U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Key natural hazards statistics from 1978 to 2020
Country1978 change2018Absolute changeRelative
Drought630 − 63 − 100%
Earthquake25,1624,321 − 20,841 − 83%
Extreme temperature150536 + 386 + 257%
Extreme weather36761,666 − 2,010 − 55%
Flood5,8972,869 − 3,028 − 51%
Landslide86275 + 189 + 220%
Mass movement5017 − 33 − 66%
Volcanic activity268878 + 610 + 228%
Wildfire2247 + 245 + 12,250%
All − natural disasters35,03610,809 − 24,227 − 69%

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Environmental modificationsPotential diseasesThe causative organisms and pathway of effect
Construction of canals, dams, irrigation pathwaysSchistosomiasisSnail host locale, human contact
MalariaUpbringing places for mosquitoes
HelminthiasesLarval contact due to moist soil
River blindnessBlackfly upbringing
Agro-strengtheningMalariaCrop pesticides
Venezuelan hemorrhagic feverRodent abundance, contact
SuburbanizationCholeradeprived hygiene, asepsis; augmented water municipal assembling pollution
DengueWater-gathering rubbishes Aedes aegypti mosquito upbringing sites
Cutaneous leishmaniasisPSandfly vectors
Deforestation and new tenancyMalariaUpbringing sites and trajectories, migration of vulnerable people
Oropoucheupsurge contact, upbringing of directions
Visceral leishmaniasisRecurrent contact with sandfly vectors
AgricultureLyme diseaseTick hosts, outside revelation
Ocean heatingRed tidePoisonous algal blooms

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

AttributesDescriptionForestry example
PurposefulnessAutonomousIncludes continuing application of prevailing information and techniques in retort to experienced climate change

Thin to reduce drought stress; construct breaks in vegetation to

Stop feast of wildfires, vermin, and ailments

TimingPreemptiveNecessitates interactive change to diminish future injury, jeopardy, and weakness, often through planning, observing, growing consciousness, structure partnerships, and ornamental erudition or investigation

Ensure forest property against potential future losses; transition to

species or stand erections that are better reformed to predictable

future conditions; trial with new forestry organization

practices

ScopeIncremental

Involves making small changes in present circumstances to circumvent disturbances

and ongoing to chase the same purposes

Condense rotation pauses to decrease the likelihood of harm to storm Events, differentiate classes to blowout jeopardy; thin to lessening compactness and defenselessness of jungle stands to tension
GoalOppositionShield or defend from alteration; take procedures to reservation constancy and battle changeGenerate refugia for rare classes; defend woodlands from austere fire and wind uproar; alter forest construction to reduce harshness or extent of wind and ice impairment; establish breaks in vegetation to dampen the spread of vermin, ailments, and wildfire

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050
  • Climate modelling
  • Extreme weather
  • Health and Security
  • Temperature
  • China energy
  • Oil and gas
  • Other technologies
  • China Policy
  • International policy
  • Other national policy
  • Rest of world policy
  • UN climate talks
  • Country profiles
  • Guest posts
  • Infographics
  • Media analysis
  • State of the climate
  • Translations
  • Daily Brief
  • China Briefing
  • Comments Policy
  • Cookies Policy
  • Global emissions
  • Rest of world emissions
  • UK emissions
  • EU emissions
  • Global South Climate Database
  • Newsletters
  • COP21 Paris
  • COP22 Marrakech
  • COP24 Katowice
  • COP25 Madrid
  • COP26 Glasgow
  • COP27 Sharm el-Sheikh
  • COP28 Dubai
  • Privacy Policy
  • Attribution
  • Geoengineering
  • Food and farming
  • Nature policy
  • Plants and forests
  • Marine life
  • Ocean acidification
  • Ocean warming
  • Sea level rise
  • Human security
  • Public health
  • Public opinion
  • Risk and adaptation
  • Science communication
  • Carbon budgets
  • Climate sensitivity
  • GHGs and aerosols
  • Global temperature
  • Negative emissions
  • Rest of world temperature
  • Tipping points
  • UK temperature
  • Thank you for subscribing

Social Channels

Search archive.

term paper about climate change

Receive a Daily or Weekly summary of the most important articles direct to your inbox, just enter your email below. By entering your email address you agree for your data to be handled in accordance with our Privacy Policy .

term paper about climate change

Roz Pidcock

Which of the many thousands of papers on climate change published each year in scientific journals are the most successful? Which ones have done the most to advance scientists’ understanding, alter the course of climate change research, or inspire future generations?

On Wednesday, Carbon Brief will reveal the results of our analysis into which scientific papers on the topic of climate change are the most “cited”. That means, how many times other scientists have mentioned them in their own published research. It’s a pretty good measure of how much impact a paper has had in the science world.

But there are other ways to measure influence. Before we reveal the figures on the most-cited research, Carbon Brief has asked climate experts what they think are the most influential papers.

We asked all the coordinating lead authors, lead authors and review editors on the last Intergovernmental Panel on Climate Change (IPCC) report to nominate three papers from any time in history. This is the exact question we posed:

What do you consider to be the three most influential papers in the field of climate change?

As you might expect from a broad mix of physical scientists, economists, social scientists and policy experts, the nominations spanned a range of topics and historical periods, capturing some of the great climate pioneers and the very latest climate economics research.

Here’s a link to our summary of who said what . But one paper clearly takes the top spot.

Winner: Manabe & Wetherald ( 1967 )

With eight nominations, a seminal paper by Syukuro Manabe and Richard. T. Wetherald published in the Journal of the Atmospheric Sciences in 1967 tops the Carbon Brief poll as the IPCC scientists’ top choice for the most influential climate change paper of all time.

Entitled, “Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity”, the work was the first to represent the fundamental elements of the Earth’s climate in a computer model, and to explore what doubling carbon dioxide (CO2) would do to global temperature.

Manabe & Wetherald (1967), Journal of the Atmospheric Sciences

Manabe & Wetherald (1967), Journal of the Atmospheric Sciences

The Manabe & Wetherald paper is considered by many as a pioneering effort in the field of climate modelling, one that effectively opened the door to projecting future climate change. And the value of climate sensitivity is something climate scientists are still grappling with today .

Prof Piers Forster , a physical climate scientist at Leeds University and lead author of the chapter on clouds and aerosols in working group one of the last IPCC report, tells Carbon Brief:

This was really the first physically sound climate model allowing accurate predictions of climate change.

The paper’s findings have stood the test of time amazingly well, Forster says.

Its results are still valid today. Often when I’ve think I’ve done a new bit of work, I found that it had already been included in this paper.

Prof Steve Sherwood , expert in atmospheric climate dynamics at the University of New South Wales and another lead author on the clouds and aerosols chapter, says it’s a tough choice, but Manabe & Wetherald (1967) gets his vote, too. Sherwood tells Carbon Brief:

[The paper was] the first proper computation of global warming and stratospheric cooling from enhanced greenhouse gas concentrations, including atmospheric emission and water-vapour feedback.

Prof Danny Harvey , professor of climate modelling at the University of Toronto and lead author on the buildings chapter in the IPCC’s working group three report on mitigation, emphasises the Manabe & Wetherald paper’s impact on future generations of scientists. He says:

[The paper was] the first to assess the magnitude of the water vapour feedback, and was frequently cited for a good 20 years after it was published.

Tomorrow, Carbon Brief will be publishing an interview with Syukuro Manabe, alongside a special summary by Prof John Mitchell , the Met Office Hadley Centre’s chief scientist from 2002 to 2008 and director of climate science from 2008 to 2010, on why the paper still holds such significance today.

Joint second: Keeling, C.D et al. ( 1976 )

Jumping forward a decade, a classic paper by Charles Keeling and colleagues in 1976 came in joint second place in the Carbon Brief survey.

Published in the journal Tellus under the title, “Atmospheric carbon dioxide variations at Mauna Loa observatory,” the paper documented for the first time the stark rise of carbon dioxide in the atmosphere at the Mauna Loa observatory in Hawaii.

A photocopy of Keeling et al., (1976) Source: University of California, Santa Cruz

A photocopy of Keeling et al., (1976) Source: University of California, Santa Cruz

Dr Jorge Carrasco , Antarctic climate change researcher at the University of Magallanes  in Chile and lead author on the cryosphere chapter in the last IPCC report, tells Carbon Brief why the research underpinning the “Keeling Curve’ was so important.

This paper revealed for the first time the observing increased of the atmospheric CO2 as the result of the combustion of carbon, petroleum and natural gas.

Prof David Stern , energy and environmental economist at the Australian National University and lead author on the Drivers, Trends and Mitigation chapter of the IPCC’s working group three report, also chooses the 1976 Keeling paper, though he notes:

This is a really tough question as there are so many dimensions to the climate problem – natural science, social science, policy etc.

With the Mauna Loa measurements continuing today , the so-called “Keeling curve” is the longest continuous record of carbon dioxide concentration in the world. Its historical significance and striking simplicity has made it one of the most iconic visualisations of climate change.

Source: US National Oceanic and Atmospheric Administration (NOAA)

Source: US National Oceanic and Atmospheric Administration (NOAA)

Also in joint second place: Held, I.M. & Soden, B.J. ( 2006 )

Fast forwarding a few decades, in joint second place comes a paper by Isaac Held and Brian Soden published in the journal Science in 2006.

The paper, “Robust Responses of the Hydrological Cycle to Global Warming”, identified how rainfall from one place to another would be affected by climate change. Prof Sherwood, who nominated this paper as well as the winning one from Manabe and Wetherald, tells Carbon Brief why it represented an important step forward. He says:

[This paper] advanced what is known as the “wet-get-wetter, dry-get-drier” paradigm for precipitation in global warming. This mantra has been widely misunderstood and misapplied, but was the first and perhaps still the only systematic conclusion about regional precipitation and global warming based on robust physical understanding of the atmosphere.

Extract from Held & Soden (2006), Journal of Climate

Held & Soden (2006), Journal of Climate

Honourable mentions

Rather than choosing a single paper, quite a few academics in our survey nominated one or more of the Working Group contributions to the last IPCC report. A couple even suggested the Fifth Assessment Report in its entirety, running to several thousands of pages. The original IPCC report , published in 1990, also got mentioned.

It was clear from the results that scientists tended to pick papers related to their own field. For example, Prof Ottmar Edenhofer , chief economist at the Potsdam Institute for Climate Impact Research and co-chair of the IPCC’s Working Group Three report on mitigation, selected four papers from the last 20 years on the economics of climate change costs versus risks, recent emissions trends, the technological feasibility of strong emissions reductions and the nature of international climate cooperation.

Taking a historical perspective, a few more of the early pioneers of climate science featured in our results, too. For example, Svante Arrhenius’ famous 1896 paper  on the Greenhouse Effect, entitled “On the influence of carbonic acid in the air upon the temperature of the ground”, received a couple of votes.

Prof Jonathan Wiener , environmental policy expert at Duke University in the US and lead author on the International Cooperation chapter in the IPCC’s working group three report, explains why this paper should be remembered as one of the most influential in climate policy. He says:

[This is the] classic paper showing that rising greenhouse gas concentrations lead to increasing global average surface temperature.

Svante Arrhenius (1896), Philosophical Magazine

Svante Arrhenius (1896), Philosophical Magazine

A few decades later, a paper by Guy Callendar in 1938  linked the increase in carbon dioxide concentration over the previous 50 years to rising temperatures. Entitled, “The artificial production of carbon dioxide and its influence on temperature,” the paper marked an important step forward in climate change research, says Andrew Solow , director of the Woods Hole Marine Policy centre and lead author on the detection and attribution of climate impacts chapter in the IPCC’s working group two report. He says:

There is earlier work on the greenhouse effect, but not (to my knowledge) on the connection between increasing levels of CO2 and temperature.

Though it may feature in the climate change literature hall of fame, this paper raises a question about how to define a paper’s influence, says Forster. Rather than being celebrated among his contemporaries, Callendar’s work achieved recognition a long time after it was published. Forster says:

I would loved to have chosen Callendar (1938) as the first attribution paper that changed the world. Unfortunately, the 1938 effort of Callendar was only really recognised afterwards as being a founding publication of the field … The same comment applies to earlier Arrhenius and Tyndall efforts. They were only influential in hindsight.

Guy Callendar and his 1938 paper in Quarterly Journal of the Royal Meteorological Society

Guy Callendar and his 1938 paper in Quarterly Journal of the Royal Meteorological Society

Other honourable mentions in the Carbon Brief survey of most influential climate papers go to Norman Phillips, whose 1956 paper described the first general circulation model, William Nordhaus’s 1991 paper on the economics of the greenhouse effect, and a paper by Camile Parmesan and Gary Yohe in 2003 , considered by many to provide the first formal attribution of climate change impacts on animal and plant species.

Finally, James Hansen’s 2012 paper , “Public perception of climate change and the new climate dice”, was important in highlighting the real-world impacts of climate change, says Prof Andy Challinor , expert in climate change impacts at the University of Leeds and lead author on the food security chapter in the working group two report. He says:

[It] helped with demonstrating the strong links between extreme events this century and climate change. Result: more clarity and less hedging.

Marc Levi , a political scientist at Columbia University and lead author on the IPCC’s human security chapter, makes a wider point, telling Carbon Brief:

The importance is in showing that climate change is observable in the present.

Indeed, attribution of extreme weather continues to be at the forefront of climate science, pushing scientists’ understanding of the climate system and modern technology to their limits.

Look out for more on the latest in attribution research as Carbon Brief reports on the Our Common Futures Under Climate Change conference taking place in Paris this week.

Pinning down which climate science papers most changed the world is difficult, and we suspect climate scientists could argue about this all day. But while the question elicits a range of very personal preferences, stories and characters, one paper has clearly stood the test of time and emerged as the popular choice among today’s climate experts – Manabe and Wetherald, 1967.

Main image: Satellite image of Hurricane Katrina.

  • What are the most influential climate change papers of all time?

Expert analysis direct to your inbox.

Get a round-up of all the important articles and papers selected by Carbon Brief by email. Find out more about our newsletters here .

Long-Term Macroeconomic Effects of Climate Change: A Cross-Country Analysis

We study the long-term impact of climate change on economic activity across countries, using a stochastic growth model where labour productivity is affected by country-specific climate variables—defined as deviations of temperature and precipitation from their historical norms. Using a panel data set of 174 countries over the years 1960 to 2014, we find that per-capita real output growth is adversely affected by persistent changes in the temperature above or below its historical norm, but we do not obtain any statistically significant effects for changes in precipitation. Our counterfactual analysis suggests that a persistent increase in average global temperature by 0.04°C per year, in the absence of mitigation policies, reduces world real GDP per capita by 7.22 percent by 2100. On the other hand, abiding by the Paris Agreement, thereby limiting the temperature increase to 0.01°C per annum, reduces the loss substantially to 1.07 percent. These effects vary significantly across countries. We also provide supplementary evidence using data on a sample of 48 U.S. states between 1963 and 2016, and show that climate change has a long-lasting adverse impact on real output in various states and economic sectors, and on labor productivity and employment.

We are grateful to Zeina Hasna, Ron Smith and participants at the International Monetary Fund (IMF), Bank of Lithuania, Bank of Canada, EPRG, Cambridge Judge Business School, the ERF 24th Annual Conference, and the 2018 MIT CEEPR Research Workshop for comments and suggestions. We also thank Matthew Norris for help with constructing the global climate dataset. We gratefully acknowledge financial support from the Keynes Fund. Part of this work was done while Jui-Chung Yang was a Postdoctoral Research Fellow at the USC Dornsife INET. The views expressed in this paper are those of the authors and do not necessarily represent those of the IMF or its policy, not those of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

Published Versions

Mentioned in the news, more from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

2024, 16th Annual Feldstein Lecture, Cecilia E. Rouse," Lessons for Economists from the Pandemic" cover slide

  • Feldstein Lecture
  • Presenter: Cecilia E. Rouse

 2024 Methods Lecture, Susan Athey, "Analysis and Design of Multi-Armed Bandit Experiments and Policy Learning"

  • Methods Lectures
  • Presenter: Susan Athey

2024, Economics of Social Security Panel, "Earnings Inequality and Payroll Tax Revenues"

  • Panel Discussion
  • Presenters: Karen Dynan , Karen Glenn, Stephen Goss, Fatih Guvenen & James Pearce

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

How relevant is climate change research for climate change policy? An empirical analysis based on Overton data

Roles Conceptualization, Methodology, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliations Science Policy and Strategy Department, Administrative Headquarters of the Max Planck Society, Munich, Germany, Max Planck Institute for Solid State Research, Stuttgart, Germany

ORCID logo

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing

Affiliation Max Planck Institute for Solid State Research, Stuttgart, Germany

Roles Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing

Affiliation SciTech Strategies, Inc., Albuquerque, NM, United States of America

Roles Conceptualization, Writing – original draft, Writing – review & editing

Roles Conceptualization, Supervision, Writing – original draft, Writing – review & editing

Affiliation Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany

  • Lutz Bornmann, 
  • Robin Haunschild, 
  • Kevin Boyack, 
  • Werner Marx, 
  • Jan C. Minx

PLOS

  • Published: September 22, 2022
  • https://doi.org/10.1371/journal.pone.0274693
  • Reader Comments

Fig 1

Climate change is an ongoing topic in nearly all areas of society since many years. A discussion of climate change without referring to scientific results is not imaginable. This is especially the case for policies since action on the macro scale is required to avoid costly consequences for society. In this study, we deal with the question of how research on climate change and policy are connected. In 2019, the new Overton database of policy documents was released including links to research papers that are cited by policy documents. The use of results and recommendations from research on climate change might be reflected in citations of scientific papers in policy documents. Although we suspect a lot of uncertainty related to the coverage of policy documents in Overton, there seems to be an impact of international climate policy cycles on policy document publication. We observe local peaks in climate policy documents around major decisions in international climate diplomacy. Our results point out that IGOs and think tanks–with a focus on climate change–have published more climate change policy documents than expected. We found that climate change papers that are cited in climate change policy documents received significantly more citations on average than climate change papers that are not cited in these documents. Both areas of society (science and policy) focus on similar climate change research fields: biology, earth sciences, engineering, and disease sciences. Based on these and other empirical results in this study, we propose a simple model of policy impact considering a chain of different document types: The chain starts with scientific assessment reports (systematic reviews) that lead via science communication documents (policy briefs, policy reports or plain language summaries) and government reports to legislative documents.

Citation: Bornmann L, Haunschild R, Boyack K, Marx W, Minx JC (2022) How relevant is climate change research for climate change policy? An empirical analysis based on Overton data. PLoS ONE 17(9): e0274693. https://doi.org/10.1371/journal.pone.0274693

Editor: Alberto Baccini, University of Siena, Italy, ITALY

Received: March 21, 2022; Accepted: September 1, 2022; Published: September 22, 2022

Copyright: © 2022 Bornmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The data underlying the results presented in the study are available from https://doi.org/10.17617/3.DUY0LD .

Funding: The author(s) received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

People have long believed that nature is so vast and powerful that mankind has not the potential for any major and lasting effect on the earth’s climatic system. One century ago, Arrhenius [ 1 ], one of the discoverers of the greenhouse effect, even welcomed a hotter climate for Northern Europe. According to Weart [ 2 ], the World Climate Conference in Geneva in 1979 and the reports of the US National Academy of Sciences (NAS) and the US Environmental Protection Agency (EPA) in 1983 are important milestones at the beginning of the climate debate, particularly beyond the scientific community.

In the 1960s many experts assumed that swings of the global mean temperature take tens of thousands of years; in the 1970s, they assumed thousands of years. Meanwhile, ice core data from the last Glacial Period show that abrupt global warming is possible and can happen within a few decades or even within a few years as a climate shock [see 3 , climate change beyond 2100, irreversibility and abrupt changes]. In the 1980s, climate change was no longer a theoretical problem. It was widely agreed among experts that global warming could be a concrete threat. A growing number of well-respected climate researchers (like Roger Revelle, Stephen Schneider, James Hansen, Bert Bolin) were deeply concerned and pointed out that the earth was getting noticeably warmer. A series of meetings of meteorologists held in Villach, Austria, led to a growing conviction that global warming may not be a problem of the far future but might become serious within the scientists’ own lifetimes. Subsequently, scientists took an active stance and prompted governments to act soon, because the rate and degree of future warming could be influenced by governmental policy [see 2 , breaking into policy].

The year 1988 marked an important turning point for climate science and policy. Supported by governments around the globe, the Intergovernmental Panel on Climate Change (IPCC) was founded under the roof of the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP) as a unique science-policy interface. The panel, i.e., participating governments, tasked a set of elected scientists to assess the state of climate science in dedicated reports, i.e., to review and synthesize scientific information relevant to understanding the scientific basis of climate change and of its risk, its environmental, political, and economic impacts and possible response options (see https://www.ipcc.ch/reports/ ). The latest report is from 2021 [ 4 ].

These assessments follow strict principles and procedures (see https://www.ipcc.ch/site/assets/uploads/2018/09/ipcc-principles.pdf and https://www.ipcc.ch/site/assets/uploads/2018/09/ipcc-principles-appendix-a-final.pdf ) to ensure policy relevance without being policy prescriptive. Hundreds of scientists and other experts contribute to the assessment in diverse author teams from a wide range of disciplines including climate physics, engineering, economics, geography, political science, psychology, sociology or urban science and from different world regions to ensure balanced findings. Review is another critical element of IPCC reports. Authors have to respond to tens of thousands of submitted comments by experts and governments in two rounds of review. Important for the dignity of IPCC assessments in the political sphere is the formal acceptance of the reports by the 195 member countries and the line-by-line approval of the summary for policymakers [ 5 – 8 ].

IPCC has been designed and used as the prime scientific input to international climate diplomacy under the United Nations Framework Convention on Climate Change–and as such contributed to international climate agreements–most importantly, the Kyoto Protocol and the Paris Agreement. Meanwhile, climate policy has become an integral part of most national policy programs. These programs include political actions that governments take to achieve the goal of limiting climate change and its consequences [see 9 ].

In its summary for policymakers, the Climate change 2014 synthesis report [ 3 ] states that “human influence on the climate system is clear, and recent anthropogenic emissions of greenhouse gases are the highest in history. Recent climate changes have had widespread impacts on human and natural systems” (p. 2). A recent study found that detectable and attributable climate impacts are documented in tens of thousands of scientific studies affecting 80% of the world’s land area, where 85% of the world population resides [ 10 ]. As such, it is unsurprising that the topic of climate change has become a hot topic in political and public debates and now features widely on political agendas across many different fields.

In this study, we deal with the question of how research on climate change and policy are connected. According to Yin, Gao [ 11 ], the systematic understanding of the connection between science and policy is still limited, since reliable data are missing on a global scale. In 2019, however, the new Overton database of policy documents was released including links to research papers that are cited by policy documents. Yang, Huang [ 9 ] define policy documents in this context as “‘carriers’ of policies … [that] provide a channel through which policy science researchers can study the main contents of policies, policymaking processes and policy instruments”. Using Overton data, Yin, Gao [ 11 ] analyzed the connection between science and policy with respect to COVID-19. They found that “many policy documents in the COVID-19 pandemic substantially access recent, peer-reviewed, and high-impact science. And policy documents that cite science are especially highly cited within the policy domain. At the same time, there is a heterogeneity in the use of science across policy-making institutions. The tendency for policy documents to cite science appears mostly concentrated within intergovernmental organizations (IGOs), such as the World Health Organization (WHO), and much less so in national governments, which consume science largely indirectly through the IGOs” (p. 128).

Impact measurement of scientific papers on the policy area is part of a new branch in scientometrics: measurement of societal impact [ 12 ]. Whereas science impact measurements of papers were restricted to citation analyses (using Web of Science, WoS, or Scopus data) until recently, societal impact measurements are focused on impact analyses of papers on other parts of society than science [ 13 ]. One part of the society is of special interest in this respect: the policy area. The policy area is permanently required to find answers on certain societal demands (such as COVID-19 or climate change). Since science permanently produces research results that can (and should) be used in the response to these demands, it is interesting to know, whether and to what extent this happens. Fang, Dudek [ 14 ] defines the term ‘policy impact’ in this respect as impact that “tells the story of how research outputs provide concrete evidence to support policy-making processes, which can be reflected by the references to research outputs in policy documents”. The use of research findings in the policy-making process is denoted as evidence-based policy-making [ 15 ] or science-based policy-making [ 16 ]. OPENing UP [ 17 ] regards “informing policy and influencing decisions … as one of the most notable effects of scientific research” (p. 24).

Overview of studies on policy impact

The overview of studies dealing with the use of scientific information/publications in policy making by Vilkins and Grant [ 18 ] reveals that a number of studies exists that are based on interviews and surveys (with policymakers). These studies show, e.g., that the use of scientific publications in policy documents seems to depend on organizational culture and perspectives towards their use. Furthermore, some policy areas (such as information technology) use scientific information more frequently than others (e.g., immigration or justice). The use of scientific information in policy might be distinguished according to three stylized purposes: “‘instrumental’ use is direct and measurable for policy; ‘conceptual’ use … [is] indirect but rather affects thinking over a longer period of time; ‘symbolic’ use is when specific findings are selected for rhetorical or political argument” [ 18 ]. Sources of scientific information preferred by policymakers are the internet, meetings, and emailing colleagues. Yang, Huang [ 9 ] reviewed some studies that have analyzed networks of policymaking institutions to gain insights into their relationships. These studies focused on policymaking organizations’ networks, public service organizations’ networks, and policy collaboration networks.

In the area of altmetrics research, a recent overview of studies on measuring policy impact using altmetric data can be found in Fang, Dudek [ 14 ] and Yang, Huang [ 9 ]. A number of studies has used policy impact data from Altmetric ( https://www.altmetric.com ) or PlumX ( https://plumanalytics.com ) [see 19 , 20 ]. Very recent studies used Overton data [e.g., 11]. In the following, we summarize some of these policy impact studies chronologically. One of the first studies in this new altmetrics area was published by Bornmann, Haunschild [ 21 ] using an extensive publication set of climate change papers. The authors were interested in the question of how intensively policy documents have cited science publications. Although climate change is an ongoing policy topic worldwide, they found that only 1.2% out of 191,276 papers on climate change in the dataset have at least one policy citation (using data from Altmetric). The results of Bornmann, Haunschild [ 21 ] revealed that review papers were more frequently cited in policy documents than articles. In order to investigate whether the percentage of 1.2% can be thought of as high or low, two of the authors investigated the percentage of papers indexed in the WoS that are mentioned in policy-related documents [ 22 ]. They found that less than 0.5% are mentioned at least once. Thus, the results show that although only 1.2% of climate change papers were relevant for policy documents, this percentage is substantially higher than the percentage among all papers from the database.

Vilkins and Grant [ 18 ] did not use data from Altmetric or PlumX for their empirical study, but used publications from policy-focused Australian Government departments. The authors were interested in the research and reference practices of Australian policymakers. The study is based on 4,649 cited references in 80 government publications from eight departments. They found that mostly peer-reviewed journal articles, federal government reports, and Australian business information have been cited. The study also revealed “a possible increased chance for academic research to be cited if it was open access. Despite criticisms of citation analysis, at least in the field of research utilisation we cannot solely rely on interview or survey data, as cited evidence use differs from reported evidence use” [ 18 ].

Tattersall and Carroll [ 23 ] used Altmetric policy documents data to investigate policy impact of papers published by authors at the University of Sheffield. They found that 0.65% of the papers were cited by at least one policy document. This percentage is slightly higher than that mentioned by Haunschild and Bornmann [ 22 ] for the WoS database. The field-specific policy-impact analysis revealed that “the research topics with the greatest policy impact are medicine, dentistry, and health, followed by social science and pure science” [ 23 ]. In a more recent study, Yang, Huang [ 9 ] used the Chinese database iPolicy that includes policy documents issued by the Chinese government since 1949. The authors used the data to construct networks of policy-making ministries and government departments. They were interested in identifying core policymakers in China and possible changes of their positions in the networks. Yang, Huang [ 9 ] present 15 ministries in China with the highest eigenvector centrality as core government ministries in the policy networks.

Fang, Costas [ 24 ] focused on hot research topics reflected by citations in policy documents (using Altmetric.com data). The study is based on more than 10 million WoS papers published in various disciplines. The authors identified the hot topics in various broad disciplines. For example, they found that infectious diseases were typically of concern to policy-makers, but also topics that focus on industry and finance as well as child and education. In addition, “potential health-threatening environment problems (e.g., ‘ambient air pollution’, ‘environmental tobacco smoke’, ‘climate change’, etc.) drew high levels of attention from policy-makers too” [ 24 ].

Hicks and Isett [ 25 ] published a case study that investigated the policy impact of papers published in the area of quantitative studies of science. The authors speculated that many papers in this area have limited policy impact, but some papers such as the papers selected for their case study received a lot of policy impact. Hicks and Isett [ 25 ] explain in detail the policy impact of the selected papers. For example, the authors selected the well-known study by Mansfield [ 26 ], Mansfield [ 27 ] that estimated the social rate of return to public research spending. Hicks and Isett [ 25 ] describe the diverse policy impact reached by this paper using several sources.

In the most recent study, Pinheiro, Vignola-Gagné [ 28 ] used publication data from Framework Programmes (FPs) for Research and Technological Development. The authors investigated the relationship of cross-disciplinarity on the paper level and policy impact measured by policy citation data from the Overton database. Pinheiro, Vignola-Gagné [ 28 ] conclude as follows: “Our approach enables testing in a general way the assumption underlying many funding programs, namely that cross-disciplinary research will increase the policy relevance of research outcomes. Findings suggest that research assessments could benefit from measuring uptake in policy-related literature, following additional characterization of the Overton database; of the science-policy interactions it captures; and of the contribution of these interactions within the larger policymaking process” (p. 616).

Dataset used

For many years, policy documents’ and policy citations’ data were aggregated only by the companies Altmetric and PlumX. Recently, however, the Overton database (see https://www.overton.io ) was launched with the goal of becoming the largest database of policy documents and citations [ 29 ]. In Overton, policy documents are defined “very broadly as documents written primarily for or by policymakers” (see http://help.overton.io/en/articles/3823271-what-s-your-definition-of-a-policy-document ). Overton includes documents from governments, think tanks (i.e., research institutions that perform research and advocacy in climate change), non-governmental organizations (NGOs) and intergovernmental organizations (IGOs, i.e., organizations that are composed of states) (see http://help.overton.io/en/articles/5062448-which-publications-does-overton-collect ). The database includes not only various bibliographic information on policy documents (e.g., title and appearance), but also the citation links that exist between policy and science as well as among the policy documents in the database themselves. The citation relations are identified by Overton by using text-mining methods. According to Yin, Gao [ 11 ], the Overton database “includes all major economies and large population centers, with a notable exception of mainland China” (p. 128). The database is updated on a weekly basis. In December 2020, the database includes 799,716 policy documents with citation relations to either other policy documents or scientific papers in 66 different languages from 168 countries (including the European Union and IGOs) and more than 1250 different policy sources.

Yin, Gao [ 11 ] studied the reliability of the science-policy citations in the Overton database, by comparing them with the citation links provided by the Microsoft Academic Graph database (see https://academic.microsoft.com/home ). The results show that “although the two datasets are collected for different purposes using different approaches and technologies, the measurements carried out independently across the two datasets show remarkable consistencies” (p. SI). Since the results by Yin, Gao [ 11 ] confirm the reliability of the Overton data, we decided to use the data for the current study on climate change. Overton provided a snapshot (dated December 04, 2020) of their database to some of us (LB and RH). This snapshot has been imported into a local PostgreSQL database at the Max Planck Institute for Solid State Research (Stuttgart, Germany). After an analysis of publication dates of policy documents and consultation with Euan Adie (Overton), we excluded the policy documents with the publication dates ‘1970-01-01’, ‘1970-01-02’, and ‘2002-07-01’ from our analysis because they were confirmed as ‘dummy’ publication dates by Euan Adie or contained many policy documents published later than the specified date (see https://help.overton.io/article/why-am-i-seeing-unknown-date-instead-of-a-publication-date ). We used PostgreSQL and R [ 30 ] commands including the R package ‘tidyverse’ [ 31 ] for data analysis.

We searched in the fields ‘title’, ‘translated title’, and ‘snippet’ for climate-change-related terms in the Overton snapshot. We searched for ‘climate change’ and ‘global warming’ (note that both terms were truncated on both sides and a single arbitrary character was allowed instead of the white space between the words) to cover the bulk of policy documents that are related to climate change. The search strategy is based on keyword analyses in connection with search queries of previous climate change related papers [ 21 , 22 ]. We found 10,846 policy documents that met the climate change search criteria out of 799,716 policy documents with any citation relation to a scientific paper or another policy document.

The Overton database includes links to scientific publications via digital object identifiers (DOIs)–“scholarly” references in Overton must have a DOI. There are 8,533,973 citation relations from 492,958 policy documents to 3,242,626 scientific papers. We used the SciTech Strategies’ in-house version of Scopus containing 52.04 million items indexed as of May 2020 and published between 1996 and 2019 as a database for scientific papers. 76.7% of these items have a DOI. We were able to match 2,071,085 DOIs cited in Overton to Scopus papers. Thus, nearly 4.98% of Scopus items with a DOI have been cited by policy documents indexed in the Overton database. This is substantially higher than the 1.12% mentioned in Fang, Costas [ 24 ].

We used the journal metric CiteScore to measure the citation impact of journals [ 32 ]. It is the mean number of citations for papers published in a journal. For the current study, CiteScore values were downloaded from https://www.scopus.com/sources.uri on November 10, 2020. The most current CiteScore values from 2019 were used for our analyses.

Policy documents

This study is based on 10,846 climate change policy documents covered in the Overton database. This corresponds to 1.36% of all policy documents in the database. Fig 1 shows the distribution of the climate change policy documents across publication years. For a better interpretation of this distribution, we also included distributions for all policy documents in the Overton database and the papers on climate change in the Scopus database. The comparison of climate change with all policy documents reveals that the climate change policy documents reached a plateau in 2015 whereas all policy documents steadily increased until 2018. Since the scientific paper distribution also shows a steadily increasing trend, it seems that the discussion of climate change in the policy area reached its maximum several years ago (at least temporarily).

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0274693.g001

Policy documents can be published by various types of institutions. Based on the classification of these institution types used in Overton, Fig 2 shows the percentage of policy documents published by think tanks, governments, and IGOs. The comparison of climate change policy documents with all policy documents in Fig 2 reveals that climate change documents were published by think tanks and IGOs at higher than expected rates given their overall share of policy documents; fewer climate change documents were published by governments than expected.

thumbnail

https://doi.org/10.1371/journal.pone.0274693.g002

This substantially lower share of climate documents issued by governments could be a reflection of their hesitance in dealing with the problem of climate change as documented in continued emissions growth [ 33 – 35 ] as well as the gap between long-term ambition and short-term actions [ 36 , 37 ]. NGOs and IGOs might be particularly active in the field of climate change. IGOs, for example, may consider climate change as a problem of international coordination in nature.

Fig 3 analyzes sectors publishing policy documents in more detail by considering single institutions. The figure shows the relationship for single institutions between number of policy documents and number of climate change policy documents. On the one hand, the results reveal those institutions (with high output) that are focused on climate change and those institutions that deal with climate change besides other topics. For example, due to its focus on a sector that is highly vulnerable to climate change, documents by the Food and Agriculture Organization (FAO) of the United Nations cover frequently the topic of climate change (please see the interactive version of Fig 3 ).

thumbnail

https://doi.org/10.1371/journal.pone.0274693.g003

This is different in the field of health. Policy documents by the World Health Organization often do not cover climate change, even though this is starting to change now. This corresponds to the comparatively small share of publications in the field of medicine related to climate change research [ 38 ]–even though there is a sizable and fast-growing number of research papers on climate and health in absolute terms [ 39 ]. On the other hand, the colors of the institutional dots in Fig 3 point out the relatively high number of think tanks and IGOs with a focus on climate change–of which some like the Global Warming Policy Foundation are alleged to focus on global warming misinformation and ‘climate sceptic’ contents ( https://www.desmog.com/climate-disinformation-database/ ).

Papers cited in policy documents

In this section, we additionally consider the literature cited by climate change policy documents. We would like to know, for example, (1) whether these documents focus on recently published or older science literature and (2) the research institutions that seem to be very important for the policy area (since they were frequently cited). Fig 4 shows the document types of the publications cited by climate change policy documents. In order to facilitate the interpretation of the results, the results for all policy documents have been added. We have aggregated “article in progress” with “article”. The type “other” contains empty document type entries, “abstract”, and “missing”. The results in the figure show that most policy documents reference “articles”, followed by “reviews” and “conference papers”. The other document types play a minor role. The referencing behavior seems rather similar in policy documents in general and in policy documents that are related to climate change.

thumbnail

https://doi.org/10.1371/journal.pone.0274693.g004

Yin, Gao [ 11 ] found that “the COVID-19 policy frontier appears to be deeply grounded in extremely recent, peer-reviewed scientific insights” (p. 129). We expect there to be a similarly short time lag for climate change research on the one hand; but we can imagine a “classics” effect that certain foundational papers are referred to over and over again on the other hand (some of the policy documents might actually reiterate outdated findings/outliers as well). For scientific papers that cite other scientific papers, the results indicate a “classics” effect: If we look at cited references in papers, the average reference age is 13.1 years for all items in Scopus from 1996 to 2019. However, on average, climate change papers (published between 2010 and 2019) cite other scientific papers that are on average 9.7 years old. In this study, we also investigated the time between appearance of the policy document and its cited scientific papers. This difference is on average 5.8 years for climate change policy documents and 6.7 years for all policy documents. Both differences are significantly shorter than the average references ages in scientific papers and correspond to the results by Yin, Gao [ 11 ].

Fig 5 shows the proportions of accumulated citations of scientific papers in climate change policy documents over time. These proportions are compared with the proportions in all policy documents. We expected that climate change policy documents cite more recently published papers than other policy documents because of the great societal relevance of the topic. The results in Fig 5 show that this is indeed the case: The distribution for climate change policy documents increases faster than the distribution that refers to all policy documents. Yin, Gao [ 11 ] found a similar result for COVID-19 policy documents–another topic with high societal relevance.

thumbnail

The publication year differences are the time between publication year of the policy document and publication year of the scientific paper.

https://doi.org/10.1371/journal.pone.0274693.g005

We expected that policy documents preferentially cite papers published in reputable journals. The most valuable papers can be expected to be published in these journals. The results by Yin, Gao [ 11 ] show, for example, that “COVID-19 policy documents disproportionately reference peer-reviewed insights, drawing especially heavily on top medical journals, both general (such as Lancet) and specialized (such as Clinical Infectious Diseases)” (p. 129). In this study, we used CiteScore as the indicator for measuring reputation. Fig 6 shows the correlation between number of policy document citations received by papers in various scientific journals and the CiteScore of these journals. With a Spearman rank correlation coefficient of 0.24 (on the journal level), the relationship between journal reputation and policy citations is quite low.

thumbnail

https://doi.org/10.1371/journal.pone.0274693.g006

One reason for the low correlation might be that Citescore values at the top of the distribution are very spread out. If one were to use journal ranks rather than using Citescore, the coefficient would likely be much higher. In fact, this is the argument made in Fig 7 . We found that scientific literature cited in policy documents is frequently published in high-impact journals: 69.31% of the papers with at least one policy citation were published in first-quartile journals. Thus, one can expect that policy citations of scientific papers correlate with citations of these papers in the scientific literature.

thumbnail

In the first journal quartile, e.g., are those journals that belong to the 25% of the journals with the highest CiteScore in their subject areas. For about 7% of the journals, a CiteScore was not available.

https://doi.org/10.1371/journal.pone.0274693.g007

The results by Yin, Gao [ 11 ] for COVID-19 policy documents show that “the coronavirus research used by policy-makers aligns with what scientists heavily engage with themselves” (p. 129). In this study, the Spearman rank correlation coefficient between Scopus citations and policy citations of papers (n = 2,071,085) that were cited by policy documents at least once is 0.16. The correlation coefficient is slightly higher (0.20) between Scopus citations and policy citations of papers (n = 102,372) that were cited by climate change policy documents at least once. However, climate change papers that are cited in climate change policy documents received significantly more citations (between 3.3 and 5.6 times) on average than climate change papers that are not cited in these documents (see Fig 8 ).

thumbnail

https://doi.org/10.1371/journal.pone.0274693.g008

Fig 9 includes the journal perspective to show the correlation between the number of climate change policy document citations and Scopus citations. The Spearman rank correlation between both citation counts is high at 0.81. The results in the figure point out that some journals receive more policy citations than can be expected based on science citations such as Climatic Change and Nature Climate Change . These climate change specific journals have emerged more recently. We speculate that the scientific communities of some highly specialized research topics are comparatively small, thereby limiting the mean number of citations per paper. Nature and Science papers received many citations in both areas of science and policy.

thumbnail

The size of the circles reflects the CiteScore of the journals (Spearman rank correlation = 0.81; an interactive version can be viewed at: https://s.gwdg.de/4weLvb ).

https://doi.org/10.1371/journal.pone.0274693.g009

The journal analyses in the previous figures could not reveal the field-specific orientation of the papers cited in climate change policy documents. The journals that are labeled in the figures are mostly multi-disciplinary journals such as Science or Nature or are directly related to climate change. In order to explore the fields in which papers cited in climate change policy documents were published, we produced so called overlay maps that are presented in Fig 10 . The overlay maps were created using the global mapping process outlined in Boyack and Klavans [ 40 ]. Here, clustering was done on 46.14 million Scopus-indexed documents (1996–2019) and 27.23 million non-indexed documents cited at least twice with over 1.1 billion citation links using the Leiden algorithm [ 41 ]. Graph layout was then done on the resulting 104,677 clusters using OpenOrd/DrL [ 42 ] and cluster-level relatedness based on the bm25 text relevance measure, which has been shown to produce better clustering than a simple tf-idf measure [ 43 – 45 ].

thumbnail

The maps include (1) all papers, (2) climate change papers, (3) climate change papers with at least one policy citation, (4) all papers in Scopus with at least one policy citation.

https://doi.org/10.1371/journal.pone.0274693.g010

Over 11% of Scopus-indexed documents were not included in clusters or the map because they had no references and were not cited. Each cluster is represented as a dot on the map and was assigned to its dominant field (and colored) using the journal-to-field assignments from the UCSD map of science [ 46 ]. Clusters with similar topical content are close to each other on the map. Aggregations of clusters can be perceived as discipline-level structures; local areas that contain clusters of many colors are multidisciplinary. Although dot sizes for overlays are based on the number of documents matching overlay criteria, the intent is to provide a qualitative (gestalt) visual view of the data, e.g. to show where result sets are concentrated or if they are evenly spread throughout the map.

Fig 10 shows four maps for comparison: (1) All papers from Scopus, (2) Climate change papers in total, (3) Climate change papers with at least one policy citation, and (4) Papers with at least one policy citation. Comparing map (2) with map (3), for example, one can see that there are areas with climate change papers (such as computer science, pink in map 2) that are not well cited by climate change policy documents–there is far less pink in map 3 than in map 2.

Similar to all papers from the Scopus database shown in map (1) of Fig 10 , papers with at least one policy citation extend across all scientific fields [see map (4) of Fig 10 ]. However, some major fields appear less pronounced in map 4: in particular chemistry, physics, computer sciences, and engineering. Biology, disease sciences, and health sciences are accentuated, indicating that in general these fields are more policy relevant. The fields of climate change papers in map 2 of Fig 10 are concentrated in biology, earth sciences, engineering, disease sciences, and physics (less pronounced). Climate change papers with at least one policy citation [see map 3 of Fig 10 ] show a field-specific pattern similar to the overall climate change policy papers in map 2. It seems that politics does not have a specific field, but reflects the field-specific orientation of climate change research.

For COVID-19 research, Yin, Gao [ 11 ] investigated the temporal shift of the literature cited in policy documents concerning the field-specific distribution (compared to the whole policy literature). Their results reveal “a clear shift from drawing primarily on the biomedical literature to citing economics, society, and other fields of study, which is consistent with overall shifts in policy focus” [ 11 ]. In this study, we also investigated whether there is a field-specific shift using the 27 high-level ASJC journal categories. Fig 11 shows the field-specific orientation of papers (with policy citations) over the entire period (1996–2019). For better readability of the figure, we used the top 10 ASJCs of both sets of papers (Scopus papers with policy citations and Scopus papers that were cited by climate change policy documents) and obtained twelve ASJCs as common top 10 ASJCs (the interactive version of the figure shows the same analysis with all 27 ASJCs). Fig 11 demonstrates that there are some subtle shifts but the early years (2000–2010) suffer from small number effects relative to the most recent decade. Climate change policy documents cite different fields than the whole. The large shifts shown in Yin, Gao [ 11 ] aren’t seen here, but COVID-19 is a rather unique situation where social concerns followed after the medical ones on a short time scale.

thumbnail

https://doi.org/10.1371/journal.pone.0274693.g011

Scientific institutions and policy sources involved in political climate change discussions

In the final section of the empirical results, we focus on the scientific institutions and policy sources that are involved in the political climate change discussions. We are interested in the policy sources that are very active in political climate change discussions (and decisions) and science institutions that provide research results as inputs for the discussions. Table 1 shows the policy sources with the highest number of climate change policy documents. The table also reveals the number of scientific papers cited by these institutions and the number of climate change papers (the number in brackets is the number of policy documents citing the climate change papers). The results show that Publications Office of the European Union and World Bank are the institutions with the most climate change policy documents. According to Euan Adie (founder and director of Overton) the Publications Office of the European Union is a special case as it aggregates documents from many different EU agencies. Cross-regional institutions such as European Union and World Bank are best-suited for dealing with global issues and thus are focused on major problems such as global warming.

thumbnail

The table also reveals the number of scientific papers cited by these institutions and the number of climate change papers (the number in brackets is the number of policy documents citing the climate change papers).

https://doi.org/10.1371/journal.pone.0274693.t001

Table 2 focuses on policy sources that are rooted in climate change research. The results in the table reveal that IPCC is the source that referenced the largest number of papers. Considering the large amount of scientific information collected and presented in the various IPCC reports over many years, this is not surprising as the assessment of the scientific literature on climate change is its core mandate.

thumbnail

The table shows policy sources that cited more than 4.000 papers.

https://doi.org/10.1371/journal.pone.0274693.t002

We differentiated the results in Table 2 further by specifically looking at government, IGO, and think tank sources: We show policy sources in Table 3 that cite science for governments, IGOs, and think tanks. Yin, Gao [ 11 ] reveal the results of similar analyses based on COVID-19 datasets. The results show that governments and IGOs are of similar importance, both with regard to the overall number of policy documents and climate change related policy documents. The top ranked think tanks produced about half of the overall number of policy documents compared to the top ranked governmental organizations and IGOs. Their share of climate change research related documents is roughly the same.

thumbnail

The table differentiates between all documents of the sources citing these papers and documents focussing on climate change.

https://doi.org/10.1371/journal.pone.0274693.t003

Table 4 is related to the cited institution side of the science-policy link: Which science institutions received the most citations from policy documents? The table presents reputable institutions of climate change research or research units located at universities, with the University of East Anglia with its long-lasting tradition in climate change research and meteorology at the top.

thumbnail

The table includes all institutions with more than 2000 papers cited.

https://doi.org/10.1371/journal.pone.0274693.t004

It is noteworthy that throughout Tables 2 to 4 , we find institutions that are alleged to focus on climate misinformation according to the Climate Disinformation Database ( https://www.desmog.com/climate-disinformation-database/ ) like the Heartland Institute, the Foundation for Economic Education, the Heritage Foundation, and Acton Institute; those are very active publishers of policy documents. The Acton Institute also features among the most prolific think thanks publishing policy documents related to climate change. In the overall climate change dataset, we found 17 policy organizations that are listed in the Climate Disinformation Database. The organizations produced 99 policy documents (that cited any Scopus paper) within our dataset; these documents cited 6507 Scopus papers. That is 1.4% of the policy documents and 4.1% of the cited Scopus papers in our dataset.

The use of results and recommendations from research on climate change might be reflected in citations of scientific papers in policy documents. Studies analyzing the impact of research on policy belong to the area of societal impact measurements in scientometrics [ 13 ]. According to Vilkins and Grant [ 18 ], “capturing this impact on policy has significant potential benefits, including showing the impact of research on real-world settings, and building a better case for support for researchers and institutions or even broader research directions” (p. 1682). For Yin, Gao [ 11 ] policy-science citations may occur “for different reasons … including (i) instrumental uses (knowledge directly applied to solve problems); (ii) conceptual uses (research influences or informs the way policymakers think); (iii) tactical uses (citing research to support or challenge an idea) among others, suggesting the need to understand the semantics of the policy science citations” (p. SI).

This study focusses on the connection of climate change research and policy. The study is based on data from the (new) Overton database including policy documents (10,846 climate change policy documents covered in the database) and their citations of scientific publications. With this study, we followed other studies using Overton data investigating links between policy and research (e.g., on COVID-19). Although the Overton database captures a large collection of policy documents, potential biases in coverage and data sample cannot be excluded [ 11 ]. For example, the Overton providers will not have access to many governmental archives, and if they have access, it will be restricted to only a part of the existing documents. Other shortcomings of Overton are mentioned by Yang, Huang [ 9 ]: “the metadata of such policy documents cannot reveal the semantic information contained in the policy process. At the same time, some policy documents have unstructured features, so attribute identification and labeling may be required”.

Overton uses a very broad definition of policy documents, i.e., “documents primarily written by and for policy makers”. The idea behind this is to cover not only text that documents the policy or legislation itself in the corpus, but also documents that were written to inform or influence decisions. Our analyses do not distinguish between those two fundamentally different classes of policy documents. Documents written for policymakers are often written with the purpose to inform or influence documents authored by policymakers and are as such fundamentally different from documents authored by scientists. Moreover, under this wide umbrella definition there are very different types of documents: scientific assessments by the scientific community, legislations, policy reports by IGOs and NGOs, policy briefs, speeches etc.

The different nature of these documents explains some of the results here. For example, it is the main purpose of scientific assessments as those by IPCC to assess the state of knowledge in climate change research and inform international climate diplomacy and national climate policy with robust evidence. In nature, these assessments are comprehensive reviews of the literature with tens of thousands of references. On the other hand, policy briefs are designed for communications and often deliberately strip out literature sources. The policy impact analysis in this study, therefore to some extent simply highlights different policy document types. Any interpretation of policy impact of research can only be undertaken based on such an important caveat.

In this study, we empirically targeted several aspects of the connection between climate change research and policy. Focusing on the time trend of this connection reveals that the discussion of climate change in policy seems to have had its peak some years ago. Although we suspect a lot of uncertainty related to the coverage of policy documents in Overton, there seems to be an impact of international climate policy cycles on policy document publication. We observe local peaks in climate policy documents around major decisions in international climate diplomacy. For example, we observe temporal peaks in policy documents around the failed Copenhagen Summit in 2009 and the Paris Agreement; there is a growth in policy documents from IPCC’s Fifth Assessment in 2013/2014 with a peak in 2015 when the Paris Agreement was made. IPCC reports might play a particular role as they are usually released 2–3 years ahead of major international climate diplomacy events and could trigger substantial co-publication activities. In 2023, the first Global Stocktake on progress with the Paris Agreement is scheduled with IPCC AR6 being released during 2021 and 2022. We might thus expect to see increases in climate change policy documents and citations to the scientific literature in the 2–3 years following.

Various types of institutions publish policy documents. Our results point out that IGOs and think tanks–with a focus on climate change–have published more climate change policy documents than expected given their overall share of policy documents (this result may be partly driven by the biased coverage of the Overton database). The policy documents published by the different types of institutions have especially cited more recent publications. Since climate change is of great societal relevance worldwide, research activities are on a high level (compared to other topics) that can be picked up in a timely manner by the policy area. Although one might expect that policy and science impact correlate (what is relevant for the scientific discourse might be equally relevant for the policy discourse), we found the opposite: The correlation between policy citations and science citations and the correlation between policy citations and the impact factor of the journals publishing the papers are both low. Thus, it seems that both areas of society (science and policy) focus on different papers from climate change research. If the scientific discourse and the policy discourse are scarcely related in terms of citation counts, one might expect that they focus on different fields. Our results reveal, however, that this is not the case: Climate change papers with at least one policy citation are concentrated on similar fields as all climate change papers (biology, earth sciences, engineering, and disease sciences). Since field differences scarcely exist between both publication sets of interest, it would be interesting to explore in future studies how the differences can be characterized by other means.

What are the policy sources that are very active in the political climate change discourse and which scientific institutions provide the necessary scientific information? Our results show that the Publication Offices of the European Union, World Health Organization, and World Bank have published the most climate change policy documents. Since climate change is a worldwide problem and demand, it comes as no surprise that these cross-regional institutions have the highest publication output. The relevant science institutions for policy sources are mostly institutions with high reputation in science–this might be in contrast to the low correlation between science and policy citations on the single paper level. On the institutional level, policy sources seem to trust scientific institutions being renowned for reputable research on climate change (e.g., the University of East Anglia).

In this study, we found that some research outcomes seem to be more relevant for the scientific discourse and some outcomes that seem to be more relevant for the policy area. This discrepancy has been found also in other studies. One reason for the differences might be barriers to academic outcomes from policy institutions such as access to climate change publications [ 18 ]. Another reason might be missing summaries of research results that are understandable for people outside academia. Bornmann and Marx [ 47 ] recommend therefore that researchers should write assessment reports (such as the IPCC) summarizing “the status of the research on a certain subject … Societal impact is given when the content of a report is addressed outside of science (in a government document, for example)” (p. 211).

Our analyses revealed the challenges in measuring policy impact via citation patterns. In fact, the closer a document is related to actual decision-making the fewer citations it may contain. For example, scientific assessments of the literature contain large numbers of citations, but they are not directly used in policy-making. Instead they are further built upon and “translated” in policy briefs, policy reports, briefing notes or ministerial expertise. The final political decision–usually a legal text–usually does not contain any citations. As we move towards real decisions it therefore gets increasingly challenging to measure impact in this way. Future work may therefore be organized around a simple model of policy impact considering a chain of different document types. Scientific assessment reports, systematic reviews or meta-analyses–as recommended by Bornmann and Marx [ 47 ]–may be the starting point as rigorous syntheses of the available summaries. Next might be science communication documents such as policy briefs, policy reports or plain language summaries. Government reports might be compiled to directly inform particular decisions and, finally, legislative documents cover the policies themselves. In this context, Isett and Hicks [ 48 ] speak about knowledge intermediaries in document chains. Future research could attempt measuring the impact on policy along such a document chain. As citations would be expected to fade away as you move down the chain, it will become increasingly relevant to use text mining or other methods from natural language processing (e.g., text similarity approaches; argumentation mining) to measure impact.

Finally, as primary studies are very dependent on their specific research design, data and methods applied, there is a widespread argument that policy should be informed by the most robust scientific evidence and as such be built from secondary research (reviews) whenever possible [ 49 ]. Therefore, future scientometric research may explore to what extent primary and secondary research is used in policy documents and how this varies across different sectors.

Acknowledgments

The bibliometric data used in this paper are from an in-house database developed and maintained by SciTech Strategies, Inc. derived from Scopus, prepared by Elsevier BV (Amsterdam, The Netherlands). The policy document data were shared with us by Overton on December 04, 2020.

  • View Article
  • Google Scholar
  • 2. Weart SR. The discovery of global warming. Cambridge, MA, USA: Harvard University Press; 2008.
  • 3. IPCC. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [core writing team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: IPCC, 2014.
  • 4. IPCC. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V., Zhai P., Pirani A., n , Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekçi O., Yu R., and o B.(eds.)]. Cambridge, UK: Cambridge University Press, 2021.
  • PubMed/NCBI
  • 6. Bolin B. A history of the science and politics of climate change: The role of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press; 2007.
  • 12. Bornmann L. Scientific revolution in scientometrics: The broadening of impact from citation to societal. In: Sugimoto CR, editor. Theories of informetrics and scholarly communication. Berlin, Germany: De Gruyter; 2016. p. 347–59.
  • 17. OPENing UP. Deliverable D5.1 –Altmetrics Status Quo. OPENing UP new methods, indicators and tools for peer review, impact measurement and dissemination of research results. Project acronym: OpenUP. Brussels, Belgium: European Commission, 2016.
  • 20. Michalek A, Crosby T, Arthur T, Parkhill M, James C, McCullough R, et al. Research assessment metrics: Past, present and future. Amsterdam, the Netherland: Elsevier; 2017.
  • 30. R Core Team. R: A language and environment for statistical computing. 3.6.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2019.
  • 36. United Nations Environment Programme. Emissions gap report 2021: The heat is on–A world of climate promises not yet delivered. Nairobi: United Nations Environment Programme (UNEP) and UNEP DTU Partnership, 2021.
  • 40. Boyack KW, Klavans R. Creation and analysis of large-scale bibliometric networks. In: Glänzel W, Moed HF, Schmoch U, Thelwall M, editors. Springer handbook of science and technology indicators. Cham, Switzerland: Springer International Publishing; 2019. p. 187–212.
  • 42. Martin S, Brown WM, Klavans R, Boyack K, editors. OpenOrd: An open-source toolbox for large graph layout. SPIE 7868, Visualization and Data Analysis; 2011; San Francisco Airport, CA, USA: SPIE.
  • Open access
  • Published: 15 October 2020

Climate change: Does international research fulfill global demands and necessities?

  • Doris Klingelhöfer   ORCID: orcid.org/0000-0003-0716-9872 1 ,
  • Ruth Müller 1 , 2 ,
  • Markus Braun 1 ,
  • Dörthe Brüggmann 1 &
  • David A. Groneberg 1  

Environmental Sciences Europe volume  32 , Article number:  137 ( 2020 ) Cite this article

49k Accesses

34 Citations

34 Altmetric

Metrics details

Climate change is safe to be one of the biggest challenges of mankind. Human activities, especially the combustion of fossil fuels, contribute to the increase of greenhouse gases in the atmosphere and thus to the pace of climate change. The effects of climate change are already being felt, and the resulting damage will most likely be enormous worldwide. Because global impacts vary widely and will lead to very different national vulnerability to climate impacts, each country, depending on its economic background, has different options to ward off negative impacts. Decisions have to be made to mitigate climate consequences according to the preparedness and the vulnerability of countries against the presumed impacts. This requires a profound scientific basis. To provide sound background information, a bibliometric study was conducted to present global research on climate change using established and specific parameters. Bibliometric standard parameters, established socioeconomic values, and climate change specific indices were used for the analyses. This allowed us to provide an overall picture of the global research pattern not only in terms of general aspects, but also in terms of climate change impacts, its effects and regional differences. For this purpose, we choose representative indices, such as the CO 2 emissions for the responsibility of countries, the global climate risk index as a combination value for the different types of damage that countries can expect, the increase in sea level as a specific parameter as a measure of the huge global environmental impacts, and the readiness and vulnerability index for the different circumstances of individual countries under which climate change will take place. We hope to have thus made a comprehensive and representative selection of specific parameters that is sufficient to map the global research landscape. We have supplemented the methodology accordingly.

In terms of absolute publication numbers, the USA was the leading country, followed by the UK, and China in 3rd place. The steep rise in Chinese publication numbers over time came into view, while their citation numbers are relatively low. Scandinavian countries were leading regarding their publication numbers related to CO 2 emission and socioeconomic indices. Only three developing countries stand out in all analyses: Costa Rica, the Fiji Atoll, and Zimbabwe, although it is here that the climate impact will be greatest. A positive correlation between countries’ preparedness for the impacts of climate change and their publication numbers could be shown, while the correlation between countries’ vulnerability and their publication numbers was negative.

Conclusions

We could show that there exists an inequity between national research efforts according to the publication output and the demands and necessities of countries related to their socioeconomic status. This inequity calls for a rethink, a different approach, and a different policy to improve countries' preparedness and mitigation capacity, which requires the inclusion of the most affected regions of the world in a strengthened international cooperation network.

Particularly in the western world, public awareness of the consequences of climate change has reached a high level. Before the appearance of the coronavirus pandemics (SARS-CoV 2), hardly any news broadcast in the western world could do without commentary on climate change. Every week millions of pupils and students around the world demonstrated all for a strict ecological regimen of all governments to ensure the 2 °C target of the Paris Agreement [ 42 ]. In “Corona times” the effects of climate change seem almost forgotten by the public, although many scientists have already explained the connection between climate change and the increase in zoonoses [ 24 , 36 ]. Besides, the negative effects of climate change will certainly be more permanent and severe than the temporary damage of a pandemic; however, severe it may be.

Climate change will undoubtedly affect the entire planet and calls for international collective action. Shifts in wind patterns, the average temperature, or the amount of precipitation and frequency of extreme weather events will endanger the health, the food, and the water supply for humans. Those risks are directly linked to the reduction in biological diversity and the extinction of species that challenge most parts of the world. The impacts of climate change will lead to socioeconomic and political instability, which will change the living conditions of many communities.

The global climate has always been changing. However, the enormous problems are caused by the speed with which changes due to human intervention are progressing, and greenhouse gas concentrations have reached levels never before experienced by mankind. Although climate change has officially been considered the most hazardous global risk so far, the recent Conference of Parties (COP) in Madrid failed to achieve binding measures for nations.

But time is running. Solutions must be found to mitigate the consequences of climate change. Governments must react and be prepared for the worst future scenarios that require strategies without national borders. Climate change affects every country in different ways, and the ways in which countries can prepare for it or mitigate its impacts vary widely.

But what has actually happened so far? Anthropogenic activities, in particular the combustion of fossil fuels, have accelerated the rise in carbon dioxide emissions and thus the increase in global warming, with tangible impacts on humans, animals, and the ecological balance around the world [ 45 ]. The immediate environmental consequence of global warming is the increase in natural disasters, e.g., melting glaciers, more extreme and more frequent floods, wildfires, storms, and droughts or heatwaves. The indirect consequences include threats to human health, and the reduction of biodiversity and habitable areas, leading to migration and deterioration of community, public health, and socioeconomic conditions in most countries of the world [ 45 ].

Reliable estimation of the extent of these impacts is at the heart of research and forms the basis for all mitigation strategies at governmental, economic, scientific, or personal levels.

A sound research database is necessary for sustainable approaches for assessing and mitigating climate change impacts. The research on the climate change focuses on a wide range of areas and modeling approaches to consider different future carbon dioxide (CO 2 ) emission scenarios to assess local and regional global warming. CO 2 is a major component of the global carbon cycle and both a natural part of the atmosphere and an essential greenhouse gas. It is mainly through the combustion of fossil fuel that humans influence the amount of CO 2 emission and thus contributes to global warming.

For this, experts who cover all areas of climate change are in demand. These areas range from ecology, life sciences, meteorology, health care, social, and economic sciences, mathematics and computer science to energy, food, and transport. Interdisciplinary approaches deliver huge amounts of data to create reliable future scenarios. They should provide a comprehensive understanding of the problem and possible measures at all levels. All models show significant geographical differences and illustrate the enormous burden on many developing countries. However, there is no in-depth analysis evaluating global research efforts on climate change including climate change-specific parameters, that provides a comprehensive picture with specific geographical and chronological patterns of scientific publications and the resulting needs and requirements for scientific action. Therefore, the present study focuses on the evaluation of the global and national publication output on climatic change to depict structures and international developments using bibliometric analyses. Metadata analysis allows a comprehensive assessment of the global scientific landscape because all countries are vulnerable to the impacts of climate change to varying degrees because of their natural and socioeconomic conditions.

Building on other bibliometric studies [ 2 , 35 ], which also show the publication output of countries in the field of climate change, this analysis interprets global scientific output using country-specific indices relevant to climate change to present the world map accordingly [ 9 , 13 , 33 ]. The resulting implications help to answer the question of whether international research and networking on climate change meet global requirements and necessities given the current and predicted impacts on all regions and all areas of life. Thus, the interpretation of the results can enable decision makers, funders, scientists, and other stakeholders to develop concepts for future research based on carefully evaluated metadata.

Methodological platform

A representative and qualitative database has been built up, providing comprehensive metadata on the past and present scientific landscape of climate change research, its incentives, its benchmarks, and its challenges and requirements. The applied method is integrated into the bibliometric platform New Quality and Quantity Indices in Science (NewQIS), which was initiated in 2009 to provide in-depth data of the publication output on a variety of life science and biomedical topics [ 14 , 17 ]. The approach combines the application of publication and contextual factors with state-of-the-art visualization techniques. The Core Collection Indices of Web of Science (WoS), which represent one of the most important scientific literature databases, are used as data sources. In addition, WoS provides citation parameters for advanced data interpretation and quality assessment via the Journal Citation Report (JCR) and the Journal Impact Factor (JIF).

Search strategy, data acquisition, and correction

The quality of the database depends on the appropriateness of the search strategy applied. The search term must involve all important synonyms. For this study the terms: “climat* change”, “global warming”, and “greenhouse effect” were applied. The asterisk acts as a wild card and was used to search for terms with different endings. To retrieve only the original research publications, only data from the publication type “Articles” was downloaded. The Art and Humanity entries were excluded. No limitation of the evaluation period was made so that all articles from 1900 to 2020 were included in the analysis (Fig.  1 ).

figure 1

Procedure for generating the analysis database

The aim was to decimate thematically incorrect entries and maximize correct ones. The risk of an unrepresentative database has been reduced by searching in the title of the manuscripts, even if e-data resulting from the search strategy cannot include all indexed articles. The metadata, sorted by various keyed information, was downloaded and saved as an MS-Access database. To unify different designations of data, e.g., the names of authors and their institutional affiliation, a standardization had to be carried out with the help of a specially developed application. For the standardization of institutions, a quantity of at least 200 articles in a regional context must be achieved. A threshold of at least 20 articles on climate change was set for authors. By applying those thresholds, it was possible to completely adjust all entries for institutions and authors above this value. Also, the names of the assigned subject areas had to be adapted and standardized due to missing spaces or typing errors. In doing so, all entries could be corrected without using a threshold value.

Analysis parameters

The resulting database consists of a large number of bibliometric parameters. The research topics were clustered based on the keywords that occur at least 650 times (threshold) using the application VOSviewer [ 44 ].

Chronological analyses were carried out to evaluate the development of research (number of articles), research incentives (number of citations). In addition, geographical analyses were conducted to identify the main actors (countries with the most cited publications, most publishing institutions), and their international networking. The average citation rate of the countries is calculated by dividing the number of citations received by the number of the publication on climate change.

However, the evaluation of the absolute numbers does not allow an assessment of the development of publication shares and the current distribution of countries’ research output on climate change issues. Therefore, the evaluation period of the last 30 years was divided into 5-year intervals for further analysis, and the ten most publishing countries were analyzed.

By linking socioeconomic characteristics and citation parameters, important additional statements on country-specific publication activities on climate change can be made.

The country-specific number of articles was put in relation to (1) Demography: total population in million inhabitants ( R POP ) [ 39 ], (2) Socioeconomic status: gross domestic product (GDP) in billion US-Dollars ( R GDP ) [ 38 ], and (3) Research investment parameters: number of researchers in FTE (full-time equivalents) [ 40 ], expenditures on research and development (R&D) (personnel in FTE) [ 40 ], and gross expenditures for R&D (GERD) in PPP$ (purchasing power parity in US-Dollars) [ 40 ]. For all ratios, a minimum threshold of at least 30 articles was applied to avoid distortions due to extreme values.

For a more specific assessment of the national research contribution, it seems appropriate to include relevant country-specific indicators related to climate change. For this purpose, we select representative indices to put them in relation to the research output of the countries. CO 2 emissions represent the responsibility of countries, the Global Climate Risk Index acts as a composite value for the different types of damage that countries can expect, the rise in sea level as a measure of the enormous global environmental impact, and the readiness and vulnerability index for the different circumstances of the individual countries under which climate change will occur.

Carbon dioxide (CO 2 ) emission in tons per year [ 33 ]: The integration of the CO 2 emissions of the countries was done by calculating the relation of the number of articles to CO 2 emissions in billions of tons (threshold = 300).

The Global Climate Risk Index (CRI): The CRI was launched by German Watch and published in its 15th edition 2020. It assesses the extent to which countries have been suffering from weather incidences [ 9 ]. The CRI provides data for the last 20 years as an average value and also for individual years. The existing data on the weather vulnerability, measured in fatalities per country, and losses in US dollars could indicate the expected increase in extreme events due to climate change and help to mitigate the impacts.

Sea-level rise: For the analysis of the number of people living on vulnerable land due to prognosticated sea level rise [ 19 ], we have taken the values of the average number of fatalities per 100,000 inhabitants from 1999 to 2018 as reference quantity. To estimate the resulting sea-level rise, the US National Aeronautics and Space Administration (NASA) created the digital elevation model (DEM) SRTM ( Shuttle Radar Topography Mission ). The here utilized CoastalDEM is a development based on the neural networks to reduce SRTM errors resulting from its limitation with respect to terrain elevations (important for densely populated areas) by regression analysis [ 19 ]. There are several prospective scenarios, based on the 5th IPCC report [ 15 ], which are based on the Representative Concentration Pathways (RCP) models 2.6, 4.5, and 8.5 leading to different degrees of global temperature rise. These scenarios presuppose different greenhouse gas concentrations. RCP 8.5 would lead to a rise of 4 °C, while RCP 4.5 would lead to a rise of 2.6 °C, and the target limit of 2 °C set by the Paris Agreement can be realized by the RCP 2.6 scenario—always as compared to pre-industrial times [ 10 ]. In addition, the Sea Level Rise Modell K17 is a nonprobabilistic projection that incorporates physical models of ice sheet dynamics [ 18 ]. Furthermore, the applied model data refer to the forecast for the year 2100 and include the local 1-year coastal flood return level [ 19 ]. For our analysis, we chose the K17 model, CoastalDEM, RCP 4.5 for the year 2100.

Readiness and vulnerability index: To assess the differences between the individual countries, the Notre Dame Global Adaptation Initiative (ND-GAIN) developed a country index that provides data on countries’ vulnerability to climate disruption and their readiness to improve resilience by “leverage of private and public sector investments”. The index combines 74 variables to define the ranking for 192 countries [ 27 ].

Visualization of results

The results of the keyword cluster analysis were presented using the VOSviewer software developed by van Eck and Waltman [ 44 ]. The occurrence of keywords was visualized by a network of nodes and connecting lines representing the different colored clusters and their combinations.

The geographical findings of this study were partially visualized by the creation of anamorphic cartograms using Gastner and Newman’s method of density equalizing map projections (DEMP) [ 12 ]. Methodically, these DEMPs reduce or enlarge the country sizes according to the value of the evaluation parameter, following the physical principle of density compensation by diffusion balance in each country. To maintain the basic structure of the world map, mean values are calculated and assigned to oceans and Antarctica. With an ArcGIS tool (mapping software for geographic information systems), which is based on the algorithms of the DEMP method, geographic data can be visualized by generating distorted maps. The DEMPs generated in this way allow a quick visual acquisition of the extensive data and concentration on the essential.

Methodological limitations and strengths

Although being a sophisticated and widely applied method, some limiting points need to be recognized and discussed.

The quality and representativeness of the retrieved metadata depend on the one hand on the technical and bibliographic conditions of the source database and on the other hand on the care taken in generating the search strategy. In this case, WoS was used as a data source. It should be noted that WoS is English biased, as most of the indexed journals are English-language journals. Furthermore, the citation number given is prone to various errors, e.g., incorrect citation behavior or self-citation, so that its significance for the quality of research needs to be discussed. Although the strategy of searching only in the title of the publications resulted in a reduced data quantity, this is justified by the higher representativeness of the data sets. The additional search in the abstracts and keywords would lead to the inclusion of a large number of false entries that would not provide valid figures. Therefore, choosing a title search strategy allows the creation of a valid, albeit not all-encompassing, database.

Some data records had to be corrected manually, e.g., institutions and subject areas. Although the unification of the subject areas in the overall database could be carried out exactly, the merging of different labeled affiliations belonging together was not 100% possible. Therefore, a threshold has been applied in a geographical approach, so that only those geographical entity, e.g., cities, with at least 200 articles on climate change were subject to in-depth corrections. However, the exact number of publishing institutions could not be determined.

The visualization of the results utilizing DEMPs is limited by the physical principles of the technique so that some small island countries could not be represented in the respective figures.

All the results are based on the evaluation database, which consists of a total of 40,062 articles on climate change identified and extracted from WoS.

Research focal points

In total, 45 keywords from three main clusters could be identified (Fig.  2 a). First, articles relating to environmental and ecological issues can be grouped together, with "impacts" being the most commonly used term in the cluster. Secondly, all articles dealing with modeling and simulation can be grouped. In this second keyword cluster, the terms “temperature”, “model”, and “variability” appeared most frequently. Thirdly, all articles on social, political, and management issues can be grouped in one cluster. The umbrella term “climate change” was assigned to this group and is the most frequently used keyword in the analysis. In addition, the terms “adaption” and “vulnerability” have been used most frequently in the third keyword cluster.

figure 2

Research foci. a Clusters of author’s keywords with at least 650 occurrences. Red: environmental and ecological issues, green: modeling and simulation issues, blue: social and management issues. b Most assigned subject areas according to Web of Science categories with number of articles and average citation rate (number of citations / number of articles)

The main subject areas (WoS research areas) are shown in figure Fig.  2 b with the numbers of articles ( n ) assigned to them and their average citation rates. By far the most assigned subject area was Environmental Science and Ecology ( n  = 15,741). Meteorology and Atmospheric Science ( n  = 6522) followed with less than half of assigned articles. Ranks 3 to 5 were occupied by Geology ( n  = 3806), Water Resources ( n  = 3247), and Science and Technology—Other Topics ( n  = 2916). Apart from ecological issues, the most frequently assigned subject areas ( Business and Economics: n  =  1710 , Government and Law: n  =  1493 , Public Administration: n  =  936 ) focus on economics and political issues, which represent the blue cluster in Fig.  1 a. In principle, the articles are distributed over the three main subject areas clusters that distinguish between scenario modeling, risk analysis, and mitigation, respectively, adaption measurements. From these results, the main foci of climate change research can be identified. In summary, articles on modeling and simulation of scenarios for consequences of climate change under different conditions have been developed resulting in ecological and socioeconomic impacts, which in turn form the basis for mitigation and adaption measures on climate change.

It is noteworthy concerning the average citation rate (cr) of the research areas that the highest rates reached the areas Science and Technology—Other Topics (cr = 59.37), Biodiversity and Conservation (cr = 39.01), Geography (cr = 38.85), and Meteorology and Atmospheric Science (cr = 35.54), while the most assigned area Environmental Science and Ecology achieved an average of only cr = 26.80. Among the ten most frequently assigned subject areas, Public Administration (cr = 13.49) and Government and Law ranked last (cr = 10.69).

Evolution of publication output over time

The vast majority of articles on climate change (92.17%) has been published since the year 2000 ( n  = 36,925) (Fig.  3 ). However, the first publication that meets the search criteria was published as early as 1910. Annual publication numbers remained in single digits until the mid-1970s. Only at the end of the 1980s, the numbers reach yearly amounts above n  = 100. A steep increase in research activity can be observed from 2003 onwards when the trend followed an exponential course, which reached a small peak in 2011 and is still rising exponentially until today (Fig.  3 a). This development can be illustrated even more clearly by looking at the numbers in relation to the absolute number of articles indexed in the Science Citation Index (SCI) (Fig.  2 b). The gradual increase in research interest is also reflected in the steep relative increases in these years, calculated with the annual number of articles on climate change per 10,000 articles listed in the Science Citation Index (SCI) (Fig.  3 b). Until 1988 and between 1992 and 2003, the upward trend of climate change research is similar to that for all articles indexed in the SCI.

figure 3

Chronological development of articles on climate change from 1970 to 2018. a Number of articles on climate change and their citations. Dashed line: Cited Half-Life. b Number of all indexed SCI articles (Science Citation Index of Web of Science) and number of articles on climate change per 10,000 SCI articles

Analog to the development of the number of articles, the number of citations (c) also increased significantly since 1988, with peaks in the years 1991 ( c  = 10,106), 2000 ( c  = 32,612), 2004 ( c  = 45,177), and the preliminary maximum of c  = 88,747 in 2010. Afterward, the citation numbers dropped again significantly. This is because little time has elapsed since the articles were published to generate citations. This effect is known as Cited Half-Life (CHL) and refers to a period of about eight years for the life sciences, which is needed for the articles to reach half of the total number of citations (Fig.  3 a) [ 21 ].

Among the ten most frequently cited articles in the database, 80% stem can from the USA ( n  = 8) and 20% from the UK ( n  = 2). All of those ten articles were published after 2000, and mainly in the renowned journals Nature ( n  = 5) and Science ( n  = 2) (Tables 1 , 2 ). The publication years 2000, 2003, and 2010 can be logically associated with the research increase shown in Fig.  2 a.

Leading institutions

The 15 most publishing institutions on climate change are located exclusively in the northern hemisphere (Table 2 ). Almost half of the most publishing institutions are US-American (7 institutions), 3 others are British, 2 are Dutch, and 1 institution is located in China, Switzerland, and Germany respectively. The Chinese Academy of Science (CAS) was the most publishing institution on climate change with n  = 1333 articles, followed by the University of London ( n  = 680), which published only half the amount. The US Department of Agriculture (USDA) followed with n  = 588 articles. In 4th place was the British University of Oxford ( n  = 452), followed by the Dutch Wageningen University ( n  = 442) and the US University of Washington ( n  = 426). When looking at the average citation rate of the most publishing institutions, the order is different. With the highest value of almost 100, the US National Center for Atmospheric Research (cr = 98.94) led the ranking, followed by the British University of East Anglia (cr = 89.16), and the US Columbia University (cr = 75.16). The articles of the CAS ranked last among the leading 15 institutions (cr = 21.29).

Global landscape of publication output

Not all articles out of the entire database could be assigned to a country of origin due to missing metadata before 1973. Coming from 186 countries or autonomous regions, n  = 38,917 articles could thus be included in the database and analyzed in terms of geographical parameters.

The most publishing country was the USA with n  = 12,637 articles on climate change, followed by the United Kingdom (UK) with less than half as many articles ( n  = 5524). China was placed 3 rd with n = 3508, followed by Australia ( n  = 3349), Germany ( n  = 3238, and Canada ( n  = 3126) (Fig.  4 a).

figure 4

The most publishing countries. a Density equalizing map projection of the number of articles. b Relative share of the most publishing countries in 5-year intervals from 1998 to 2019

Looking at the share of the most publishing countries in 5-year intervals (Fig.  4 b), the USA conducted more than 50% of the research on climate change in the first evaluation interval from 1989 to 1994. In the last interval from 2015 to 2019, the share of US articles decreased to 30%, whereas the absolute numbers increased almost tenfold. The relative share of the UK fell also from 20.64% to 12.42% between 1995 and 2019, during which time it lost its second rank to China that contributed an increasing share from 1.23% to 13.27% throughout the whole evaluation period. The share of Australian, German, Spanish, and Indian articles also increased slightly over time, while the shares of Canadian, French, and Netherlandic articles remained more or less the same.

The distribution of the number of citations follows a similar pattern with the exception of China, which here falls to rank 8 ( c  = 66,844). The USA received by far the most citations ( c  = 513,888), followed by the UK ( c  = 243,261), Australia ( c  = 108,054), Canada (c = 107,713), and Germany ( c  = 107,335) (Fig.  5 a).

figure 5

Citation-specific parameters for articles on climate change. a Number of citations per country. b Articles/Citation rate of articles on climate change per country (threshold 30 articles)

When evaluating the average citation rate (cr) per country with more than 30 articles on climate change (threshold), Costa Rica was in first place (cr = 93.89, n  = 67), followed by Estonia (cr = 55, n  = 66), Iceland (cr = 50.15, n  = 47), Austria (cr = 46.77, n  = 668), and Switzerland (cr = 45.94, n = 1126). The UK ranked 16th (cr = 44.04), the USA 21st (cr = 40.66), Canada 35th (cr = 34.46), Germany 40th (cr = 33.15), and Australia 41st (cr = 32.26) (Fig.  5 b).

Inclusion of socioeconomic parameters

The analysis of socioeconomic parameters of the publishing countries on climate change showed a divergent ranking.

In terms of the inclusion of the countries’ population size [ 39 ] (number of articles/population in million inhabitants =  R POP ) the following order emerged: Norway ( R POP  = 174.16), Australia ( R POP  = 145.65), Denmark ( R POP  = 142.12), Iceland ( R POP  = 139.93), Switzerland ( R POP  = 137.66). The most publishing countries were ranked lower: the USA ranked 20th ( R POP  = 39.00), the UK ranked 13th ( R POP  = 85.73), China ranked 67th ( R POP  = 2.55), and Germany ranked 18th ( R POP  = 40.11) (Fig.  6 a).

figure 6

Ratio of socio-economic parameters (threshold 30 articles). a Country-specific ratios of the number of articles on climate change and the countries’ population size in million inhabitants [39]. B) Country-specific ratios of the number of articles on climate change and the Gross Domestic Product (GDP) in 1000 billion US-Dollars [38]

In terms of the economic status, the South Pacific island state Fiji led the range of countries with more than 30 articles on climate change (threshold) with a ratio of the numbers of articles and the GDP in billion US-Dollars [ 38 ] ( R GDP ) with R GDP  = 6329.11, followed by Denmark ( R GDP  = 3002.26), New Zealand ( R GDP  = 2991.99), Iceland ( R GDP  = 2910.22), and Australia ( R GDP  = 2816.65) (Fig.  6 b). It was also surprising that the African country Zimbabwe was placed among the top ten countries and reached 7th place ( R GDP  = 2541.48). In terms of socioeconomic analysis, other developing countries such as Nepal and some African countries (Kenya, Benin) achieved also ranks among the leading 20 countries.

Besides Australia, the UK reached the second highest ratio of the most publishing countries and ranked 11th, Canada ranked 13th, Germany 30th. The USA was only in 37th position.

The inclusion of science-related parameters [ 40 ]. listed New Zealand first (Table 3 ) with R GERD (number of articles/gross expenditure for research and development in current PPP (purchasing power parity) US dollars) = 244.34. Australia ranked 2nd ( R GERD  = 157.98), followed by Norway ( R GERD  = 133.77), South Africa ( R GERD  = 120.36), and UK ( R GERD  = 115.54). Germany only achieved rank 22nd ( R GERD  = 25.47), and the USA ranked 23rd ( R GERD  = 23.26).

New Zealand published also the highest number of articles per researcher (full-time equivalent FTE/1000) with R RES  = 27.92, followed by Norway, South Africa, and Switzerland. Here the USA ranked 16th ( R RES  = 9.22) and Germany 19th ( R RES  = 7.83). Unfortunately, the data for Australia was not available.

Inclusion of climate change indices

Carbon dioxide emission.

The linkage of country-specific number of publications on climate change with the countries’ CO 2 emission shown in Table 4 discloses Sweden as the leading country ( R CO2  = 29.28), followed by Switzerland ( R CO2  = 28.10), Denmark ( R CO2  = 23.01), Norway ( R CO2  = 20.47) and New Zealand ( R CO2  = 14.52). In this analysis, the most publishing countries fell sharply behind. UK ranked 6 th ( R CO2  = 14.36), Germany 17th ( R CO2  = 4.05), and the USA 19th ( R CO2  = 14.52).

Global climate risk index

For reasons of comparison, reference is made here to the results of the Global Climate Risk Index (CRI) [ 9 ]: The average ranking shows Puerto Rico, Myanmar, and Haiti as the most affected countries, while the assessment for 2018 ranked Japan, the Philippines, and Germany as the most affected countries [ 9 ]. The figures for the average number of deaths per 100,000 inhabitants from 1999 to 2018 as a reference point put some small island developing states (SIDS), such as St. Kitts and Nevis, Tuvalu, Kiribati, Seychelles, Marshall Islands, and the Maldives in the first place. Armenia, Iceland, Singapore, and Qatar also held leading positions. (Fig.  7 a).

figure 7

Global Climate Risk Index (1999–2018) [ 9 ]. a Average number of fatalities per 100,000 inhabitants. b Number of articles on climate change pro average number of fatalities per 100,000 inhabitants

The linkage of the number of publications on climate change to the expected increase in extreme events due to climate change discloses France as the leading country ( R CRI  = 215.50), followed by the USA ( R CRI  = 162.01), Spain ( R CRI  = 145.80), Italy ( R CRI  = 144.44), Germany ( R CRI  = 140.78), and UK ( R CRI  = 215.01). Of the countries most affected by climate change, Myanmar ranked 17th ( R CRI  = 12.00), followed by Japan on rank 18 ( R CRI  = 11.89), and the Philippines on rank 20 ( R CRI  = 8.19) (Fig.  7 b). There was no correlation between the number of articles and the average number of fatalities per 100,000 inhabitants on average.

Sea-level rise

For reasons of comparison, reference is made here to the results of Kulp and Strauss [ 19 ]: According to their findings of the working group, China is by far the country with the highest number of people living on vulnerable land in million according to the CoastalDEM scenario (we here label it: P vul  = 151.6) (Fig.  8 a). With P vul  = 73, Bangladesh’s population is the second most affected, followed by India ( P vul  = 151.6), Vietnam, and Indonesia ( P vul  = 151.6). In addition to these absolute figures, the working group of Kulp and Strauss [ 19 ] put the number of affected people in relation to the total population. This results in a different picture (Fig.  8 b), with the small island states (Maldives, Marshall Islands, Tokelau, and Tuvalu) most affected, where more than 70% of the population will live on vulnerable land in 2100. In the South-American countries of Suriname and Guyana, more than 60% will live on vulnerable land, followed by Kiribati, Cayman Islands, and the Bahamas with more than 50% affected people. The Netherlands is the first European country in the ranking, where 55% of the inhabitants will be exposed to vulnerable land. The here determined most publishing countries on climate change, were following far behind: USA (2.3%), UK (9%), China (11%), Australia (4%), and Germany (2.5%) [ 19 ].

figure 8

Estimated number of people exposed to vulnerable land in 2100 (CoastalDEM scenario: Sea Level Rise Modell K17, RCP 4.5, 95 percentile) [ 19 ]. a Number of people living on vulnerable land in mill. b Relative number of people (per 1000 inhabitants) living on vulnerable land. c Relation of the number of articles on climate change and the number of people living on vulnerable land in mill. High values of SIDS (Small Island Developing States) cannot be shown. The highest values have Maldives (87%), Marshall Island (85%), Tokelau (78%), Tuvalu (73%). d Relation of the number of articles on climate change and the relative number of people (per 1000 inhabitants) living on vulnerable land in mill

Here we have calculated the ratio of countries’ publication performance on climate change in relation to Kulp et al.’s absolute ( R absolute ) and relative figures ( R relative ) of Kulp and Strauss [ 19 ] (Fig.  7 c, d). In terms of the relation of articles on climate change to the absolute numbers, Sweden was leading ( R absolute  = 15,187), followed by Canada ( R absolute  = 4597), Romania ( R absolute  = 4366), Australia ( R absolute  = 3940), South Africa ( R absolute  = 3054), and Lithuania ( R absolute  = 3050). The most publishing countries ranked as follows: The USA ranked 11th ( R absolute  = 1805), Germany 14th ( R absolute  = 1619), and UK 17th ( R absolute  = 986), while China followed far behind on rank 88 ( R absolute  = 23).

The analysis of the relative ratios led to the following ranking: Finland ( R relative  = 2123), USA ( R relative  = 549), Russia ( R relative  = 157), South Africa ( R relative  = 150), Canada ( R relative  = 149). In terms of most publishing countries, Germany was ranked 8th ( R relative  = 130), UK 18th ( R relative  = 61), and China 25th ( R relative  = 32).

A significant correlation could be shown between the absolute numbers of people living on vulnerable land and the number of articles ( p  < 0.001), while the relative numbers did not correlate with the number of articles ( p  < 0.53).

Vulnerability and readiness

Correlation analysis of the two ND-GAIN indices (readiness and vulnerability) of 2017 and the number of articles were both significant ( p  < 0.0001), but with different slopes. The correlation of the readiness index and the number of articles was significantly positive (Fig.  9 a), and the correlation of the vulnerability index and the number of articles was significantly negatively correlated ( p  < 0.001) (Fig.  9 b).

figure 9

Correlation of the number of articles and indices of the ND-GAIN 2017 (Notre Dame Global Adaption Initiative) [27] regarding countries. a Readiness index, positive correlation ( p  < 0.001). b Vulnerability index, negative correlation ( p  < 0.001)

International networking

A total of n  = 11,626 (29%) international cooperation articles were identified. Of these, n  = 7995 were bilateral and n  = 3165 trilateral collaborations, respectively. Four articles were worked out with at least 20 collaboration countries.

The first international cooperation in our database was published in 1975. Over time, the number of international partnerships increased exponentially, similar to the total number of articles, until it reached its maximum in 2014 with n  = 1425 international collaboration articles.

The USA as core country of the international networking participated in the 5 strongest partnerships (Fig.  10 ): USA/UK ( n  = 905), USA/China ( n  = 830), USA/Canada ( n  = 722), USA/Australia ( n  = 563), and USA/Germany ( n  = 534). Of the US articles, 37% were international collaborations, while more than half of the British articles and almost half of the Canadian and Australian articles were developed in international collaboration. Germany even conducted more than 60% of its studies with another country.

figure 10

Network of internationally co-authored articles on climate change with numbers in brackets (number of articles/number of cooperation articles). The width of connecting lines represents the quantity of common articles (threshold: 40 collaboration articles between countries)

Progress of publications on climate change

The first article on climate change identified by our approach was published as early as 1910. It is an article published in Nature and asked the question of whether the Indian climate changed [ 20 ]. This early publication already addressed the causal link between climate change and anthropogenic influence. The author asked whether there are causal links of increased irrigation and forest loss, also in comparison to statements by Gilbert Walker, the General Director of Indian Observatories, who made connections between the air pressure in South America and the intensity of Monsoon in India, thus negating links between climate change in India and human interference.

In 1947, an English article raised the question of whether there was a connection between the retreat of glaciers and climate change [ 4 ].

In 1956, the carbon dioxide theory was confirmed by a US-American article, which referred to a series of articles published as early as the end of the nineteenth century [ 31 ]. The authors of these articles formulated the carbon dioxide theory and thus provided the most widely accepted explanation for the climate change already recognized at that time. However, this was later denied until it turned out to be true. In his study, Gilbert N. Plass from John Hopkins University has already seen the impact of human activities on the CO 2 balance through the combustion of fossil fuels, deforestation, and land management. In contrast to today’s threat awareness, the problem he discussed was the risk of new glacial formation due to the decrease of CO 2 caused by a changed balance in the atmosphere–ocean system [ 31 ].

A German article from 1961 also argues that "man-made effects on climate change “should not be underestimated as well as "the danger that such effects will work irreversibly against human benefit” [ 11 ].

A study on the astronomical theory , also known as the Milankovitch hypothesis of climate change, raised in 1969 the problem awareness of the scientific world with its Barbados data [ 23 ].

In 1988, the Intergovernmental Panel on Climate Change (IPCC), an intergovernmental body of the United Nations (UN), was established at the first world climate conference in Geneva with the aim to provide a wide range of scientific information on climate change to support governmental decisions [ 16 ]. As of this first world climate conference, the number of publications has risen firstly to a three-digit figure, which can also be seen from the sharp increase in relative numbers per 10,000 SCI articles.

Thereafter, the numbers increased steadily until 2003, when an exponential increase could be observed that was also reflected by the steep rise in relative numbers. At the COP in Milan (Italy) in 2003, all parties agreed to the Adaption Fund, which was primarily founded to support developing countries in their capacity to respond to the consequences of climate change. In the same year, an enormous heatwave caused many thousands of deaths in Europe [ 37 ]. Since European countries, in particular, are among the most publishing nations, this regional climate catastrophe has certainly contributed to a strong increase in research interest on climate change.

Also, in 2003, the most cited article of this study was published. By analyzing more than 1700 species, the meta-analysis of C. Parmesan and G. Yohe shows that biological trends are in line with predictions of climate change [ 30 ]. This successful publication certainly contributed to the fact that the highest average citation rate per year was achieved in 2003, initiating an exponential growth in publication output.

The citation numbers increased adequately to the publication numbers with some outstanding years, e.g., 1991, 2000, 2004, and 2010, latter the year with the highest number of citations so far. Many of the high impact articles are published in these years so that an association can be assumed.

Geographical aspects of publications on climate change

The USA, the UK, China, Australia, and Germany could be identified as the most publishing countries on climate change. This is not surprising, as it shows that mostly scientifically well-structured countries conduct most of the research, not only on climate change issues, as previous studies also have shown [ 17 ]. China, in particular, was catching up in the recent years due to its targeted research policy, which is represented by the enormous increase in expenditures on R&D [ 28 ].

The USA government, which is the most publishing country on climate change so far, is not exactly famous for its climate change–conscious attitude. The rejection of binding targets and the denial to sign the Paris Agreement confirms this. The USA is still the country with the highest expenditures on R&D and certainly one of the most preferred places to work for the most renowned scientists in the world. Despite the government’s attitude, its leading position in terms of publication output is not unique for climate change research and certainly not astonishing.

The results also show a clear dominance of European countries in the publication numbers on climate change. Also, Europe has a very good scientific infrastructure at its disposal. In contrast, most European countries signed up to the binding targets of the Paris Agreement to reduce emissions by at least 40% by 2030 compared to 1990 [ 10 ]. Denmark event targeted for a 70% reduction [ 7 ].

To evaluate the scientific landscape on climate change in greater depth, we extended the analyses to other, more differentiated parameters.

The Scandinavian countries have to be highlighted due to their leading position concerning various additional evaluation parameters, e.g., socioeconomic ratios. In general, Scandinavian countries have established good conditions for researchers and spend a lot on R&D. This is why research on climate change has also proven to be no exception. Sweden and Norway were leading in the analysis of their publication numbers in terms of national CO 2 emission, with Switzerland in between in 2nd place. This parameter had been chosen for the analysis in order to establish a link with countries’ obligations under the polluter-pays principle. In 2017, the highest emissions rates were released by China, USA, India, Russia, Japan, Germany, Iran, and Saudi Arabia. Sweden ranks first when putting the number of published articles in relation to the emission rate (threshold 300 articles), followed by Switzerland, Denmark, Norway, and New Zealand.

The Scandinavian countries are known to be “early adopters of renewable energy”. The share of renewable energy in Iceland is 77%, in Sweden 63%, in Norway 51% (despite the oil production capacity), in Finland 47%, and in Denmark 33%, in contrast to the EU28 with a proportion of only 21% [ 26 ]. Also, in terms of the relation to the number of people living on exposed land to sea-level rise, Sweden led in the evaluation of absolute numbers and Finland of relative numbers. With 1215 articles, Sweden ranked 12th regarding its absolute publication numbers, Norway 15th, Denmark 16th, and Finland 20th.

Switzerland, which is ranked second in terms of inclusion of CO 2 emission, is affected to a considerable extent by climate change due to its location in the European Alps and the progressive melting of glaciers and permafrost. Especially since tourism—above all skiing—is an important economic sector. Therefore, it is not astonishing that the focus of Swiss research is mainly on problems related to the Alpine region [ 6 ].

In terms of science-related parameters, such as GERD or number of researchers, both Australia and New Zealand came into focus. Since they are located close to each other, the intensity of cooperation in climate change research is understandable. The location near Antarctica on the one hand and the immense heatwaves with extraordinary effects on ecosystems and biosphere on the other hand form the background for relatively high investments in climate change research.

Looking at the average citation rate of the publishing countries ( n  ≥ 30), Costa Rica occupied a prominent position. With 67 articles, Costa Rica is far behind in absolute terms. Nevertheless, these articles were cited 6291 times. Nearly half of the studies of Costa Rica are worked in collaboration with the USA. The Tropical Science Center (TSC) affiliated with the Monteverde Cloud Forest Biological Reserve in Costa Rica participated in a US-American and Costa Rican collaboration, with the 5th most cited article of this analysis, that deals with the impacts of climate change on wildlife [ 34 ]. The Center is also taking part in two other high-profile publications, which, like the most cited article, are also published in Nature . They all deal with the risk of extinction caused by global warming. Alan Pounds, biological scientist since 1996 at the TSC and focusing on the biological impact of climate change, found, e.g., a correlation between amphibian die-offs and rising average temperatures [ 32 ]. Previously, he worked at the Department of Zoology, University of Florida, USA, where he already collaborated with colleagues from Costa Rica. The pattern of the successful partnership of international networks can be seen in this example, which stands for mutual benefit for both cooperating countries.

In terms of citation rates, Estonia also took a leading position, as it is part of a Europe-wide meta-analysis on changes in phenology using data on more than 125,000 observational series of plants and animals to assess their response to climate change [ 22 ]. The resulting article, which was published in 2006 in Global Change Biology, received almost half of the Estonian citations.

The third country that should be highlighted regarding the citation rate of its articles is Iceland. Its articles were not counted among the high-impact publications. Instead, many of its articles achieved recognition with above-average citation rates. The location far in the north, close to Greenland and the Arctic Circle, is an advantage for all climate change projects that focus on melting glaciers in these regions, and the glacial retreat is here more and more evident. It has been assumed that all Islandic glaciers will be disappeared by the year 2200 [ 26 ]. Therefore, the most cited Icelandic article is the result of an international collaboration focusing on the regional differences in the last glacial period to better understand climate dynamics [ 3 ].

The comparison of the countries’ results in relation to the GDP put the insular state of Fiji, which consists of more than 300 islands, at the top of the evaluation. Currently, almost one million people are living in an area of about 18,000 square kilometers north of New Zealand in the South Pacific. Fiji has been selected to chair the 23rd climate summit 2017 in Germany. In the same year, the number of articles from Fiji reached its maximum, which seems to be associated. Nearly half of the articles are collaboration works with Australia. One of the advantages of research cooperation on climate change is the existence of Fiji’s coral reefs, their vulnerability, and their importance for coastal protection.

Worthy to note is also the rank of Denmark in terms of socioeconomic influence. In addition to Denmark’s otherwise equally good scientific infrastructure, its position in climate change research is certainly influenced by Greenland’s affiliation and the direct and immediate effects of climate change in this region located closest to the Arctic. The direct association to Greenland or the Arctic can be found in more than 200 Danish articles mostly focusing on Geoscience . The Niels Bohr Institute at the University of Copenhagen is leading in the climate change research based on ice cores. The ice core collection is considered as a “national treasure” and contains a deep drill core of more than 15 km in length [ 43 ].

In connection with the socioeconomic analysis, it is also remarkable that the African developing country Zimbabwe ranked 7th among the top 10. Unlike other African countries, it is relatively industrialized and produces twice the average amount of greenhouse gases [ 5 ]. Nevertheless, Zimbabwe—like other African countries—has to cope with droughts, freshwater and food shortages, diminished biodiversity, vector-borne diseases, and dry ups as a result of climate change. Zimbabwe was among the first countries to sign and ratify the UN Framework Convention on Climate Change (UNFCCC) in 1992 [ 29 , 41 ]. In 2011, it participated in the REDD+ program ( Reducing Emissions from Deforestation and Forest Degradation ), which aims to avoid 52 million tons of CO 2 over 30 years in Zimbabwe and in return to support the communities with financial aid for agriculture, fire prevention, and production methods to preserve forest areas [ 5 ].

France, which ranks 7th in terms of absolute publication numbers, led when the ratio between publication numbers and fatalities due to climate events of the CRI index is assessed. More than half of the articles on climate change are worked out with the participation of the French state research organization Centre National de la Recherche Scientifique (CNRS). The CNRS was ranked 4th by the Nature Index in 2017 regarding the largest contributors, behind the CAS (in this study identified as most publishing institute on climate change), Harvard University USA, and Max Planck Society Germany [ 25 ]. Plus, the majority of its articles is worked out as international collaboration (66.59%). The share of the other most publishing countries is considerably lower: USA (36.98%), UK (51.90%), China (48.97%), Australia (47.27%) Germany (61.10%), Canada (46.77%).

Nevertheless, the share of collaboration articles is relatively high in comparison to other research fields. This may be due to the majority of articles published after 2000, considering that the share of collaboration articles generally increases over time due to the international awareness of its benefits [ 1 ].

Articles on climate change focused on three main thematic groups, leading from the modeling of future scenarios to the environmental and socioeconomic impacts and the corresponding mitigation and adaptation measures. The readiness of countries and their vulnerability are inversely related to the number of articles published on climate change. Our results show the dominance of the Northern hemisphere in terms of publication output on climate change. Taking into account socioeconomic, research, and climate-specific characteristics, the order of the leading countries shifts, but the main actors remain the same with only a few exceptions. Only Costa Rica, Fiji, and Zimbabwe as developing countries came to play a role in the evaluation of the results. In principle, Africa, Asia, and South America are extremely under-represented. Many scientists are becoming aware of the advantages of international networking, which is of mutual benefit to all participating countries. However, particularly regarding climate change research, these benefits should be more frequently shared with developing countries, as the involvement of these most affected nations still is sparse.

In this context, the term “equity” is certainly familiar to all those interested in climate change research. There is a heated debate in the scientific community on whether scientific cooperation with developing countries should be called for. Many researchers see this as limiting the freedom of research. However, the principle of research responsibility should also be taken into account in this context. This should or must lead to a global risk-indexed joint planning because all scientists have only one planet to take care of. In this context, Prof. Drenth, Emeritus, Psychometrics and Organizational Psychology, Free University Amsterdam [ 8 ], asked the following questions for any scientist dealing with climate change: “Risks for whom? How far does the right to know go? What is the balance between self-determination and the interests of larger groups or the society as a whole? How certain does the scientist have to be before warning, especially in the case of irreversible developments?”.

The spread and economic impact of the current COVID 19 pandemic has reduced public and media interest in climate change issues. All the more reason to urgently press for the causes and consequences of climate change to once again become the focus of interest, while at the same time dealing with the consequences of the pandemic. Climate change must continue to be recognized as one of the most urgent global challenges. This makes it necessary to reconcile future scientific direction with the long-term environmental, social and economic consequences of the impacts of climate change that all countries are facing.

Availability of data and materials

The bibliometric data are the property of the Web of Science database and were obtained from it. Therefore, the authors are not allowed to pass on the data publicly or privately. Any researcher with access to the Web of Science database can obtain the data using the methods described in the paper. Readers who do not have access to Web of Science should contact Clarivate Analytics to obtain a license.

Adams J (2013) Collaborations: the fourth age of research. Nature 497:557–560. https://doi.org/10.1038/497557a

Article   CAS   Google Scholar  

Aleixandre-Tudo JL, Bolanos-Pizarro M, Aleixandre JL, Aleixandre-Benavent R (2019) Current trends in scientific research on global warming: a bibliometric analysis. Int J Global Warm 17:142–169. https://doi.org/10.1504/Ijgw.2019.097858

Article   Google Scholar  

Blunier T et al (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394:739–743. https://doi.org/10.1038/29447

Bonacina LCW (1947) Climatic Change and the Retreat of Glaciers. 1 The Self-Generating or Automatic Process in Glaciation. Q J Roy Meteor Soc 73:85–000. https://doi.org/10.1002/qj.49707331506

Brazier A (2015) Konrad Adenauer stiftung, climate change in Zimbabwe, facts for planners and desicion makers. https://www.kas.de/c/document_library/get_file?uuid=6dfce726-fdd1-4f7b-72e7-e6c1ca9c9a95&groupId=252038 . Assessed Mar 2020

Bronnimann S et al (2014) Climate change in Switzerland: a review of physical, institutional, and political aspects. Wires Clim Change 5:461–481. https://doi.org/10.1002/wcc.280

ClimateHomeNews (2019) Demark adopts climate law to cut emissions 70% by 2030, Climate Home News. https://www.climatechangenews.com/2019/12/06/denmark-adopts-climate-law-cut-emissions-70-2030/ . Accessed Mar 2020 Climate Home News

Drenth P (2001) Freedom and responsibility in science: reconcilable objectives? Hamburg, 19–20 October 2001, Joachim Jungius-Gesellschaft der Wissenschaften, Symposium “Forschungsfreiheit und ihre ethische Grenzen”

Eckstein D, Hutfils M, Winges M (2019) Global Climate Risk Index 2019, GermanWatch. www.germanwatch.org/en/cri . Accessed Dec 2019

EU (2020) 2030 climate & energy framework. https://ec.europa.eu/clima/policies/strategies/2030_en . Accessed Mar 2020

Flohn H (1961) Mans activity as a factor in climatic change. Ann N Y Acad Sci 95:271. https://doi.org/10.1111/j.1749-6632.1961.tb50038.x

Gastner MT, Newman MEJ (2004) Diffusion-based method for producing density-equalizing maps. P Natl Acad Sci USA 101:7499–7504. https://doi.org/10.1073/pnas.0400280101

GermanWatch (2019) CCPI, Climate Change Performance Index. https://www.climate-change-performance-index.org . Accessed Dec 2019

Groneberg-Kloft B, Fischer TC, Quarcoo D, Scutaru C (2009) New quality and quantity indices in science (NewQIS): the study protocol of an international project. J Occup Med Toxicol 4:16. https://doi.org/10.1186/1745-6673-4-16

IPCC (2013) Climate Change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

IPCC (2019) The Intergovernmental Panel on Climate Change. https://www.ipcc.ch . Accessed Dec 2019

Klingelhofer D, Braun M, Quarcoo D, Bruggmann D, Groneberg DA (2019) Research landscape of a global environmental challenge: microplastics. Water Res 170:115358. https://doi.org/10.1016/j.watres.2019.115358

Kopp RE et al (2017) Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections earths. Future 5:1217–1233. https://doi.org/10.1002/2017ef000663

Kulp SA, Strauss BH (2019) New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun 10:4844. https://doi.org/10.1038/s41467-019-13552-0

Lockyer WJS (1910) Does the Indian climate change? Nature 84:178–178. https://doi.org/10.1038/084178a0

Magri M, Solari A (1996) The SCI Journal Citation Reports: A potential tool for studying journals? 1 Description of the JCR journal population based on the number of citations received, number of source items, impact factor, immediacy index and cited half-life. Scientometrics 35:93–117. https://doi.org/10.1007/Bf02018235

Menzel A et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

Mesolell KJ, Matthews RK, Broecker WS, Thurber DL (1969) Astronomical Theory of Climatic Change—Barbados Data J Geol 77:250. Doi: 10.1086/627434

Mills JN, Gage KL, Khan AS (2010) Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 118:1507–1514. https://doi.org/10.1289/ehp.0901389

NatureIndex (2018) 10 institutions that dominated science in 2017. https://www.natureindex.com/news-blog/twenty-eighteen-annual-tables-ten-institutions-that-dominated-sciences . Accessed Mar 2020

Naylor M (2019) How the Nordics are standing up to climate change STP. https://www.stptranscom/how-nordics-are-standing-up-to-climate-change/ . Assessed Mar 2020

ND-GAIN (2019) Notre Dame Global Adaptation Initiative, Country Index. https://gain.nd.edu/our-work/country-index/ . Assessed Dec 2019

OECD (2019) OECD Economic Surveys: China 2019. https://doi.org/10.1787/eco_surveys-chn-2019-en

OneYoungWorld (2020) The effects of climate change in Zimbabwe. https://www.oneyoungworld.com/blog/effects-climate-change-zimbabwe . Accessed Mar 2020

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

Plass GN (1956) The carbon dioxide theory of climatic change. Tellus 8:140–154

Pounds JA et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167. https://doi.org/10.1038/nature04246

Ritchie H, Roser M (2019) Our world in data: CO 2 and greenhouse gas emissions. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions . Accessed Nov 2019

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

Sangam SL, Savitha KS (2019) Climate change and global warming: a scientometric study. Collnet J Scientomet 13:199–212. https://doi.org/10.1080/09737766.2019.1598001

Singh BB, Sharma R, Gill JP, Aulakh RS, Banga HS (2011) Climate change, zoonoses and India. Rev Sci Tech 30:779–788. https://doi.org/10.20506/rst.30.3.2073

Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614. https://doi.org/10.1038/nature03089

TheWorldBank (2019a) Data, GDP (current US$). https://data.worldbank.org/indicator/NY.GDP.MKTP.CD . Accessed Sept 2018

TheWorldBank (2019b) Data, Population, total. https://data.worldbank.org/indicator/SP.POP.TOTL . Accessed Sept 2018

UIS.Stat (2019) Data 2017. https://data.uis.unesco.org/Index.aspx . Accessed Nov 2019.

UNDP (2020) Climate Change Adaption, Zimbabwe. https://www.adaptation-undp.org/explore/eastern-africa/zimbabwe . Accessed Mar 2020

UNFCCC (2019) United Nations Climate Change, The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement . Accessed Dec 2019

UniversityCopenhagen (2020) New Ice Core Storage facility at the Niels Bohr Institute, University of Copenhagen. Official inauguration on 11 March. https://www.nbi.ku.dk/english/news/news20/new-ice-core-storage-facility-at-the-niels-bohr-institute-university-of-copenhagen.-official-inauguration-on-11-march/ . Accessed Mar 2020

van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

Watts N et al (2019) The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 394:1836–1878. https://doi.org/10.1016/S0140-6736(19)32596-6

Download references

Acknowledgements

Not applicable.

Open Access funding enabled and organized by Projekt DEAL. No funding has been received for this study.

Author information

Authors and affiliations.

Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany

Doris Klingelhöfer, Ruth Müller, Markus Braun, Dörthe Brüggmann & David A. Groneberg

Unit Entomology, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium

Ruth Müller

You can also search for this author in PubMed   Google Scholar

Contributions

DK, DAG contributed to the development of the methodological platform. DK concepted, designed, drafted the initial manuscript, carried out the literature search and the analyses. DAG contributed to conception, design, and analyses. RM, MB, DB contributed to the literature search, interpretation, design of results. RM, MB corrected the draft. RM, MB, DB contributed with important expert content. All authors agree to be accountable for all aspects of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Doris Klingelhöfer .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

All authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Klingelhöfer, D., Müller, R., Braun, M. et al. Climate change: Does international research fulfill global demands and necessities?. Environ Sci Eur 32 , 137 (2020). https://doi.org/10.1186/s12302-020-00419-1

Download citation

Received : 25 June 2020

Accepted : 29 September 2020

Published : 15 October 2020

DOI : https://doi.org/10.1186/s12302-020-00419-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Global warming
  • Greenhouse effect
  • Bibliometrics
  • Socioeconomic indices
  • Climate inequity
  • Research investment

term paper about climate change

Advertisement

Advertisement

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

  • Review Article
  • Published: 04 April 2022
  • Volume 29 , pages 42539–42559, ( 2022 )

Cite this article

term paper about climate change

  • Kashif Abbass 1 ,
  • Muhammad Zeeshan Qasim 2 ,
  • Huaming Song 1 ,
  • Muntasir Murshed   ORCID: orcid.org/0000-0001-9872-8742 3 , 4 ,
  • Haider Mahmood   ORCID: orcid.org/0000-0002-6474-4338 5 &
  • Ijaz Younis 1  

267k Accesses

601 Citations

34 Altmetric

Explore all metrics

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Similar content being viewed by others

term paper about climate change

Morocco’s climate change impacts, adaptation and mitigation—a stocktake

term paper about climate change

Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning

term paper about climate change

A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan

Explore related subjects.

  • Environmental Chemistry

Avoid common mistakes on your manuscript.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

figure 1

Source : constructed by authors

Methodology search for finalized articles for investigations.

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

figure 2

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

figure 3

Source EMDAT ( 2020 )

Global deaths from natural disasters, 1978 to 2020.

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

figure 4

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

figure 5

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

A typical interaction between the susceptible and resistant strains.

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table 2 ).

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

figure 6

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Seasonal variations and cultivation practices

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

New varieties of crops

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

Changes in management and other input factors

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Availability of data and material

Data sources and relevant links are provided in the paper to access data.

Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054

Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech

Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14

Abbass K, Song H, Shah SM, Aziz B (2019) Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff 8(370):2167–0234

Google Scholar  

Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan

Abraham E, Chain E (1988) An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10(4):677

CAS   Google Scholar  

Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86

Article   Google Scholar  

Akkari C, Bryant CR (2016) The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research 5(2):162–173

Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740

Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. https://doi.org/10.1007/s10668-021-01716-2

Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press

Arshad MI, Iqbal MA, Shahbaz M (2018) Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research 23(2):121–132

Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports 2(1):95–106

Article   CAS   Google Scholar  

Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3(9):827–832

Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.

Ayers J, Huq S, Wright H, Faisal A, Hussain S (2014) Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev 6:293–305

Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451

Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M (2022) The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy 185:1441–1455

Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank

Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)

Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38

Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T (2019) Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish 28(3):434–445

Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16(2):587–598

Blum A, Klueva N, Nguyen H (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117(2):117–123

Bonacci O (2019) Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia). Acta Hydrotechnica 32(57):135–150

Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214

Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S (2018) Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol 250:47–63

Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio 43(6):759–769

Bujosa A, Riera A, Torres CM (2015) Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage 47:233–239

Calderini D, Abeledo L, Savin R, Slafer GA (1999) Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci 132(4):453–459

Cammell M, Knight J (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci 111(2):723–727

Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF

Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag

Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513

Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587

Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R (2018) Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol 18(1):1–14

Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M (2009) Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet 373(9676):1693–1733

Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, https://doi.org/10.7208/9780226315072

Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare

Davidson D (2016) Gaps in agricultural climate adaptation research. Nat Clim Chang 6(5):433–435

Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886

Dimri A, Kumar D, Choudhary A, Maharana P (2018) Future changes over the Himalayas: mean temperature. Global Planet Change 162:235–251

Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Publishing Group, Nat Clim Chang

Book   Google Scholar  

Dupuis I, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94(2):665–670

Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res 142:58–67

Edreira JR, Carpici EB, Sammarro D, Otegui M (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res 123(2):62–73

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J (2017) Trees, forests and water: Cool insights for a hot world. Glob Environ Chang 43:51–61

Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER (2021) Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem 36(1):384–393

EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be

EPA U (2018) United States Environmental Protection Agency, EPA Year in Review

Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience

Fand BB, Kamble AL, Kumar M (2012) Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ 2(11):1–14

FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.

Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204

Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18

Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770

Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T (2013) Changing climates, changing forests: a western North American perspective. J Forest 111(3):214–228

Fischer AP (2019) Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan 188:72–79

Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. For Ecol Manage 294:54–61

Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5(7):673–677

Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer

Gambín BL, Borrás L, Otegui ME (2006) Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res 95(2–3):316–326

Gambín B, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology 156(1):91–102

Gampe D, Nikulin G, Ludwig R (2016) Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ 573:1503–1518

García GA, Dreccer MF, Miralles DJ, Serrago RA (2015) High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol 21(11):4153–4164

Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA (2019) Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res 151:75–86

Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509

Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701

Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134(3):371–385

Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G (2012) Consumer behaviour and demand response of tourists to climate change. Ann Tour Res 39(1):36–58

Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041

Grieg E Responsible Consumption and Production

Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)

Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D (2015) On climate change skepticism and denial in tourism. J Sustain Tour 23(1):4–25

Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10

Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J (2019) Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10(1):1124

Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06

Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C (2016) Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res 7(4):247–252

Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853

Hubbart JA, Guyette R, Muzika R-M (2016) More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ 566:463–467

Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48

Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR (2018) Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod 200:791–808

Intergov. Panel Clim Chang 33 from  https://doi.org/10.1017/CBO9781107415324

Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R (2009) Towards a formal framework of vulnerability to climate change. Environ Model Assess 14(1):1–16

IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep

Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham

Izaguirre C, Losada I, Camus P, Vigh J, Stenek V (2021) Climate change risk to global port operations. Nat Clim Chang 11(1):14–20

Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science

Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC (2020) Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE 15(3):e0229588

Jurgilevich A, Räsänen A, Groundstroem F, Juhola S (2017) A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett 12(1):013002

Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference

Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991

Karkman A, Do TT, Walsh F, Virta MP (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF (2005) Role of marine biology in glacial-interglacial CO2 cycles. Science 308(5718):74–78

Kongsager R (2018) Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land 7(4):158

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875

Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414

Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett 44(14):7419–7428

Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons

Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo

Lipczynska-Kochany E (2018) Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ 640:1548–1565

livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020

Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

Ma L, Li B, Zhang T (2019) New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res 152:191–201

Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza

Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier

Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070

Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier

Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ (2018) Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett 13(4):044002

Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4(2):90–93

Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228

Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing

Mihiretu A, Okoyo EN, Lemma T (2021) Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences 1(2):1–18

Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210

Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332

Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. https://doi.org/10.1007/s11356-020-09497-3

Murshed M (2022) Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption 30:396–412. https://doi.org/10.1016/j.spc.2021.12.016

Murshed M, Dao NTT (2020) Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. https://doi.org/10.1007/s10708-020-10270-9

Murshed M, Abbass K, Rashid S (2021) Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco 26(4):5425–5450

Murshed M, Nurmakhanova M, Elheddad M, Ahmed R (2020) Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res 27(31):38951–38973. https://doi.org/10.1007/s11356-020-09593-4

Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. https://doi.org/10.1080/15567249.2022.2038730

Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR (2015) Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour 11:64–79

npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.

Ogden LE (2018) Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience 68(10):733–739

Ortiz AMD, Outhwaite CL, Dalin C, Newbold T (2021) A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4(1):88–101

Ortiz R (2008) Crop genetic engineering under global climate change. Ann Arid Zone 47(3):343

Otegui MAE, Bonhomme R (1998) Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res 56(3):247–256

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc

Pal JK (2021) Visualizing the knowledge outburst in global research on COVID-19. Scientometrics 126(5):4173–4193

Panda R, Behera S, Kashyap P (2003) Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag 63(1):37–56

Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T (2019) Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 5(3):eaau9124

Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133(1):295–313

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975

Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A (2013) Essential biodiversity variables. Science 339(6117):277–278

Perera K, De Silva K, Amarasinghe M (2018) Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change 161:162–171

Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham

Phillips JD (2018) Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA 169:107–118

Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228

Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885

Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S (2020) The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res 27(1):133–142

Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity

Rahman M, Alam K (2016) Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate 4(1):12

Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815

Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460

Reichstein M, Carvalhais N (2019) Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys 40(4):693–707

Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100(1–3):51–60

Ritchie H, Roser M (2014) Natural disasters. Our World in Data

Rizvi AR, Baig S, Verdone M (2015) Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. IUCN, Gland, Switzerland, p 48

Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D (2013) What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol 14(3):187–198

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests

Sadras VO, Slafer GA (2012) Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res 127:215–224

Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F (2021) Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE 16(5):e0252071

Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

Schoene DH, Bernier PY (2012) Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ 24:12–19

Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press

Scott D (2021) Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability 13(4):1966

Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Climate Res 27(2):105–117

Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6(33):343–350

Shaffril HAM, Krauss SE, Samsuddin SF (2018) A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ 644:683–695

Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614

Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690

Sharma R (2012) Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev 32(4):480–486

Sharma R, Sinha A, Kautish P (2020) Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res 27(29):36970–36982

Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer

Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20

Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759

Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42(5):880–890

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p

Stone P, Nicolas M (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol 21(6):887–900

Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616:453–461

Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S (2005) Livelihoods, forests, and conservation in developing countries: an overview. World Dev 33(9):1383–1402

Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol 138(1–4):82–92

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79(3–4):185–211

Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as

Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest

Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780

Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28

Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P (2022b) Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy 183:90–102

Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515

Usman M, Khalid K, Mehdi MA (2021) What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy 168:1165–1176

Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer

Vedwan N, Rhoades RE (2001) Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res 19(2):109–117

Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR (2001) Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41(3):748–754

Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113(48):13791–13796

Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers

Waheed A, Fischer TB, Khan MI (2021) Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage 67(5):793–810

Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank

Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A (2015) Health and climate change: policy responses to protect public health. The Lancet 386(10006):1861–1914

Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83(4):441–470

Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)

Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295):169–172

WHO (2018) WHO, 2018. Antimicrobial resistance

Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers 9(2):127–140

Wiranata IJ, Simbolon K (2021) Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations 5(2):129–146

Wiréhn L (2018) Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 77:63–74

Wu D, Su Y, Xi H, Chen X, Xie B (2019) Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res 158:11–21

Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier

Wu H, Qian H, Chen J, Huo C (2017) Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management 31(5):1557–1574

Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev

Xu J, Sharma R, Fang J, Xu Y (2008) Critical linkages between land-use transition and human health in the Himalayan region. Environ Int 34(2):239–247

Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M (2015) Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol 17(2):179–184

Yang B, Usman M (2021) Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons 28:893–910

Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16

Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336(6088):1516–1518

Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S (2017) A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. https://doi.org/10.1016/j.renene.2022.03.050

Download references

Author information

Authors and affiliations.

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, People’s Republic of China

Kashif Abbass, Huaming Song & Ijaz Younis

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, People’s Republic of China

Muhammad Zeeshan Qasim

School of Business and Economics, North South University, Dhaka, 1229, Bangladesh

Muntasir Murshed

Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942, Saudi Arabia

Haider Mahmood

You can also search for this author in PubMed   Google Scholar

Contributions

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Corresponding author

Correspondence to Huaming Song .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Abbass, K., Qasim, M.Z., Song, H. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29 , 42539–42559 (2022). https://doi.org/10.1007/s11356-022-19718-6

Download citation

Received : 26 August 2021

Accepted : 10 March 2022

Published : 04 April 2022

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11356-022-19718-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Climate change
  • Antimicrobial resistance
  • Biodiversity
  • Mitigation measures
  • Find a journal
  • Publish with us
  • Track your research

Newsroom Post

Climate change: a threat to human wellbeing and health of the planet. taking action now can secure our future.

BERLIN, Feb 28 – Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world, despite efforts to reduce the risks. People and ecosystems least able to cope are being hardest hit, said scientists in the latest Intergovernmental Panel on Climate Change (IPCC) report, released today.

“This report is a dire warning about the consequences of inaction,” said Hoesung Lee, Chair of the IPCC. “It shows that climate change is a grave and mounting threat to our wellbeing and a healthy planet. Our actions today will shape how people adapt and nature responds to increasing climate risks.”

The world faces unavoidable multiple climate hazards over the next two decades with global warming of 1.5°C (2.7°F). Even temporarily exceeding this warming level will result in additional severe impacts, some of which will be irreversible. Risks for society will increase, including to infrastructure and low-lying coastal settlements.

The Summary for Policymakers of the IPCC Working Group II report,  Climate Change 2022: Impacts, Adaptation and Vulnerability was approved on Sunday, February 27 2022, by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on February 14.

Urgent action required to deal with increasing risks

Increased heatwaves, droughts and floods are already exceeding plants’ and animals’ tolerance thresholds, driving mass mortalities in species such as trees and corals. These weather extremes are occurring simultaneously, causing cascading impacts that are increasingly difficult to manage. They have exposed millions of people to acute food and water insecurity, especially in Africa, Asia, Central and South America, on Small Islands and in the Arctic.

To avoid mounting loss of life, biodiversity and infrastructure, ambitious, accelerated action is required to adapt to climate change, at the same time as making rapid, deep cuts in greenhouse gas emissions. So far, progress on adaptation is uneven and there are increasing gaps between action taken and what is needed to deal with the increasing risks, the new report finds. These gaps are largest among lower-income populations. 

The Working Group II report is the second instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed this year.

“This report recognizes the interdependence of climate, biodiversity and people and integrates natural, social and economic sciences more strongly than earlier IPCC assessments,” said Hoesung Lee. “It emphasizes the urgency of immediate and more ambitious action to address climate risks. Half measures are no longer an option.”

Safeguarding and strengthening nature is key to securing a liveable future

There are options to adapt to a changing climate. This report provides new insights into nature’s potential not only to reduce climate risks but also to improve people’s lives.

“Healthy ecosystems are more resilient to climate change and provide life-critical services such as food and clean water”, said IPCC Working Group II Co-Chair Hans-Otto Pörtner. “By restoring degraded ecosystems and effectively and equitably conserving 30 to 50 per cent of Earth’s land, freshwater and ocean habitats, society can benefit from nature’s capacity to absorb and store carbon, and we can accelerate progress towards sustainable development, but adequate finance and political support are essential.”

Scientists point out that climate change interacts with global trends such as unsustainable use of natural resources, growing urbanization, social inequalities, losses and damages from extreme events and a pandemic, jeopardizing future development.

“Our assessment clearly shows that tackling all these different challenges involves everyone – governments, the private sector, civil society – working together to prioritize risk reduction, as well as equity and justice, in decision-making and investment,” said IPCC Working Group II Co-Chair Debra Roberts.

“In this way, different interests, values and world views can be reconciled. By bringing together scientific and technological know-how as well as Indigenous and local knowledge, solutions will be more effective. Failure to achieve climate resilient and sustainable development will result in a sub-optimal future for people and nature.”

Cities: Hotspots of impacts and risks, but also a crucial part of the solution

This report provides a detailed assessment of climate change impacts, risks and adaptation in cities, where more than half the world’s population lives. People’s health, lives and livelihoods, as well as property and critical infrastructure, including energy and transportation systems, are being increasingly adversely affected by hazards from heatwaves, storms, drought and flooding as well as slow-onset changes, including sea level rise.

“Together, growing urbanization and climate change create complex risks, especially for those cities that already experience poorly planned urban growth, high levels of poverty and unemployment, and a lack of basic services,” Debra Roberts said.

“But cities also provide opportunities for climate action – green buildings, reliable supplies of clean water and renewable energy, and sustainable transport systems that connect urban and rural areas can all lead to a more inclusive, fairer society.”

There is increasing evidence of adaptation that has caused unintended consequences, for example destroying nature, putting peoples’ lives at risk or increasing greenhouse gas emissions. This can be avoided by involving everyone in planning, attention to equity and justice, and drawing on Indigenous and local knowledge.

A narrowing window for action

Climate change is a global challenge that requires local solutions and that’s why the Working Group II contribution to the IPCC’s Sixth Assessment Report (AR6) provides extensive regional information to enable Climate Resilient Development.

The report clearly states Climate Resilient Development is already challenging at current warming levels. It will become more limited if global warming exceeds 1.5°C (2.7°F). In some regions it will be impossible if global warming exceeds 2°C (3.6°F). This key finding underlines the urgency for climate action, focusing on equity and justice. Adequate funding, technology transfer, political commitment and partnership lead to more effective climate change adaptation and emissions reductions.

“The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss a brief and rapidly closing window to secure a liveable future,” said Hans-Otto Pörtner.

For more information, please contact:

IPCC Press Office, Email: [email protected]   IPCC Working Group II:  Sina Löschke,  Komila Nabiyeva: [email protected]

Notes for Editors

Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group II report examines the impacts of climate change on nature and people around the globe. It explores future impacts at different levels of warming and the resulting risks and offers options to strengthen nature’s and society’s resilience to ongoing climate change, to fight hunger, poverty, and inequality and keep Earth a place worth living on – for current as well as for future generations. 

Working Group II introduces several new components in its latest report: One is a special section on climate change impacts, risks and options to act for cities and settlements by the sea, tropical forests, mountains, biodiversity hotspots, dryland and deserts, the Mediterranean as well as the polar regions. Another is an atlas that will present data and findings on observed and projected climate change impacts and risks from global to regional scales, thus offering even more insights for decision makers.

The Summary for Policymakers of the Working Group II contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg2/

Note : Originally scheduled for release in September 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is the second time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group II in numbers

270 authors from 67 countries

  • 47 – coordinating authors
  • 184 – lead authors
  • 39 – review editors
  • 675 – contributing authors

Over 34,000 cited references

A total of 62,418 expert and government review comments

(First Order Draft 16,348; Second Order Draft 40,293; Final Government Distribution: 5,777)

More information about the Sixth Assessment Report can be found  here .

Additional media resources

Assets available after the embargo is lifted on Media Essentials website .

Press conference recording, collection of sound bites from WGII authors, link to presentation slides, B-roll of approval session, link to launch Trello board including press release and video trailer in UN languages, a social media pack.

The website includes  outreach materials  such as videos about the IPCC and video recordings from  outreach events  conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our  YouTube  channel. Credit for artwork

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups:  Working Group I , dealing with the physical science basis of climate change;  Working Group II , dealing with impacts, adaptation and vulnerability; and  Working Group III , dealing with the mitigation of climate change. It also has a  Task Force on National Greenhouse Gas Inventories  that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty  was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems  was launched in August 2019, and the  Special Report on the Ocean and Cryosphere in a Changing Climate  was released in September 2019.

In May 2019 the IPCC released the  2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

In August 2021 the IPCC released the Working Group I contribution to the AR6, Climate Change 2021, the Physical Science Basis

The Working Group III contribution to the AR6 is scheduled for early April 2022.

The Synthesis Report of the Sixth Assessment Report will be completed in the second half of 2022.

For more information go to  www.ipcc.ch

Related Content

Remarks by the ipcc chair during the press conference to present the working group ii contribution to the sixth assessment report.

Monday, 28 February 2022 Distinguished representatives of the media, WMO Secretary-General Petteri, UNEP Executive Director Andersen, We have just heard …

February 2022

Fifty-fifth session of the ipcc (ipcc-55) and twelfth session of working group ii (wgii-12), february 14, 2022, working group report, ar6 climate change 2022: impacts, adaptation and vulnerability.

NASA Logo

What Is Climate Change?

term paper about climate change

Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

Changes observed in Earth’s climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere, raising Earth’s average surface temperature. Natural processes, which have been overwhelmed by human activities, can also contribute to climate change, including internal variability (e.g., cyclical ocean patterns like El Niño, La Niña and the Pacific Decadal Oscillation) and external forcings (e.g., volcanic activity, changes in the Sun’s energy output , variations in Earth’s orbit ).

Scientists use observations from the ground, air, and space, along with computer models , to monitor and study past, present, and future climate change. Climate data records provide evidence of climate change key indicators, such as global land and ocean temperature increases; rising sea levels; ice loss at Earth’s poles and in mountain glaciers; frequency and severity changes in extreme weather such as hurricanes, heatwaves, wildfires, droughts, floods, and precipitation; and cloud and vegetation cover changes.

“Climate change” and “global warming” are often used interchangeably but have distinct meanings. Similarly, the terms "weather" and "climate" are sometimes confused, though they refer to events with broadly different spatial- and timescales.

What Is Global Warming?

global_warming_2022

Global warming is the long-term heating of Earth’s surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere. This term is not interchangeable with the term "climate change."

Since the pre-industrial period, human activities are estimated to have increased Earth’s global average temperature by about 1 degree Celsius (1.8 degrees Fahrenheit), a number that is currently increasing by more than 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. The current warming trend is unequivocally the result of human activity since the 1950s and is proceeding at an unprecedented rate over millennia.

Weather vs. Climate

“if you don’t like the weather in new england, just wait a few minutes.” - mark twain.

Weather refers to atmospheric conditions that occur locally over short periods of time—from minutes to hours or days. Familiar examples include rain, snow, clouds, winds, floods, or thunderstorms.

Climate, on the other hand, refers to the long-term (usually at least 30 years) regional or even global average of temperature, humidity, and rainfall patterns over seasons, years, or decades.

Find Out More: A Guide to NASA’s Global Climate Change Website

This website provides a high-level overview of some of the known causes, effects and indications of global climate change:

Evidence. Brief descriptions of some of the key scientific observations that our planet is undergoing abrupt climate change.

Causes. A concise discussion of the primary climate change causes on our planet.

Effects. A look at some of the likely future effects of climate change, including U.S. regional effects.

Vital Signs. Graphs and animated time series showing real-time climate change data, including atmospheric carbon dioxide, global temperature, sea ice extent, and ice sheet volume.

Earth Minute. This fun video series explains various Earth science topics, including some climate change topics.

Other NASA Resources

Goddard Scientific Visualization Studio. An extensive collection of animated climate change and Earth science visualizations.

Sea Level Change Portal. NASA's portal for an in-depth look at the science behind sea level change.

NASA’s Earth Observatory. Satellite imagery, feature articles and scientific information about our home planet, with a focus on Earth’s climate and environmental change.

Header image is of Apusiaajik Glacier, and was taken near Kulusuk, Greenland, on Aug. 26, 2018, during NASA's Oceans Melting Greenland (OMG) field operations. Learn more here . Credit: NASA/JPL-Caltech

Discover More Topics From NASA

Explore Earth Science

term paper about climate change

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

term paper about climate change

  • Share full article

term paper about climate change

The Science of Climate Change Explained: Facts, Evidence and Proof

Definitive answers to the big questions.

Credit... Photo Illustration by Andrea D'Aquino

Supported by

By Julia Rosen

Ms. Rosen is a journalist with a Ph.D. in geology. Her research involved studying ice cores from Greenland and Antarctica to understand past climate changes.

  • Published April 19, 2021 Updated Nov. 6, 2021

The science of climate change is more solid and widely agreed upon than you might think. But the scope of the topic, as well as rampant disinformation, can make it hard to separate fact from fiction. Here, we’ve done our best to present you with not only the most accurate scientific information, but also an explanation of how we know it.

How do we know climate change is really happening?

  • How much agreement is there among scientists about climate change?
  • Do we really only have 150 years of climate data? How is that enough to tell us about centuries of change?
  • How do we know climate change is caused by humans?
  • Since greenhouse gases occur naturally, how do we know they’re causing Earth’s temperature to rise?
  • Why should we be worried that the planet has warmed 2°F since the 1800s?
  • Is climate change a part of the planet’s natural warming and cooling cycles?
  • How do we know global warming is not because of the sun or volcanoes?
  • How can winters and certain places be getting colder if the planet is warming?
  • Wildfires and bad weather have always happened. How do we know there’s a connection to climate change?
  • How bad are the effects of climate change going to be?
  • What will it cost to do something about climate change, versus doing nothing?

Climate change is often cast as a prediction made by complicated computer models. But the scientific basis for climate change is much broader, and models are actually only one part of it (and, for what it’s worth, they’re surprisingly accurate ).

For more than a century , scientists have understood the basic physics behind why greenhouse gases like carbon dioxide cause warming. These gases make up just a small fraction of the atmosphere but exert outsized control on Earth’s climate by trapping some of the planet’s heat before it escapes into space. This greenhouse effect is important: It’s why a planet so far from the sun has liquid water and life!

However, during the Industrial Revolution, people started burning coal and other fossil fuels to power factories, smelters and steam engines, which added more greenhouse gases to the atmosphere. Ever since, human activities have been heating the planet.

term paper about climate change

Where it was cooler or warmer in 2020 compared with the middle of the 20th century

term paper about climate change

Global average temperature compared with the middle of the 20th century

+0.75°C

–0.25°

term paper about climate change

30 billion metric tons

Carbon dioxide emitted worldwide 1850-2017

Rest of world

Other developed

European Union

Developed economies

Other countries

United States

term paper about climate change

E.U. and U.K.

term paper about climate change

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Advertisement

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 01 April 2021

Reflections and projections on a decade of climate science

  • Veronika Eyring   ORCID: orcid.org/0000-0002-6887-4885 1 , 2 ,
  • Vimal Mishra   ORCID: orcid.org/0000-0002-3046-6296 3 ,
  • Gary P. Griffith   ORCID: orcid.org/0000-0002-7136-4237 4 , 5 ,
  • Lei Chen   ORCID: orcid.org/0000-0001-7011-8782 6 ,
  • Trevor Keenan   ORCID: orcid.org/0000-0002-3347-0258 7 ,
  • Merritt R. Turetsky   ORCID: orcid.org/0000-0003-0155-8666 8 ,
  • Sally Brown   ORCID: orcid.org/0000-0003-1185-1962 9 ,
  • Frank Jotzo   ORCID: orcid.org/0000-0002-2856-847X 10 ,
  • Frances C. Moore 11 &
  • Sander van der Linden   ORCID: orcid.org/0000-0002-0269-1744 12  

Nature Climate Change volume  11 ,  pages 279–285 ( 2021 ) Cite this article

9864 Accesses

24 Citations

189 Altmetric

Metrics details

  • Carbon and energy
  • Climate change
  • Climate-change ecology
  • Climate-change impacts
  • Environmental social sciences

A Publisher Correction to this article was published on 14 June 2021

This article has been updated

To mark the tenth anniversary of Nature Climate Change , we asked a selection of researchers across the broad range of climate change disciplines to share their thoughts on notable developments of the past decade, as well as their hopes and expectations for the coming years of discovery.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

195,33 € per year

only 16,28 € per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Change history

14 june 2021.

A Correction to this paper has been published: https://doi.org/10.1038/s41558-021-01063-0

Author information

Authors and affiliations.

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

  • Veronika Eyring

Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany

Civil Engineering and Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, India

Vimal Mishra

Norwegian Polar Institute, FRAM – High North Research Centre on Climate and the Environment, Tromsø, Norway

Gary P. Griffith

Levin Lab, Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China

Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA

Trevor Keenan

Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA

Merritt R. Turetsky

Department of Life and Environmental Sciences, Bournemouth University, Poole, UK

Sally Brown

Australian National University, Crawford School of Public Policy, Canberra, Australian Capital Territory, Australia

Frank Jotzo

Environmental Science and Policy, University of California, Davis, Davis, CA, USA

Frances C. Moore

Department of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, UK

Sander van der Linden

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Veronika Eyring , Vimal Mishra , Gary P. Griffith , Lei Chen , Trevor Keenan , Merritt R. Turetsky , Sally Brown , Frank Jotzo , Frances C. Moore or Sander van der Linden .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Eyring, V., Mishra, V., Griffith, G.P. et al. Reflections and projections on a decade of climate science. Nat. Clim. Chang. 11 , 279–285 (2021). https://doi.org/10.1038/s41558-021-01020-x

Download citation

Published : 01 April 2021

Issue Date : April 2021

DOI : https://doi.org/10.1038/s41558-021-01020-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Pushing the frontiers in climate modelling and analysis with machine learning.

  • William D. Collins
  • Laure Zanna

Nature Climate Change (2024)

Neural mechanisms underlying interindividual differences in intergenerational sustainable behavior

  • Thomas Baumgartner
  • Emmanuel Guizar Rosales
  • Daria Knoch

Scientific Reports (2023)

Past and future ocean warming

  • Lijing Cheng
  • Karina von Schuckmann
  • Xiaopei Lin

Nature Reviews Earth & Environment (2022)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

term paper about climate change

Report • September 18, 2024

Disenfranchised by Climate Change

Climate change affects everything, including the right to vote — a foundational and core right in democracies. Wicked weather increasingly threatens the exercise of that right by making it harder for people to register to vote, to get to the polls, and to have their ballots counted. And in 2024, already a record-breaking year for global average temperature, more than 80 countries — home to more than half the world’s population — are holding nationwide elections.

Click here to download this report as a PDF .

Disenfranchised 2024 election map

Upcoming (dark blue) and past (list blue) national elections in 2024. ( International Institute for Democracy and Electoral Assistance )

Deliberate attacks on electoral integrity abound, ranging from disinformation campaigns to Consider election day. Voting should not imperil human health. But standing in hours-long lines outdoors on a very hot day can do just that, causing heat stroke and even death. Extreme heat takes an exceptionally large toll on older people, young children, and pregnant women. It is also dangerous for those with certain pre-existing medical conditions such as heart disease. potential for violence, challenging the capacity of societies to manage elections. But one set of risks is growing even without nefarious intent: that posed by extreme weather events. Those risks will continue to increase as climate change worsens a panoply of extreme weather events such as heat waves, wildfires, hurricanes, deluges, and floods.

Disasters make it harder to vote

Weather-related disasters can affect the full range of election-related activities. If voters—or poll workers—cannot reach the registration office or polling place due to flooding, heat, or another disaster, votes may never be cast or counted. Consider election day. Voting should not imperil human health. But standing in hours-long lines outdoors on a very hot day can do just that, causing heat stroke and even death. Extreme heat takes an exceptionally large toll on older people, young children, and pregnant women. It is also dangerous for those with certain pre-existing medical conditions such as heart disease. Wildfire smoke poses similar risks, as even short-term exposure can be harmful to people with asthma, diabetes, and heart or lung disease. Torrential rains lead to flash floods that can be lethal to those caught in them: as the U.S. National Weather Service puts it, “Turn around, don’t drown.”

Voters facing extreme heat, wildfire smoke, or a deluge may choose not to venture outside on election day. If they do decide to travel to the polls, they may discover that fire or flooding has blocked roads and that power outages have occurred.

In the wake of disasters, election officials may find themselves with a shortage of suitable polling places or discover that ballots cannot be delivered because roads or bridges are washed out. Power outages may occur, making it impossible to continue with voting for days or weeks. Ballot collection boxes may get destroyed by wildfires and/or floods. The upheaval caused by climate-driven disasters may even open opportunities for electoral mischief with officials distracted by rapidly evolving crises.

Those disruptions do not disappear when heat waves break, storms abate, floodwaters recede, or fires subside. Voters displaced by a disaster may have lost identification needed to register or cast a ballot. More immediate tasks, like finding food, housing, and schools for their children, may — by necessity — take precedence over casting a ballot. Displacement may also leave voters far from their assigned polling places for lengthy periods if their homes remain uninhabitable. Even for voters who are not displaced, road closures and other transportation disruptions can make it impossible to reach the polls for weeks or months at a stretch. When such disruptions affect less-affluent regions disproportionately or are repaired less quickly, climate-driven extreme weather may impact not only the rights of those voters, but also election outcomes.

Extreme weather events and their aftermath may also interrupt campaigning. For example, an outdoor rally held in extreme heat can threaten the health of the candidate, staff, and supporters, and floods can hinder the ability to travel to campaign venues. Likewise, these events can make it harder for successful candidates to reach the halls of government, particularly for rural representatives in countries with limited transportation infrastructure.

Some events may affect vast numbers of voters, but many will have more localized impacts. Yet, the disenfranchisement of even a few voters can make a profound difference in election outcomes, including ones with global repercussions. Though not weather-related, the United States provides a memorable reminder that a small number of votes can have big consequences: a mere 537 votes in Florida determined the presidency in the 2000 election.

Regardless of whether one’s vote determines the outcome of an election, individuals who are unable to vote because of climate-driven extreme weather lose a fundamental human right within a democracy.

To continue reading, please click here to download this report as a PDF .

Acknowledgements

This report was written by Karen Florini, Senior Advisor at Climate Central, and Alice Hill, David M. Rubenstein Senior Fellow for Energy and the Environment at the Council on Foreign Relations. Climate Central staff provided quantitative analysis of attributable temperatures as well as editorial assistance, layout and (except as noted) graphic design. Council on Foreign Relations staff provided research assistance. The authors gratefully acknowledge helpful comments provided by the International Institute for Democracy and Electoral Assistance.

Initial work for this report was conducted by the authors during their Residency at the Rockefeller Foundation’s Bellagio Center ( www.rockefellerfoundation.org/bellagio-center ), with helpful input from other members of their Residency cohort and from the International Institute for Democracy and Electoral Assistance. The assistance of the Foundation, the Center, and the Institute is gratefully acknowledged as well.

National Academies Press: OpenBook

Climate Change Science: An Analysis of Some Key Questions (2001)

Chapter: summary.

Greenhouse gases are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean temperatures to rise. Temperatures are, in fact, rising. The changes observed over the last several decades are likely mostly due to human activities, but we cannot rule out that some significant part of these changes is also a reflection of natural variability. Human-induced warming and associated sea level rises are expected to continue through the 21st century. Secondary effects are suggested by computer model simulations and basic physical reasoning. These include increases in rainfall rates and increased susceptibility of semi-arid regions to drought. The impacts of these changes will be critically dependent on the magnitude of the warming and the rate with which it occurs.

The mid-range model estimate of human induced global warming by the Intergovernmental Panel on Climate Change (IPCC) is based on the premise that the growth rate of climate forcing 1 agents such as carbon dioxide will accelerate. The predicted warming of 3°C (5.4°F) by the end of the 21st century is consistent with the assumptions about how clouds and atmospheric relative humidity will react to global warming. This estimate is also consistent with inferences about the sensitivity 2 of climate drawn from comparing the sizes of past temperature swings between ice ages and intervening warmer periods with the corresponding changes in the climate forcing. This predicted temperature increase is sensitive to assumptions concerning future concentrations of greenhouse gases and aerosols. Hence, national policy decisions made now and in the longer-term future will influence the extent of any damage suffered by vulnerable human populations and ecosystems later in this century. Because there is considerable uncertainty in current understanding of how the climate system varies naturally and reacts to emissions of greenhouse gases and aerosols, current estimates of the magnitude of future warming should be regarded as tentative and subject to future adjustments (either upward or downward).

Reducing the wide range of uncertainty inherent in current model predictions of global climate change will require major advances in understanding and modeling of both (1) the factors that determine atmospheric concentrations of greenhouse gases and aerosols, and (2) the so-called “feedbacks” that determine the sensitivity of the climate system to a prescribed increase in greenhouse gases. There also is a pressing need for a global observing system designed for monitoring climate.

The committee generally agrees with the assessment of human-caused climate change presented in the IPCC Working Group I (WGI) scientific report, but seeks here to articulate more clearly the level of confidence that can be ascribed to those assessments and the caveats that need to be attached to them. This articulation may be helpful to policy makers as they consider a variety of options for mitigation and/or adaptation. In the sections that follow, the committee provides brief responses to some of the key questions related to climate change science. More detailed responses to these questions are located in the main body of the text.

What is the range of natural variability in climate?

The range of natural climate variability is known to be quite large (in excess of several degrees Celsius) on local

1 A climate forcing is defined as an imposed perturbation of Earth's energy balance. Climate forcing is typically measured in watts per square meter (W/m2).

2 The sensitivity of the climate system to a prescribed forcing is commonly expressed in terms of the global mean temperature change that would be expected after a time sufficiently long for both the atmosphere and ocean to come to equilibrium with the change in climate forcing.

and regional spatial scales over periods as short as a decade. Precipitation also can vary widely. For example, there is evidence to suggest that droughts as severe as the “dust bowl” of the 1930s were much more common in the central United States during the 10th to 14th centuries than they have been in the more recent record. Mean temperature variations at local sites have exceeded 10°C (18°F) in association with the repeated glacial advances and retreats that occurred over the course of the past million years. It is more difficult to estimate the natural variability of global mean temperature because of the sparse spatial coverage of existing data and difficulties in inferring temperatures from various proxy data. Nonetheless, evidence suggests that global warming rates as large as 2°C (3.6°F) per millennium may have occurred during retreat of the glaciers following the most recent ice age.

Are concentrations of greenhouse gases and other emissions that contribute to climate change increasing at an accelerating rate, and are different greenhouse gases and other emissions increasing at different rates? Is human activity the cause of increased concentrations of greenhouse gases and other emissions that contribute to climate change?

The emissions of some greenhouse gases are increasing, but others are decreasing. In some cases the decreases are a result of policy decisions, while in other cases the reasons for the decreases are not well understood.

Of the greenhouse gases that are directly influenced by human activity, the most important are carbon dioxide, methane, ozone, nitrous oxide, and chlorofluorocarbons (CFCs). Aerosols released by human activities are also capable of influencing climate. ( Table 1 lists the estimated climate forcing due to the presence of each of these “climate forcing agents” in the atmosphere.)

Concentrations of carbon dioxide (CO 2 ) extracted from ice cores drilled in Greenland and Antarctica have typically ranged from near 190 parts per million by volume (ppmv) during the ice ages to near 280 ppmv during the warmer “interglacial” periods like the present one that began around 10,000 years ago. Concentrations did not rise much above 280 ppmv until the Industrial Revolution. By 1958, when systematic atmospheric measurements began, they had reached 315 ppmv, and they are currently ~370 ppmv and rising at a rate of 1.5 ppmv per year (slightly higher than the rate during the early years of the 43-year record). Human activities are responsible for the increase. The primary source, fossil fuel burning, has released roughly twice as much carbon dioxide as would be required to account for the observed increase. Tropical deforestation also has contributed to carbon dioxide releases during the past few decades. The excess carbon dioxide has been taken up by the oceans and land biosphere.

Like carbon dioxide, methane (CH 4 ) is more abundant in Earth's atmosphere now than at any time during the 400,000 year long ice core record, which dates back over a number of glacial/interglacial cycles. Concentrations increased rather smoothly by about 1% per year from 1978, until about 1990. The rate of increase slowed and became more erratic during the 1990s. About two-thirds of the current emissions of methane are released by human activities such as rice growing, the raising of cattle, coal mining, use of land-fills, and natural gas handling, all of which have increased over the past 50 years.

A small fraction of the ozone (O 3 ) produced by natural processes in the stratosphere mixes into the lower atmosphere. This “tropospheric ozone” has been supplemented during the 20th century by additional ozone, created locally by the action of sunlight upon air polluted by exhausts from motor vehicles, emissions from fossil fuel burning power plants, and biomass burning.

Nitrous oxide (N 2 O) is formed by many microbial reactions in soils and waters, including those acting on the increasing amounts of nitrogen-containing fertilizers. Some synthetic chemical processes that release nitrous oxide have also been identified. Its concentration has increased approximately 13% in the past 200 years.

Atmospheric concentrations of CFCs rose steadily following their first synthesis in 1928 and peaked in the early 1990s. Many other industrially useful fluorinated compounds (e.g., carbon tetrafluoride, CF 4 , and sulfur hexafluoride, SF 6 ), have very long atmospheric lifetimes, which is of concern, even though their atmospheric concentrations have not yet produced large radiative forcings. Hydrofluorocarbons (HFCs), which are replacing CFCs, have a greenhouse effect, but it is much less pronounced because of their shorter atmospheric lifetimes. The sensitivity and generality of modern analytical systems make it quite unlikely that any currently significant greenhouse gases remain to be discovered.

What other emissions are contributing factors to climate change (e.g., aerosols, CO, black carbon soot), and what is their relative contribution to climate change?

Besides greenhouse gases, human activity also contributes to the atmospheric burden of aerosols, which include both sulfate particles and black carbon (soot). Both are unevenly distributed, owing to their short lifetimes in the atmosphere. Sulfate particles scatter solar radiation back to space, thereby offsetting the greenhouse effect to some degree. Recent “clean coal technologies” and use of low sulfur fuels have resulted in decreasing sulfate concentrations, especially in North America, reducing this offset. Black carbon aerosols are end-products of the incomplete combustion of fossil fuels and biomass burning (forest fires and land clearing). They impact radiation budgets both directly and indirectly; they are believed to contribute to global warming, although their relative importance is difficult to quantify at this point.

How long does it take to reduce the buildup of greenhouse gases and other emissions that contribute to climate change? Do different greenhouse gases and other emissions have different draw down periods?

TABLE 1 Removal Times and Climate Forcing Values for Specified Atmospheric Gases and Aerosols

Forcing Agent

Approximate Removal Times

Climate Forcing (W/m ) Up to the year 2000

Greenhouse Gases

Carbon Dioxide

>100 years

1.3 to 1.5

Methane

10 years

0.5 to 0.7

Tropospheric Ozone

10–100 days

0.25 to 0.75

Nitrous Oxide

100 years

0.1 to 0.2

Perfluorocarbon

Compounds

(Including SF )

>1000 years

0.01

Fine Aerosols

Sulfate

10 days

–0.3 to –1.0

Black Carbon

10 days

0.1 to 0.8

3 A removal time of 100 years means that much, but not all, of the substance would be gone in 100 years. Typically, the amount remaining at the end of 100 years is 37%; after 200 years 14%; after 300 years 5%; after 400 years 2%

Is climate change occurring? If so, how?

Weather station records and ship-based observations indicate that global mean surface air temperature warmed between about 0.4 and 0.8°C (0.7 and 1.5°F) during the 20th century. Although the magnitude of warming varies locally, the warming trend is spatially widespread and is consistent with an array of other evidence detailed in this report. The ocean, which represents the largest reservoir of heat in the climate system, has warmed by about 0.05°C (0.09°F) averaged over the layer extending from the surface down to 10,000 feet, since the 1950s.

The observed warming has not proceeded at a uniform rate. Virtually all the 20th century warming in global surface air temperature occurred between the early 1900s and the 1940s and during the past few decades. The troposphere warmed much more during the 1970s than during the two subsequent decades, whereas Earth's surface warmed more during the past two decades than during the 1970s. The causes of these irregularities and the disparities in the timing are not completely understood. One striking change of the past 35 years is the cooling of the stratosphere at altitudes of ~13 miles, which has tended to be concentrated in the wintertime polar cap region.

Are greenhouse gases causing climate change?

The IPCC's conclusion that most of the observed warming of the last 50 years is likely to have been due to the increase in greenhouse gas concentrations accurately reflects the current thinking of the scientific community on this issue. The stated degree of confidence in the IPCC assessment is higher today than it was 10, or even 5 years ago, but uncertainty remains because of (1) the level of natural variability inherent in the climate system on time scales of decades to centuries, (2) the questionable ability of models to accurately simulate natural variability on those long time scales, and (3) the degree of confidence that can be placed on reconstructions of global mean temperature over the past millennium based on proxy evidence. Despite the uncertainties, there is general agreement that the observed warming is real and particularly strong within the past 20 years. Whether it is consistent with the change that would be expected in response to human activities is dependent upon what assumptions one makes about the time history of atmospheric concentrations of the various forcing agents, particularly aerosols.

By how much will temperatures change over the next 100 years and where?

Climate change simulations for the period of 1990 to 2100 based on the IPCC emissions scenarios yield a globally-averaged surface temperature increase by the end of the century of 1.4 to 5.8°C (2.5 to 10.4°F) relative to 1990. The wide range of uncertainty in these estimates reflects both the different assumptions about future concentrations of greenhouse gases and aerosols in the various scenarios considered by the IPCC and the differing climate sensitivities of the various climate models used in the simulations. The range of climate sensitivities implied by these predictions is generally consistent with previously reported values.

The predicted warming is larger over higher latitudes than over low latitudes, especially during winter and spring, and larger over land than over sea. Rainfall rates and the frequency of heavy precipitation events are predicted to increase, particularly over the higher latitudes. Higher evaporation rates would accelerate the drying of soils following rain events, resulting in lower relative humidities and higher daytime temperatures, especially during the warm season. The likelihood that this effect could prove important is greatest in semi-arid regions, such as the U.S. Great Plains. These predictions in the IPCC report are consistent with current understanding of the processes that control local climate.

In addition to the IPCC scenarios for future increases in greenhouse gas concentrations, the committee considered a scenario based on an energy policy designed to keep climate change moderate in the next 50 years. This scenario takes into account not only the growth of carbon emissions, but also the changing concentrations of other greenhouse gases and aerosols.

Sufficient time has elapsed now to enable comparisons between observed trends in the concentrations of carbon dioxide and other greenhouse gases with the trends predicted

in previous IPCC reports. The increase of global fossil fuel carbon dioxide emissions in the past decade has averaged 0.6% per year, which is somewhat below the range of IPCC scenarios, and the same is true for atmospheric methane concentrations. It is not known whether these slowdowns in growth rate will persist.

How much of the expected climate change is the consequence of climate feedback processes (e.g., water vapor, clouds, snow packs)?

The contribution of feedbacks to the climate change depends upon “climate sensitivity,” as described in the report. If a central estimate of climate sensitivity is used, about 40% of the predicted warming is due to the direct effects of greenhouse gases and aerosols. The other 60% is caused by feedbacks. Water vapor feedback (the additional greenhouse effect accruing from increasing concentrations of atmospheric water vapor as the atmosphere warms) is the most important feedback in the models. Unless the relative humidity in the tropical middle and upper troposphere drops, this effect is expected to increase the temperature response to increases in human induced greenhouse gas concentrations by a factor of 1.6. The ice-albedo feedback (the reduction in the fraction of incoming solar radiation reflected back to space as snow and ice cover recede) also is believed to be important. Together, these two feedbacks amplify the simulated climate response to the greenhouse gas forcing by a factor of 2.5. In addition, changes in cloud cover, in the relative amounts of high versus low clouds, and in the mean and vertical distribution of relative humidity could either enhance or reduce the amplitude of the warming. Much of the difference in predictions of global warming by various climate models is attributable to the fact that each model represents these processes in its own particular way. These uncertainties will remain until a more fundamental understanding of the processes that control atmospheric relative humidity and clouds is achieved.

What will be the consequences (e.g., extreme weather, health effects) of increases of various magnitude?

In the near term, agriculture and forestry are likely to benefit from carbon dioxide fertilization and an increased water efficiency of some plants at higher atmospheric CO 2 concentrations. The optimal climate for crops may change, requiring significant regional adaptations. Some models project an increased tendency toward drought over semi-arid regions, such as the U.S. Great Plains. Hydrologic impacts could be significant over the western United States, where much of the water supply is dependent on the amount of snow pack and the timing of the spring runoff. Increased rainfall rates could impact pollution run-off and flood control. With higher sea level, coastal regions could be subject to increased wind and flood damage even if tropical storms do not change in intensity. A significant warming also could have far reaching implications for ecosystems. The costs and risks involved are difficult to quantify at this point and are, in any case, beyond the scope of this brief report.

Health outcomes in response to climate change are the subject of intense debate. Climate is one of a number of factors influencing the incidence of infectious disease. Cold-related stress would decline in a warmer climate, while heat stress and smog induced respiratory illnesses in major urban areas would increase, if no adaptation occurred. Over much of the United States, adverse health outcomes would likely be mitigated by a strong public health system, relatively high levels of public awareness, and a high standard of living.

Global warming could well have serious adverse societal and ecological impacts by the end of this century, especially if globally-averaged temperature increases approach the upper end of the IPCC projections. Even in the more conservative scenarios, the models project temperatures and sea levels that continue to increase well beyond the end of this century, suggesting that assessments that examine only the next 100 years may well underestimate the magnitude of the eventual impacts.

Has science determined whether there is a “safe” level of concentration of greenhouse gases?

The question of whether there exists a “safe” level of concentration of greenhouse gases cannot be answered directly because it would require a value judgment of what constitutes an acceptable risk to human welfare and ecosystems in various parts of the world, as well as a more quantitative assessment of the risks and costs associated with the various impacts of global warming. In general, however, risk increases with increases in both the rate and the magnitude of climate change.

What are the substantive differences between the IPCC Reports and the Summaries?

The committee finds that the full IPCC Working Group I (WGI) report is an admirable summary of research activities in climate science, and the full report is adequately summarized in the Technical Summary. The full WGI report and its Technical Summary are not specifically directed at policy. The Summary for Policymakers reflects less emphasis on communicating the basis for uncertainty and a stronger emphasis on areas of major concern associated with human-induced climate change. This change in emphasis appears to be the result of a summary process in which scientists work with policy makers on the document. Written responses from U.S. coordinating and lead scientific authors to the committee indicate, however, that (a) no changes were made without the consent of the convening lead authors (this group represents a fraction of the lead and contributing authors) and (b) most changes that did occur lacked significant impact.

It is critical that the IPCC process remain truly representative of the scientific community. The committee's concerns

focus primarily on whether the process is likely to become less representative in the future because of the growing voluntary time commitment required to participate as a lead or coordinating author and the potential that the scientific process will be viewed as being too heavily influenced by governments which have specific postures with regard to treaties, emission controls, and other policy instruments. The United States should promote actions that improve the IPCC process while also ensuring that its strengths are maintained.

What are the specific areas of science that need to be studied further, in order of priority, to advance our understanding of climate change?

Making progress in reducing the large uncertainties in projections of future climate will require addressing a number of fundamental scientific questions relating to the buildup of greenhouses gases in the atmosphere and the behavior of the climate system. Issues that need to be addressed include (a) the future usage of fossil fuels, (b) the future emissions of methane, (c) the fraction of the future fossil-fuel carbon that will remain in the atmosphere and provide radiative forcing versus exchange with the oceans or net exchange with the land biosphere, (d) the feedbacks in the climate system that determine both the magnitude of the change and the rate of energy uptake by the oceans, which together determine the magnitude and time history of the temperature increases for a given radiative forcing, (e) details of the regional and local climate change consequent to an overall level of global climate change, (f) the nature and causes of the natural variability of climate and its interactions with forced changes, and (g) the direct and indirect effects of the changing distributions of aerosols. Maintaining a vigorous, ongoing program of basic research, funded and managed independently of the climate assessment activity, will be crucial for narrowing these uncertainties.

In addition, the research enterprise dealing with environmental change and the interactions of human society with the environment must be enhanced. This includes support of (a) interdisciplinary research that couples physical, chemical, biological, and human systems, (b) an improved capability of integrating scientific knowledge, including its uncertainty, into effective decision support systems, and (c) an ability to conduct research at the regional or sectoral level that promotes analysis of the response of human and natural systems to multiple stresses.

An effective strategy for advancing the understanding of climate change also will require (1) a global observing system in support of long-term climate monitoring and prediction, (2) concentration on large-scale modeling through increased, dedicated supercomputing and human resources, and (3) efforts to ensure that climate research is supported and managed to ensure innovation, effectiveness, and efficiency.

The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions , a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

TriumphIAS

Growing concern of climate change | Sociology Optional Coaching | Vikash Ranjan Classes | Triumph IAS | UPSC Sociology Optional

Triumphias: https://triumphias.com/sociology-offline.php

When considering the array of 51 optional subjects for the  , Sociology consistently stands out as a top choice. Its inherent appeal lies in its accessibility and intriguing exploration of humanity and society, catering even to students from  and Commerce backgrounds. With a well-defined  comprising only 13 units, Sociology can be comprehensively covered within Classroom Programme, Many of Our Sociology Foundation Course Students have Cleared Previously also Many students like got Success in CSE in

. Notably, Sociology for UPSC has garnered a reputation as one of the Highest scoring optional subjects in the UPSC Main Examination, with numerous candidates consistently achieving 300+. Its popularity is evident in the fact that a significant proportion of top 100 rankers opt for Sociology as their optional subject, showcasing its high scoring potential, particularly for those not from sociology backgrounds. Moreover, relevance of   extends beyond the examination hall, enriching understanding across various aspects of life, from social and economic to political and cultural domains. In recent times, Sociology Optional has gained traction, aligning with the evolving trend of the UPSC Mains towards conceptual analysis. Unlike other optional subjects with unpredictable question patterns, Sociology offers stability and predictability, making it an attractive choice. This adaptability, coupled with its concise syllabus and relevance to both academic and social spheres, positions Sociology as the ideal   as well as   and   graduates seeking success in the  . For those pursuing Sociology as an optional subject, accessing comprehensive   and few good  , and previous years’   is pivotal for thorough preparation. Additionally, for aspirants seeking guidance, renowned   Vikash Ranjan Sir at   coaching institutes in Delhi, offer valuable support and resources.   is the   and Triumph IAS is the
  . If you are away from Old Rajendra Nagar, Delhi, you can still complete Journey of UPSC civil service preparation through   The   nature of Sociology, coupled with its direct applicability to daily social interactions, renders it a subject that can be comprehended without extensive reference materials, distinguishing it from other optional subjects requiring extensive reading and research.

Table of Contents

Growing concern of climate change

Relevant for civil services examination, gs paper-3 , environment and ecology.

Growing concern of climate change

e

Climate change refers to long-term shifts in temperature, precipitation patterns, wind patterns, and other aspects of the Earth’s climate system. It poses significant challenges to both natural ecosystems and human societies, necessitating urgent action.

Climate change is primarily driven by human activities, such as the release of greenhouse gases (GHGs) and large-scale deforestation. GHGs trap heat in the Earth’s atmosphere, creating a greenhouse effect that leads to global warming. Rising temperatures and altered rainfall patterns are disrupting ecosystems and biodiversity. The increased frequency and intensity of extreme weather events affect habitats, species distribution, and the overall ecological balance. Melting glaciers and polar ice caps also threaten marine life and contribute to rising sea levels.
Climate change disrupts agriculture, reducing crop yields and causing food insecurity, which severely impacts farming communities. Altered weather patterns affect water availability, leading to water scarcity and potential conflicts over resources. Coastal communities are endangered by rising sea levels, causing forced migration and greater vulnerability to natural disasters.

The combustion of fossil fuels such as coal, oil, and natural gas releases carbon dioxide (CO2) into the atmosphere.
Industrial activities, transportation, and deforestation are major contributors to greenhouse gas (GHG) emissions. The clearing of forests reduces the planet’s ability to absorb CO2 through photosynthesis, leading to higher concentrations of CO2 in the atmosphere. Rapid industrial expansion and urbanization result in higher energy consumption and greater emissions.
The urban heat island effect further intensifies localized warming in cities : Encourage the adoption of renewable energy sources like solar, wind, and hydropower to decrease dependence on fossil fuels. Foster research and development of advanced technologies for cleaner and more efficient energy production. Promote sustainable forest management practices and reforestation initiatives to boost carbon capture and storage. : Support climate-resilient farming techniques, agroforestry, and efficient water use. Advocate for organic farming and minimize the use of synthetic fertilizers and pesticides. Enhance international cooperation and strengthen agreements like the Paris Agreement to reduce greenhouse gas emissions and foster sustainable development.

Climate change presents significant challenges to ecosystems and human societies alike. Understanding its causes and impacts, while implementing appropriate mitigation strategies, is essential for protecting the environment, promoting sustainable development, and building a resilient future for generations to follow.

The End of the Blog:

After Class Doubts Session of Students with Vikash Ranjan Sir

Frequently Asked Questions by UPSC Sociology Optional Students

How to prepare for the Sociology Optional without coaching?

Understand the syllabus thoroughly:  Familiarize yourself with the entire syllabus for both Paper I and Paper II. Download the official UPSC syllabus and use it as your roadmap. You can attend Sociology Orientation Lectures by Vikash Ranjan sir  on YouTube

Build a strong foundation:  Start with introductory textbooks and NCERT books to grasp core sociological concepts. You can start with Introduction to Sociology books

Choose reliable study materials:  Select high-quality textbooks, reference books, and online resources recommended by experts. You can opt for Vikash Ranjan Sir Notes too.

Develop a study schedule:  Create a realistic and consistent study schedule that allocates dedicated time for each topic. Stick to it and track your progress.

Take notes effectively:  Don’t just passively read. Summarize key points, create mind maps, or use other note-taking techniques to aid understanding and revision.

Practice answer writing:  Regularly write answers to past year question papers and model questions. Focus on clarity, structure, and critical thinking. Evaluate your answers for improvement.

Seek guidance:  You can take free Mentorship on Sociology Optional preparation by Vikash Ranjan sir. Connect with Vikash Ranjan sir (7303615329) to share strategies, ask questions, and stay motivated.  

Can I prepare for Sociology Optional without coaching?

Absolutely! Many aspirants successfully clear the exam through self-study. However coaching can provide structure and guidance, for time bound preparation.

What are the benefits of preparing without coaching?

Cost-effective:  Coaching can be expensive, and self-study allows you to manage your resources efficiently.

Flexibility:  You can tailor your study plan to your individual needs and pace.

Independence:  You develop critical thinking and research skills, valuable assets for your career.

What are the challenges of preparing without coaching?

Discipline and motivation:  You need self-discipline to stay on track and motivated without external guidance. Coaching and Teacher keeps you motivated.

Access to resources:  You may need to do extra research to find quality study materials and answer-writing practice opportunities. Teacher help you on this respect.

Doubt clearing:  You might lack immediate access to someone to address your doubts and questions. Teacher like Vikash Ranjan sir is accessible to his students 24×7   Mo- 7303615329

What additional resources can help me?

Vikash Ranjan Sir’s YouTube channel and website:  Offers free Sociology lectures, study materials, and guidance.

Triumph IAS website:  Provides past year question papers, model answers, and other helpful resources.

Public libraries and online databases:  Utilize these resources for access to relevant books, journals, and academic articles. 

Sociology Optional Program for UPSC CSE  2025 & 2026

Follow us :

🔎 https://www.instagram.com/triumphias

🔎 www.triumphias.com

🔎https://www.youtube.com/c/TriumphIAS

🔎 https://t.me/VikashRanjanSociology

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

IMAGES

  1. Climate change introduction for research paper

    term paper about climate change

  2. ≫ Global Climate Change Free Essay Sample on Samploon.com

    term paper about climate change

  3. Write A Short Essay On Global Warming

    term paper about climate change

  4. Global Climate Change and International Countermeasures

    term paper about climate change

  5. 📚 Free Essay Example on Climate Change As a Major Problem

    term paper about climate change

  6. A Review Essay : Greenhouse Warming: The Changing Climate in Science

    term paper about climate change

COMMENTS

  1. (PDF) Climate Change

    The paper concludes that community based interventions are relevant to sustain government initiatives to mitigate the effects of climate change, especially erosion and flooding in Southeast ...

  2. (PDF) CLIMATE CHANGE AND GLOBAL WARMING: STUDYING ...

    The paper concludes by emphasizing the crucial role of global cooperation and immediate action in mitigating and adapting to climate change's effects. Discover the world's research 25+ million members

  3. A review of the global climate change impacts, adaptation, and

    Abstract. Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide.

  4. Climate change

    Climate change refers to a statistically defined change in the average and/or variability of the climate system, this includes the atmosphere, the water cycle, the land surface, ice and the living ...

  5. The most influential climate change papers of all time

    A few decades later, a paper by Guy Callendar in 1938 linked the increase in carbon dioxide concentration over the previous 50 years to rising temperatures. Entitled, "The artificial production of carbon dioxide and its influence on temperature," the paper marked an important step forward in climate change research, says Andrew Solow, director of the Woods Hole Marine Policy centre and ...

  6. Climate Change and Global Warming: The role of the International Community

    The paper argues that climate change poses a moderate threat to current sustainable development and a severe threat to future sustainable development unless anthropogenic climate change and development models which ... patterns and longer-term regional climates. The recent reports of the Intergovernmental Panel on Climate Change (IPCC, 2007 and ...

  7. Research articles

    Climate policy analyses often ignore the possibility of progressive redistribution of carbon tax revenues and assume that mitigation cost will burden the poor in the short term.

  8. Climate change and human behaviour

    63 Altmetric. Metrics. Climate change is an immense challenge. Human behaviour is crucial in climate change mitigation, and in tackling the arising consequences. In this joint Focus issue between ...

  9. Climate change and ecosystems: threats, opportunities and solutions

    The rapid anthropogenic climate change that is being experienced in the early twenty-first century is intimately entwined with the health and functioning of the biosphere. ... This paper introduces a thematic issue dedicated to the interaction between climate change and the biosphere. ... long-term forest monitoring has provided important ...

  10. Long-Term Macroeconomic Effects of Climate Change: A Cross-Country

    We study the long-term impact of climate change on economic activity across countries, using a stochastic growth model where labour productivity is affected by country-specific climate variables—defined as deviations of temperature and precipitation from their historical norms. Using a panel data set of 174 countries over the years 1960 to ...

  11. How relevant is climate change research for climate change ...

    The fields of climate change papers in map 2 of Fig 10 are concentrated in biology, earth sciences, engineering, disease sciences, and physics (less pronounced). Climate change papers with at least one policy citation [see map 3 of Fig 10] show a field-specific pattern similar to the overall climate change policy papers in map 2. It seems that ...

  12. Climate change: Does international research fulfill global demands and

    Background Climate change is safe to be one of the biggest challenges of mankind. Human activities, especially the combustion of fossil fuels, contribute to the increase of greenhouse gases in the atmosphere and thus to the pace of climate change. The effects of climate change are already being felt, and the resulting damage will most likely be enormous worldwide. Because global impacts vary ...

  13. PDF Climate Change: Impacts, Vulnerabilities and Adaptation in ...

    This book outlines the impact of climate change in four developing country regions: Africa, Asia, Latin America and small island developing States; the vulnerability of these regions to future climate change; current adaptation plans, strategies and actions; and future adaptation options and needs.

  14. Climate change widespread, rapid, and intensifying

    For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks. ... Climate Change and Land, an IPCC ...

  15. Climate Change: Causes, Effects, and Solutions

    cycle. This paper discusses and compares the factors that contribute to climate change by humans and nature, some effects of climate change, and some solutions that have been developed to prevent or slow climate change from progressing. Climate Change According to NASA, the Earth average temperature has increased about 1 degree

  16. A 485-million-year history of Earth's surface temperature

    A long-term geological record of global mean surface temperature (GMST) is important for understanding the history of our planet and putting present-day climate change into context. Such a record is necessary for constraining the relationship between climate and other aspects of the Earth system, including the evolution and extinction of life ...

  17. Browse Articles

    Climate change affects the energy demand for heating and cooling in cities, which in turn leads to additional urban warming. Here, the authors show that when including such two-way biophysical ...

  18. A review of the global climate change impacts, adaptation, and

    Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector's vulnerability is a globally concerning scenario, as ...

  19. Climate change: a threat to human wellbeing and health of the planet

    Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ... For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of ...

  20. What Is Climate Change?

    Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Changes observed in Earth's climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, […]

  21. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  22. The Science of Climate Change Explained: Facts, Evidence and Proof

    Average global temperatures have increased by 2.2 degrees Fahrenheit, or 1.2 degrees Celsius, since 1880, with the greatest changes happening in the late 20th century. Land areas have warmed more ...

  23. Reflections and projections on a decade of climate science

    Nevertheless, uncertainties in climate projections remain. For example, the range of simulated effective climate sensitivity — the change in global mean surface temperature for a doubling of ...

  24. Disenfranchised by Climate Change

    Climate change affects everything, including the right to vote — a foundational and core right in democracies. Wicked weather increasingly threatens the exercise of that right by making it ...

  25. Climate Change Science: An Analysis of Some Key Questions

    An effective strategy for advancing the understanding of climate change also will require (1) a global observing system in support of long-term climate monitoring and prediction, (2) concentration on large-scale modeling through increased, dedicated supercomputing and human resources, and (3) efforts to ensure that climate research is supported ...

  26. Growing concern of climate change

    Growing concern of climate change (Relevant for GS paper-3, environment and ecology) Climate change refers to long-term shifts in temperature, precipitation patterns, wind patterns, and other aspects of the Earth's climate system. It poses significant challenges to both natural ecosystems and human societies, necessitating urgent action.

  27. IMF Working Papers

    Lithuania's immediate fiscal challenges are national security and higher costs of borrowing, but fiscal prospects are further exacerbated by long-term pressures stemming from climate change and a shrinking and aging population. The country has experienced a rapidly decreasing population—from 3.7 million in 1991 to 2.8 million in 2023—and its old-age dependency ratio is consequently ...