where data collection timing and sequence can impact the results.
  • Advanced Analytics: QuestionPro offers robust analytical tools that can handle complex data sets, enabling researchers to conduct in-depth statistical analyses to determine the effects of the experimental interventions.

Supporting Observational Studies with QuestionPro

Observational studies involve gathering data without manipulating variables, focusing on natural settings and real-world scenarios. QuestionPro’s capabilities are well-suited for these studies as well:

  • Customizable Surveys: Researchers can create detailed surveys to capture a wide range of observational data. QuestionPro’s customizable templates and question types allow for flexibility in capturing nuanced information.
  • Mobile Data Collection: For field research, QuestionPro’s mobile app enables data collection on the go, making it easier to conduct studies in diverse settings without internet connectivity.
  • Longitudinal Data Tracking: Observational studies often require data collection over extended periods. QuestionPro’s platform supports longitudinal studies, allowing researchers to track changes and trends.

Experimental and observational studies are essential tools in the researcher’s toolkit. Each serves a unique purpose and offers distinct advantages and limitations. By understanding their differences, researchers can choose the most appropriate study design for their specific objectives, ensuring their findings are valid and applicable to real-world situations.

Whether establishing causality through experimental studies or exploring correlations with observational research designs, the insights gained from these methodologies continue to shape our understanding of the world around us. 

Whether conducting experimental or observational studies, QuestionPro Research provides a comprehensive suite of tools that enhance research efficiency, accuracy, and depth. By leveraging its advanced features, researchers can ensure that their studies are well-designed, their data is robustly analyzed, and their conclusions are reliable and impactful.

MORE LIKE THIS

Employee Recognition Programs

Employee Recognition Programs: A Complete Guide

Sep 11, 2024

Agile Qual for Rapid Insights

A guide to conducting agile qualitative research for rapid insights with Digsite 

Cultural Insights

Cultural Insights: What it is, Importance + How to Collect?

Sep 10, 2024

When thinking about Customer Experience, so much of what we discuss is focused on measurement, dashboards, analytics, and insights. However, the “product” that is provided can be just as important.

Was The Experience Memorable? — Tuesday CX Thoughts

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Logo for Pressbooks at Virginia Tech

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

1.4 Designed Experiments

Observational studies vs. experiments.

Ignoring anecdotal evidence, there are two primary types of data collection: observational studies and controlled (designed) experiments . Remember, we typically cannot make claims of causality from observation studies because of the potential presence of confounding factors. However, making causal conclusions based on experiments is often reasonable if we control for those factors.

Suppose you want to investigate the effectiveness of vitamin D in preventing disease. You recruit a group of subjects and ask them if they regularly take vitamin D. You notice that the subjects who take vitamin D exhibit better health on average than those who do not. Does this prove that vitamin D is effective in disease prevention? It does not. There are many differences between the two groups beyond just vitamin D consumption. People who take vitamin D regularly often take other steps to improve their health: exercise, diet, other vitamin supplements, choosing not to smoke. Any one of these factors could influence health. As described, this study does not necessarily prove that vitamin D is the key to disease prevention.

Experiments ultimately aim to provide evidence for use in decision-making, so how could we narrow our focus and make claims of causality? In this section, you will learn important aspects of experimental design.

Designed Experiments

The purpose of an experiment is to investigate the relationship between two variables. When one variable causes change in another, we call the first variable the explanatory variable . The affected variable is called the response variable . In a randomized experiment, the researcher manipulates values of the explanatory variable and measures the resulting changes in the response variable. The different values of the explanatory variable may be called treatments . An experimental unit is a single object or individual being measured.

The main principles to follow in experimental design are:

Randomization

Replication.

In order to provide evidence that the explanatory variable is indeed causing the changes in the response variable, it is necessary to isolate the explanatory variable. The researcher must design the experiment in such a way that there is only one difference between groups being compared: the planned treatments. This is accomplished by randomizing the experimental units placed into treatment groups. When subjects are assigned treatments randomly, all of the potential lurking variables are spread equally among the groups. At this point, the only difference between groups is the one imposed by the researcher. As a result, different outcomes measured in the response variable must be a direct result of the different treatments. In this way, an experiment can show an apparent cause-and-effect connection between the explanatory and response variables.

Recall our previous example of investigating the effectiveness of vitamin D in preventing disease. Individuals in our trial could be randomly assigned, perhaps by flipping a coin, into one of two groups: the control group (no treatment) and the experimental group (extra doses of vitamin D).

The more cases researchers observe, the more accurately they can estimate the effect of the explanatory variable on the response. In a single study, we replicate by collecting a sufficiently large sample. Additionally, a group of scientists may replicate an entire study to verify an earlier finding. It is also helpful to subject individuals to the same treatment more than once, which is known as repeated measures .

The power of suggestion can have an important influence on the outcome of an experiment. Studies have shown that the expectations of the study participant can be as important as the actual medication. In one study of performance-enhancing drugs, researchers noted, “ Results showed that believing one had taken the substance resulted in [performance] times almost as fast as those associated with consuming the drug itself. In contrast, taking the drug without knowledge yielded no significant performance increment.” [1]

It is often difficult to isolate the effects of the explanatory variable. To counter the power of suggestion, researchers set aside one treatment group as a control group . This group is given a placebo treatment—a treatment that cannot influence the response variable. The control group helps researchers balance the effects of being in an experiment with the effects of the active treatments. Of course, if you are participating in a study and you know that you are receiving a pill that contains no actual medication, then the power of suggestion is no longer a factor. Blinding in a randomized experiment preserves the power of suggestion. When a person involved in a research study is blinded, he does not know who is receiving the active treatment(s) and who is receiving the placebo treatment. A double-blind experiment is one in which both the subjects and the researchers involved with the subjects are unaware.

Randomized experiments are an essential tool in research. The U.S. Food and Drug Administration typically requires that a new drug can only be marketed after two independently conducted randomized trials confirm its safety and efficacy; the European Medicines Agency has a similar policy. Large randomized experiments in medicine have provided the basis for major public health initiatives. In 1954, approximately 750,000 children participated in a randomized study comparing the polio vaccine with a placebo. In the United States, the results of the study quickly led to the widespread and successful use of the vaccine for polio prevention.

How does sleep deprivation affect your ability to drive? A recent study measured its effects on 19 professional drivers. Each driver participated in two experimental sessions: one after normal sleep and one after 27 hours of total sleep deprivation. The treatments were assigned in random order. In each session, performance was measured on a variety of tasks including a driving simulation.

The Smell & Taste Treatment and Research Foundation conducted a study to investigate whether smell can affect learning. Subjects completed pencil-and-paper mazes multiple times while wearing masks. They completed the mazes three times wearing floral-scented masks and three times with unscented masks. Participants were assigned at random to wear the floral mask during either the first three or last three trials. For each trial, researchers recorded the time it took to complete the maze and whether the subject’s impression of the mask’s scent was positive, negative, or neutral.

More Experimental Design

There are many different experimental designs from the most basic—a single treatment and control group—to some very complicated designs. When working with more than one treatment in an experimental design setting, these variables are often called factors , especially if they are categorical.   The values of factors are are often called levels . When there are multiple factors, the combinations of each of the levels are called treatment combinations , or interactions. Some basic types of interactions you may see are:

  • Completely randomized
  • Block design
  • Matched pairs design

Completely Randomized

This essential research tool does not require much explanation. It involves figuring out how many treatments will be administered and randomly assigning participants to their respective groups.

Block Design

Researchers sometimes know or suspect that variables outside of the treatment influence the response. Based on this, they may first group individuals into blocks and then randomly draw cases from each block for the treatment groups. This strategy is often referred to as blocking . For instance, if we are looking at the effect of a drug on heart attacks, we might first split patients in the study into low-risk and high-risk blocks, then randomly assign half the patients from each block to the control group and the other half to the treatment group, as shown in the figure below. This strategy ensures each treatment group has an equal number of low-risk and high-risk patients.

Box labeled 'numbered patients' that has 54 blue or orange circles numbered from 1-54. Two arrows point from this box to 2 boxes below it with the caption 'create blocks'. The left box is all of the oragne cirlces grouped toegether labeled 'low-risk patients'. The right box is all of the blue circles grouped together labeled 'high-risk patients'. An arrow points down from the left box and the right box with the caption 'randomly split in half'. The arrows point to a 'Control' box and a 'Treatment' box. Both of these boxes have half orange circles and half blue circles.

Matched Pairs

A matched pairs design is one where very similar individuals (or even the same individual) receive two different treatments (or treatment vs. control) and the results are compared. Though this design is very effective, it can be hard to find many suitably similar individuals. Some common forms of a matched pairs design are twin studies, before-and-after measurements, pre- and post-test situations, and crossover studies.

Was the use of a new wetsuit design responsible for an observed increase in swim velocities at the 2000 Summer Olympics? In a matched pairs study designed to investigate this question, twelve competitive swimmers swam 1,500 meters at maximal speed, once wearing a wetsuit and once wearing a regular swimsuit. The order of wetsuit and swimsuit trials was randomized for each of the 12 swimmers. Table 1.1 shows the average velocity recorded for each swimmer, measured in meters per second (m/s).

Table 1.1: Average velocity of swimmers
swimmer.number wet.suit.velocity swim.suit.velocity velocity.diff
1 1 1.57 1.49 0.08
2 2 1.47 1.37 0.10
3 3 1.42 1.35 0.07
4 4 1.35 1.27 0.08
5 5 1.22 1.12 0.10
6 6 1.75 1.64 0.11
7 7 1.64 1.59 0.05
8 8 1.57 1.52 0.05
9 9 1.56 1.50 0.06
10 10 1.53 1.45 0.08
11 11 1.49 1.44 0.05
12 12 1.51 1.41 0.10

In this data, two sets of observations are uniquely paired so that an observation in one set matches an observation in the other; in this case, each swimmer has two measured velocities, one with a wetsuit and one with a swimsuit. A natural measure of the effect of the wetsuit on swim velocity is the difference between the measured maximum velocities (velocity.diff = wet.suit.velocit – swim.suit.velocity). Even though there are two measurements per individual, using the difference in observations as the variable of interest allows for the problem to be analyzed.

A new windshield treatment claims to repel water more effectively. Ten windshields are tested by simulating rain without the new treatment. The same windshields are then treated, and the experiment is run again. What experiment design is being implemented here?

A new medicine is said to help improve sleep. Eight subjects are picked at random and given the medicine. The mean hours slept for each person were recorded before and after stating the medication. What experiment design is being implemented here?

Click here for more multimedia resources, including podcasts, videos, lecture notes, and worked examples.

Figure References

Figure 1.5: Kindred Grey (2020). “Block design.” CC BY-SA 4.0.

  • McClung, Mary, and Dave Collins, ""Because I know it will!": Placebo Effects of an Ergogenic Acid on Athletic Performance," Journal of Sport & Exercise Psychology, 29 , no. 3 (2007): 382-394. ↵

Data collection where no variables are manipulated

Type of experiment where variables are manipulated and data is collected in a controlled setting

The independent variable in an experiment; the value controlled by researchers

The dependent variable in an experiment; the value that is measured for change at the end of an experiment

Different values or components of the explanatory variable applied in an experiment

Any individual or object to be measured

When an individual goes through a single treatment more than once

A group in a randomized experiment that receives no (or inactive) treatment but is otherwise managed exactly as the other groups

An inactive treatment that has no real effect on the explanatory variable

Not telling participants which treatment they are receiving

The act of blinding both the subjects of an experiment and the researchers who work with the subjects

Variables in an experiment

Certain values of variables in an experiment

Combinations of levels of variables in an experiment

Dividing participants into treatment groups randomly

Grouping individuals based on a variable into "blocks" and then randomizing cases within each block to the treatment groups

Very similar individuals (or even the same individual) receive two different treatments (or treatment vs. control), then the results are compared

Significant Statistics Copyright © 2024 by John Morgan Russell, OpenStaxCollege, OpenIntro is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Modular Study of a Force-Magnetic Coupling System

  • Li, Yuanmei
  • Wang, Yinlong
  • Wan, Jianguo

A magnetic-mechanical oscillating system consists of two identical leaf springs, a non-magnetic base, and some magnets. The leaf springs are fixed at the bottom to the non-magnetic base, while the magnet is attached to the top of the leaf springs. This paper investigates the overall motion characteristics of the magnetic-mechanical oscillating system. Adopting the modular modeling concept, we simplify the system into three inter-coupled modules: the leaf springs, magnetic interactions, and the system's dissipation process. We conduct physical modeling and theoretical analysis on these modules and derived the system's dynamic equations. The research indicates that the system is a normal mode system with two degrees of freedom. In addition, we alter parameters and conduct multiple innovative experiments, obtaining intuitive vibration images that characterize the vibration modes and the periodic energy transfer. Furthermore, we employ the simulation software COMSOL Multiphysics simulation to substitute the theory for auxiliary validation, achieving a comprehensive research loop of theory-experiment-simulation. The experimental results show good consistency with the theoretical calculations and simulation results. This research provides a good teaching case for magnetic-coupling complex systems. This modular analysis and rather practical experimental design could solve the previous difficulty that the solution to such problem is too complex, and is conducive to the implementation of education.

  • Physics - Physics Education;
  • Physics - Classical Physics

IMAGES

  1. 15 Experimental Design Examples (2024)

    two features of good experimental design

  2. Experimental Study Design: Types, Methods, Advantages

    two features of good experimental design

  3. PPT

    two features of good experimental design

  4. Experimental design

    two features of good experimental design

  5. An Intuitive Study of Experimental Design

    two features of good experimental design

  6. PPT

    two features of good experimental design

VIDEO

  1. Measurements and Uncertainty

  2. bad features good facial harmony #shorts

  3. 1.3.2 Collecting Sample Data

  4. Mcqs of experimental design ch 21 lec 7

  5. Saturday Engineering for Everyone, April 18, 2015

  6. Requirements of good experimental design ch 21 lec 3

COMMENTS

  1. Guide to Experimental Design

    Table of contents. Step 1: Define your variables. Step 2: Write your hypothesis. Step 3: Design your experimental treatments. Step 4: Assign your subjects to treatment groups. Step 5: Measure your dependent variable. Other interesting articles. Frequently asked questions about experiments.

  2. Experimental Design: Definition and Types

    An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions. An experiment is a data collection ...

  3. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  4. A Quick Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  5. Experimental Design

    Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results. Experimental design typically includes identifying the variables that ...

  6. 8.1 Experimental design: What is it and when should it be used?

    In addition to classic experimental design, there are two other ways of designing experiments that are considered to fall within the purview of "true" experiments (Babbie, 2010; Campbell & Stanley, 1963). ... the pretest, though one receives the intervention. All groups are given the post-test. Table 8.1 illustrates the features of each of ...

  7. 19+ Experimental Design Examples (Methods + Types)

    Randomization: This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable. Sample: This is the group of people you're studying.

  8. Experimental Design

    The completely randomized design is probably the simplest experimental design, in terms of data analysis and convenience. With this design, participants are randomly assigned to treatments. A completely randomized design for the Acme Experiment is shown in the table below. In this design, the experimenter randomly assigned participants to one ...

  9. Guide to experimental research design

    Experimental research design is a scientific framework that allows you to manipulate one or more variables while controlling the test environment. When testing a theory or new product, it can be helpful to have a certain level of control and manipulate variables to discover different outcomes. You can use these experiments to determine cause ...

  10. Fundamentals of Experimental Design: Guidelines for Designing ...

    The last pillar of experimental design is the least understood and possesses the least amount of theoretical results to support empirical observations. This subject receives little or no coverage in the textbooks that deal with experimental design (e.g., less than one page in Steel et al., 1996), perhaps owing to the lack of theoretical results ...

  11. PDF Topic 1: INTRODUCTION TO PRINCIPLES OF EXPERIMENTAL DESIGN

    1. 4. Experimental design 1. 4. 1. The role of experimental design Experimental design concerns the validity and efficiency of the experiment. The experimental design in the following diagram (Box et al., 1978), is represented by a movable window through which certain aspects of the true state of nature, more or less distorted by noise, may be ...

  12. Components of an experimental study design

    1.4 Experimental units. An experimental unit is the smallest unit of experimental material to which a treatment can be assigned. Example: In a study of two retirement systems involving the 10 UC schools, we could ask if the basic unit should be an individual employee, a department, or a University. Answer: The basic unit should be an entire University for practical feasibility.

  13. 14.1 What is experimental design and when should you use it?

    The logic and features of experimental design are intended to help establish causality and to reduce threats to internal validity, which we will discuss in Section 14.5. Experiments attempt to establish a nomothetic causal relationship between two variables—the treatment and its intended outcome.

  14. Chapter 1 Principles of experimental design

    1.4 Experiment validity. Before we embark on the more technical aspects of experimental design, we discuss three components for evaluating an experiment's validity: construct validity, internal validity, and external validity.These criteria are well-established in, e.g., educational and psychological research, but have more recently been proposed for animal research (Würbel 2017) where ...

  15. Three Principles of Experimental Design

    These are often called the three Rs of experimental design, and they are: Randomization. Replication. Reduction of variance. Let's look at each principle in the context of a specific experiment. In this experiment, a researcher assigned each subject to one of two different exercise training groups. The goal of this experiment is to compare ...

  16. 12.1 Experimental design: What is it and when should it be used?

    Two groups are treated as they would be in a classic experiment—pretest, experimental group intervention, and posttest. The other two groups do not receive the pretest, though one receives the intervention. All groups are given the posttest. Table 12.1 illustrates the features of each of the four groups in the Solomon four-group design.

  17. Designing Good Experiments

    A critical feature of this process involves testing your hypothesis with experiments. Good experimental design for each and every experiment you conduct will greatly enhance your chances of success in the lab. Even if you obtain a negative result, a well-designed experiment will increase your confidence in your work and the reliability of your ...

  18. Chapter 1 Principles of Experimental Design

    1.3 The Language of Experimental Design. By an experiment we understand an investigation where the researcher has full control over selecting and altering the experimental conditions of interest, and we only consider investigations of this type. The selected experimental conditions are called treatments.An experiment is comparative if the responses to several treatments are to be compared or ...

  19. PDF 11.3 The Four Principles of Experimental Design

    Statistically Significant (p. 298) - When an observed difference is too large to have likely occurred naturally through the randomization process. Example: Theoretically, you would expect to see a head 50% of the time a coin is tossed. Two coins are tossed one gets 54 heads out of 100 tosses while the other gets 94 heads out of 100 tosses.

  20. 12.1 Experimental design: What is it and when should it be used?

    Glossary. Classic experimental design- uses random assignment, an experimental, a control group, pre-testing, and post-testing. Comparison group- a group in quasi-experimental designs that receives "treatment as usual" instead of no treatment. Control group- the group in an experiment that does not receive the intervention. Experiment- a method of data collection designed to test ...

  21. 5 components of experimental design you need to know

    True experimental design; This is the perfect form of experimental design whose purpose is to test the hypothesis and prove it true or false. It is the most commonly used method of experimental design and its characteristics include random sample assignment, presence of a control group against a treatment group, variable manipulation.

  22. Module 2: Research Design

    Using an experimental design, the investigator divides the class randomly (by chance) into two groups and calls them "Group A" and "Group B." The students cannot choose their own group. The random assignment process results in two groups that should share equal characteristics at the beginning of the experiment.

  23. Characteristics of a Good Experimental Design

    Characteristics of a Good Experimental Design. Provides unbiased estimates of the factor effects and associated uncertainties. Enables the experimenter to detect important differences. Includes the plan for analysis and reporting of the results. Gives results that are easy to interpret. Permits conclusions that have wide validity.

  24. Experimental vs Observational Studies: Differences & Examples

    An experimental study is a research design in which the investigator actively manipulates one or more variables to observe their effect on another variable. This type of study often takes place in a controlled environment, which allows researchers to establish cause-and-effect relationships. Key Characteristics of Experimental Studies:

  25. 1.4 Designed Experiments

    1.4 Designed Experiments Observational Studies vs. Experiments. Ignoring anecdotal evidence, there are two primary types of data collection: observational studies and controlled (designed) experiments.Remember, we typically cannot make claims of causality from observation studies because of the potential presence of confounding factors.

  26. Modular Study of a Force-Magnetic Coupling System

    A magnetic-mechanical oscillating system consists of two identical leaf springs, a non-magnetic base, and some magnets. The leaf springs are fixed at the bottom to the non-magnetic base, while the magnet is attached to the top of the leaf springs. This paper investigates the overall motion characteristics of the magnetic-mechanical oscillating system. Adopting the modular modeling concept, we ...