• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE:   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE: If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE:   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: Aug 13, 2024 12:57 PM
  • URL: https://libguides.usc.edu/writingguide

Still have questions? Leave a comment

Add Comment

Checklist: Dissertation Proposal

Enter your email id to get the downloadable right in your inbox!

Examples: Edited Papers

Need editing and proofreading services, research methodology guide: writing tips, types, & examples.

calender

  • Tags: Academic Research , Research

No dissertation or research paper is complete without the research methodology section. Since this is the chapter where you explain how you carried out your research, this is where all the meat is! Here’s where you clearly lay out the steps you have taken to test your hypothesis or research problem.

Through this blog, we’ll unravel the complexities and meaning of research methodology in academic writing , from its fundamental principles and ethics to the diverse types of research methodology in use today. Alongside offering research methodology examples, we aim to guide you on how to write research methodology, ensuring your research endeavors are both impactful and impeccably grounded!

Ensure your research methodology is foolproof. Learn more

Let’s first take a closer look at a simple research methodology definition:

Defining what is research methodology

Research methodology is the set of procedures and techniques used to collect, analyze, and interpret data to understand and solve a research problem. Methodology in research not only includes the design and methods but also the basic principles that guide the choice of specific methods.

Grasping the concept of methodology in research is essential for students and scholars, as it demonstrates the thorough and structured method used to explore a hypothesis or research question. Understanding the definition of methodology in research aids in identifying the methods used to collect data. Be it through any type of research method approach, ensuring adherence to the proper research paper format is crucial.

Now let’s explore some research methodology types:

Types of research methodology

1. qualitative research methodology.

Qualitative research methodology is aimed at understanding concepts, thoughts, or experiences. This approach is descriptive and is often utilized to gather in-depth insights into people’s attitudes, behaviors, or cultures. Qualitative research methodology involves methods like interviews, focus groups, and observation. The strength of this methodology lies in its ability to provide contextual richness.

2. Quantitative research methodology

Quantitative research methodology, on the other hand, is focused on quantifying the problem by generating numerical data or data that can be transformed into usable statistics. It uses measurable data to formulate facts and uncover patterns in research. Quantitative research methodology typically involves surveys, experiments, or statistical analysis. This methodology is appreciated for its ability to produce objective results that are generalizable to a larger population.

3. Mixed-Methods research methodology

Mixed-methods research combines both qualitative and quantitative research methodologies to provide a more comprehensive understanding of the research problem. This approach leverages the strengths of both methodologies to provide a deeper insight into the research question of a research paper .

Research methodology vs. research methods

The research methodology or design is the overall strategy and rationale that you used to carry out the research. Whereas, research methods are the specific tools and processes you use to gather and understand the data you need to test your hypothesis.

Research methodology examples and application

To further understand research methodology, let’s explore some examples of research methodology:

a. Qualitative research methodology example: A study exploring the impact of author branding on author popularity might utilize in-depth interviews to gather personal experiences and perspectives.

b. Quantitative research methodology example: A research project investigating the effects of a book promotion technique on book sales could employ a statistical analysis of profit margins and sales before and after the implementation of the method.

c. Mixed-Methods research methodology example: A study examining the relationship between social media use and academic performance might combine both qualitative and quantitative approaches. It could include surveys to quantitatively assess the frequency of social media usage and its correlation with grades, alongside focus groups or interviews to qualitatively explore students’ perceptions and experiences regarding how social media affects their study habits and academic engagement.

These examples highlight the meaning of methodology in research and how it guides the research process, from data collection to analysis, ensuring the study’s objectives are met efficiently.

Importance of methodology in research papers

When it comes to writing your study, the methodology in research papers or a dissertation plays a pivotal role. A well-crafted methodology section of a research paper or thesis not only enhances the credibility of your research but also provides a roadmap for others to replicate or build upon your work.

How to structure the research methods chapter

Wondering how to write the research methodology section? Follow these steps to create a strong methods chapter:

Step 1: Explain your research methodology

At the start of a research paper , you would have provided the background of your research and stated your hypothesis or research problem. In this section, you will elaborate on your research strategy. 

Begin by restating your research question and proceed to explain what type of research you opted for to test it. Depending on your research, here are some questions you can consider: 

a. Did you use qualitative or quantitative data to test the hypothesis? 

b. Did you perform an experiment where you collected data or are you writing a dissertation that is descriptive/theoretical without data collection? 

c. Did you use primary data that you collected or analyze secondary research data or existing data as part of your study? 

These questions will help you establish the rationale for your study on a broader level, which you will follow by elaborating on the specific methods you used to collect and understand your data. 

Step 2: Explain the methods you used to test your hypothesis 

Now that you have told your reader what type of research you’ve undertaken for the dissertation, it’s time to dig into specifics. State what specific methods you used and explain the conditions and variables involved. Explain what the theoretical framework behind the method was, what samples you used for testing it, and what tools and materials you used to collect the data. 

Step 3: Explain how you analyzed the results

Once you have explained the data collection process, explain how you analyzed and studied the data. Here, your focus is simply to explain the methods of analysis rather than the results of the study. 

Here are some questions you can answer at this stage: 

a. What tools or software did you use to analyze your results? 

b. What parameters or variables did you consider while understanding and studying the data you’ve collected? 

c. Was your analysis based on a theoretical framework? 

Your mode of analysis will change depending on whether you used a quantitative or qualitative research methodology in your study. If you’re working within the hard sciences or physical sciences, you are likely to use a quantitative research methodology (relying on numbers and hard data). If you’re doing a qualitative study, in the social sciences or humanities, your analysis may rely on understanding language and socio-political contexts around your topic. This is why it’s important to establish what kind of study you’re undertaking at the onset. 

Step 4: Defend your choice of methodology 

Now that you have gone through your research process in detail, you’ll also have to make a case for it. Justify your choice of methodology and methods, explaining why it is the best choice for your research question. This is especially important if you have chosen an unconventional approach or you’ve simply chosen to study an existing research problem from a different perspective. Compare it with other methodologies, especially ones attempted by previous researchers, and discuss what contributions using your methodology makes.  

Step 5: Discuss the obstacles you encountered and how you overcame them

No matter how thorough a methodology is, it doesn’t come without its hurdles. This is a natural part of scientific research that is important to document so that your peers and future researchers are aware of it. Writing in a research paper about this aspect of your research process also tells your evaluator that you have actively worked to overcome the pitfalls that came your way and you have refined the research process. 

Tips to write an effective methodology chapter

1. Remember who you are writing for. Keeping sight of the reader/evaluator will help you know what to elaborate on and what information they are already likely to have. You’re condensing months’ work of research in just a few pages, so you should omit basic definitions and information about general phenomena people already know.

2. Do not give an overly elaborate explanation of every single condition in your study. 

3. Skip details and findings irrelevant to the results.

4. Cite references that back your claim and choice of methodology. 

5. Consistently emphasize the relationship between your research question and the methodology you adopted to study it. 

To sum it up, what is methodology in research? It’s the blueprint of your research, essential for ensuring that your study is systematic, rigorous, and credible. Whether your focus is on qualitative research methodology, quantitative research methodology, or a combination of both, understanding and clearly defining your methodology is key to the success of your research.

Once you write the research methodology and complete writing the entire research paper, the next step is to edit your paper. As experts in research paper editing and proofreading services , we’d love to help you perfect your paper!

Here are some other articles that you might find useful: 

  • Essential Research Tips for Essay Writing
  • How to Write a Lab Report: Examples from Academic Editors
  • The Essential Types of Editing Every Writer Needs to Know
  • Editing and Proofreading Academic Papers: A Short Guide
  • The Top 10 Editing and Proofreading Services of 2023

Frequently Asked Questions

What does research methodology mean, what types of research methodologies are there, what is qualitative research methodology, how to determine sample size in research methodology, what is action research methodology.

Found this article helpful?

One comment on “ Research Methodology Guide: Writing Tips, Types, & Examples ”

This is very simplified and direct. Very helpful to understand the research methodology section of a dissertation

Leave a Comment: Cancel reply

Your email address will not be published.

Your vs. You’re: When to Use Your and You’re

Your organization needs a technical editor: here’s why, your guide to the best ebook readers in 2024, writing for the web: 7 expert tips for web content writing.

Subscribe to our Newsletter

Get carefully curated resources about writing, editing, and publishing in the comfort of your inbox.

How to Copyright Your Book?

If you’ve thought about copyrighting your book, you’re on the right path.

© 2024 All rights reserved

  • Terms of service
  • Privacy policy
  • Self Publishing Guide
  • Pre-Publishing Steps
  • Fiction Writing Tips
  • Traditional Publishing
  • Additional Resources
  • Dissertation Writing Guide
  • Essay Writing Guide
  • Academic Writing and Publishing
  • Citation and Referencing
  • Partner with us
  • Annual report
  • Website content
  • Marketing material
  • Job Applicant
  • Cover letter
  • Resource Center
  • Case studies
  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP23720

researchprospect post subheader

Published by Nicolas at March 21st, 2024 , Revised On March 12, 2024

The Ultimate Guide To Research Methodology

Research methodology is a crucial aspect of any investigative process, serving as the blueprint for the entire research journey. If you are stuck in the methodology section of your research paper , then this blog will guide you on what is a research methodology, its types and how to successfully conduct one. 

Table of Contents

What Is Research Methodology?

Research methodology can be defined as the systematic framework that guides researchers in designing, conducting, and analyzing their investigations. It encompasses a structured set of processes, techniques, and tools employed to gather and interpret data, ensuring the reliability and validity of the research findings. 

Research methodology is not confined to a singular approach; rather, it encapsulates a diverse range of methods tailored to the specific requirements of the research objectives.

Here is why Research methodology is important in academic and professional settings.

Facilitating Rigorous Inquiry

Research methodology forms the backbone of rigorous inquiry. It provides a structured approach that aids researchers in formulating precise thesis statements , selecting appropriate methodologies, and executing systematic investigations. This, in turn, enhances the quality and credibility of the research outcomes.

Ensuring Reproducibility And Reliability

In both academic and professional contexts, the ability to reproduce research outcomes is paramount. A well-defined research methodology establishes clear procedures, making it possible for others to replicate the study. This not only validates the findings but also contributes to the cumulative nature of knowledge.

Guiding Decision-Making Processes

In professional settings, decisions often hinge on reliable data and insights. Research methodology equips professionals with the tools to gather pertinent information, analyze it rigorously, and derive meaningful conclusions.

This informed decision-making is instrumental in achieving organizational goals and staying ahead in competitive environments.

Contributing To Academic Excellence

For academic researchers, adherence to robust research methodology is a hallmark of excellence. Institutions value research that adheres to high standards of methodology, fostering a culture of academic rigour and intellectual integrity. Furthermore, it prepares students with critical skills applicable beyond academia.

Enhancing Problem-Solving Abilities

Research methodology instills a problem-solving mindset by encouraging researchers to approach challenges systematically. It equips individuals with the skills to dissect complex issues, formulate hypotheses , and devise effective strategies for investigation.

Understanding Research Methodology

In the pursuit of knowledge and discovery, understanding the fundamentals of research methodology is paramount. 

Basics Of Research

Research, in its essence, is a systematic and organized process of inquiry aimed at expanding our understanding of a particular subject or phenomenon. It involves the exploration of existing knowledge, the formulation of hypotheses, and the collection and analysis of data to draw meaningful conclusions. 

Research is a dynamic and iterative process that contributes to the continuous evolution of knowledge in various disciplines.

Types of Research

Research takes on various forms, each tailored to the nature of the inquiry. Broadly classified, research can be categorized into two main types:

  • Quantitative Research: This type involves the collection and analysis of numerical data to identify patterns, relationships, and statistical significance. It is particularly useful for testing hypotheses and making predictions.
  • Qualitative Research: Qualitative research focuses on understanding the depth and details of a phenomenon through non-numerical data. It often involves methods such as interviews, focus groups, and content analysis, providing rich insights into complex issues.

Components Of Research Methodology

To conduct effective research, one must go through the different components of research methodology. These components form the scaffolding that supports the entire research process, ensuring its coherence and validity.

Research Design

Research design serves as the blueprint for the entire research project. It outlines the overall structure and strategy for conducting the study. The three primary types of research design are:

  • Exploratory Research: Aimed at gaining insights and familiarity with the topic, often used in the early stages of research.
  • Descriptive Research: Involves portraying an accurate profile of a situation or phenomenon, answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.
  • Explanatory Research: Seeks to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how.’

Data Collection Methods

Choosing the right data collection methods is crucial for obtaining reliable and relevant information. Common methods include:

  • Surveys and Questionnaires: Employed to gather information from a large number of respondents through standardized questions.
  • Interviews: In-depth conversations with participants, offering qualitative insights.
  • Observation: Systematic watching and recording of behaviour, events, or processes in their natural setting.

Data Analysis Techniques

Once data is collected, analysis becomes imperative to derive meaningful conclusions. Different methodologies exist for quantitative and qualitative data:

  • Quantitative Data Analysis: Involves statistical techniques such as descriptive statistics, inferential statistics, and regression analysis to interpret numerical data.
  • Qualitative Data Analysis: Methods like content analysis, thematic analysis, and grounded theory are employed to extract patterns, themes, and meanings from non-numerical data.

The research paper we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

proposals we write

Choosing a Research Method

Selecting an appropriate research method is a critical decision in the research process. It determines the approach, tools, and techniques that will be used to answer the research questions. 

Quantitative Research Methods

Quantitative research involves the collection and analysis of numerical data, providing a structured and objective approach to understanding and explaining phenomena.

Experimental Research

Experimental research involves manipulating variables to observe the effect on another variable under controlled conditions. It aims to establish cause-and-effect relationships.

Key Characteristics:

  • Controlled Environment: Experiments are conducted in a controlled setting to minimize external influences.
  • Random Assignment: Participants are randomly assigned to different experimental conditions.
  • Quantitative Data: Data collected is numerical, allowing for statistical analysis.

Applications: Commonly used in scientific studies and psychology to test hypotheses and identify causal relationships.

Survey Research

Survey research gathers information from a sample of individuals through standardized questionnaires or interviews. It aims to collect data on opinions, attitudes, and behaviours.

  • Structured Instruments: Surveys use structured instruments, such as questionnaires, to collect data.
  • Large Sample Size: Surveys often target a large and diverse group of participants.
  • Quantitative Data Analysis: Responses are quantified for statistical analysis.

Applications: Widely employed in social sciences, marketing, and public opinion research to understand trends and preferences.

Descriptive Research

Descriptive research seeks to portray an accurate profile of a situation or phenomenon. It focuses on answering the ‘what,’ ‘who,’ ‘where,’ and ‘when’ questions.

  • Observation and Data Collection: This involves observing and documenting without manipulating variables.
  • Objective Description: Aim to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: T his can include both types of data, depending on the research focus.

Applications: Useful in situations where researchers want to understand and describe a phenomenon without altering it, common in social sciences and education.

Qualitative Research Methods

Qualitative research emphasizes exploring and understanding the depth and complexity of phenomena through non-numerical data.

A case study is an in-depth exploration of a particular person, group, event, or situation. It involves detailed, context-rich analysis.

  • Rich Data Collection: Uses various data sources, such as interviews, observations, and documents.
  • Contextual Understanding: Aims to understand the context and unique characteristics of the case.
  • Holistic Approach: Examines the case in its entirety.

Applications: Common in social sciences, psychology, and business to investigate complex and specific instances.

Ethnography

Ethnography involves immersing the researcher in the culture or community being studied to gain a deep understanding of their behaviours, beliefs, and practices.

  • Participant Observation: Researchers actively participate in the community or setting.
  • Holistic Perspective: Focuses on the interconnectedness of cultural elements.
  • Qualitative Data: In-depth narratives and descriptions are central to ethnographic studies.

Applications: Widely used in anthropology, sociology, and cultural studies to explore and document cultural practices.

Grounded Theory

Grounded theory aims to develop theories grounded in the data itself. It involves systematic data collection and analysis to construct theories from the ground up.

  • Constant Comparison: Data is continually compared and analyzed during the research process.
  • Inductive Reasoning: Theories emerge from the data rather than being imposed on it.
  • Iterative Process: The research design evolves as the study progresses.

Applications: Commonly applied in sociology, nursing, and management studies to generate theories from empirical data.

Research design is the structural framework that outlines the systematic process and plan for conducting a study. It serves as the blueprint, guiding researchers on how to collect, analyze, and interpret data.

Exploratory, Descriptive, And Explanatory Designs

Exploratory design.

Exploratory research design is employed when a researcher aims to explore a relatively unknown subject or gain insights into a complex phenomenon.

  • Flexibility: Allows for flexibility in data collection and analysis.
  • Open-Ended Questions: Uses open-ended questions to gather a broad range of information.
  • Preliminary Nature: Often used in the initial stages of research to formulate hypotheses.

Applications: Valuable in the early stages of investigation, especially when the researcher seeks a deeper understanding of a subject before formalizing research questions.

Descriptive Design

Descriptive research design focuses on portraying an accurate profile of a situation, group, or phenomenon.

  • Structured Data Collection: Involves systematic and structured data collection methods.
  • Objective Presentation: Aims to provide an unbiased and factual account of the subject.
  • Quantitative or Qualitative Data: Can incorporate both types of data, depending on the research objectives.

Applications: Widely used in social sciences, marketing, and educational research to provide detailed and objective descriptions.

Explanatory Design

Explanatory research design aims to identify the causes and effects of a phenomenon, explaining the ‘why’ and ‘how’ behind observed relationships.

  • Causal Relationships: Seeks to establish causal relationships between variables.
  • Controlled Variables : Often involves controlling certain variables to isolate causal factors.
  • Quantitative Analysis: Primarily relies on quantitative data analysis techniques.

Applications: Commonly employed in scientific studies and social sciences to delve into the underlying reasons behind observed patterns.

Cross-Sectional Vs. Longitudinal Designs

Cross-sectional design.

Cross-sectional designs collect data from participants at a single point in time.

  • Snapshot View: Provides a snapshot of a population at a specific moment.
  • Efficiency: More efficient in terms of time and resources.
  • Limited Temporal Insights: Offers limited insights into changes over time.

Applications: Suitable for studying characteristics or behaviours that are stable or not expected to change rapidly.

Longitudinal Design

Longitudinal designs involve the collection of data from the same participants over an extended period.

  • Temporal Sequence: Allows for the examination of changes over time.
  • Causality Assessment: Facilitates the assessment of cause-and-effect relationships.
  • Resource-Intensive: Requires more time and resources compared to cross-sectional designs.

Applications: Ideal for studying developmental processes, trends, or the impact of interventions over time.

Experimental Vs Non-experimental Designs

Experimental design.

Experimental designs involve manipulating variables under controlled conditions to observe the effect on another variable.

  • Causality Inference: Enables the inference of cause-and-effect relationships.
  • Quantitative Data: Primarily involves the collection and analysis of numerical data.

Applications: Commonly used in scientific studies, psychology, and medical research to establish causal relationships.

Non-Experimental Design

Non-experimental designs observe and describe phenomena without manipulating variables.

  • Natural Settings: Data is often collected in natural settings without intervention.
  • Descriptive or Correlational: Focuses on describing relationships or correlations between variables.
  • Quantitative or Qualitative Data: This can involve either type of data, depending on the research approach.

Applications: Suitable for studying complex phenomena in real-world settings where manipulation may not be ethical or feasible.

Effective data collection is fundamental to the success of any research endeavour. 

Designing Effective Surveys

Objective Design:

  • Clearly define the research objectives to guide the survey design.
  • Craft questions that align with the study’s goals and avoid ambiguity.

Structured Format:

  • Use a structured format with standardized questions for consistency.
  • Include a mix of closed-ended and open-ended questions for detailed insights.

Pilot Testing:

  • Conduct pilot tests to identify and rectify potential issues with survey design.
  • Ensure clarity, relevance, and appropriateness of questions.

Sampling Strategy:

  • Develop a robust sampling strategy to ensure a representative participant group.
  • Consider random sampling or stratified sampling based on the research goals.

Conducting Interviews

Establishing Rapport:

  • Build rapport with participants to create a comfortable and open environment.
  • Clearly communicate the purpose of the interview and the value of participants’ input.

Open-Ended Questions:

  • Frame open-ended questions to encourage detailed responses.
  • Allow participants to express their thoughts and perspectives freely.

Active Listening:

  • Practice active listening to understand areas and gather rich data.
  • Avoid interrupting and maintain a non-judgmental stance during the interview.

Ethical Considerations:

  • Obtain informed consent and assure participants of confidentiality.
  • Be transparent about the study’s purpose and potential implications.

Observation

1. participant observation.

Immersive Participation:

  • Actively immerse yourself in the setting or group being observed.
  • Develop a deep understanding of behaviours, interactions, and context.

Field Notes:

  • Maintain detailed and reflective field notes during observations.
  • Document observed patterns, unexpected events, and participant reactions.

Ethical Awareness:

  • Be conscious of ethical considerations, ensuring respect for participants.
  • Balance the role of observer and participant to minimize bias.

2. Non-participant Observation

Objective Observation:

  • Maintain a more detached and objective stance during non-participant observation.
  • Focus on recording behaviours, events, and patterns without direct involvement.

Data Reliability:

  • Enhance the reliability of data by reducing observer bias.
  • Develop clear observation protocols and guidelines.

Contextual Understanding:

  • Strive for a thorough understanding of the observed context.
  • Consider combining non-participant observation with other methods for triangulation.

Archival Research

1. using existing data.

Identifying Relevant Archives:

  • Locate and access archives relevant to the research topic.
  • Collaborate with institutions or repositories holding valuable data.

Data Verification:

  • Verify the accuracy and reliability of archived data.
  • Cross-reference with other sources to ensure data integrity.

Ethical Use:

  • Adhere to ethical guidelines when using existing data.
  • Respect copyright and intellectual property rights.

2. Challenges and Considerations

Incomplete or Inaccurate Archives:

  • Address the possibility of incomplete or inaccurate archival records.
  • Acknowledge limitations and uncertainties in the data.

Temporal Bias:

  • Recognize potential temporal biases in archived data.
  • Consider the historical context and changes that may impact interpretation.

Access Limitations:

  • Address potential limitations in accessing certain archives.
  • Seek alternative sources or collaborate with institutions to overcome barriers.

Common Challenges in Research Methodology

Conducting research is a complex and dynamic process, often accompanied by a myriad of challenges. Addressing these challenges is crucial to ensure the reliability and validity of research findings.

Sampling Issues

Sampling bias:.

  • The presence of sampling bias can lead to an unrepresentative sample, affecting the generalizability of findings.
  • Employ random sampling methods and ensure the inclusion of diverse participants to reduce bias.

Sample Size Determination:

  • Determining an appropriate sample size is a delicate balance. Too small a sample may lack statistical power, while an excessively large sample may strain resources.
  • Conduct a power analysis to determine the optimal sample size based on the research objectives and expected effect size.

Data Quality And Validity

Measurement error:.

  • Inaccuracies in measurement tools or data collection methods can introduce measurement errors, impacting the validity of results.
  • Pilot test instruments, calibrate equipment, and use standardized measures to enhance the reliability of data.

Construct Validity:

  • Ensuring that the chosen measures accurately capture the intended constructs is a persistent challenge.
  • Use established measurement instruments and employ multiple measures to assess the same construct for triangulation.

Time And Resource Constraints

Timeline pressures:.

  • Limited timeframes can compromise the depth and thoroughness of the research process.
  • Develop a realistic timeline, prioritize tasks, and communicate expectations with stakeholders to manage time constraints effectively.

Resource Availability:

  • Inadequate resources, whether financial or human, can impede the execution of research activities.
  • Seek external funding, collaborate with other researchers, and explore alternative methods that require fewer resources.

Managing Bias in Research

Selection bias:.

  • Selecting participants in a way that systematically skews the sample can introduce selection bias.
  • Employ randomization techniques, use stratified sampling, and transparently report participant recruitment methods.

Confirmation Bias:

  • Researchers may unintentionally favour information that confirms their preconceived beliefs or hypotheses.
  • Adopt a systematic and open-minded approach, use blinded study designs, and engage in peer review to mitigate confirmation bias.

Tips On How To Write A Research Methodology

Conducting successful research relies not only on the application of sound methodologies but also on strategic planning and effective collaboration. Here are some tips to enhance the success of your research methodology:

Tip 1. Clear Research Objectives

Well-defined research objectives guide the entire research process. Clearly articulate the purpose of your study, outlining specific research questions or hypotheses.

Tip 2. Comprehensive Literature Review

A thorough literature review provides a foundation for understanding existing knowledge and identifying gaps. Invest time in reviewing relevant literature to inform your research design and methodology.

Tip 3. Detailed Research Plan

A detailed plan serves as a roadmap, ensuring all aspects of the research are systematically addressed. Develop a detailed research plan outlining timelines, milestones, and tasks.

Tip 4. Ethical Considerations

Ethical practices are fundamental to maintaining the integrity of research. Address ethical considerations early, obtain necessary approvals, and ensure participant rights are safeguarded.

Tip 5. Stay Updated On Methodologies

Research methodologies evolve, and staying updated is essential for employing the most effective techniques. Engage in continuous learning by attending workshops, conferences, and reading recent publications.

Tip 6. Adaptability In Methods

Unforeseen challenges may arise during research, necessitating adaptability in methods. Be flexible and willing to modify your approach when needed, ensuring the integrity of the study.

Tip 7. Iterative Approach

Research is often an iterative process, and refining methods based on ongoing findings enhance the study’s robustness. Regularly review and refine your research design and methods as the study progresses.

Frequently Asked Questions

What is the research methodology.

Research methodology is the systematic process of planning, executing, and evaluating scientific investigation. It encompasses the techniques, tools, and procedures used to collect, analyze, and interpret data, ensuring the reliability and validity of research findings.

What are the methodologies in research?

Research methodologies include qualitative and quantitative approaches. Qualitative methods involve in-depth exploration of non-numerical data, while quantitative methods use statistical analysis to examine numerical data. Mixed methods combine both approaches for a comprehensive understanding of research questions.

How to write research methodology?

To write a research methodology, clearly outline the study’s design, data collection, and analysis procedures. Specify research tools, participants, and sampling methods. Justify choices and discuss limitations. Ensure clarity, coherence, and alignment with research objectives for a robust methodology section.

How to write the methodology section of a research paper?

In the methodology section of a research paper, describe the study’s design, data collection, and analysis methods. Detail procedures, tools, participants, and sampling. Justify choices, address ethical considerations, and explain how the methodology aligns with research objectives, ensuring clarity and rigour.

What is mixed research methodology?

Mixed research methodology combines both qualitative and quantitative research approaches within a single study. This approach aims to enhance the details and depth of research findings by providing a more comprehensive understanding of the research problem or question.

You May Also Like

A preliminary literature review is an initial exploration of existing research on a topic, setting the foundation for in-depth study.

Introduction establishes context, states research question, and justifies study. The abstract is a concise summary of key paper elements.

Learn everything about meta synthesis literature review in this comprehensive guide. From definition and process to its types and challenges.

Ready to place an order?

USEFUL LINKS

Learning resources.

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Here's What You Need to Understand About Research Methodology

Deeptanshu D

Table of Contents

Research methodology involves a systematic and well-structured approach to conducting scholarly or scientific inquiries. Knowing the significance of research methodology and its different components is crucial as it serves as the basis for any study.

Typically, your research topic will start as a broad idea you want to investigate more thoroughly. Once you’ve identified a research problem and created research questions , you must choose the appropriate methodology and frameworks to address those questions effectively.

What is the definition of a research methodology?

Research methodology is the process or the way you intend to execute your study. The methodology section of a research paper outlines how you plan to conduct your study. It covers various steps such as collecting data, statistical analysis, observing participants, and other procedures involved in the research process

The methods section should give a description of the process that will convert your idea into a study. Additionally, the outcomes of your process must provide valid and reliable results resonant with the aims and objectives of your research. This thumb rule holds complete validity, no matter whether your paper has inclinations for qualitative or quantitative usage.

Studying research methods used in related studies can provide helpful insights and direction for your own research. Now easily discover papers related to your topic on SciSpace and utilize our AI research assistant, Copilot , to quickly review the methodologies applied in different papers.

Analyze and understand research methodologies faster with SciSpace Copilot

The need for a good research methodology

While deciding on your approach towards your research, the reason or factors you weighed in choosing a particular problem and formulating a research topic need to be validated and explained. A research methodology helps you do exactly that. Moreover, a good research methodology lets you build your argument to validate your research work performed through various data collection methods, analytical methods, and other essential points.

Just imagine it as a strategy documented to provide an overview of what you intend to do.

While undertaking any research writing or performing the research itself, you may get drifted in not something of much importance. In such a case, a research methodology helps you to get back to your outlined work methodology.

A research methodology helps in keeping you accountable for your work. Additionally, it can help you evaluate whether your work is in sync with your original aims and objectives or not. Besides, a good research methodology enables you to navigate your research process smoothly and swiftly while providing effective planning to achieve your desired results.

What is the basic structure of a research methodology?

Usually, you must ensure to include the following stated aspects while deciding over the basic structure of your research methodology:

1. Your research procedure

Explain what research methods you’re going to use. Whether you intend to proceed with quantitative or qualitative, or a composite of both approaches, you need to state that explicitly. The option among the three depends on your research’s aim, objectives, and scope.

2. Provide the rationality behind your chosen approach

Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome.

3. Explain your mechanism

The mechanism encompasses the research methods or instruments you will use to develop your research methodology. It usually refers to your data collection methods. You can use interviews, surveys, physical questionnaires, etc., of the many available mechanisms as research methodology instruments. The data collection method is determined by the type of research and whether the data is quantitative data(includes numerical data) or qualitative data (perception, morale, etc.) Moreover, you need to put logical reasoning behind choosing a particular instrument.

4. Significance of outcomes

The results will be available once you have finished experimenting. However, you should also explain how you plan to use the data to interpret the findings. This section also aids in understanding the problem from within, breaking it down into pieces, and viewing the research problem from various perspectives.

5. Reader’s advice

Anything that you feel must be explained to spread more awareness among readers and focus groups must be included and described in detail. You should not just specify your research methodology on the assumption that a reader is aware of the topic.  

All the relevant information that explains and simplifies your research paper must be included in the methodology section. If you are conducting your research in a non-traditional manner, give a logical justification and list its benefits.

6. Explain your sample space

Include information about the sample and sample space in the methodology section. The term "sample" refers to a smaller set of data that a researcher selects or chooses from a larger group of people or focus groups using a predetermined selection method. Let your readers know how you are going to distinguish between relevant and non-relevant samples. How you figured out those exact numbers to back your research methodology, i.e. the sample spacing of instruments, must be discussed thoroughly.

For example, if you are going to conduct a survey or interview, then by what procedure will you select the interviewees (or sample size in case of surveys), and how exactly will the interview or survey be conducted.

7. Challenges and limitations

This part, which is frequently assumed to be unnecessary, is actually very important. The challenges and limitations that your chosen strategy inherently possesses must be specified while you are conducting different types of research.

The importance of a good research methodology

You must have observed that all research papers, dissertations, or theses carry a chapter entirely dedicated to research methodology. This section helps maintain your credibility as a better interpreter of results rather than a manipulator.

A good research methodology always explains the procedure, data collection methods and techniques, aim, and scope of the research. In a research study, it leads to a well-organized, rationality-based approach, while the paper lacking it is often observed as messy or disorganized.

You should pay special attention to validating your chosen way towards the research methodology. This becomes extremely important in case you select an unconventional or a distinct method of execution.

Curating and developing a strong, effective research methodology can assist you in addressing a variety of situations, such as:

  • When someone tries to duplicate or expand upon your research after few years.
  • If a contradiction or conflict of facts occurs at a later time. This gives you the security you need to deal with these contradictions while still being able to defend your approach.
  • Gaining a tactical approach in getting your research completed in time. Just ensure you are using the right approach while drafting your research methodology, and it can help you achieve your desired outcomes. Additionally, it provides a better explanation and understanding of the research question itself.
  • Documenting the results so that the final outcome of the research stays as you intended it to be while starting.

Instruments you could use while writing a good research methodology

As a researcher, you must choose which tools or data collection methods that fit best in terms of the relevance of your research. This decision has to be wise.

There exists many research equipments or tools that you can use to carry out your research process. These are classified as:

a. Interviews (One-on-One or a Group)

An interview aimed to get your desired research outcomes can be undertaken in many different ways. For example, you can design your interview as structured, semi-structured, or unstructured. What sets them apart is the degree of formality in the questions. On the other hand, in a group interview, your aim should be to collect more opinions and group perceptions from the focus groups on a certain topic rather than looking out for some formal answers.

In surveys, you are in better control if you specifically draft the questions you seek the response for. For example, you may choose to include free-style questions that can be answered descriptively, or you may provide a multiple-choice type response for questions. Besides, you can also opt to choose both ways, deciding what suits your research process and purpose better.

c. Sample Groups

Similar to the group interviews, here, you can select a group of individuals and assign them a topic to discuss or freely express their opinions over that. You can simultaneously note down the answers and later draft them appropriately, deciding on the relevance of every response.

d. Observations

If your research domain is humanities or sociology, observations are the best-proven method to draw your research methodology. Of course, you can always include studying the spontaneous response of the participants towards a situation or conducting the same but in a more structured manner. A structured observation means putting the participants in a situation at a previously decided time and then studying their responses.

Of all the tools described above, it is you who should wisely choose the instruments and decide what’s the best fit for your research. You must not restrict yourself from multiple methods or a combination of a few instruments if appropriate in drafting a good research methodology.

Types of research methodology

A research methodology exists in various forms. Depending upon their approach, whether centered around words, numbers, or both, methodologies are distinguished as qualitative, quantitative, or an amalgamation of both.

1. Qualitative research methodology

When a research methodology primarily focuses on words and textual data, then it is generally referred to as qualitative research methodology. This type is usually preferred among researchers when the aim and scope of the research are mainly theoretical and explanatory.

The instruments used are observations, interviews, and sample groups. You can use this methodology if you are trying to study human behavior or response in some situations. Generally, qualitative research methodology is widely used in sociology, psychology, and other related domains.

2. Quantitative research methodology

If your research is majorly centered on data, figures, and stats, then analyzing these numerical data is often referred to as quantitative research methodology. You can use quantitative research methodology if your research requires you to validate or justify the obtained results.

In quantitative methods, surveys, tests, experiments, and evaluations of current databases can be advantageously used as instruments If your research involves testing some hypothesis, then use this methodology.

3. Amalgam methodology

As the name suggests, the amalgam methodology uses both quantitative and qualitative approaches. This methodology is used when a part of the research requires you to verify the facts and figures, whereas the other part demands you to discover the theoretical and explanatory nature of the research question.

The instruments for the amalgam methodology require you to conduct interviews and surveys, including tests and experiments. The outcome of this methodology can be insightful and valuable as it provides precise test results in line with theoretical explanations and reasoning.

The amalgam method, makes your work both factual and rational at the same time.

Final words: How to decide which is the best research methodology?

If you have kept your sincerity and awareness intact with the aims and scope of research well enough, you must have got an idea of which research methodology suits your work best.

Before deciding which research methodology answers your research question, you must invest significant time in reading and doing your homework for that. Taking references that yield relevant results should be your first approach to establishing a research methodology.

Moreover, you should never refrain from exploring other options. Before setting your work in stone, you must try all the available options as it explains why the choice of research methodology that you finally make is more appropriate than the other available options.

You should always go for a quantitative research methodology if your research requires gathering large amounts of data, figures, and statistics. This research methodology will provide you with results if your research paper involves the validation of some hypothesis.

Whereas, if  you are looking for more explanations, reasons, opinions, and public perceptions around a theory, you must use qualitative research methodology.The choice of an appropriate research methodology ultimately depends on what you want to achieve through your research.

Frequently Asked Questions (FAQs) about Research Methodology

1. how to write a research methodology.

You can always provide a separate section for research methodology where you should specify details about the methods and instruments used during the research, discussions on result analysis, including insights into the background information, and conveying the research limitations.

2. What are the types of research methodology?

There generally exists four types of research methodology i.e.

  • Observation
  • Experimental
  • Derivational

3. What is the true meaning of research methodology?

The set of techniques or procedures followed to discover and analyze the information gathered to validate or justify a research outcome is generally called Research Methodology.

4. Where lies the importance of research methodology?

Your research methodology directly reflects the validity of your research outcomes and how well-informed your research work is. Moreover, it can help future researchers cite or refer to your research if they plan to use a similar research methodology.

methodology in research report

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Using AI for research: A beginner’s guide

Shubham Dogra

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • What Is a Research Methodology? | Steps & Tips

What Is a Research Methodology? | Steps & Tips

Published on 25 February 2019 by Shona McCombes . Revised on 10 October 2022.

Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

It should include:

  • The type of research you conducted
  • How you collected and analysed your data
  • Any tools or materials you used in the research
  • Why you chose these methods
  • Your methodology section should generally be written in the past tense .
  • Academic style guides in your field may provide detailed guidelines on what to include for different types of studies.
  • Your citation style might provide guidelines for your methodology section (e.g., an APA Style methods section ).

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a research methodology, why is a methods section important, step 1: explain your methodological approach, step 2: describe your data collection methods, step 3: describe your analysis method, step 4: evaluate and justify the methodological choices you made, tips for writing a strong methodology chapter, frequently asked questions about methodology.

Prevent plagiarism, run a free check.

Your methods section is your opportunity to share how you conducted your research and why you chose the methods you chose. It’s also the place to show that your research was rigorously conducted and can be replicated .

It gives your research legitimacy and situates it within your field, and also gives your readers a place to refer to if they have any questions or critiques in other sections.

You can start by introducing your overall approach to your research. You have two options here.

Option 1: Start with your “what”

What research problem or question did you investigate?

  • Aim to describe the characteristics of something?
  • Explore an under-researched topic?
  • Establish a causal relationship?

And what type of data did you need to achieve this aim?

  • Quantitative data , qualitative data , or a mix of both?
  • Primary data collected yourself, or secondary data collected by someone else?
  • Experimental data gathered by controlling and manipulating variables, or descriptive data gathered via observations?

Option 2: Start with your “why”

Depending on your discipline, you can also start with a discussion of the rationale and assumptions underpinning your methodology. In other words, why did you choose these methods for your study?

  • Why is this the best way to answer your research question?
  • Is this a standard methodology in your field, or does it require justification?
  • Were there any ethical considerations involved in your choices?
  • What are the criteria for validity and reliability in this type of research ?

Once you have introduced your reader to your methodological approach, you should share full details about your data collection methods .

Quantitative methods

In order to be considered generalisable, you should describe quantitative research methods in enough detail for another researcher to replicate your study.

Here, explain how you operationalised your concepts and measured your variables. Discuss your sampling method or inclusion/exclusion criteria, as well as any tools, procedures, and materials you used to gather your data.

Surveys Describe where, when, and how the survey was conducted.

  • How did you design the questionnaire?
  • What form did your questions take (e.g., multiple choice, Likert scale )?
  • Were your surveys conducted in-person or virtually?
  • What sampling method did you use to select participants?
  • What was your sample size and response rate?

Experiments Share full details of the tools, techniques, and procedures you used to conduct your experiment.

  • How did you design the experiment ?
  • How did you recruit participants?
  • How did you manipulate and measure the variables ?
  • What tools did you use?

Existing data Explain how you gathered and selected the material (such as datasets or archival data) that you used in your analysis.

  • Where did you source the material?
  • How was the data originally produced?
  • What criteria did you use to select material (e.g., date range)?

The survey consisted of 5 multiple-choice questions and 10 questions measured on a 7-point Likert scale.

The goal was to collect survey responses from 350 customers visiting the fitness apparel company’s brick-and-mortar location in Boston on 4–8 July 2022, between 11:00 and 15:00.

Here, a customer was defined as a person who had purchased a product from the company on the day they took the survey. Participants were given 5 minutes to fill in the survey anonymously. In total, 408 customers responded, but not all surveys were fully completed. Due to this, 371 survey results were included in the analysis.

Qualitative methods

In qualitative research , methods are often more flexible and subjective. For this reason, it’s crucial to robustly explain the methodology choices you made.

Be sure to discuss the criteria you used to select your data, the context in which your research was conducted, and the role you played in collecting your data (e.g., were you an active participant, or a passive observer?)

Interviews or focus groups Describe where, when, and how the interviews were conducted.

  • How did you find and select participants?
  • How many participants took part?
  • What form did the interviews take ( structured , semi-structured , or unstructured )?
  • How long were the interviews?
  • How were they recorded?

Participant observation Describe where, when, and how you conducted the observation or ethnography .

  • What group or community did you observe? How long did you spend there?
  • How did you gain access to this group? What role did you play in the community?
  • How long did you spend conducting the research? Where was it located?
  • How did you record your data (e.g., audiovisual recordings, note-taking)?

Existing data Explain how you selected case study materials for your analysis.

  • What type of materials did you analyse?
  • How did you select them?

In order to gain better insight into possibilities for future improvement of the fitness shop’s product range, semi-structured interviews were conducted with 8 returning customers.

Here, a returning customer was defined as someone who usually bought products at least twice a week from the store.

Surveys were used to select participants. Interviews were conducted in a small office next to the cash register and lasted approximately 20 minutes each. Answers were recorded by note-taking, and seven interviews were also filmed with consent. One interviewee preferred not to be filmed.

Mixed methods

Mixed methods research combines quantitative and qualitative approaches. If a standalone quantitative or qualitative study is insufficient to answer your research question, mixed methods may be a good fit for you.

Mixed methods are less common than standalone analyses, largely because they require a great deal of effort to pull off successfully. If you choose to pursue mixed methods, it’s especially important to robustly justify your methods here.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

methodology in research report

Correct my document today

Next, you should indicate how you processed and analysed your data. Avoid going into too much detail: you should not start introducing or discussing any of your results at this stage.

In quantitative research , your analysis will be based on numbers. In your methods section, you can include:

  • How you prepared the data before analysing it (e.g., checking for missing data , removing outliers , transforming variables)
  • Which software you used (e.g., SPSS, Stata or R)
  • Which statistical tests you used (e.g., two-tailed t test , simple linear regression )

In qualitative research, your analysis will be based on language, images, and observations (often involving some form of textual analysis ).

Specific methods might include:

  • Content analysis : Categorising and discussing the meaning of words, phrases and sentences
  • Thematic analysis : Coding and closely examining the data to identify broad themes and patterns
  • Discourse analysis : Studying communication and meaning in relation to their social context

Mixed methods combine the above two research methods, integrating both qualitative and quantitative approaches into one coherent analytical process.

Above all, your methodology section should clearly make the case for why you chose the methods you did. This is especially true if you did not take the most standard approach to your topic. In this case, discuss why other methods were not suitable for your objectives, and show how this approach contributes new knowledge or understanding.

In any case, it should be overwhelmingly clear to your reader that you set yourself up for success in terms of your methodology’s design. Show how your methods should lead to results that are valid and reliable, while leaving the analysis of the meaning, importance, and relevance of your results for your discussion section .

  • Quantitative: Lab-based experiments cannot always accurately simulate real-life situations and behaviours, but they are effective for testing causal relationships between variables .
  • Qualitative: Unstructured interviews usually produce results that cannot be generalised beyond the sample group , but they provide a more in-depth understanding of participants’ perceptions, motivations, and emotions.
  • Mixed methods: Despite issues systematically comparing differing types of data, a solely quantitative study would not sufficiently incorporate the lived experience of each participant, while a solely qualitative study would be insufficiently generalisable.

Remember that your aim is not just to describe your methods, but to show how and why you applied them. Again, it’s critical to demonstrate that your research was rigorously conducted and can be replicated.

1. Focus on your objectives and research questions

The methodology section should clearly show why your methods suit your objectives  and convince the reader that you chose the best possible approach to answering your problem statement and research questions .

2. Cite relevant sources

Your methodology can be strengthened by referencing existing research in your field. This can help you to:

  • Show that you followed established practice for your type of research
  • Discuss how you decided on your approach by evaluating existing research
  • Present a novel methodological approach to address a gap in the literature

3. Write for your audience

Consider how much information you need to give, and avoid getting too lengthy. If you are using methods that are standard for your discipline, you probably don’t need to give a lot of background or justification.

Regardless, your methodology should be a clear, well-structured text that makes an argument for your approach, not just a list of technical details and procedures.

Methodology refers to the overarching strategy and rationale of your research. Developing your methodology involves studying the research methods used in your field and the theories or principles that underpin them, in order to choose the approach that best matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. interviews, experiments , surveys , statistical tests ).

In a dissertation or scientific paper, the methodology chapter or methods section comes after the introduction and before the results , discussion and conclusion .

Depending on the length and type of document, you might also include a literature review or theoretical framework before the methodology.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). What Is a Research Methodology? | Steps & Tips. Scribbr. Retrieved 12 August 2024, from https://www.scribbr.co.uk/thesis-dissertation/methodology/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a dissertation proposal | a step-by-step guide, what is a literature review | guide, template, & examples, what is a theoretical framework | a step-by-step guide.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Prevent plagiarism. Run a free check.

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

What is your plagiarism score?

Reference management. Clean and simple.

What is research methodology?

methodology in research report

The basics of research methodology

Why do you need a research methodology, what needs to be included, why do you need to document your research method, what are the different types of research instruments, qualitative / quantitative / mixed research methodologies, how do you choose the best research methodology for you, frequently asked questions about research methodology, related articles.

When you’re working on your first piece of academic research, there are many different things to focus on, and it can be overwhelming to stay on top of everything. This is especially true of budding or inexperienced researchers.

If you’ve never put together a research proposal before or find yourself in a position where you need to explain your research methodology decisions, there are a few things you need to be aware of.

Once you understand the ins and outs, handling academic research in the future will be less intimidating. We break down the basics below:

A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more.

You can think of your research methodology as being a formula. One part will be how you plan on putting your research into practice, and another will be why you feel this is the best way to approach it. Your research methodology is ultimately a methodological and systematic plan to resolve your research problem.

In short, you are explaining how you will take your idea and turn it into a study, which in turn will produce valid and reliable results that are in accordance with the aims and objectives of your research. This is true whether your paper plans to make use of qualitative methods or quantitative methods.

The purpose of a research methodology is to explain the reasoning behind your approach to your research - you'll need to support your collection methods, methods of analysis, and other key points of your work.

Think of it like writing a plan or an outline for you what you intend to do.

When carrying out research, it can be easy to go off-track or depart from your standard methodology.

Tip: Having a methodology keeps you accountable and on track with your original aims and objectives, and gives you a suitable and sound plan to keep your project manageable, smooth, and effective.

With all that said, how do you write out your standard approach to a research methodology?

As a general plan, your methodology should include the following information:

  • Your research method.  You need to state whether you plan to use quantitative analysis, qualitative analysis, or mixed-method research methods. This will often be determined by what you hope to achieve with your research.
  • Explain your reasoning. Why are you taking this methodological approach? Why is this particular methodology the best way to answer your research problem and achieve your objectives?
  • Explain your instruments.  This will mainly be about your collection methods. There are varying instruments to use such as interviews, physical surveys, questionnaires, for example. Your methodology will need to detail your reasoning in choosing a particular instrument for your research.
  • What will you do with your results?  How are you going to analyze the data once you have gathered it?
  • Advise your reader.  If there is anything in your research methodology that your reader might be unfamiliar with, you should explain it in more detail. For example, you should give any background information to your methods that might be relevant or provide your reasoning if you are conducting your research in a non-standard way.
  • How will your sampling process go?  What will your sampling procedure be and why? For example, if you will collect data by carrying out semi-structured or unstructured interviews, how will you choose your interviewees and how will you conduct the interviews themselves?
  • Any practical limitations?  You should discuss any limitations you foresee being an issue when you’re carrying out your research.

In any dissertation, thesis, or academic journal, you will always find a chapter dedicated to explaining the research methodology of the person who carried out the study, also referred to as the methodology section of the work.

A good research methodology will explain what you are going to do and why, while a poor methodology will lead to a messy or disorganized approach.

You should also be able to justify in this section your reasoning for why you intend to carry out your research in a particular way, especially if it might be a particularly unique method.

Having a sound methodology in place can also help you with the following:

  • When another researcher at a later date wishes to try and replicate your research, they will need your explanations and guidelines.
  • In the event that you receive any criticism or questioning on the research you carried out at a later point, you will be able to refer back to it and succinctly explain the how and why of your approach.
  • It provides you with a plan to follow throughout your research. When you are drafting your methodology approach, you need to be sure that the method you are using is the right one for your goal. This will help you with both explaining and understanding your method.
  • It affords you the opportunity to document from the outset what you intend to achieve with your research, from start to finish.

A research instrument is a tool you will use to help you collect, measure and analyze the data you use as part of your research.

The choice of research instrument will usually be yours to make as the researcher and will be whichever best suits your methodology.

There are many different research instruments you can use in collecting data for your research.

Generally, they can be grouped as follows:

  • Interviews (either as a group or one-on-one). You can carry out interviews in many different ways. For example, your interview can be structured, semi-structured, or unstructured. The difference between them is how formal the set of questions is that is asked of the interviewee. In a group interview, you may choose to ask the interviewees to give you their opinions or perceptions on certain topics.
  • Surveys (online or in-person). In survey research, you are posing questions in which you ask for a response from the person taking the survey. You may wish to have either free-answer questions such as essay-style questions, or you may wish to use closed questions such as multiple choice. You may even wish to make the survey a mixture of both.
  • Focus Groups.  Similar to the group interview above, you may wish to ask a focus group to discuss a particular topic or opinion while you make a note of the answers given.
  • Observations.  This is a good research instrument to use if you are looking into human behaviors. Different ways of researching this include studying the spontaneous behavior of participants in their everyday life, or something more structured. A structured observation is research conducted at a set time and place where researchers observe behavior as planned and agreed upon with participants.

These are the most common ways of carrying out research, but it is really dependent on your needs as a researcher and what approach you think is best to take.

It is also possible to combine a number of research instruments if this is necessary and appropriate in answering your research problem.

There are three different types of methodologies, and they are distinguished by whether they focus on words, numbers, or both.

Data typeWhat is it?Methodology

Quantitative

This methodology focuses more on measuring and testing numerical data. What is the aim of quantitative research?

When using this form of research, your objective will usually be to confirm something.

Surveys, tests, existing databases.

For example, you may use this type of methodology if you are looking to test a set of hypotheses.

Qualitative

Qualitative research is a process of collecting and analyzing both words and textual data.

This form of research methodology is sometimes used where the aim and objective of the research are exploratory.

Observations, interviews, focus groups.

Exploratory research might be used where you are trying to understand human actions i.e. for a study in the sociology or psychology field.

Mixed-method

A mixed-method approach combines both of the above approaches.

The quantitative approach will provide you with some definitive facts and figures, whereas the qualitative methodology will provide your research with an interesting human aspect.

Where you can use a mixed method of research, this can produce some incredibly interesting results. This is due to testing in a way that provides data that is both proven to be exact while also being exploratory at the same time.

➡️ Want to learn more about the differences between qualitative and quantitative research, and how to use both methods? Check out our guide for that!

If you've done your due diligence, you'll have an idea of which methodology approach is best suited to your research.

It’s likely that you will have carried out considerable reading and homework before you reach this point and you may have taken inspiration from other similar studies that have yielded good results.

Still, it is important to consider different options before setting your research in stone. Exploring different options available will help you to explain why the choice you ultimately make is preferable to other methods.

If proving your research problem requires you to gather large volumes of numerical data to test hypotheses, a quantitative research method is likely to provide you with the most usable results.

If instead you’re looking to try and learn more about people, and their perception of events, your methodology is more exploratory in nature and would therefore probably be better served using a qualitative research methodology.

It helps to always bring things back to the question: what do I want to achieve with my research?

Once you have conducted your research, you need to analyze it. Here are some helpful guides for qualitative data analysis:

➡️  How to do a content analysis

➡️  How to do a thematic analysis

➡️  How to do a rhetorical analysis

Research methodology refers to the techniques used to find and analyze information for a study, ensuring that the results are valid, reliable and that they address the research objective.

Data can typically be organized into four different categories or methods: observational, experimental, simulation, and derived.

Writing a methodology section is a process of introducing your methods and instruments, discussing your analysis, providing more background information, addressing your research limitations, and more.

Your research methodology section will need a clear research question and proposed research approach. You'll need to add a background, introduce your research question, write your methodology and add the works you cited during your data collecting phase.

The research methodology section of your study will indicate how valid your findings are and how well-informed your paper is. It also assists future researchers planning to use the same methodology, who want to cite your study or replicate it.

Rhetorical analysis illustration

methodology in research report

How To Write The Methodology Chapter

The what, why & how explained simply (with examples).

By: Jenna Crossley (PhD) | Reviewed By: Dr. Eunice Rautenbach | September 2021 (Updated April 2023)

So, you’ve pinned down your research topic and undertaken a review of the literature – now it’s time to write up the methodology section of your dissertation, thesis or research paper . But what exactly is the methodology chapter all about – and how do you go about writing one? In this post, we’ll unpack the topic, step by step .

Overview: The Methodology Chapter

  • The purpose  of the methodology chapter
  • Why you need to craft this chapter (really) well
  • How to write and structure the chapter
  • Methodology chapter example
  • Essential takeaways

What (exactly) is the methodology chapter?

The methodology chapter is where you outline the philosophical underpinnings of your research and outline the specific methodological choices you’ve made. The point of the methodology chapter is to tell the reader exactly how you designed your study and, just as importantly, why you did it this way.

Importantly, this chapter should comprehensively describe and justify all the methodological choices you made in your study. For example, the approach you took to your research (i.e., qualitative, quantitative or mixed), who  you collected data from (i.e., your sampling strategy), how you collected your data and, of course, how you analysed it. If that sounds a little intimidating, don’t worry – we’ll explain all these methodological choices in this post .

Free Webinar: Research Methodology 101

Why is the methodology chapter important?

The methodology chapter plays two important roles in your dissertation or thesis:

Firstly, it demonstrates your understanding of research theory, which is what earns you marks. A flawed research design or methodology would mean flawed results. So, this chapter is vital as it allows you to show the marker that you know what you’re doing and that your results are credible .

Secondly, the methodology chapter is what helps to make your study replicable. In other words, it allows other researchers to undertake your study using the same methodological approach, and compare their findings to yours. This is very important within academic research, as each study builds on previous studies.

The methodology chapter is also important in that it allows you to identify and discuss any methodological issues or problems you encountered (i.e., research limitations ), and to explain how you mitigated the impacts of these. Every research project has its limitations , so it’s important to acknowledge these openly and highlight your study’s value despite its limitations . Doing so demonstrates your understanding of research design, which will earn you marks. We’ll discuss limitations in a bit more detail later in this post, so stay tuned!

Need a helping hand?

methodology in research report

How to write up the methodology chapter

First off, it’s worth noting that the exact structure and contents of the methodology chapter will vary depending on the field of research (e.g., humanities, chemistry or engineering) as well as the university . So, be sure to always check the guidelines provided by your institution for clarity and, if possible, review past dissertations from your university. Here we’re going to discuss a generic structure for a methodology chapter typically found in the sciences.

Before you start writing, it’s always a good idea to draw up a rough outline to guide your writing. Don’t just start writing without knowing what you’ll discuss where. If you do, you’ll likely end up with a disjointed, ill-flowing narrative . You’ll then waste a lot of time rewriting in an attempt to try to stitch all the pieces together. Do yourself a favour and start with the end in mind .

Section 1 – Introduction

As with all chapters in your dissertation or thesis, the methodology chapter should have a brief introduction. In this section, you should remind your readers what the focus of your study is, especially the research aims . As we’ve discussed many times on the blog, your methodology needs to align with your research aims, objectives and research questions. Therefore, it’s useful to frontload this component to remind the reader (and yourself!) what you’re trying to achieve.

In this section, you can also briefly mention how you’ll structure the chapter. This will help orient the reader and provide a bit of a roadmap so that they know what to expect. You don’t need a lot of detail here – just a brief outline will do.

The intro provides a roadmap to your methodology chapter

Section 2 – The Methodology

The next section of your chapter is where you’ll present the actual methodology. In this section, you need to detail and justify the key methodological choices you’ve made in a logical, intuitive fashion. Importantly, this is the heart of your methodology chapter, so you need to get specific – don’t hold back on the details here. This is not one of those “less is more” situations.

Let’s take a look at the most common components you’ll likely need to cover. 

Methodological Choice #1 – Research Philosophy

Research philosophy refers to the underlying beliefs (i.e., the worldview) regarding how data about a phenomenon should be gathered , analysed and used . The research philosophy will serve as the core of your study and underpin all of the other research design choices, so it’s critically important that you understand which philosophy you’ll adopt and why you made that choice. If you’re not clear on this, take the time to get clarity before you make any further methodological choices.

While several research philosophies exist, two commonly adopted ones are positivism and interpretivism . These two sit roughly on opposite sides of the research philosophy spectrum.

Positivism states that the researcher can observe reality objectively and that there is only one reality, which exists independently of the observer. As a consequence, it is quite commonly the underlying research philosophy in quantitative studies and is oftentimes the assumed philosophy in the physical sciences.

Contrasted with this, interpretivism , which is often the underlying research philosophy in qualitative studies, assumes that the researcher performs a role in observing the world around them and that reality is unique to each observer . In other words, reality is observed subjectively .

These are just two philosophies (there are many more), but they demonstrate significantly different approaches to research and have a significant impact on all the methodological choices. Therefore, it’s vital that you clearly outline and justify your research philosophy at the beginning of your methodology chapter, as it sets the scene for everything that follows.

The research philosophy is at the core of the methodology chapter

Methodological Choice #2 – Research Type

The next thing you would typically discuss in your methodology section is the research type. The starting point for this is to indicate whether the research you conducted is inductive or deductive .

Inductive research takes a bottom-up approach , where the researcher begins with specific observations or data and then draws general conclusions or theories from those observations. Therefore these studies tend to be exploratory in terms of approach.

Conversely , d eductive research takes a top-down approach , where the researcher starts with a theory or hypothesis and then tests it using specific observations or data. Therefore these studies tend to be confirmatory in approach.

Related to this, you’ll need to indicate whether your study adopts a qualitative, quantitative or mixed  approach. As we’ve mentioned, there’s a strong link between this choice and your research philosophy, so make sure that your choices are tightly aligned . When you write this section up, remember to clearly justify your choices, as they form the foundation of your study.

Methodological Choice #3 – Research Strategy

Next, you’ll need to discuss your research strategy (also referred to as a research design ). This methodological choice refers to the broader strategy in terms of how you’ll conduct your research, based on the aims of your study.

Several research strategies exist, including experimental , case studies , ethnography , grounded theory, action research , and phenomenology . Let’s take a look at two of these, experimental and ethnographic, to see how they contrast.

Experimental research makes use of the scientific method , where one group is the control group (in which no variables are manipulated ) and another is the experimental group (in which a specific variable is manipulated). This type of research is undertaken under strict conditions in a controlled, artificial environment (e.g., a laboratory). By having firm control over the environment, experimental research typically allows the researcher to establish causation between variables. Therefore, it can be a good choice if you have research aims that involve identifying causal relationships.

Ethnographic research , on the other hand, involves observing and capturing the experiences and perceptions of participants in their natural environment (for example, at home or in the office). In other words, in an uncontrolled environment.  Naturally, this means that this research strategy would be far less suitable if your research aims involve identifying causation, but it would be very valuable if you’re looking to explore and examine a group culture, for example.

As you can see, the right research strategy will depend largely on your research aims and research questions – in other words, what you’re trying to figure out. Therefore, as with every other methodological choice, it’s essential to justify why you chose the research strategy you did.

Methodological Choice #4 – Time Horizon

The next thing you’ll need to detail in your methodology chapter is the time horizon. There are two options here: cross-sectional and longitudinal . In other words, whether the data for your study were all collected at one point in time (cross-sectional) or at multiple points in time (longitudinal).

The choice you make here depends again on your research aims, objectives and research questions. If, for example, you aim to assess how a specific group of people’s perspectives regarding a topic change over time , you’d likely adopt a longitudinal time horizon.

Another important factor to consider is simply whether you have the time necessary to adopt a longitudinal approach (which could involve collecting data over multiple months or even years). Oftentimes, the time pressures of your degree program will force your hand into adopting a cross-sectional time horizon, so keep this in mind.

Methodological Choice #5 – Sampling Strategy

Next, you’ll need to discuss your sampling strategy . There are two main categories of sampling, probability and non-probability sampling.

Probability sampling involves a random (and therefore representative) selection of participants from a population, whereas non-probability sampling entails selecting participants in a non-random  (and therefore non-representative) manner. For example, selecting participants based on ease of access (this is called a convenience sample).

The right sampling approach depends largely on what you’re trying to achieve in your study. Specifically, whether you trying to develop findings that are generalisable to a population or not. Practicalities and resource constraints also play a large role here, as it can oftentimes be challenging to gain access to a truly random sample. In the video below, we explore some of the most common sampling strategies.

Methodological Choice #6 – Data Collection Method

Next up, you’ll need to explain how you’ll go about collecting the necessary data for your study. Your data collection method (or methods) will depend on the type of data that you plan to collect – in other words, qualitative or quantitative data.

Typically, quantitative research relies on surveys , data generated by lab equipment, analytics software or existing datasets. Qualitative research, on the other hand, often makes use of collection methods such as interviews , focus groups , participant observations, and ethnography.

So, as you can see, there is a tight link between this section and the design choices you outlined in earlier sections. Strong alignment between these sections, as well as your research aims and questions is therefore very important.

Methodological Choice #7 – Data Analysis Methods/Techniques

The final major methodological choice that you need to address is that of analysis techniques . In other words, how you’ll go about analysing your date once you’ve collected it. Here it’s important to be very specific about your analysis methods and/or techniques – don’t leave any room for interpretation. Also, as with all choices in this chapter, you need to justify each choice you make.

What exactly you discuss here will depend largely on the type of study you’re conducting (i.e., qualitative, quantitative, or mixed methods). For qualitative studies, common analysis methods include content analysis , thematic analysis and discourse analysis . In the video below, we explain each of these in plain language.

For quantitative studies, you’ll almost always make use of descriptive statistics , and in many cases, you’ll also use inferential statistical techniques (e.g., correlation and regression analysis). In the video below, we unpack some of the core concepts involved in descriptive and inferential statistics.

In this section of your methodology chapter, it’s also important to discuss how you prepared your data for analysis, and what software you used (if any). For example, quantitative data will often require some initial preparation such as removing duplicates or incomplete responses . Similarly, qualitative data will often require transcription and perhaps even translation. As always, remember to state both what you did and why you did it.

Section 3 – The Methodological Limitations

With the key methodological choices outlined and justified, the next step is to discuss the limitations of your design. No research methodology is perfect – there will always be trade-offs between the “ideal” methodology and what’s practical and viable, given your constraints. Therefore, this section of your methodology chapter is where you’ll discuss the trade-offs you had to make, and why these were justified given the context.

Methodological limitations can vary greatly from study to study, ranging from common issues such as time and budget constraints to issues of sample or selection bias . For example, you may find that you didn’t manage to draw in enough respondents to achieve the desired sample size (and therefore, statistically significant results), or your sample may be skewed heavily towards a certain demographic, thereby negatively impacting representativeness .

In this section, it’s important to be critical of the shortcomings of your study. There’s no use trying to hide them (your marker will be aware of them regardless). By being critical, you’ll demonstrate to your marker that you have a strong understanding of research theory, so don’t be shy here. At the same time, don’t beat your study to death . State the limitations, why these were justified, how you mitigated their impacts to the best degree possible, and how your study still provides value despite these limitations .

Section 4 – Concluding Summary

Finally, it’s time to wrap up the methodology chapter with a brief concluding summary. In this section, you’ll want to concisely summarise what you’ve presented in the chapter. Here, it can be a good idea to use a figure to summarise the key decisions, especially if your university recommends using a specific model (for example, Saunders’ Research Onion ).

Importantly, this section needs to be brief – a paragraph or two maximum (it’s a summary, after all). Also, make sure that when you write up your concluding summary, you include only what you’ve already discussed in your chapter; don’t add any new information.

Keep it simple

Methodology Chapter Example

In the video below, we walk you through an example of a high-quality research methodology chapter from a dissertation. We also unpack our free methodology chapter template so that you can see how best to structure your chapter.

Wrapping Up

And there you have it – the methodology chapter in a nutshell. As we’ve mentioned, the exact contents and structure of this chapter can vary between universities , so be sure to check in with your institution before you start writing. If possible, try to find dissertations or theses from former students of your specific degree program – this will give you a strong indication of the expectations and norms when it comes to the methodology chapter (and all the other chapters!).

Also, remember the golden rule of the methodology chapter – justify every choice ! Make sure that you clearly explain the “why” for every “what”, and reference credible methodology textbooks or academic sources to back up your justifications.

If you need a helping hand with your research methodology (or any other component of your research), be sure to check out our private coaching service , where we hold your hand through every step of the research journey. Until next time, good luck!

methodology in research report

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

54 Comments

DAUDI JACKSON GYUNDA

highly appreciated.

florin

This was very helpful!

Nophie

This was helpful

mengistu

Thanks ,it is a very useful idea.

Thanks ,it is very useful idea.

Lucia

Thank you so much, this information is very useful.

Shemeka Hodge-Joyce

Thank you very much. I must say the information presented was succinct, coherent and invaluable. It is well put together and easy to comprehend. I have a great guide to create the research methodology for my dissertation.

james edwin thomson

Highly clear and useful.

Amir

I understand a bit on the explanation above. I want to have some coach but I’m still student and don’t have any budget to hire one. A lot of question I want to ask.

Henrick

Thank you so much. This concluded my day plan. Thank you so much.

Najat

Thanks it was helpful

Karen

Great information. It would be great though if you could show us practical examples.

Patrick O Matthew

Thanks so much for this information. God bless and be with you

Atugonza Zahara

Thank you so so much. Indeed it was helpful

Joy O.

This is EXCELLENT!

I was totally confused by other explanations. Thank you so much!.

keinemukama surprise

justdoing my research now , thanks for the guidance.

Yucong Huang

Thank uuuu! These contents are really valued for me!

Thokozani kanyemba

This is powerful …I really like it

Hend Zahran

Highly useful and clear, thank you so much.

Harry Kaliza

Highly appreciated. Good guide

Fateme Esfahani

That was helpful. Thanks

David Tshigomana

This is very useful.Thank you

Kaunda

Very helpful information. Thank you

Peter

This is exactly what I was looking for. The explanation is so detailed and easy to comprehend. Well done and thank you.

Shazia Malik

Great job. You just summarised everything in the easiest and most comprehensible way possible. Thanks a lot.

Rosenda R. Gabriente

Thank you very much for the ideas you have given this will really help me a lot. Thank you and God Bless.

Eman

Such great effort …….very grateful thank you

Shaji Viswanathan

Please accept my sincere gratitude. I have to say that the information that was delivered was congruent, concise, and quite helpful. It is clear and straightforward, making it simple to understand. I am in possession of an excellent manual that will assist me in developing the research methods for my dissertation.

lalarie

Thank you for your great explanation. It really helped me construct my methodology paper.

Daniel sitieney

thank you for simplifieng the methodoly, It was realy helpful

Kayode

Very helpful!

Nathan

Thank you for your great explanation.

Emily Kamende

The explanation I have been looking for. So clear Thank you

Abraham Mafuta

Thank you very much .this was more enlightening.

Jordan

helped me create the in depth and thorough methodology for my dissertation

Nelson D Menduabor

Thank you for the great explaination.please construct one methodology for me

I appreciate you for the explanation of methodology. Please construct one methodology on the topic: The effects influencing students dropout among schools for my thesis

This helped me complete my methods section of my dissertation with ease. I have managed to write a thorough and concise methodology!

ASHA KIUNGA

its so good in deed

leslie chihope

wow …what an easy to follow presentation. very invaluable content shared. utmost important.

Ahmed khedr

Peace be upon you, I am Dr. Ahmed Khedr, a former part-time professor at Al-Azhar University in Cairo, Egypt. I am currently teaching research methods, and I have been dealing with your esteemed site for several years, and I found that despite my long experience with research methods sites, it is one of the smoothest sites for evaluating the material for students, For this reason, I relied on it a lot in teaching and translated most of what was written into Arabic and published it on my own page on Facebook. Thank you all… Everything I posted on my page is provided with the names of the writers of Grad coach, the title of the article, and the site. My best regards.

Daniel Edwards

A remarkably simple and useful guide, thank you kindly.

Magnus Mahenge

I real appriciate your short and remarkable chapter summary

Olalekan Adisa

Bravo! Very helpful guide.

Arthur Margraf

Only true experts could provide such helpful, fantastic, and inspiring knowledge about Methodology. Thank you very much! God be with you and us all!

Aruni Nilangi

highly appreciate your effort.

White Label Blog Content

This is a very well thought out post. Very informative and a great read.

FELEKE FACHA

THANKS SO MUCH FOR SHARING YOUR NICE IDEA

Chandika Perera

I love you Emma, you are simply amazing with clear explanations with complete information. GradCoach really helped me to do my assignment here in Auckland. Mostly, Emma make it so simple and enjoyable

Zibele Xuba

Thank you very much for this informative and synthesised version.

Yusra AR. Mahmood

thank you, It was a very informative presentation, you made it just to the point in a straightforward way .

Chryslin

Help me write a methodology on the topic “challenges faced by family businesses in Ghana

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Educational resources and simple solutions for your research journey

How to write the methods section of a research paper

How to Write the Methods Section of a Research Paper

How to write the methods section of a research paper

Writing a research paper is both an art and a skill, and knowing how to write the methods section of a research paper is the first crucial step in mastering scientific writing. If, like the majority of early career researchers, you believe that the methods section is the simplest to write and needs little in the way of careful consideration or thought, this article will help you understand it is not 1 .

We have all probably asked our supervisors, coworkers, or search engines “ how to write a methods section of a research paper ” at some point in our scientific careers, so you are not alone if that’s how you ended up here.  Even for seasoned researchers, selecting what to include in the methods section from a wealth of experimental information can occasionally be a source of distress and perplexity.   

Additionally, journal specifications, in some cases, may make it more of a requirement rather than a choice to provide a selective yet descriptive account of the experimental procedure. Hence, knowing these nuances of how to write the methods section of a research paper is critical to its success. The methods section of the research paper is not supposed to be a detailed heavy, dull section that some researchers tend to write; rather, it should be the central component of the study that justifies the validity and reliability of the research.

Are you still unsure of how the methods section of a research paper forms the basis of every investigation? Consider the last article you read but ignore the methods section and concentrate on the other parts of the paper . Now think whether you could repeat the study and be sure of the credibility of the findings despite knowing the literature review and even having the data in front of you. You have the answer!   

methodology in research report

Having established the importance of the methods section , the next question is how to write the methods section of a research paper that unifies the overall study. The purpose of the methods section , which was earlier called as Materials and Methods , is to describe how the authors went about answering the “research question” at hand. Here, the objective is to tell a coherent story that gives a detailed account of how the study was conducted, the rationale behind specific experimental procedures, the experimental setup, objects (variables) involved, the research protocol employed, tools utilized to measure, calculations and measurements, and the analysis of the collected data 2 .

In this article, we will take a deep dive into this topic and provide a detailed overview of how to write the methods section of a research paper . For the sake of clarity, we have separated the subject into various sections with corresponding subheadings.  

Table of Contents

What is the methods section of a research paper ?  

The methods section is a fundamental section of any paper since it typically discusses the ‘ what ’, ‘ how ’, ‘ which ’, and ‘ why ’ of the study, which is necessary to arrive at the final conclusions. In a research article, the introduction, which serves to set the foundation for comprehending the background and results is usually followed by the methods section, which precedes the result and discussion sections. The methods section must explicitly state what was done, how it was done, which equipment, tools and techniques were utilized, how were the measurements/calculations taken, and why specific research protocols, software, and analytical methods were employed.  

Why is the methods section important?  

The primary goal of the methods section is to provide pertinent details about the experimental approach so that the reader may put the results in perspective and, if necessary, replicate the findings 3 .  This section offers readers the chance to evaluate the reliability and validity of any study. In short, it also serves as the study’s blueprint, assisting researchers who might be unsure about any other portion in establishing the study’s context and validity. The methods plays a rather crucial role in determining the fate of the article; an incomplete and unreliable methods section can frequently result in early rejections and may lead to numerous rounds of modifications during the publication process. This means that the reviewers also often use methods section to assess the reliability and validity of the research protocol and the data analysis employed to address the research topic. In other words, the purpose of the methods section is to demonstrate the research acumen and subject-matter expertise of the author(s) in their field.  

Structure of methods section of a research paper  

Similar to the research paper, the methods section also follows a defined structure; this may be dictated by the guidelines of a specific journal or can be presented in a chronological or thematic manner based on the study type. When writing the methods section , authors should keep in mind that they are telling a story about how the research was conducted. They should only report relevant information to avoid confusing the reader and include details that would aid in connecting various aspects of the entire research activity together. It is generally advisable to present experiments in the order in which they were conducted. This facilitates the logical flow of the research and allows readers to follow the progression of the study design.   

methodology in research report

It is also essential to clearly state the rationale behind each experiment and how the findings of earlier experiments informed the design or interpretation of later experiments. This allows the readers to understand the overall purpose of the study design and the significance of each experiment within that context. However, depending on the particular research question and method, it may make sense to present information in a different order; therefore, authors must select the best structure and strategy for their individual studies.   

In cases where there is a lot of information, divide the sections into subheadings to cover the pertinent details. If the journal guidelines pose restrictions on the word limit , additional important information can be supplied in the supplementary files. A simple rule of thumb for sectioning the method section is to begin by explaining the methodological approach ( what was done ), describing the data collection methods ( how it was done ), providing the analysis method ( how the data was analyzed ), and explaining the rationale for choosing the methodological strategy. This is described in detail in the upcoming sections.    

How to write the methods section of a research paper  

Contrary to widespread assumption, the methods section of a research paper should be prepared once the study is complete to prevent missing any key parameter. Hence, please make sure that all relevant experiments are done before you start writing a methods section . The next step for authors is to look up any applicable academic style manuals or journal-specific standards to ensure that the methods section is formatted correctly. The methods section of a research paper typically constitutes materials and methods; while writing this section, authors usually arrange the information under each category.

The materials category describes the samples, materials, treatments, and instruments, while experimental design, sample preparation, data collection, and data analysis are a part of the method category. According to the nature of the study, authors should include additional subsections within the methods section, such as ethical considerations like the declaration of Helsinki (for studies involving human subjects), demographic information of the participants, and any other crucial information that can affect the output of the study. Simply put, the methods section has two major components: content and format. Here is an easy checklist for you to consider if you are struggling with how to write the methods section of a research paper .   

  • Explain the research design, subjects, and sample details  
  • Include information on inclusion and exclusion criteria  
  • Mention ethical or any other permission required for the study  
  • Include information about materials, experimental setup, tools, and software  
  • Add details of data collection and analysis methods  
  • Incorporate how research biases were avoided or confounding variables were controlled  
  • Evaluate and justify the experimental procedure selected to address the research question  
  • Provide precise and clear details of each experiment  
  • Flowcharts, infographics, or tables can be used to present complex information     
  • Use past tense to show that the experiments have been done   
  • Follow academic style guides (such as APA or MLA ) to structure the content  
  • Citations should be included as per standard protocols in the field  

Now that you know how to write the methods section of a research paper , let’s address another challenge researchers face while writing the methods section —what to include in the methods section .  How much information is too much is not always obvious when it comes to trying to include data in the methods section of a paper. In the next section, we examine this issue and explore potential solutions.   

methodology in research report

What to include in the methods section of a research paper  

The technical nature of the methods section occasionally makes it harder to present the information clearly and concisely while staying within the study context. Many young researchers tend to veer off subject significantly, and they frequently commit the sin of becoming bogged down in itty bitty details, making the text harder to read and impairing its overall flow. However, the best way to write the methods section is to start with crucial components of the experiments. If you have trouble deciding which elements are essential, think about leaving out those that would make it more challenging to comprehend the context or replicate the results. The top-down approach helps to ensure all relevant information is incorporated and vital information is not lost in technicalities. Next, remember to add details that are significant to assess the validity and reliability of the study. Here is a simple checklist for you to follow ( bonus tip: you can also make a checklist for your own study to avoid missing any critical information while writing the methods section ).  

  • Structuring the methods section : Authors should diligently follow journal guidelines and adhere to the specific author instructions provided when writing the methods section . Journals typically have specific guidelines for formatting the methods section ; for example, Frontiers in Plant Sciences advises arranging the materials and methods section by subheading and citing relevant literature. There are several standardized checklists available for different study types in the biomedical field, including CONSORT (Consolidated Standards of Reporting Trials) for randomized clinical trials, PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) for systematic reviews and meta-analysis, and STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) for cohort, case-control, cross-sectional studies. Before starting the methods section , check the checklist available in your field that can function as a guide.     
  • Organizing different sections to tell a story : Once you are sure of the format required for structuring the methods section , the next is to present the sections in a logical manner; as mentioned earlier, the sections can be organized according to the chronology or themes. In the chronological arrangement, you should discuss the methods in accordance with how the experiments were carried out. An example of the method section of a research paper of an animal study should first ideally include information about the species, weight, sex, strain, and age. Next, the number of animals, their initial conditions, and their living and housing conditions should also be mentioned. Second, how the groups are assigned and the intervention (drug treatment, stress, or other) given to each group, and finally, the details of tools and techniques used to measure, collect, and analyze the data. Experiments involving animal or human subjects should additionally state an ethics approval statement. It is best to arrange the section using the thematic approach when discussing distinct experiments not following a sequential order.  
  • Define and explain the objects and procedure: Experimental procedure should clearly be stated in the methods section . Samples, necessary preparations (samples, treatment, and drug), and methods for manipulation need to be included. All variables (control, dependent, independent, and confounding) must be clearly defined, particularly if the confounding variables can affect the outcome of the study.  
  • Match the order of the methods section with the order of results: Though not mandatory, organizing the manuscript in a logical and coherent manner can improve the readability and clarity of the paper. This can be done by following a consistent structure throughout the manuscript; readers can easily navigate through the different sections and understand the methods and results in relation to each other. Using experiment names as headings for both the methods and results sections can also make it simpler for readers to locate specific information and corroborate it if needed.   
  • Relevant information must always be included: The methods section should have information on all experiments conducted and their details clearly mentioned. Ask the journal whether there is a way to offer more information in the supplemental files or external repositories if your target journal has strict word limitations. For example, Nature communications encourages authors to deposit their step-by-step protocols in an open-resource depository, Protocol Exchange which allows the protocols to be linked with the manuscript upon publication. Providing access to detailed protocols also helps to increase the transparency and reproducibility of the research.  
  • It’s all in the details: The methods section should meticulously list all the materials, tools, instruments, and software used for different experiments. Specify the testing equipment on which data was obtained, together with its manufacturer’s information, location, city, and state or any other stimuli used to manipulate the variables. Provide specifics on the research process you employed; if it was a standard protocol, cite previous studies that also used the protocol.  Include any protocol modifications that were made, as well as any other factors that were taken into account when planning the study or gathering data. Any new or modified techniques should be explained by the authors. Typically, readers evaluate the reliability and validity of the procedures using the cited literature, and a widely accepted checklist helps to support the credibility of the methodology. Note: Authors should include a statement on sample size estimation (if applicable), which is often missed. It enables the reader to determine how many subjects will be required to detect the expected change in the outcome variables within a given confidence interval.  
  • Write for the audience: While explaining the details in the methods section , authors should be mindful of their target audience, as some of the rationale or assumptions on which specific procedures are based might not always be obvious to the audience, particularly for a general audience. Therefore, when in doubt, the objective of a procedure should be specified either in relation to the research question or to the entire protocol.  
  • Data interpretation and analysis : Information on data processing, statistical testing, levels of significance, and analysis tools and software should be added. Mention if the recommendations and expertise of an experienced statistician were followed. Also, evaluate and justify the preferred statistical method used in the study and its significance.  

What NOT to include in the methods section of a research paper  

To address “ how to write the methods section of a research paper ”, authors should not only pay careful attention to what to include but also what not to include in the methods section of a research paper . Here is a list of do not’s when writing the methods section :  

  • Do not elaborate on specifics of standard methods/procedures: You should refrain from adding unnecessary details of experiments and practices that are well established and cited previously.  Instead, simply cite relevant literature or mention if the manufacturer’s protocol was followed.  
  • Do not add unnecessary details : Do not include minute details of the experimental procedure and materials/instruments used that are not significant for the outcome of the experiment. For example, there is no need to mention the brand name of the water bath used for incubation.    
  • Do not discuss the results: The methods section is not to discuss the results or refer to the tables and figures; save it for the results and discussion section. Also, focus on the methods selected to conduct the study and avoid diverting to other methods or commenting on their pros or cons.  
  • Do not make the section bulky : For extensive methods and protocols, provide the essential details and share the rest of the information in the supplemental files. The writing should be clear yet concise to maintain the flow of the section.  

We hope that by this point, you understand how crucial it is to write a thoughtful and precise methods section and the ins and outs of how to write the methods section of a research paper . To restate, the entire purpose of the methods section is to enable others to reproduce the results or verify the research. We sincerely hope that this post has cleared up any confusion and given you a fresh perspective on the methods section .

As a parting gift, we’re leaving you with a handy checklist that will help you understand how to write the methods section of a research paper . Feel free to download this checklist and use or share this with those who you think may benefit from it.  

methodology in research report

References  

  • Bhattacharya, D. How to write the Methods section of a research paper. Editage Insights, 2018. https://www.editage.com/insights/how-to-write-the-methods-section-of-a-research-paper (2018).
  • Kallet, R. H. How to Write the Methods Section of a Research Paper. Respiratory Care 49, 1229–1232 (2004). https://pubmed.ncbi.nlm.nih.gov/15447808/
  • Grindstaff, T. L. & Saliba, S. A. AVOIDING MANUSCRIPT MISTAKES. Int J Sports Phys Ther 7, 518–524 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474299/

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

  • Privacy Policy

Research Method

Home » Research Report – Example, Writing Guide and Types

Research Report – Example, Writing Guide and Types

Table of Contents

Research Report

Research Report

Definition:

Research Report is a written document that presents the results of a research project or study, including the research question, methodology, results, and conclusions, in a clear and objective manner.

The purpose of a research report is to communicate the findings of the research to the intended audience, which could be other researchers, stakeholders, or the general public.

Components of Research Report

Components of Research Report are as follows:

Introduction

The introduction sets the stage for the research report and provides a brief overview of the research question or problem being investigated. It should include a clear statement of the purpose of the study and its significance or relevance to the field of research. It may also provide background information or a literature review to help contextualize the research.

Literature Review

The literature review provides a critical analysis and synthesis of the existing research and scholarship relevant to the research question or problem. It should identify the gaps, inconsistencies, and contradictions in the literature and show how the current study addresses these issues. The literature review also establishes the theoretical framework or conceptual model that guides the research.

Methodology

The methodology section describes the research design, methods, and procedures used to collect and analyze data. It should include information on the sample or participants, data collection instruments, data collection procedures, and data analysis techniques. The methodology should be clear and detailed enough to allow other researchers to replicate the study.

The results section presents the findings of the study in a clear and objective manner. It should provide a detailed description of the data and statistics used to answer the research question or test the hypothesis. Tables, graphs, and figures may be included to help visualize the data and illustrate the key findings.

The discussion section interprets the results of the study and explains their significance or relevance to the research question or problem. It should also compare the current findings with those of previous studies and identify the implications for future research or practice. The discussion should be based on the results presented in the previous section and should avoid speculation or unfounded conclusions.

The conclusion summarizes the key findings of the study and restates the main argument or thesis presented in the introduction. It should also provide a brief overview of the contributions of the study to the field of research and the implications for practice or policy.

The references section lists all the sources cited in the research report, following a specific citation style, such as APA or MLA.

The appendices section includes any additional material, such as data tables, figures, or instruments used in the study, that could not be included in the main text due to space limitations.

Types of Research Report

Types of Research Report are as follows:

Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master’s or Doctoral degree, although it can also be written by researchers or scholars in other fields.

Research Paper

Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review, methodology, results, discussion, and conclusion sections.

Technical Report

A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work.

Progress Report

A progress report provides an update on the progress of a research project or program over a specific period of time. Progress reports are typically used to communicate the status of a project to stakeholders, funders, or project managers.

Feasibility Report

A feasibility report assesses the feasibility of a proposed project or plan, providing an analysis of the potential risks, benefits, and costs associated with the project. Feasibility reports are often used in business, engineering, and other fields to determine the viability of a project before it is undertaken.

Field Report

A field report documents observations and findings from fieldwork, which is research conducted in the natural environment or setting. Field reports are often used in anthropology, ecology, and other social and natural sciences.

Experimental Report

An experimental report documents the results of a scientific experiment, including the hypothesis, methods, results, and conclusions. Experimental reports are often used in biology, chemistry, and other sciences to communicate the results of laboratory experiments.

Case Study Report

A case study report provides an in-depth analysis of a specific case or situation, often used in psychology, social work, and other fields to document and understand complex cases or phenomena.

Literature Review Report

A literature review report synthesizes and summarizes existing research on a specific topic, providing an overview of the current state of knowledge on the subject. Literature review reports are often used in social sciences, education, and other fields to identify gaps in the literature and guide future research.

Research Report Example

Following is a Research Report Example sample for Students:

Title: The Impact of Social Media on Academic Performance among High School Students

This study aims to investigate the relationship between social media use and academic performance among high school students. The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The findings indicate that there is a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students. The results of this study have important implications for educators, parents, and policymakers, as they highlight the need for strategies that can help students balance their social media use and academic responsibilities.

Introduction:

Social media has become an integral part of the lives of high school students. With the widespread use of social media platforms such as Facebook, Twitter, Instagram, and Snapchat, students can connect with friends, share photos and videos, and engage in discussions on a range of topics. While social media offers many benefits, concerns have been raised about its impact on academic performance. Many studies have found a negative correlation between social media use and academic performance among high school students (Kirschner & Karpinski, 2010; Paul, Baker, & Cochran, 2012).

Given the growing importance of social media in the lives of high school students, it is important to investigate its impact on academic performance. This study aims to address this gap by examining the relationship between social media use and academic performance among high school students.

Methodology:

The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The questionnaire was developed based on previous studies and was designed to measure the frequency and duration of social media use, as well as academic performance.

The participants were selected using a convenience sampling technique, and the survey questionnaire was distributed in the classroom during regular school hours. The data collected were analyzed using descriptive statistics and correlation analysis.

The findings indicate that the majority of high school students use social media platforms on a daily basis, with Facebook being the most popular platform. The results also show a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students.

Discussion:

The results of this study have important implications for educators, parents, and policymakers. The negative correlation between social media use and academic performance suggests that strategies should be put in place to help students balance their social media use and academic responsibilities. For example, educators could incorporate social media into their teaching strategies to engage students and enhance learning. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. Policymakers could develop guidelines and policies to regulate social media use among high school students.

Conclusion:

In conclusion, this study provides evidence of the negative impact of social media on academic performance among high school students. The findings highlight the need for strategies that can help students balance their social media use and academic responsibilities. Further research is needed to explore the specific mechanisms by which social media use affects academic performance and to develop effective strategies for addressing this issue.

Limitations:

One limitation of this study is the use of convenience sampling, which limits the generalizability of the findings to other populations. Future studies should use random sampling techniques to increase the representativeness of the sample. Another limitation is the use of self-reported measures, which may be subject to social desirability bias. Future studies could use objective measures of social media use and academic performance, such as tracking software and school records.

Implications:

The findings of this study have important implications for educators, parents, and policymakers. Educators could incorporate social media into their teaching strategies to engage students and enhance learning. For example, teachers could use social media platforms to share relevant educational resources and facilitate online discussions. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. They could also engage in open communication with their children to understand their social media use and its impact on their academic performance. Policymakers could develop guidelines and policies to regulate social media use among high school students. For example, schools could implement social media policies that restrict access during class time and encourage responsible use.

References:

  • Kirschner, P. A., & Karpinski, A. C. (2010). Facebook® and academic performance. Computers in Human Behavior, 26(6), 1237-1245.
  • Paul, J. A., Baker, H. M., & Cochran, J. D. (2012). Effect of online social networking on student academic performance. Journal of the Research Center for Educational Technology, 8(1), 1-19.
  • Pantic, I. (2014). Online social networking and mental health. Cyberpsychology, Behavior, and Social Networking, 17(10), 652-657.
  • Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948-958.

Note*: Above mention, Example is just a sample for the students’ guide. Do not directly copy and paste as your College or University assignment. Kindly do some research and Write your own.

Applications of Research Report

Research reports have many applications, including:

  • Communicating research findings: The primary application of a research report is to communicate the results of a study to other researchers, stakeholders, or the general public. The report serves as a way to share new knowledge, insights, and discoveries with others in the field.
  • Informing policy and practice : Research reports can inform policy and practice by providing evidence-based recommendations for decision-makers. For example, a research report on the effectiveness of a new drug could inform regulatory agencies in their decision-making process.
  • Supporting further research: Research reports can provide a foundation for further research in a particular area. Other researchers may use the findings and methodology of a report to develop new research questions or to build on existing research.
  • Evaluating programs and interventions : Research reports can be used to evaluate the effectiveness of programs and interventions in achieving their intended outcomes. For example, a research report on a new educational program could provide evidence of its impact on student performance.
  • Demonstrating impact : Research reports can be used to demonstrate the impact of research funding or to evaluate the success of research projects. By presenting the findings and outcomes of a study, research reports can show the value of research to funders and stakeholders.
  • Enhancing professional development : Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own practice.

How to write Research Report

Here are some steps you can follow to write a research report:

  • Identify the research question: The first step in writing a research report is to identify your research question. This will help you focus your research and organize your findings.
  • Conduct research : Once you have identified your research question, you will need to conduct research to gather relevant data and information. This can involve conducting experiments, reviewing literature, or analyzing data.
  • Organize your findings: Once you have gathered all of your data, you will need to organize your findings in a way that is clear and understandable. This can involve creating tables, graphs, or charts to illustrate your results.
  • Write the report: Once you have organized your findings, you can begin writing the report. Start with an introduction that provides background information and explains the purpose of your research. Next, provide a detailed description of your research methods and findings. Finally, summarize your results and draw conclusions based on your findings.
  • Proofread and edit: After you have written your report, be sure to proofread and edit it carefully. Check for grammar and spelling errors, and make sure that your report is well-organized and easy to read.
  • Include a reference list: Be sure to include a list of references that you used in your research. This will give credit to your sources and allow readers to further explore the topic if they choose.
  • Format your report: Finally, format your report according to the guidelines provided by your instructor or organization. This may include formatting requirements for headings, margins, fonts, and spacing.

Purpose of Research Report

The purpose of a research report is to communicate the results of a research study to a specific audience, such as peers in the same field, stakeholders, or the general public. The report provides a detailed description of the research methods, findings, and conclusions.

Some common purposes of a research report include:

  • Sharing knowledge: A research report allows researchers to share their findings and knowledge with others in their field. This helps to advance the field and improve the understanding of a particular topic.
  • Identifying trends: A research report can identify trends and patterns in data, which can help guide future research and inform decision-making.
  • Addressing problems: A research report can provide insights into problems or issues and suggest solutions or recommendations for addressing them.
  • Evaluating programs or interventions : A research report can evaluate the effectiveness of programs or interventions, which can inform decision-making about whether to continue, modify, or discontinue them.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies.

When to Write Research Report

A research report should be written after completing the research study. This includes collecting data, analyzing the results, and drawing conclusions based on the findings. Once the research is complete, the report should be written in a timely manner while the information is still fresh in the researcher’s mind.

In academic settings, research reports are often required as part of coursework or as part of a thesis or dissertation. In this case, the report should be written according to the guidelines provided by the instructor or institution.

In other settings, such as in industry or government, research reports may be required to inform decision-making or to comply with regulatory requirements. In these cases, the report should be written as soon as possible after the research is completed in order to inform decision-making in a timely manner.

Overall, the timing of when to write a research report depends on the purpose of the research, the expectations of the audience, and any regulatory requirements that need to be met. However, it is important to complete the report in a timely manner while the information is still fresh in the researcher’s mind.

Characteristics of Research Report

There are several characteristics of a research report that distinguish it from other types of writing. These characteristics include:

  • Objective: A research report should be written in an objective and unbiased manner. It should present the facts and findings of the research study without any personal opinions or biases.
  • Systematic: A research report should be written in a systematic manner. It should follow a clear and logical structure, and the information should be presented in a way that is easy to understand and follow.
  • Detailed: A research report should be detailed and comprehensive. It should provide a thorough description of the research methods, results, and conclusions.
  • Accurate : A research report should be accurate and based on sound research methods. The findings and conclusions should be supported by data and evidence.
  • Organized: A research report should be well-organized. It should include headings and subheadings to help the reader navigate the report and understand the main points.
  • Clear and concise: A research report should be written in clear and concise language. The information should be presented in a way that is easy to understand, and unnecessary jargon should be avoided.
  • Citations and references: A research report should include citations and references to support the findings and conclusions. This helps to give credit to other researchers and to provide readers with the opportunity to further explore the topic.

Advantages of Research Report

Research reports have several advantages, including:

  • Communicating research findings: Research reports allow researchers to communicate their findings to a wider audience, including other researchers, stakeholders, and the general public. This helps to disseminate knowledge and advance the understanding of a particular topic.
  • Providing evidence for decision-making : Research reports can provide evidence to inform decision-making, such as in the case of policy-making, program planning, or product development. The findings and conclusions can help guide decisions and improve outcomes.
  • Supporting further research: Research reports can provide a foundation for further research on a particular topic. Other researchers can build on the findings and conclusions of the report, which can lead to further discoveries and advancements in the field.
  • Demonstrating expertise: Research reports can demonstrate the expertise of the researchers and their ability to conduct rigorous and high-quality research. This can be important for securing funding, promotions, and other professional opportunities.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies. Producing a high-quality research report can help ensure compliance with these requirements.

Limitations of Research Report

Despite their advantages, research reports also have some limitations, including:

  • Time-consuming: Conducting research and writing a report can be a time-consuming process, particularly for large-scale studies. This can limit the frequency and speed of producing research reports.
  • Expensive: Conducting research and producing a report can be expensive, particularly for studies that require specialized equipment, personnel, or data. This can limit the scope and feasibility of some research studies.
  • Limited generalizability: Research studies often focus on a specific population or context, which can limit the generalizability of the findings to other populations or contexts.
  • Potential bias : Researchers may have biases or conflicts of interest that can influence the findings and conclusions of the research study. Additionally, participants may also have biases or may not be representative of the larger population, which can limit the validity and reliability of the findings.
  • Accessibility: Research reports may be written in technical or academic language, which can limit their accessibility to a wider audience. Additionally, some research may be behind paywalls or require specialized access, which can limit the ability of others to read and use the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Questions

Research Questions – Types, Examples and Writing...

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Research Results

Research Results Section – Writing Guide and...

Research Project

Research Project – Definition, Writing Guide and...

Literature Review

Literature Review – Types Writing Guide and...

APA Table of Contents

APA Table of Contents – Format and Example

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

How to Write Research Methodology

Last Updated: May 27, 2024 Approved

This article was co-authored by Alexander Ruiz, M.Ed. and by wikiHow staff writer, Jennifer Mueller, JD . Alexander Ruiz is an Educational Consultant and the Educational Director of Link Educational Institute, a tutoring business based in Claremont, California that provides customizable educational plans, subject and test prep tutoring, and college application consulting. With over a decade and a half of experience in the education industry, Alexander coaches students to increase their self-awareness and emotional intelligence while achieving skills and the goal of achieving skills and higher education. He holds a BA in Psychology from Florida International University and an MA in Education from Georgia Southern University. wikiHow marks an article as reader-approved once it receives enough positive feedback. In this case, several readers have written to tell us that this article was helpful to them, earning it our reader-approved status. This article has been viewed 527,657 times.

The research methodology section of any academic research paper gives you the opportunity to convince your readers that your research is useful and will contribute to your field of study. An effective research methodology is grounded in your overall approach – whether qualitative or quantitative – and adequately describes the methods you used. Justify why you chose those methods over others, then explain how those methods will provide answers to your research questions. [1] X Research source

Describing Your Methods

Step 1 Restate your research problem.

  • In your restatement, include any underlying assumptions that you're making or conditions that you're taking for granted. These assumptions will also inform the research methods you've chosen.
  • Generally, state the variables you'll test and the other conditions you're controlling or assuming are equal.

Step 2 Establish your overall methodological approach.

  • If you want to research and document measurable social trends, or evaluate the impact of a particular policy on various variables, use a quantitative approach focused on data collection and statistical analysis.
  • If you want to evaluate people's views or understanding of a particular issue, choose a more qualitative approach.
  • You can also combine the two. For example, you might look primarily at a measurable social trend, but also interview people and get their opinions on how that trend is affecting their lives.

Step 3 Define how you collected or generated data.

  • For example, if you conducted a survey, you would describe the questions included in the survey, where and how the survey was conducted (such as in person, online, over the phone), how many surveys were distributed, and how long your respondents had to complete the survey.
  • Include enough detail that your study can be replicated by others in your field, even if they may not get the same results you did. [4] X Research source

Step 4 Provide background for uncommon methods.

  • Qualitative research methods typically require more detailed explanation than quantitative methods.
  • Basic investigative procedures don't need to be explained in detail. Generally, you can assume that your readers have a general understanding of common research methods that social scientists use, such as surveys or focus groups.

Step 5 Cite any sources that contributed to your choice of methodology.

  • For example, suppose you conducted a survey and used a couple of other research papers to help construct the questions on your survey. You would mention those as contributing sources.

Justifying Your Choice of Methods

Step 1 Explain your selection criteria for data collection.

  • Describe study participants specifically, and list any inclusion or exclusion criteria you used when forming your group of participants.
  • Justify the size of your sample, if applicable, and describe how this affects whether your study can be generalized to larger populations. For example, if you conducted a survey of 30 percent of the student population of a university, you could potentially apply those results to the student body as a whole, but maybe not to students at other universities.

Step 2 Distinguish your research from any weaknesses in your methods.

  • Reading other research papers is a good way to identify potential problems that commonly arise with various methods. State whether you actually encountered any of these common problems during your research.

Step 3 Describe how you overcame obstacles.

  • If you encountered any problems as you collected data, explain clearly the steps you took to minimize the effect that problem would have on your results.

Step 4 Evaluate other methods you could have used.

  • In some cases, this may be as simple as stating that while there were numerous studies using one method, there weren't any using your method, which caused a gap in understanding of the issue.
  • For example, there may be multiple papers providing quantitative analysis of a particular social trend. However, none of these papers looked closely at how this trend was affecting the lives of people.

Connecting Your Methods to Your Research Goals

Step 1 Describe how you analyzed your results.

  • Depending on your research questions, you may be mixing quantitative and qualitative analysis – just as you could potentially use both approaches. For example, you might do a statistical analysis, and then interpret those statistics through a particular theoretical lens.

Step 2 Explain how your analysis suits your research goals.

  • For example, suppose you're researching the effect of college education on family farms in rural America. While you could do interviews of college-educated people who grew up on a family farm, that would not give you a picture of the overall effect. A quantitative approach and statistical analysis would give you a bigger picture.

Step 3 Identify how your analysis answers your research questions.

  • If in answering your research questions, your findings have raised other questions that may require further research, state these briefly.
  • You can also include here any limitations to your methods, or questions that weren't answered through your research.

Step 4 Assess whether your findings can be transferred or generalized.

  • Generalization is more typically used in quantitative research. If you have a well-designed sample, you can statistically apply your results to the larger population your sample belongs to.

Template to Write Research Methodology

methodology in research report

Community Q&A

AneHane

  • Organize your methodology section chronologically, starting with how you prepared to conduct your research methods, how you gathered data, and how you analyzed that data. [13] X Research source Thanks Helpful 0 Not Helpful 0
  • Write your research methodology section in past tense, unless you're submitting the methodology section before the research described has been carried out. [14] X Research source Thanks Helpful 0 Not Helpful 0
  • Discuss your plans in detail with your advisor or supervisor before committing to a particular methodology. They can help identify possible flaws in your study. [15] X Research source Thanks Helpful 0 Not Helpful 0

methodology in research report

You Might Also Like

Write

  • ↑ http://expertjournals.com/how-to-write-a-research-methodology-for-your-academic-article/
  • ↑ http://libguides.usc.edu/writingguide/methodology
  • ↑ https://www.skillsyouneed.com/learn/dissertation-methodology.html
  • ↑ https://uir.unisa.ac.za/bitstream/handle/10500/4245/05Chap%204_Research%20methodology%20and%20design.pdf
  • ↑ https://elc.polyu.edu.hk/FYP/html/method.htm

About This Article

Alexander Ruiz, M.Ed.

To write a research methodology, start with a section that outlines the problems or questions you'll be studying, including your hypotheses or whatever it is you're setting out to prove. Then, briefly explain why you chose to use either a qualitative or quantitative approach for your study. Next, go over when and where you conducted your research and what parameters you used to ensure you were objective. Finally, cite any sources you used to decide on the methodology for your research. To learn how to justify your choice of methods in your research methodology, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Prof. Dr. Ahmed Askar

Prof. Dr. Ahmed Askar

Apr 18, 2020

Did this article help you?

methodology in research report

M. Mahmood Shah Khan

Mar 17, 2020

Shimola Makondo

Shimola Makondo

Jul 20, 2019

Zain Sharif Mohammed Alnadhery

Zain Sharif Mohammed Alnadhery

Jan 7, 2019

Lundi Dukashe

Lundi Dukashe

Feb 17, 2020

Do I Have a Dirty Mind Quiz

Featured Articles

Protect Yourself from Predators (for Kids)

Trending Articles

Best Excuses to Use to Explain Away a Hickey

Watch Articles

Clean the Bottom of an Oven

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

A tutorial on methodological studies: the what, when, how and why

Lawrence mbuagbaw.

1 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON Canada

2 Biostatistics Unit/FSORC, 50 Charlton Avenue East, St Joseph’s Healthcare—Hamilton, 3rd Floor Martha Wing, Room H321, Hamilton, Ontario L8N 4A6 Canada

3 Centre for the Development of Best Practices in Health, Yaoundé, Cameroon

Daeria O. Lawson

Livia puljak.

4 Center for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

David B. Allison

5 Department of Epidemiology and Biostatistics, School of Public Health – Bloomington, Indiana University, Bloomington, IN 47405 USA

Lehana Thabane

6 Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, ON Canada

7 Centre for Evaluation of Medicine, St. Joseph’s Healthcare-Hamilton, Hamilton, ON Canada

8 Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada

Associated Data

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Methodological studies – studies that evaluate the design, analysis or reporting of other research-related reports – play an important role in health research. They help to highlight issues in the conduct of research with the aim of improving health research methodology, and ultimately reducing research waste.

We provide an overview of some of the key aspects of methodological studies such as what they are, and when, how and why they are done. We adopt a “frequently asked questions” format to facilitate reading this paper and provide multiple examples to help guide researchers interested in conducting methodological studies. Some of the topics addressed include: is it necessary to publish a study protocol? How to select relevant research reports and databases for a methodological study? What approaches to data extraction and statistical analysis should be considered when conducting a methodological study? What are potential threats to validity and is there a way to appraise the quality of methodological studies?

Appropriate reflection and application of basic principles of epidemiology and biostatistics are required in the design and analysis of methodological studies. This paper provides an introduction for further discussion about the conduct of methodological studies.

The field of meta-research (or research-on-research) has proliferated in recent years in response to issues with research quality and conduct [ 1 – 3 ]. As the name suggests, this field targets issues with research design, conduct, analysis and reporting. Various types of research reports are often examined as the unit of analysis in these studies (e.g. abstracts, full manuscripts, trial registry entries). Like many other novel fields of research, meta-research has seen a proliferation of use before the development of reporting guidance. For example, this was the case with randomized trials for which risk of bias tools and reporting guidelines were only developed much later – after many trials had been published and noted to have limitations [ 4 , 5 ]; and for systematic reviews as well [ 6 – 8 ]. However, in the absence of formal guidance, studies that report on research differ substantially in how they are named, conducted and reported [ 9 , 10 ]. This creates challenges in identifying, summarizing and comparing them. In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts).

In the past 10 years, there has been an increase in the use of terms related to methodological studies (based on records retrieved with a keyword search [in the title and abstract] for “methodological review” and “meta-epidemiological study” in PubMed up to December 2019), suggesting that these studies may be appearing more frequently in the literature. See Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig1_HTML.jpg

Trends in the number studies that mention “methodological review” or “meta-

epidemiological study” in PubMed.

The methods used in many methodological studies have been borrowed from systematic and scoping reviews. This practice has influenced the direction of the field, with many methodological studies including searches of electronic databases, screening of records, duplicate data extraction and assessments of risk of bias in the included studies. However, the research questions posed in methodological studies do not always require the approaches listed above, and guidance is needed on when and how to apply these methods to a methodological study. Even though methodological studies can be conducted on qualitative or mixed methods research, this paper focuses on and draws examples exclusively from quantitative research.

The objectives of this paper are to provide some insights on how to conduct methodological studies so that there is greater consistency between the research questions posed, and the design, analysis and reporting of findings. We provide multiple examples to illustrate concepts and a proposed framework for categorizing methodological studies in quantitative research.

What is a methodological study?

Any study that describes or analyzes methods (design, conduct, analysis or reporting) in published (or unpublished) literature is a methodological study. Consequently, the scope of methodological studies is quite extensive and includes, but is not limited to, topics as diverse as: research question formulation [ 11 ]; adherence to reporting guidelines [ 12 – 14 ] and consistency in reporting [ 15 ]; approaches to study analysis [ 16 ]; investigating the credibility of analyses [ 17 ]; and studies that synthesize these methodological studies [ 18 ]. While the nomenclature of methodological studies is not uniform, the intents and purposes of these studies remain fairly consistent – to describe or analyze methods in primary or secondary studies. As such, methodological studies may also be classified as a subtype of observational studies.

Parallel to this are experimental studies that compare different methods. Even though they play an important role in informing optimal research methods, experimental methodological studies are beyond the scope of this paper. Examples of such studies include the randomized trials by Buscemi et al., comparing single data extraction to double data extraction [ 19 ], and Carrasco-Labra et al., comparing approaches to presenting findings in Grading of Recommendations, Assessment, Development and Evaluations (GRADE) summary of findings tables [ 20 ]. In these studies, the unit of analysis is the person or groups of individuals applying the methods. We also direct readers to the Studies Within a Trial (SWAT) and Studies Within a Review (SWAR) programme operated through the Hub for Trials Methodology Research, for further reading as a potential useful resource for these types of experimental studies [ 21 ]. Lastly, this paper is not meant to inform the conduct of research using computational simulation and mathematical modeling for which some guidance already exists [ 22 ], or studies on the development of methods using consensus-based approaches.

When should we conduct a methodological study?

Methodological studies occupy a unique niche in health research that allows them to inform methodological advances. Methodological studies should also be conducted as pre-cursors to reporting guideline development, as they provide an opportunity to understand current practices, and help to identify the need for guidance and gaps in methodological or reporting quality. For example, the development of the popular Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) guidelines were preceded by methodological studies identifying poor reporting practices [ 23 , 24 ]. In these instances, after the reporting guidelines are published, methodological studies can also be used to monitor uptake of the guidelines.

These studies can also be conducted to inform the state of the art for design, analysis and reporting practices across different types of health research fields, with the aim of improving research practices, and preventing or reducing research waste. For example, Samaan et al. conducted a scoping review of adherence to different reporting guidelines in health care literature [ 18 ]. Methodological studies can also be used to determine the factors associated with reporting practices. For example, Abbade et al. investigated journal characteristics associated with the use of the Participants, Intervention, Comparison, Outcome, Timeframe (PICOT) format in framing research questions in trials of venous ulcer disease [ 11 ].

How often are methodological studies conducted?

There is no clear answer to this question. Based on a search of PubMed, the use of related terms (“methodological review” and “meta-epidemiological study”) – and therefore, the number of methodological studies – is on the rise. However, many other terms are used to describe methodological studies. There are also many studies that explore design, conduct, analysis or reporting of research reports, but that do not use any specific terms to describe or label their study design in terms of “methodology”. This diversity in nomenclature makes a census of methodological studies elusive. Appropriate terminology and key words for methodological studies are needed to facilitate improved accessibility for end-users.

Why do we conduct methodological studies?

Methodological studies provide information on the design, conduct, analysis or reporting of primary and secondary research and can be used to appraise quality, quantity, completeness, accuracy and consistency of health research. These issues can be explored in specific fields, journals, databases, geographical regions and time periods. For example, Areia et al. explored the quality of reporting of endoscopic diagnostic studies in gastroenterology [ 25 ]; Knol et al. investigated the reporting of p -values in baseline tables in randomized trial published in high impact journals [ 26 ]; Chen et al. describe adherence to the Consolidated Standards of Reporting Trials (CONSORT) statement in Chinese Journals [ 27 ]; and Hopewell et al. describe the effect of editors’ implementation of CONSORT guidelines on reporting of abstracts over time [ 28 ]. Methodological studies provide useful information to researchers, clinicians, editors, publishers and users of health literature. As a result, these studies have been at the cornerstone of important methodological developments in the past two decades and have informed the development of many health research guidelines including the highly cited CONSORT statement [ 5 ].

Where can we find methodological studies?

Methodological studies can be found in most common biomedical bibliographic databases (e.g. Embase, MEDLINE, PubMed, Web of Science). However, the biggest caveat is that methodological studies are hard to identify in the literature due to the wide variety of names used and the lack of comprehensive databases dedicated to them. A handful can be found in the Cochrane Library as “Cochrane Methodology Reviews”, but these studies only cover methodological issues related to systematic reviews. Previous attempts to catalogue all empirical studies of methods used in reviews were abandoned 10 years ago [ 29 ]. In other databases, a variety of search terms may be applied with different levels of sensitivity and specificity.

Some frequently asked questions about methodological studies

In this section, we have outlined responses to questions that might help inform the conduct of methodological studies.

Q: How should I select research reports for my methodological study?

A: Selection of research reports for a methodological study depends on the research question and eligibility criteria. Once a clear research question is set and the nature of literature one desires to review is known, one can then begin the selection process. Selection may begin with a broad search, especially if the eligibility criteria are not apparent. For example, a methodological study of Cochrane Reviews of HIV would not require a complex search as all eligible studies can easily be retrieved from the Cochrane Library after checking a few boxes [ 30 ]. On the other hand, a methodological study of subgroup analyses in trials of gastrointestinal oncology would require a search to find such trials, and further screening to identify trials that conducted a subgroup analysis [ 31 ].

The strategies used for identifying participants in observational studies can apply here. One may use a systematic search to identify all eligible studies. If the number of eligible studies is unmanageable, a random sample of articles can be expected to provide comparable results if it is sufficiently large [ 32 ]. For example, Wilson et al. used a random sample of trials from the Cochrane Stroke Group’s Trial Register to investigate completeness of reporting [ 33 ]. It is possible that a simple random sample would lead to underrepresentation of units (i.e. research reports) that are smaller in number. This is relevant if the investigators wish to compare multiple groups but have too few units in one group. In this case a stratified sample would help to create equal groups. For example, in a methodological study comparing Cochrane and non-Cochrane reviews, Kahale et al. drew random samples from both groups [ 34 ]. Alternatively, systematic or purposeful sampling strategies can be used and we encourage researchers to justify their selected approaches based on the study objective.

Q: How many databases should I search?

A: The number of databases one should search would depend on the approach to sampling, which can include targeting the entire “population” of interest or a sample of that population. If you are interested in including the entire target population for your research question, or drawing a random or systematic sample from it, then a comprehensive and exhaustive search for relevant articles is required. In this case, we recommend using systematic approaches for searching electronic databases (i.e. at least 2 databases with a replicable and time stamped search strategy). The results of your search will constitute a sampling frame from which eligible studies can be drawn.

Alternatively, if your approach to sampling is purposeful, then we recommend targeting the database(s) or data sources (e.g. journals, registries) that include the information you need. For example, if you are conducting a methodological study of high impact journals in plastic surgery and they are all indexed in PubMed, you likely do not need to search any other databases. You may also have a comprehensive list of all journals of interest and can approach your search using the journal names in your database search (or by accessing the journal archives directly from the journal’s website). Even though one could also search journals’ web pages directly, using a database such as PubMed has multiple advantages, such as the use of filters, so the search can be narrowed down to a certain period, or study types of interest. Furthermore, individual journals’ web sites may have different search functionalities, which do not necessarily yield a consistent output.

Q: Should I publish a protocol for my methodological study?

A: A protocol is a description of intended research methods. Currently, only protocols for clinical trials require registration [ 35 ]. Protocols for systematic reviews are encouraged but no formal recommendation exists. The scientific community welcomes the publication of protocols because they help protect against selective outcome reporting, the use of post hoc methodologies to embellish results, and to help avoid duplication of efforts [ 36 ]. While the latter two risks exist in methodological research, the negative consequences may be substantially less than for clinical outcomes. In a sample of 31 methodological studies, 7 (22.6%) referenced a published protocol [ 9 ]. In the Cochrane Library, there are 15 protocols for methodological reviews (21 July 2020). This suggests that publishing protocols for methodological studies is not uncommon.

Authors can consider publishing their study protocol in a scholarly journal as a manuscript. Advantages of such publication include obtaining peer-review feedback about the planned study, and easy retrieval by searching databases such as PubMed. The disadvantages in trying to publish protocols includes delays associated with manuscript handling and peer review, as well as costs, as few journals publish study protocols, and those journals mostly charge article-processing fees [ 37 ]. Authors who would like to make their protocol publicly available without publishing it in scholarly journals, could deposit their study protocols in publicly available repositories, such as the Open Science Framework ( https://osf.io/ ).

Q: How to appraise the quality of a methodological study?

A: To date, there is no published tool for appraising the risk of bias in a methodological study, but in principle, a methodological study could be considered as a type of observational study. Therefore, during conduct or appraisal, care should be taken to avoid the biases common in observational studies [ 38 ]. These biases include selection bias, comparability of groups, and ascertainment of exposure or outcome. In other words, to generate a representative sample, a comprehensive reproducible search may be necessary to build a sampling frame. Additionally, random sampling may be necessary to ensure that all the included research reports have the same probability of being selected, and the screening and selection processes should be transparent and reproducible. To ensure that the groups compared are similar in all characteristics, matching, random sampling or stratified sampling can be used. Statistical adjustments for between-group differences can also be applied at the analysis stage. Finally, duplicate data extraction can reduce errors in assessment of exposures or outcomes.

Q: Should I justify a sample size?

A: In all instances where one is not using the target population (i.e. the group to which inferences from the research report are directed) [ 39 ], a sample size justification is good practice. The sample size justification may take the form of a description of what is expected to be achieved with the number of articles selected, or a formal sample size estimation that outlines the number of articles required to answer the research question with a certain precision and power. Sample size justifications in methodological studies are reasonable in the following instances:

  • Comparing two groups
  • Determining a proportion, mean or another quantifier
  • Determining factors associated with an outcome using regression-based analyses

For example, El Dib et al. computed a sample size requirement for a methodological study of diagnostic strategies in randomized trials, based on a confidence interval approach [ 40 ].

Q: What should I call my study?

A: Other terms which have been used to describe/label methodological studies include “ methodological review ”, “methodological survey” , “meta-epidemiological study” , “systematic review” , “systematic survey”, “meta-research”, “research-on-research” and many others. We recommend that the study nomenclature be clear, unambiguous, informative and allow for appropriate indexing. Methodological study nomenclature that should be avoided includes “ systematic review” – as this will likely be confused with a systematic review of a clinical question. “ Systematic survey” may also lead to confusion about whether the survey was systematic (i.e. using a preplanned methodology) or a survey using “ systematic” sampling (i.e. a sampling approach using specific intervals to determine who is selected) [ 32 ]. Any of the above meanings of the words “ systematic” may be true for methodological studies and could be potentially misleading. “ Meta-epidemiological study” is ideal for indexing, but not very informative as it describes an entire field. The term “ review ” may point towards an appraisal or “review” of the design, conduct, analysis or reporting (or methodological components) of the targeted research reports, yet it has also been used to describe narrative reviews [ 41 , 42 ]. The term “ survey ” is also in line with the approaches used in many methodological studies [ 9 ], and would be indicative of the sampling procedures of this study design. However, in the absence of guidelines on nomenclature, the term “ methodological study ” is broad enough to capture most of the scenarios of such studies.

Q: Should I account for clustering in my methodological study?

A: Data from methodological studies are often clustered. For example, articles coming from a specific source may have different reporting standards (e.g. the Cochrane Library). Articles within the same journal may be similar due to editorial practices and policies, reporting requirements and endorsement of guidelines. There is emerging evidence that these are real concerns that should be accounted for in analyses [ 43 ]. Some cluster variables are described in the section: “ What variables are relevant to methodological studies?”

A variety of modelling approaches can be used to account for correlated data, including the use of marginal, fixed or mixed effects regression models with appropriate computation of standard errors [ 44 ]. For example, Kosa et al. used generalized estimation equations to account for correlation of articles within journals [ 15 ]. Not accounting for clustering could lead to incorrect p -values, unduly narrow confidence intervals, and biased estimates [ 45 ].

Q: Should I extract data in duplicate?

A: Yes. Duplicate data extraction takes more time but results in less errors [ 19 ]. Data extraction errors in turn affect the effect estimate [ 46 ], and therefore should be mitigated. Duplicate data extraction should be considered in the absence of other approaches to minimize extraction errors. However, much like systematic reviews, this area will likely see rapid new advances with machine learning and natural language processing technologies to support researchers with screening and data extraction [ 47 , 48 ]. However, experience plays an important role in the quality of extracted data and inexperienced extractors should be paired with experienced extractors [ 46 , 49 ].

Q: Should I assess the risk of bias of research reports included in my methodological study?

A : Risk of bias is most useful in determining the certainty that can be placed in the effect measure from a study. In methodological studies, risk of bias may not serve the purpose of determining the trustworthiness of results, as effect measures are often not the primary goal of methodological studies. Determining risk of bias in methodological studies is likely a practice borrowed from systematic review methodology, but whose intrinsic value is not obvious in methodological studies. When it is part of the research question, investigators often focus on one aspect of risk of bias. For example, Speich investigated how blinding was reported in surgical trials [ 50 ], and Abraha et al., investigated the application of intention-to-treat analyses in systematic reviews and trials [ 51 ].

Q: What variables are relevant to methodological studies?

A: There is empirical evidence that certain variables may inform the findings in a methodological study. We outline some of these and provide a brief overview below:

  • Country: Countries and regions differ in their research cultures, and the resources available to conduct research. Therefore, it is reasonable to believe that there may be differences in methodological features across countries. Methodological studies have reported loco-regional differences in reporting quality [ 52 , 53 ]. This may also be related to challenges non-English speakers face in publishing papers in English.
  • Authors’ expertise: The inclusion of authors with expertise in research methodology, biostatistics, and scientific writing is likely to influence the end-product. Oltean et al. found that among randomized trials in orthopaedic surgery, the use of analyses that accounted for clustering was more likely when specialists (e.g. statistician, epidemiologist or clinical trials methodologist) were included on the study team [ 54 ]. Fleming et al. found that including methodologists in the review team was associated with appropriate use of reporting guidelines [ 55 ].
  • Source of funding and conflicts of interest: Some studies have found that funded studies report better [ 56 , 57 ], while others do not [ 53 , 58 ]. The presence of funding would indicate the availability of resources deployed to ensure optimal design, conduct, analysis and reporting. However, the source of funding may introduce conflicts of interest and warrant assessment. For example, Kaiser et al. investigated the effect of industry funding on obesity or nutrition randomized trials and found that reporting quality was similar [ 59 ]. Thomas et al. looked at reporting quality of long-term weight loss trials and found that industry funded studies were better [ 60 ]. Kan et al. examined the association between industry funding and “positive trials” (trials reporting a significant intervention effect) and found that industry funding was highly predictive of a positive trial [ 61 ]. This finding is similar to that of a recent Cochrane Methodology Review by Hansen et al. [ 62 ]
  • Journal characteristics: Certain journals’ characteristics may influence the study design, analysis or reporting. Characteristics such as journal endorsement of guidelines [ 63 , 64 ], and Journal Impact Factor (JIF) have been shown to be associated with reporting [ 63 , 65 – 67 ].
  • Study size (sample size/number of sites): Some studies have shown that reporting is better in larger studies [ 53 , 56 , 58 ].
  • Year of publication: It is reasonable to assume that design, conduct, analysis and reporting of research will change over time. Many studies have demonstrated improvements in reporting over time or after the publication of reporting guidelines [ 68 , 69 ].
  • Type of intervention: In a methodological study of reporting quality of weight loss intervention studies, Thabane et al. found that trials of pharmacologic interventions were reported better than trials of non-pharmacologic interventions [ 70 ].
  • Interactions between variables: Complex interactions between the previously listed variables are possible. High income countries with more resources may be more likely to conduct larger studies and incorporate a variety of experts. Authors in certain countries may prefer certain journals, and journal endorsement of guidelines and editorial policies may change over time.

Q: Should I focus only on high impact journals?

A: Investigators may choose to investigate only high impact journals because they are more likely to influence practice and policy, or because they assume that methodological standards would be higher. However, the JIF may severely limit the scope of articles included and may skew the sample towards articles with positive findings. The generalizability and applicability of findings from a handful of journals must be examined carefully, especially since the JIF varies over time. Even among journals that are all “high impact”, variations exist in methodological standards.

Q: Can I conduct a methodological study of qualitative research?

A: Yes. Even though a lot of methodological research has been conducted in the quantitative research field, methodological studies of qualitative studies are feasible. Certain databases that catalogue qualitative research including the Cumulative Index to Nursing & Allied Health Literature (CINAHL) have defined subject headings that are specific to methodological research (e.g. “research methodology”). Alternatively, one could also conduct a qualitative methodological review; that is, use qualitative approaches to synthesize methodological issues in qualitative studies.

Q: What reporting guidelines should I use for my methodological study?

A: There is no guideline that covers the entire scope of methodological studies. One adaptation of the PRISMA guidelines has been published, which works well for studies that aim to use the entire target population of research reports [ 71 ]. However, it is not widely used (40 citations in 2 years as of 09 December 2019), and methodological studies that are designed as cross-sectional or before-after studies require a more fit-for purpose guideline. A more encompassing reporting guideline for a broad range of methodological studies is currently under development [ 72 ]. However, in the absence of formal guidance, the requirements for scientific reporting should be respected, and authors of methodological studies should focus on transparency and reproducibility.

Q: What are the potential threats to validity and how can I avoid them?

A: Methodological studies may be compromised by a lack of internal or external validity. The main threats to internal validity in methodological studies are selection and confounding bias. Investigators must ensure that the methods used to select articles does not make them differ systematically from the set of articles to which they would like to make inferences. For example, attempting to make extrapolations to all journals after analyzing high-impact journals would be misleading.

Many factors (confounders) may distort the association between the exposure and outcome if the included research reports differ with respect to these factors [ 73 ]. For example, when examining the association between source of funding and completeness of reporting, it may be necessary to account for journals that endorse the guidelines. Confounding bias can be addressed by restriction, matching and statistical adjustment [ 73 ]. Restriction appears to be the method of choice for many investigators who choose to include only high impact journals or articles in a specific field. For example, Knol et al. examined the reporting of p -values in baseline tables of high impact journals [ 26 ]. Matching is also sometimes used. In the methodological study of non-randomized interventional studies of elective ventral hernia repair, Parker et al. matched prospective studies with retrospective studies and compared reporting standards [ 74 ]. Some other methodological studies use statistical adjustments. For example, Zhang et al. used regression techniques to determine the factors associated with missing participant data in trials [ 16 ].

With regard to external validity, researchers interested in conducting methodological studies must consider how generalizable or applicable their findings are. This should tie in closely with the research question and should be explicit. For example. Findings from methodological studies on trials published in high impact cardiology journals cannot be assumed to be applicable to trials in other fields. However, investigators must ensure that their sample truly represents the target sample either by a) conducting a comprehensive and exhaustive search, or b) using an appropriate and justified, randomly selected sample of research reports.

Even applicability to high impact journals may vary based on the investigators’ definition, and over time. For example, for high impact journals in the field of general medicine, Bouwmeester et al. included the Annals of Internal Medicine (AIM), BMJ, the Journal of the American Medical Association (JAMA), Lancet, the New England Journal of Medicine (NEJM), and PLoS Medicine ( n  = 6) [ 75 ]. In contrast, the high impact journals selected in the methodological study by Schiller et al. were BMJ, JAMA, Lancet, and NEJM ( n  = 4) [ 76 ]. Another methodological study by Kosa et al. included AIM, BMJ, JAMA, Lancet and NEJM ( n  = 5). In the methodological study by Thabut et al., journals with a JIF greater than 5 were considered to be high impact. Riado Minguez et al. used first quartile journals in the Journal Citation Reports (JCR) for a specific year to determine “high impact” [ 77 ]. Ultimately, the definition of high impact will be based on the number of journals the investigators are willing to include, the year of impact and the JIF cut-off [ 78 ]. We acknowledge that the term “generalizability” may apply differently for methodological studies, especially when in many instances it is possible to include the entire target population in the sample studied.

Finally, methodological studies are not exempt from information bias which may stem from discrepancies in the included research reports [ 79 ], errors in data extraction, or inappropriate interpretation of the information extracted. Likewise, publication bias may also be a concern in methodological studies, but such concepts have not yet been explored.

A proposed framework

In order to inform discussions about methodological studies, the development of guidance for what should be reported, we have outlined some key features of methodological studies that can be used to classify them. For each of the categories outlined below, we provide an example. In our experience, the choice of approach to completing a methodological study can be informed by asking the following four questions:

  • What is the aim?

A methodological study may be focused on exploring sources of bias in primary or secondary studies (meta-bias), or how bias is analyzed. We have taken care to distinguish bias (i.e. systematic deviations from the truth irrespective of the source) from reporting quality or completeness (i.e. not adhering to a specific reporting guideline or norm). An example of where this distinction would be important is in the case of a randomized trial with no blinding. This study (depending on the nature of the intervention) would be at risk of performance bias. However, if the authors report that their study was not blinded, they would have reported adequately. In fact, some methodological studies attempt to capture both “quality of conduct” and “quality of reporting”, such as Richie et al., who reported on the risk of bias in randomized trials of pharmacy practice interventions [ 80 ]. Babic et al. investigated how risk of bias was used to inform sensitivity analyses in Cochrane reviews [ 81 ]. Further, biases related to choice of outcomes can also be explored. For example, Tan et al investigated differences in treatment effect size based on the outcome reported [ 82 ].

Methodological studies may report quality of reporting against a reporting checklist (i.e. adherence to guidelines) or against expected norms. For example, Croituro et al. report on the quality of reporting in systematic reviews published in dermatology journals based on their adherence to the PRISMA statement [ 83 ], and Khan et al. described the quality of reporting of harms in randomized controlled trials published in high impact cardiovascular journals based on the CONSORT extension for harms [ 84 ]. Other methodological studies investigate reporting of certain features of interest that may not be part of formally published checklists or guidelines. For example, Mbuagbaw et al. described how often the implications for research are elaborated using the Evidence, Participants, Intervention, Comparison, Outcome, Timeframe (EPICOT) format [ 30 ].

Sometimes investigators may be interested in how consistent reports of the same research are, as it is expected that there should be consistency between: conference abstracts and published manuscripts; manuscript abstracts and manuscript main text; and trial registration and published manuscript. For example, Rosmarakis et al. investigated consistency between conference abstracts and full text manuscripts [ 85 ].

In addition to identifying issues with reporting in primary and secondary studies, authors of methodological studies may be interested in determining the factors that are associated with certain reporting practices. Many methodological studies incorporate this, albeit as a secondary outcome. For example, Farrokhyar et al. investigated the factors associated with reporting quality in randomized trials of coronary artery bypass grafting surgery [ 53 ].

Methodological studies may also be used to describe methods or compare methods, and the factors associated with methods. Muller et al. described the methods used for systematic reviews and meta-analyses of observational studies [ 86 ].

Some methodological studies synthesize results from other methodological studies. For example, Li et al. conducted a scoping review of methodological reviews that investigated consistency between full text and abstracts in primary biomedical research [ 87 ].

Some methodological studies may investigate the use of names and terms in health research. For example, Martinic et al. investigated the definitions of systematic reviews used in overviews of systematic reviews (OSRs), meta-epidemiological studies and epidemiology textbooks [ 88 ].

In addition to the previously mentioned experimental methodological studies, there may exist other types of methodological studies not captured here.

  • 2. What is the design?

Most methodological studies are purely descriptive and report their findings as counts (percent) and means (standard deviation) or medians (interquartile range). For example, Mbuagbaw et al. described the reporting of research recommendations in Cochrane HIV systematic reviews [ 30 ]. Gohari et al. described the quality of reporting of randomized trials in diabetes in Iran [ 12 ].

Some methodological studies are analytical wherein “analytical studies identify and quantify associations, test hypotheses, identify causes and determine whether an association exists between variables, such as between an exposure and a disease.” [ 89 ] In the case of methodological studies all these investigations are possible. For example, Kosa et al. investigated the association between agreement in primary outcome from trial registry to published manuscript and study covariates. They found that larger and more recent studies were more likely to have agreement [ 15 ]. Tricco et al. compared the conclusion statements from Cochrane and non-Cochrane systematic reviews with a meta-analysis of the primary outcome and found that non-Cochrane reviews were more likely to report positive findings. These results are a test of the null hypothesis that the proportions of Cochrane and non-Cochrane reviews that report positive results are equal [ 90 ].

  • 3. What is the sampling strategy?

Methodological reviews with narrow research questions may be able to include the entire target population. For example, in the methodological study of Cochrane HIV systematic reviews, Mbuagbaw et al. included all of the available studies ( n  = 103) [ 30 ].

Many methodological studies use random samples of the target population [ 33 , 91 , 92 ]. Alternatively, purposeful sampling may be used, limiting the sample to a subset of research-related reports published within a certain time period, or in journals with a certain ranking or on a topic. Systematic sampling can also be used when random sampling may be challenging to implement.

  • 4. What is the unit of analysis?

Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

Some methodological studies report on items which may occur more than once per article. For example, Paquette et al. report on subgroup analyses in Cochrane reviews of atrial fibrillation in which 17 systematic reviews planned 56 subgroup analyses [ 93 ].

This framework is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 12874_2020_1107_Fig2_HTML.jpg

A proposed framework for methodological studies

Conclusions

Methodological studies have examined different aspects of reporting such as quality, completeness, consistency and adherence to reporting guidelines. As such, many of the methodological study examples cited in this tutorial are related to reporting. However, as an evolving field, the scope of research questions that can be addressed by methodological studies is expected to increase.

In this paper we have outlined the scope and purpose of methodological studies, along with examples of instances in which various approaches have been used. In the absence of formal guidance on the design, conduct, analysis and reporting of methodological studies, we have provided some advice to help make methodological studies consistent. This advice is grounded in good contemporary scientific practice. Generally, the research question should tie in with the sampling approach and planned analysis. We have also highlighted the variables that may inform findings from methodological studies. Lastly, we have provided suggestions for ways in which authors can categorize their methodological studies to inform their design and analysis.

Acknowledgements

Abbreviations.

CONSORTConsolidated Standards of Reporting Trials
EPICOTEvidence, Participants, Intervention, Comparison, Outcome, Timeframe
GRADEGrading of Recommendations, Assessment, Development and Evaluations
PICOTParticipants, Intervention, Comparison, Outcome, Timeframe
PRISMAPreferred Reporting Items of Systematic reviews and Meta-Analyses
SWARStudies Within a Review
SWATStudies Within a Trial

Authors’ contributions

LM conceived the idea and drafted the outline and paper. DOL and LT commented on the idea and draft outline. LM, LP and DOL performed literature searches and data extraction. All authors (LM, DOL, LT, LP, DBA) reviewed several draft versions of the manuscript and approved the final manuscript.

This work did not receive any dedicated funding.

Availability of data and materials

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

DOL, DBA, LM, LP and LT are involved in the development of a reporting guideline for methodological studies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

methodology in research report

How to Write a Research Proposal: (with Examples & Templates)

how to write a research proposal

Table of Contents

Before conducting a study, a research proposal should be created that outlines researchers’ plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed research that you intend to undertake. It provides readers with a snapshot of your project by describing what you will investigate, why it is needed, and how you will conduct the research.  

Your research proposal should aim to explain to the readers why your research is relevant and original, that you understand the context and current scenario in the field, have the appropriate resources to conduct the research, and that the research is feasible given the usual constraints.  

This article will describe in detail the purpose and typical structure of a research proposal , along with examples and templates to help you ace this step in your research journey.  

What is a Research Proposal ?  

A research proposal¹ ,²  can be defined as a formal report that describes your proposed research, its objectives, methodology, implications, and other important details. Research proposals are the framework of your research and are used to obtain approvals or grants to conduct the study from various committees or organizations. Consequently, research proposals should convince readers of your study’s credibility, accuracy, achievability, practicality, and reproducibility.   

With research proposals , researchers usually aim to persuade the readers, funding agencies, educational institutions, and supervisors to approve the proposal. To achieve this, the report should be well structured with the objectives written in clear, understandable language devoid of jargon. A well-organized research proposal conveys to the readers or evaluators that the writer has thought out the research plan meticulously and has the resources to ensure timely completion.  

Purpose of Research Proposals  

A research proposal is a sales pitch and therefore should be detailed enough to convince your readers, who could be supervisors, ethics committees, universities, etc., that what you’re proposing has merit and is feasible . Research proposals can help students discuss their dissertation with their faculty or fulfill course requirements and also help researchers obtain funding. A well-structured proposal instills confidence among readers about your ability to conduct and complete the study as proposed.  

Research proposals can be written for several reasons:³  

  • To describe the importance of research in the specific topic  
  • Address any potential challenges you may encounter  
  • Showcase knowledge in the field and your ability to conduct a study  
  • Apply for a role at a research institute  
  • Convince a research supervisor or university that your research can satisfy the requirements of a degree program  
  • Highlight the importance of your research to organizations that may sponsor your project  
  • Identify implications of your project and how it can benefit the audience  

What Goes in a Research Proposal?    

Research proposals should aim to answer the three basic questions—what, why, and how.  

The What question should be answered by describing the specific subject being researched. It should typically include the objectives, the cohort details, and the location or setting.  

The Why question should be answered by describing the existing scenario of the subject, listing unanswered questions, identifying gaps in the existing research, and describing how your study can address these gaps, along with the implications and significance.  

The How question should be answered by describing the proposed research methodology, data analysis tools expected to be used, and other details to describe your proposed methodology.   

Research Proposal Example  

Here is a research proposal sample template (with examples) from the University of Rochester Medical Center. 4 The sections in all research proposals are essentially the same although different terminology and other specific sections may be used depending on the subject.  

Research Proposal Template

Structure of a Research Proposal  

If you want to know how to make a research proposal impactful, include the following components:¹  

1. Introduction  

This section provides a background of the study, including the research topic, what is already known about it and the gaps, and the significance of the proposed research.  

2. Literature review  

This section contains descriptions of all the previous relevant studies pertaining to the research topic. Every study cited should be described in a few sentences, starting with the general studies to the more specific ones. This section builds on the understanding gained by readers in the Introduction section and supports it by citing relevant prior literature, indicating to readers that you have thoroughly researched your subject.  

3. Objectives  

Once the background and gaps in the research topic have been established, authors must now state the aims of the research clearly. Hypotheses should be mentioned here. This section further helps readers understand what your study’s specific goals are.  

4. Research design and methodology  

Here, authors should clearly describe the methods they intend to use to achieve their proposed objectives. Important components of this section include the population and sample size, data collection and analysis methods and duration, statistical analysis software, measures to avoid bias (randomization, blinding), etc.  

5. Ethical considerations  

This refers to the protection of participants’ rights, such as the right to privacy, right to confidentiality, etc. Researchers need to obtain informed consent and institutional review approval by the required authorities and mention this clearly for transparency.  

6. Budget/funding  

Researchers should prepare their budget and include all expected expenditures. An additional allowance for contingencies such as delays should also be factored in.  

7. Appendices  

This section typically includes information that supports the research proposal and may include informed consent forms, questionnaires, participant information, measurement tools, etc.  

8. Citations  

methodology in research report

Important Tips for Writing a Research Proposal  

Writing a research proposal begins much before the actual task of writing. Planning the research proposal structure and content is an important stage, which if done efficiently, can help you seamlessly transition into the writing stage. 3,5  

The Planning Stage  

  • Manage your time efficiently. Plan to have the draft version ready at least two weeks before your deadline and the final version at least two to three days before the deadline.
  • What is the primary objective of your research?  
  • Will your research address any existing gap?  
  • What is the impact of your proposed research?  
  • Do people outside your field find your research applicable in other areas?  
  • If your research is unsuccessful, would there still be other useful research outcomes?  

  The Writing Stage  

  • Create an outline with main section headings that are typically used.  
  • Focus only on writing and getting your points across without worrying about the format of the research proposal , grammar, punctuation, etc. These can be fixed during the subsequent passes. Add details to each section heading you created in the beginning.   
  • Ensure your sentences are concise and use plain language. A research proposal usually contains about 2,000 to 4,000 words or four to seven pages.  
  • Don’t use too many technical terms and abbreviations assuming that the readers would know them. Define the abbreviations and technical terms.  
  • Ensure that the entire content is readable. Avoid using long paragraphs because they affect the continuity in reading. Break them into shorter paragraphs and introduce some white space for readability.  
  • Focus on only the major research issues and cite sources accordingly. Don’t include generic information or their sources in the literature review.  
  • Proofread your final document to ensure there are no grammatical errors so readers can enjoy a seamless, uninterrupted read.  
  • Use academic, scholarly language because it brings formality into a document.  
  • Ensure that your title is created using the keywords in the document and is neither too long and specific nor too short and general.  
  • Cite all sources appropriately to avoid plagiarism.  
  • Make sure that you follow guidelines, if provided. This includes rules as simple as using a specific font or a hyphen or en dash between numerical ranges.  
  • Ensure that you’ve answered all questions requested by the evaluating authority.  

Key Takeaways   

Here’s a summary of the main points about research proposals discussed in the previous sections:  

  • A research proposal is a document that outlines the details of a proposed study and is created by researchers to submit to evaluators who could be research institutions, universities, faculty, etc.  
  • Research proposals are usually about 2,000-4,000 words long, but this depends on the evaluating authority’s guidelines.  
  • A good research proposal ensures that you’ve done your background research and assessed the feasibility of the research.  
  • Research proposals have the following main sections—introduction, literature review, objectives, methodology, ethical considerations, and budget.  

methodology in research report

Frequently Asked Questions  

Q1. How is a research proposal evaluated?  

A1. In general, most evaluators, including universities, broadly use the following criteria to evaluate research proposals . 6  

  • Significance —Does the research address any important subject or issue, which may or may not be specific to the evaluator or university?  
  • Content and design —Is the proposed methodology appropriate to answer the research question? Are the objectives clear and well aligned with the proposed methodology?  
  • Sample size and selection —Is the target population or cohort size clearly mentioned? Is the sampling process used to select participants randomized, appropriate, and free of bias?  
  • Timing —Are the proposed data collection dates mentioned clearly? Is the project feasible given the specified resources and timeline?  
  • Data management and dissemination —Who will have access to the data? What is the plan for data analysis?  

Q2. What is the difference between the Introduction and Literature Review sections in a research proposal ?  

A2. The Introduction or Background section in a research proposal sets the context of the study by describing the current scenario of the subject and identifying the gaps and need for the research. A Literature Review, on the other hand, provides references to all prior relevant literature to help corroborate the gaps identified and the research need.  

Q3. How long should a research proposal be?  

A3. Research proposal lengths vary with the evaluating authority like universities or committees and also the subject. Here’s a table that lists the typical research proposal lengths for a few universities.  

     
  Arts programs  1,000-1,500 
University of Birmingham  Law School programs  2,500 
  PhD  2,500 
    2,000 
  Research degrees  2,000-3,500 

Q4. What are the common mistakes to avoid in a research proposal ?  

A4. Here are a few common mistakes that you must avoid while writing a research proposal . 7  

  • No clear objectives: Objectives should be clear, specific, and measurable for the easy understanding among readers.  
  • Incomplete or unconvincing background research: Background research usually includes a review of the current scenario of the particular industry and also a review of the previous literature on the subject. This helps readers understand your reasons for undertaking this research because you identified gaps in the existing research.  
  • Overlooking project feasibility: The project scope and estimates should be realistic considering the resources and time available.   
  • Neglecting the impact and significance of the study: In a research proposal , readers and evaluators look for the implications or significance of your research and how it contributes to the existing research. This information should always be included.  
  • Unstructured format of a research proposal : A well-structured document gives confidence to evaluators that you have read the guidelines carefully and are well organized in your approach, consequently affirming that you will be able to undertake the research as mentioned in your proposal.  
  • Ineffective writing style: The language used should be formal and grammatically correct. If required, editors could be consulted, including AI-based tools such as Paperpal , to refine the research proposal structure and language.  

Thus, a research proposal is an essential document that can help you promote your research and secure funds and grants for conducting your research. Consequently, it should be well written in clear language and include all essential details to convince the evaluators of your ability to conduct the research as proposed.  

This article has described all the important components of a research proposal and has also provided tips to improve your writing style. We hope all these tips will help you write a well-structured research proposal to ensure receipt of grants or any other purpose.  

References  

  • Sudheesh K, Duggappa DR, Nethra SS. How to write a research proposal? Indian J Anaesth. 2016;60(9):631-634. Accessed July 15, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037942/  
  • Writing research proposals. Harvard College Office of Undergraduate Research and Fellowships. Harvard University. Accessed July 14, 2024. https://uraf.harvard.edu/apply-opportunities/app-components/essays/research-proposals  
  • What is a research proposal? Plus how to write one. Indeed website. Accessed July 17, 2024. https://www.indeed.com/career-advice/career-development/research-proposal  
  • Research proposal template. University of Rochester Medical Center. Accessed July 16, 2024. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/pediatrics/research/documents/Research-proposal-Template.pdf  
  • Tips for successful proposal writing. Johns Hopkins University. Accessed July 17, 2024. https://research.jhu.edu/wp-content/uploads/2018/09/Tips-for-Successful-Proposal-Writing.pdf  
  • Formal review of research proposals. Cornell University. Accessed July 18, 2024. https://irp.dpb.cornell.edu/surveys/survey-assessment-review-group/research-proposals  
  • 7 Mistakes you must avoid in your research proposal. Aveksana (via LinkedIn). Accessed July 17, 2024. https://www.linkedin.com/pulse/7-mistakes-you-must-avoid-your-research-proposal-aveksana-cmtwf/  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

How to write a phd research proposal.

  • What are the Benefits of Generative AI for Academic Writing?
  • How to Avoid Plagiarism When Using Generative AI Tools
  • What is Hedging in Academic Writing?  

How to Write Your Research Paper in APA Format

The future of academia: how ai tools are changing the way we do research, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write your research paper in apa..., how to choose a dissertation topic, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements.

9 Best Marketing Research Methods to Know Your Buyer Better [+ Examples]

Ramona Sukhraj

Published: August 08, 2024

One of the most underrated skills you can have as a marketer is marketing research — which is great news for this unapologetic cyber sleuth.

marketer using marketer research methods to better understand her buyer personas

From brand design and product development to buyer personas and competitive analysis, I’ve researched a number of initiatives in my decade-long marketing career.

And let me tell you: having the right marketing research methods in your toolbox is a must.

Market research is the secret to crafting a strategy that will truly help you accomplish your goals. The good news is there is no shortage of options.

How to Choose a Marketing Research Method

Thanks to the Internet, we have more marketing research (or market research) methods at our fingertips than ever, but they’re not all created equal. Let’s quickly go over how to choose the right one.

methodology in research report

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

Download Free

All fields are required.

You're all set!

Click this link to access this resource at any time.

1. Identify your objective.

What are you researching? Do you need to understand your audience better? How about your competition? Or maybe you want to know more about your customer’s feelings about a specific product.

Before starting your research, take some time to identify precisely what you’re looking for. This could be a goal you want to reach, a problem you need to solve, or a question you need to answer.

For example, an objective may be as foundational as understanding your ideal customer better to create new buyer personas for your marketing agency (pause for flashbacks to my former life).

Or if you’re an organic sode company, it could be trying to learn what flavors people are craving.

2. Determine what type of data and research you need.

Next, determine what data type will best answer the problems or questions you identified. There are primarily two types: qualitative and quantitative. (Sound familiar, right?)

  • Qualitative Data is non-numerical information, like subjective characteristics, opinions, and feelings. It’s pretty open to interpretation and descriptive, but it’s also harder to measure. This type of data can be collected through interviews, observations, and open-ended questions.
  • Quantitative Data , on the other hand, is numerical information, such as quantities, sizes, amounts, or percentages. It’s measurable and usually pretty hard to argue with, coming from a reputable source. It can be derived through surveys, experiments, or statistical analysis.

Understanding the differences between qualitative and quantitative data will help you pinpoint which research methods will yield the desired results.

For instance, thinking of our earlier examples, qualitative data would usually be best suited for buyer personas, while quantitative data is more useful for the soda flavors.

However, truth be told, the two really work together.

Qualitative conclusions are usually drawn from quantitative, numerical data. So, you’ll likely need both to get the complete picture of your subject.

For example, if your quantitative data says 70% of people are Team Black and only 30% are Team Green — Shout out to my fellow House of the Dragon fans — your qualitative data will say people support Black more than Green.

(As they should.)

Primary Research vs Secondary Research

You’ll also want to understand the difference between primary and secondary research.

Primary research involves collecting new, original data directly from the source (say, your target market). In other words, it’s information gathered first-hand that wasn’t found elsewhere.

Some examples include conducting experiments, surveys, interviews, observations, or focus groups.

Meanwhile, secondary research is the analysis and interpretation of existing data collected from others. Think of this like what we used to do for school projects: We would read a book, scour the internet, or pull insights from others to work from.

So, which is better?

Personally, I say any research is good research, but if you have the time and resources, primary research is hard to top. With it, you don’t have to worry about your source's credibility or how relevant it is to your specific objective.

You are in full control and best equipped to get the reliable information you need.

3. Put it all together.

Once you know your objective and what kind of data you want, you’re ready to select your marketing research method.

For instance, let’s say you’re a restaurant trying to see how attendees felt about the Speed Dating event you hosted last week.

You shouldn’t run a field experiment or download a third-party report on speed dating events; those would be useless to you. You need to conduct a survey that allows you to ask pointed questions about the event.

This would yield both qualitative and quantitative data you can use to improve and bring together more love birds next time around.

Best Market Research Methods for 2024

Now that you know what you’re looking for in a marketing research method, let’s dive into the best options.

Note: According to HubSpot’s 2024 State of Marketing report, understanding customers and their needs is one of the biggest challenges facing marketers today. The options we discuss are great consumer research methodologies , but they can also be used for other areas.

Primary Research

1. interviews.

Interviews are a form of primary research where you ask people specific questions about a topic or theme. They typically deliver qualitative information.

I’ve conducted many interviews for marketing purposes, but I’ve also done many for journalistic purposes, like this profile on comedian Zarna Garg . There’s no better way to gather candid, open-ended insights in my book, but that doesn’t mean they’re a cure-all.

What I like: Real-time conversations allow you to ask different questions if you’re not getting the information you need. They also push interviewees to respond quickly, which can result in more authentic answers.

What I dislike: They can be time-consuming and harder to measure (read: get quantitative data) unless you ask pointed yes or no questions.

Best for: Creating buyer personas or getting feedback on customer experience, a product, or content.

2. Focus Groups

Focus groups are similar to conducting interviews but on a larger scale.

In marketing and business, this typically means getting a small group together in a room (or Zoom), asking them questions about various topics you are researching. You record and/or observe their responses to then take action.

They are ideal for collecting long-form, open-ended feedback, and subjective opinions.

One well-known focus group you may remember was run by Domino’s Pizza in 2009 .

After poor ratings and dropping over $100 million in revenue, the brand conducted focus groups with real customers to learn where they could have done better.

It was met with comments like “worst excuse for pizza I’ve ever had” and “the crust tastes like cardboard.” But rather than running from the tough love, it took the hit and completely overhauled its recipes.

The team admitted their missteps and returned to the market with better food and a campaign detailing their “Pizza Turn Around.”

The result? The brand won a ton of praise for its willingness to take feedback, efforts to do right by its consumers, and clever campaign. But, most importantly, revenue for Domino’s rose by 14.3% over the previous year.

The brand continues to conduct focus groups and share real footage from them in its promotion:

What I like: Similar to interviewing, you can dig deeper and pivot as needed due to the real-time nature. They’re personal and detailed.

What I dislike: Once again, they can be time-consuming and make it difficult to get quantitative data. There is also a chance some participants may overshadow others.

Best for: Product research or development

Pro tip: Need help planning your focus group? Our free Market Research Kit includes a handy template to start organizing your thoughts in addition to a SWOT Analysis Template, Survey Template, Focus Group Template, Presentation Template, Five Forces Industry Analysis Template, and an instructional guide for all of them. Download yours here now.

3. Surveys or Polls

Surveys are a form of primary research where individuals are asked a collection of questions. It can take many different forms.

They could be in person, over the phone or video call, by email, via an online form, or even on social media. Questions can be also open-ended or closed to deliver qualitative or quantitative information.

A great example of a close-ended survey is HubSpot’s annual State of Marketing .

In the State of Marketing, HubSpot asks marketing professionals from around the world a series of multiple-choice questions to gather data on the state of the marketing industry and to identify trends.

The survey covers various topics related to marketing strategies, tactics, tools, and challenges that marketers face. It aims to provide benchmarks to help you make informed decisions about your marketing.

It also helps us understand where our customers’ heads are so we can better evolve our products to meet their needs.

Apple is no stranger to surveys, either.

In 2011, the tech giant launched Apple Customer Pulse , which it described as “an online community of Apple product users who provide input on a variety of subjects and issues concerning Apple.”

Screenshot of Apple’s Consumer Pulse Website from 2011.

"For example, we did a large voluntary survey of email subscribers and top readers a few years back."

While these readers gave us a long list of topics, formats, or content types they wanted to see, they sometimes engaged more with content types they didn’t select or favor as much on the surveys when we ran follow-up ‘in the wild’ tests, like A/B testing.”  

Pepsi saw similar results when it ran its iconic field experiment, “The Pepsi Challenge” for the first time in 1975.

The beverage brand set up tables at malls, beaches, and other public locations and ran a blindfolded taste test. Shoppers were given two cups of soda, one containing Pepsi, the other Coca-Cola (Pepsi’s biggest competitor). They were then asked to taste both and report which they preferred.

People overwhelmingly preferred Pepsi, and the brand has repeated the experiment multiple times over the years to the same results.

What I like: It yields qualitative and quantitative data and can make for engaging marketing content, especially in the digital age.

What I dislike: It can be very time-consuming. And, if you’re not careful, there is a high risk for scientific error.

Best for: Product testing and competitive analysis

Pro tip:  " Don’t make critical business decisions off of just one data set," advises Pamela Bump. "Use the survey, competitive intelligence, external data, or even a focus group to give you one layer of ideas or a short-list for improvements or solutions to test. Then gather your own fresh data to test in an experiment or trial and better refine your data-backed strategy."

Secondary Research

8. public domain or third-party research.

While original data is always a plus, there are plenty of external resources you can access online and even at a library when you’re limited on time or resources.

Some reputable resources you can use include:

  • Pew Research Center
  • McKinley Global Institute
  • Relevant Global or Government Organizations (i.e United Nations or NASA)

It’s also smart to turn to reputable organizations that are specific to your industry or field. For instance, if you’re a gardening or landscaping company, you may want to pull statistics from the Environmental Protection Agency (EPA).

If you’re a digital marketing agency, you could look to Google Research or HubSpot Research . (Hey, I know them!)

What I like: You can save time on gathering data and spend more time on analyzing. You can also rest assured the data is from a source you trust.

What I dislike: You may not find data specific to your needs.

Best for: Companies under a time or resource crunch, adding factual support to content

Pro tip: Fellow HubSpotter Iskiev suggests using third-party data to inspire your original research. “Sometimes, I use public third-party data for ideas and inspiration. Once I have written my survey and gotten all my ideas out, I read similar reports from other sources and usually end up with useful additions for my own research.”

9. Buy Research

If the data you need isn’t available publicly and you can’t do your own market research, you can also buy some. There are many reputable analytics companies that offer subscriptions to access their data. Statista is one of my favorites, but there’s also Euromonitor , Mintel , and BCC Research .

What I like: Same as public domain research

What I dislike: You may not find data specific to your needs. It also adds to your expenses.

Best for: Companies under a time or resource crunch or adding factual support to content

Which marketing research method should you use?

You’re not going to like my answer, but “it depends.” The best marketing research method for you will depend on your objective and data needs, but also your budget and timeline.

My advice? Aim for a mix of quantitative and qualitative data. If you can do your own original research, awesome. But if not, don’t beat yourself up. Lean into free or low-cost tools . You could do primary research for qualitative data, then tap public sources for quantitative data. Or perhaps the reverse is best for you.

Whatever your marketing research method mix, take the time to think it through and ensure you’re left with information that will truly help you achieve your goals.

Don't forget to share this post!

Related articles.

SWOT Analysis: How To Do One [With Template & Examples]

SWOT Analysis: How To Do One [With Template & Examples]

28 Tools & Resources for Conducting Market Research

28 Tools & Resources for Conducting Market Research

What is a Competitive Analysis — and How Do You Conduct One?

What is a Competitive Analysis — and How Do You Conduct One?

Market Research: A How-To Guide and Template

Market Research: A How-To Guide and Template

TAM, SAM & SOM: What Do They Mean & How Do You Calculate Them?

TAM, SAM & SOM: What Do They Mean & How Do You Calculate Them?

How to Run a Competitor Analysis [Free Guide]

How to Run a Competitor Analysis [Free Guide]

5 Challenges Marketers Face in Understanding Audiences [New Data + Market Researcher Tips]

5 Challenges Marketers Face in Understanding Audiences [New Data + Market Researcher Tips]

Causal Research: The Complete Guide

Causal Research: The Complete Guide

Total Addressable Market (TAM): What It Is & How You Can Calculate It

Total Addressable Market (TAM): What It Is & How You Can Calculate It

What Is Market Share & How Do You Calculate It?

What Is Market Share & How Do You Calculate It?

Free Guide & Templates to Help Your Market Research

Marketing software that helps you drive revenue, save time and resources, and measure and optimize your investments — all on one easy-to-use platform

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Harris Energizes Democrats in Transformed Presidential Race

Methodology, table of contents.

  • Other findings: Both Harris and Trump are viewed more favorably than a few months ago
  • Voting preferences among demographic groups
  • How have voters shifted their preferences since July?
  • Harris’ supporters back her more strongly than Biden’s did last month
  • Large gap in motivation to vote emerges between the candidates’ younger supporters
  • Harris and Trump have gained ground with their own coalitions
  • Share of ‘double negatives’ drops significantly with change in presidential candidates
  • Views of Biden have changed little since his withdrawal from the 2024 presidential race
  • Acknowledgments
  • The American Trends Panel survey methodology

Data in this report comes from Wave 151 of the American Trends Panel (ATP), Pew Research Center’s nationally representative panel of randomly selected U.S. adults. The survey was conducted from Aug. 5 to Aug. 11, 2024. A total of 9,201 panelists responded out of 10,079 who were sampled, for a survey-level response rate of 91%.

The cumulative response rate accounting for nonresponse to the recruitment surveys and attrition is 3%. The break-off rate among panelists who logged on to the survey and completed at least one item is 1%. The margin of sampling error for the full sample of 9,201 respondents is plus or minus 1.3 percentage points.

SSRS conducted the survey for Pew Research Center via online (n=8,935) and live telephone (n=266) interviewing. Interviews were conducted in both English and Spanish.

To learn more about the ATP, read “About the American Trends Panel.”

Panel recruitment

Since 2018, the ATP has used address-based sampling (ABS) for recruitment. A study cover letter and a pre-incentive are mailed to a stratified, random sample of households selected from the U.S. Postal Service’s Computerized Delivery Sequence File. This Postal Service file has been estimated to cover 90% to 98% of the population. 1 Within each sampled household, the adult with the next birthday is selected to participate. Other details of the ABS recruitment protocol have changed over time but are available upon request. 2 Prior to 2018, the ATP was recruited using landline and cellphone random-digit-dial surveys administered in English and Spanish.

A national sample of U.S. adults has been recruited to the ATP approximately once per year since 2014. In some years, the recruitment has included additional efforts (known as an “oversample”) to improve the accuracy of data for underrepresented groups. For example, Hispanic adults, Black adults and Asian adults were oversampled in 2019, 2022 and 2023, respectively.

Sample design

The overall target population for this survey was noninstitutionalized persons ages 18 and older living in the United States. All active panel members were invited to participate in this wave.

Questionnaire development and testing

The questionnaire was developed by Pew Research Center in consultation with SSRS. The web program used for online respondents was rigorously tested on both PC and mobile devices by the SSRS project team and Pew Research Center researchers. The SSRS project team also populated test data that was analyzed in SPSS to ensure the logic and randomizations were working as intended before launching the survey.

All respondents were offered a post-paid incentive for their participation. Respondents could choose to receive the post-paid incentive in the form of a check or gift code to Amazon.com.  Incentive amounts ranged from $5 to $20 depending on whether the respondent belongs to a part of the population that is harder or easier to reach. Differential incentive amounts were designed to increase panel survey participation among groups that traditionally have low survey response propensities.

Data collection protocol

The data collection field period for this survey was Aug. 5 to Aug. 11, 2024. Surveys were conducted via self-administered web survey or by live telephone interviewing.

For panelists who take surveys online: 3 Postcard notifications were mailed to a subset on Aug. 5. 4 Survey invitations were sent out in two separate launches: soft launch and full launch. Sixty panelists were included in the soft launch, which began with an initial invitation sent on Aug. 5. All remaining English- and Spanish-speaking sampled online panelists were included in the full launch and were sent an invitation on Aug. 6.

Table shows Invitation and reminder dates for web respondents, ATP Wave 151

Panelists participating online were sent an email invitation and up to two email reminders if they did not respond to the survey. ATP panelists who consented to SMS messages were sent an SMS invitation with a link to the survey and up to two SMS reminders.

For panelists who take surveys over the phone with a live interviewer: Prenotification postcards were mailed on July 31, and reminder postcards were mailed on Aug. 5. The CATI soft launch took place on Aug. 5 and involved dialing until a total of three interviews had been completed. CATI panelists receive up to six calls from trained SSRS interviewers. All remaining English- and Spanish-speaking sampled CATI panelist numbers were dialed throughout the remaining field period.

Data quality checks

To ensure high-quality data, Center researchers performed data quality checks to identify any respondents showing patterns of satisficing. This includes checking for whether respondents left questions blank at very high rates or always selected the first or last answer presented. As a result of this checking, 4 ATP respondents were removed from the survey dataset prior to weighting and analysis.

The ATP data is weighted in a process that accounts for multiple stages of sampling and nonresponse that occur at different points in the panel survey process. First, each panelist begins with a base weight that reflects their probability of recruitment into the panel. These weights are then calibrated to align with the population benchmarks in the accompanying table to correct for nonresponse to recruitment surveys and panel attrition. If only a subsample of panelists was invited to participate in the wave, this weight is adjusted to account for any differential probabilities of selection.

Among the panelists who completed the survey, this weight is then calibrated again to align with the population benchmarks identified in the accompanying table. The weight is then trimmed at approximately the 1st and 99th percentiles to reduce the loss in precision stemming from variance in the weights. Sampling errors and tests of statistical significance take into account the effect of weighting.

Table shows American Trends Panel weighting dimensions

The following table shows the unweighted sample sizes and the error attributable to sampling that would be expected at the 95% level of confidence for different groups in the survey.

Table shows Sample sizes and margins of error, ATP Wave 151

Sample sizes and sampling errors for other subgroups are available upon request. In addition to sampling error, one should bear in mind that question wording and practical difficulties in conducting surveys can introduce error or bias into the findings of opinion polls.

Dispositions and response rates

Table shows Final dispositions, ATP Wave 151

Validated voters

Members of Pew Research Center’s nationally representative American Trends Panel were matched to public voting records from national commercial voter files in an attempt to find records for voting in the 2016 and 2020 general elections. Validated voters are citizens who told us in a post-election survey that they voted in a given election and have a record for voting in that election in a commercial voter file. Nonvoters are citizens who were not found to have a record of voting in any of the voter files or told us they did not vote.

In an effort to accurately locate official voting records, up to three commercial voter files were searched for each panelist. The number of commercial files consulted varied by when a panelist was recruited to the ATP. Three files were used for panelists recruited in 2022 or before, while one file was used for panelists recruited in 2023. Altogether, files from four different vendors were used, including two that serve conservative and Republican organizations and campaigns, one that serves progressive and Democratic organizations and campaigns, and one that is nonpartisan.

Additional details and caveats about the validation of votes in 2016 and 2020 can be found in these methodological reports:

  • An examination of the 2016 electorate, based on validated voters
  • Validated voters methodology

© Pew Research Center 2024

  • AAPOR Task Force on Address-based Sampling. 2016. “AAPOR Report: Address-based Sampling.” ↩
  • Email [email protected] . ↩
  • The ATP does not use routers or chains in any part of its online data collection protocol, nor are they used to direct respondents to additional surveys. ↩
  • Postcard notifications for web panelists are sent to 1) panelists who were recruited within the last two years and 2) panelists recruited prior to the last two years who opt to continue receiving postcard notifications. ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Donald Trump
  • Election 2024
  • Kamala Harris
  • More Leaders
  • Political & Civic Engagement

Many Americans are confident the 2024 election will be conducted fairly, but wide partisan differences remain

Joe biden, public opinion and his withdrawal from the 2024 race, amid doubts about biden’s mental sharpness, trump leads presidential race, americans’ views of government’s role: persistent divisions and areas of agreement, cultural issues and the 2024 election, most popular, report materials.

  • August 2024 Presidential Preference Detailed Tables
  • Questionnaire

901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

Realtor.com Economic Research

  • Data library

July 2024 Rental Report: Renting a Starter Home Continues To Be a More Affordable Option Than Buying One in All 50 metros

Jiayi Xu

  • July 2024 marks the 12th year-over-year rent decline in a row for 0-2 bedroom properties observed since trend data began in 2020. Asking rents dipped by $12, or -0.7%, year over year.
  • The median asking rent in the 50 largest metros registered at $1,741, down by $2 from last month and $13 from its August 2022 peak. 
  • Median rent declined in all size categories with larger declines in smaller-sized units: Studio: $1,460, down $14 (-0.9%) year over year; 1-bed: $1615, down $23 (-1.4%) year over year; 2-bed: $1,933, down $12 (-0.6%) year over year.
  • Renting a starter home continues to be a more affordable option than buying one in all 50 metros, with an average monthly savings of $1,067. However, the overall advantage of renting shrank compared with a year ago.  

In July 2024, the U.S. median rent continued to decline year over year for the 12th month in a row, down $12 (-0.7%) for 0-2 bedroom properties across the top 50 metros, faster than the rate of -0.4% seen in June 2024. The median asking rent was $1,741, down by $2 from last month, reflecting a similar seasonal trend as observed in the for-sale market. 

Despite the 12th month of decline, the U.S. median rent was just $13 (-0.7%) less than the peak seen in August 2022. Notably, it was still $288 (19.8%) higher than the same time in 2019 (pre-pandemic), but this increase is rough ly on par with what has occurred in overall consumer prices (up 22.6% in the five years ending July 2024) and pales in comparison with the 51.9% increase in the median price per square foot of for-sale home listings in the five years ending July 2024.

Figure 1: Rents Decline Again, but Nationwide Rent Is Just 0.7% Below 2022 Peak

methodology in research report

All units saw rent declines

In July 2024, the median asking rent for two-bedroom units dropped -0.6%, a larger dip than the rate seen in June, and the 13th consecutive month of annual declines. The median rent for two bedrooms was $1,933 nationally, $19 (-1.0%) lower than the peak seen in August 2022. Nevertheless, larger unit rents had the highest growth rate over the past five years, up by $345 (21.7%).

The rent for one-bedroom units slipped -1.4% in July 2024 on a year-over-year basis, marking the 14th decline in a row and also a faster pace compared with the decline of -1.1% in June. The median rent was $1,615, $39 (-2.4%) lower than the peak observed during August 2022, but still $243 (17.7%) higher than in July 2019.

In July 2024, the median asking rent for studios fell by -0.9%, marking the 11th consecutive month of annual declines. The median rent of studios was $1,460 in July, down by $30 (-2.2%) from its peak in October 2022. Nevertheless, the median asking rent for studios was still $192 (15.1%) higher than five years ago. 

Figure 2: All Units Saw Waning Rent Declines

methodology in research report

Table 1: National Rents by Unit Size

Overall $1,741 -0.7% 19.8%
Studio $1,460 -0.9% 15.1%
1-bed $1,615 -1.4% 17.7%
2-bed $1,933 -0.6% 21.7%

Renting a starter home continues to be a more affordable option than buying one in all 50 metros

A common question potential first-time homebuyers face is whether it makes sense to continue renting or make a home purchase. One of the top considerations is the financial costs and benefits of renting versus owning, and one approach is to compare the monthly housing costs of renting a home against the costs of buying a home. This approach does not factor in longer-run costs and benefits such as the opportunity cost of not investing upfront closing costs or the equity built over time that tools like the Rent vs. Buy calculator can help households think through. Nevertheless, a simple monthly cost comparison is indicative.

With such cost comparisons, we are able to identify whether a market favors renting or buying. This is particularly important given today’s landscape, marked by elevated mortgage rates and still-high home prices , posing substantial challenges for would-be homeowners. In addition, understanding the evolving financial advantages in rent-favoring and buy-favoring markets provides valuable insights into the timing and trade-offs involved in making informed choices between buying and renting.  

To determine the monthly cost of buying a home, we find the median list price of 0-2 bedroom home listings (i.e., starter homes). As first-time homebuyers plan lower down payments , we assume an 8% down payment and use the 30-year fixed mortgage rate during the month to calculate a monthly mortgage payment. We also include the HOA fees, taxes, and homeowners insurance averaged at metro levels as part of the costs. We then compare this buy cost with the median rent in each metro and focus on the difference between monthly expenses for each. 

In July 2024, the cost of buying a starter home in the top 50 metros was $1,067 (61.3%) higher than renting one. In addition, renting continues to be a more affordable option than buying in all 50 of the largest metros, whereas the number of metros favoring renting was 47 at the same time last year. Specifically, Memphis, TN, Birmingham, AL, and Pittsburgh, PA, were the three metros that flipped from buy-favoring to rent-favoring markets over the past 12 months. 

In the top 10 metros where the scales are tilted the most toward renting, the average monthly payments for a starter home were $1,944 (94.1%) higher than rents—nearly double. Similar to findings in February 2024 , these top rent-favoring metros are mostly markets with a higher concentration of tech workers and high earners, where both the average rent cost and buy cost are higher than the national average.

Austin, TX, once again topped the list of markets that favor renting, where the monthly cost of buying a starter home was $3,588, which was 144.4% more than the monthly rent of $1,468, for a monthly savings of $2,120. Interestingly, while the monthly buy cost was below the top 50 average, both Dallas, TX, and Columbus, OH, popped up as two of the top rent-favoring metros in July 2024. 

Table 2: Top Rent-Favoring Markets, July 2024

Metro
Austin-Round Rock-Georgetown, TX $1,468 $3,588 $2,120 144.4% -10.2% -10.7%
Seattle-Tacoma-Bellevue, WA $2,064 $4,286 $2,222 107.7% 0.6% -5.4%
Los Angeles-Long Beach-Anaheim, CA $2,797 $5,581 $2,784 99.5% -1.8% 1.9%
Nashville-Davidson–Murfreesboro–Franklin, TN $1,500 $2,899 $1,399 93.3% -10.1% -1.8%
Phoenix-Mesa-Chandler, AZ $1,524 $2,920 $1,396 91.6% -5.6% -1.4%
Columbus, OH $1,194 $2,284 $1,090 91.3% -1.9% -0.2%
Dallas-Fort Worth-Arlington, TX $1,481 $2,788 $1,307 88.3% -4.1% -5.9%
San Francisco-Oakland-Berkeley, CA $2,770 $5,212 $2,442 88.2% -5.4% -12.1%
New York-Newark-Jersey City, NY-NJ-PA $2,887 $5,229 $2,342 81.1% 0.4% 3.6%
Boston-Cambridge-Newton, MA-NH $2,973 $5,309 $2,336 78.6% -2.5% -2.9%

The overall advantage of renting shrinks compared with a year ago

In July 2023, the average monthly cost of buying a starter home in the top 50 metros was $1,109 (63.3%) higher than renting, whereas the cost of buying was $1,067 (61.3%) higher than renting in July 2024. Although the overall advantage of renting narrowed by $42 across the top 50 metros compared with a year ago, it was still $758 higher when compared with five years ago (pre-pandemic). Specifically, in July 2019, the average monthly cost of buying a starter home in the top 50 metros was only $309 (21.3%) higher than renting one.   

While the rent cost declined by $12, from $1,753 to $1,741 over the past 12 months, the buy cost for a starter home dropped by $54, from $2,862 to $2,808, during the same time, including a $56 decline from changes in list prices and a $2 increase from a slightly higher mortgage rate. Specifically, the 30-year fixed mortgage rate was at 6.85% in July 2024 and 6.84% 12 months ago. Although the median U.S. list price has been roughly stable in the past year , a greater influx of smaller and more affordable homes for sale has helped listing prices for starter homes slip. 

Figure 3:  Components of Buy-Rent Gap Change From Last Year

methodology in research report

Metros with the most diminishing rent advantage

Over the past year, 23 of the top 50 markets saw a diminishing rent advantage. Specifically, the advantage of renting a starter home shrank the most in San Francisco, CA, San Jose, CA, Denver, CO, Washington, DC, and Miami, FL, in dollar terms.

For example, renting a starter home in San Francisco could save $2,442 more than buying one in July 2024, but the savings from renting was $3,005 in July 2023, shrinking by $563. Additionally, the savings from renting a starter home shrank by $468 in San Jose and $314 in Denver over the past 12 months. It is not surprising to see the rent advantage diminished most in these five metros as homes in these markets experienced large list price declines on a yearly basis .   

Table 3: Top Metros With Diminishing Advantage in Renting, July 2024

Metro Median Rent Monthly Buy Cost: $ Diff. (Buy-Rent): July 2024 % Diff. (Buy-Rent): July 2024 $ Diff. (Buy-Rent): July 2024 vs. 2023
San Francisco-Oakland-Berkeley, CA $2,770 $5,212 $2,442 88.2% -$563
San Jose-Sunnyvale-Santa Clara, CA $3,390 $6,003 $2,613 77.1% -$468
Denver-Aurora-Lakewood, CO $1,924 $3,199 $1,275 66.3% -$314
Washington-Arlington-Alexandria, DC-VA-MD-WV $2,273 $3,261 $988 43.5% -$282
Miami-Fort Lauderdale-Pompano Beach, FL $2,368 $3,176 $808 34.1% -$273

Metros with the most increasing rent advantage

Meanwhile, the savings from renting expanded most in Memphis, TN, and Birmingham, AL. In fact, Memphis and Birmingham are the two metros that flipped from buy-favoring to rent-favoring during the past 12 months. In addition, they were also among the top markets seeing a high share of homebuying from investors .

In July 2024, the cost to buy a starter home in Memphis was $210 (17.1%) higher than renting one. However, in July 2023, the cost to buy was $36 (-2.8%) lower than the cost to rent. In other words, renting a starter home in Memphis in July 2024 could save an additional $246 than buying when compared with the same time last year. In Birmingham, the cost of buying a starter home was $105 (8.0%) higher in July 2024, whereas buying a starter home in July 2023 cost $104 (-8.0%) less than renting one. Meanwhile, New York, NY, Los Angeles, CA, and Richmond, VA, were also among the top markets seeing higher savings from renting than buying in July 2024 when compared with a year ago. 

Table 4: Top Metros With Increasing Advantage in Renting, July 2024

Metro Median Rent Monthly Buy Cost $ Diff. (Buy-Rent): July 2024 % Diff. (Buy-Rent): July 2024 $ Diff. (Buy-Rent): July 2024 vs. 2023
Memphis, TN-MS-AR $1,229 $1,439 $210 17.1% $246
Birmingham-Hoover, AL $1,305 $1,410 $105 8.0% $209
New York-Newark-Jersey City, NY-NJ-PA $2,887 $5,229 $2,342 81.1% $173
Los Angeles-Long Beach-Anaheim, CA $2,797 $5,581 $2,784 99.5% $156
Richmond, VA $1,513 $2,486 $973 64.3% $130

Appendix: Rental Data – 50 Largest Metropolitan Areas – July 2024

Metro Median Rent  Monthly Buy Cost $Difference (Buy-Rent) % Difference (Buy-Rent) Rent Cost: YY Buy Cost: YY
$1,585 $2,497 $912 57.5% -6.1% -2.3%
$1,468 $3,588 $2,120 144.4% -10.2% -10.7%
$1,807 $2,135 $328 18.2% -2.5% 3.1%
$1,305 $1,410 $105 8.0% 0.5% 18.0%
$2,973 $5,309 $2,336 78.6% -2.5% -2.9%
$1,274 $2,168 $894 70.2% 16.0% 0.4%
$1,516 $2,226 $710 46.8% -6.1% -2.8%
$1,839 $2,719 $880 47.9% 0.2% 0.0%
$1,389 $1,997 $608 43.8% 2.9% -4.9%
$1,214 $1,773 $559 46.0% 0.1% 6.6%
$1,194 $2,284 $1,090 91.3% -1.9% -0.2%
$1,481 $2,788 $1,307 88.3% -4.1% -5.9%
$1,924 $3,199 $1,275 66.3% -1.5% -9.7%
$1,339 $1,755 $416 31.1% 2.2% 8.7%
$1,837 $2,514 $677 36.9% 8.0% 15.4%
$1,402 $2,442 $1,040 74.2% -2.2% -4.6%
$1,324 $1,842 $518 39.1% 1.1% 0.4%
$1,508 $2,440 $932 61.8% -5.0% -2.4%
$1,347 $1,771 $424 31.5% 1.2% 1.6%
$1,470 $2,318 $848 57.7% -3.9% 0.5%
$2,797 $5,581 $2,784 99.5% -1.8% 1.9%
$1,245 $1,706 $461 37.0% -2.8% 3.6%
$1,229 $1,439 $210 17.1% -3.9% 15.8%
$2,368 $3,176 $808 34.1% -3.5% -10.1%
$1,717 $2,352 $635 37.0% 3.5% 1.3%
$1,559 $2,501 $942 60.4% 4.4% -6.2%
$1,500 $2,899 $1,399 93.3% -10.1% -1.8%
$1,242 $2,383 $1,141 91.9% -4.0% 0.8%
$2,887 $5,229 $2,342 81.1% 0.4% 3.6%
$1,014 $1,594 $580 57.2% -0.4% -13.1%
$1,672 $2,211 $539 32.2% -4.8% -3.0%
$1,823 $2,518 $695 38.1% -0.4% 3.1%
$1,524 $2,920 $1,396 91.6% -5.6% -1.4%
$1,484 $1,492 $8 0.5% 2.7% 4.3%
$1,748 $3,106 $1,358 77.7% 3.9% -4.6%
$2,158 $3,340 $1,182 54.8% 5.3% 7.5%
$1,533 $2,622 $1,089 71.0% -3.6% 0.3%
$1,513 $2,486 $973 64.3% -2.8% 3.6%
$2,169 $3,246 $1,077 49.7% 0.2% 1.9%
$1,385 $2,920 $1,535 110.8% 7.9% 4.0%
$2,023 $3,602 $1,579 78.1% 8.3% -2.1%
$1,232 $2,035 $803 65.2% -7.8% -11.9%
$2,919 $5,051 $2,132 73.0% -1.3% -4.4%
$2,770 $5,212 $2,442 88.2% -5.4% -12.1%
$3,390 $6,003 $2,613 77.1% 4.1% -5.3%
$2,064 $4,286 $2,222 107.7% 0.6% -5.4%
$1,327 $1,549 $222 16.7% -0.4% 7.9%
$1,746 $2,564 $818 46.8% -2.2% -5.8%
$1,560 $1,944 $384 24.6% 4.4% -3.5%
$2,273 $3,261 $988 43.5% 0.4% -7.7%

Methodology

Rental data as of July 2024 for studio, 1-bedroom, or 2-bedroom units advertised as for rent on Realtor.com®. Rental units include apartments as well as private rentals (condos, townhomes, single-family homes). We use rental sources that reliably report data each month within the 50 largest metropolitan areas. Realtor.com began publishing regular monthly rental trends reports in October 2020 with data history stretching back to March 2019.

The monthly cost of buying a home was calculated by averaging the median list prices of studio, 1-bed, and 2-bed homes, weighted by the number of listings, in each housing market. Monthly buying costs assume an 8% down payment, with a mortgage rate of 6.85%, and include taxes, insurance, and HOA fees. 

With the release of its July 2024 rent report, Realtor.com incorporated a new and improved methodology for capturing and reporting more comprehensive rental listing trends and metrics. The new methodology is expected to yield a cleaner, more representative, and more consistent measurement of rental listings and trends at both the national and local levels.

The methodology has been adjusted to better represent the true cost of primary housing for renters. Most areas across the country will see minor changes with a smaller handful of areas seeing larger updates. As a result of these changes, the rental data released since July 2024 will not be directly comparable with previous releases and Realtor.com economics blog posts. However, future data releases, including historical data, will consistently apply the new methodology.

Sign up for updates

Join our mailing list to receive the latest data and research.

  • Subscribe Now

Methodology: August 2024

In collaboration with Cook Political Report and GS Strategy Group, BSG conducted polling in Arizona, Georgia, Michigan, Nevada, North Carolina, Pennsylvania, and Wisconsin among likely 2024 voters from July 26 – August 2, 2024. Surveys were conducted in English using SMS-to-Web and online panel methodologies.

In the aggregate, 2,867 likely voters across the 7 states completed the survey, for a margin of sampling error of ±1.83 at the 95% confidence level. The full dataset included:

  • 435 likely 2024 voters in Arizona (±4.7)
  • 405 likely 2024 voters in Georgia (±4.9)
  • 406 likely 2024 voters in Michigan (±4.9)
  • 403 likely 2024 voters in Nevada (±4.9)
  • 403 likely 2024 voters in North Carolina (±4.9)
  • 411 likely 2024 voters in Pennsylvania (±4.8)
  • 404 likely 2024 voters in Wisconsin (±4.9)

For the purposes of this research, likely voters were defined as anyone who is currently registered to vote and has voted in at least 1 of the last 4 presidential or midterm elections, or registered to vote after the 2020 general election for president.

Respondents were allowed to participate in the survey regardless of their self-reported likelihood to vote, as many respondents to indicate in survey that they “possibly will vote,” “don’t know” if they will vote, or even say they “absolutely will not vote” do ultimately participate in the election they were asked about. In this survey:

  • 81% indicated they are “absolutely certain” to vote
  • 12% indicated they are “very likely” to vote
  • 6% indicated they “possibly will vote”
  • 0% indicated they “absolutely will not vote”
  • 1% indicated they don’t know if they will vote or not

The results were weighted in each state to reflect the likely 2024 voter universe. In the combined data, states were weighted based on electoral votes.

What share of interviews were SMS vs. opt-in panel vs. probability-based panel?

74% were conducted on panel, 26% via SMS.

The panels are opt-in panels. These panels are not matched to the voter file (matched email panels are limited and tend to underrepresent lower-engagement voters, so we prefer to include panels made up of folks who aren’t necessarily excited about politics/political surveys). Respondents were allowed to complete the survey via mobile browsers. About 73% took the survey on a smartphone, another 3% on a tablet 24% on a desktop/laptop.

How was sampling conducted for the SMS sample?

Our SMS-to-web sample was drawn from the registered voter file.

Were quotas used in drawing the sample? If yes, what characteristics were used and what was the source of targets?

Quotas were not applied to the SMS. Quotas were applied to Panel respondents, and those quotas were based on TargetSmart voter file counts reporting of our likely voter universe for each state.

To what characteristics was the sample weighted to (e.g., what is the "likely 2024 voter universe")? and where did the benchmarks come for that? Was the sample weighted by education? If not, can you provide weighted and unweighted breakdowns of respondents' educational attainment?

The likely voter universe included anyone who voted in at least 1 of the last 4 federal general elections. The data was weighted after fielding to be representative of voters in each of the states individually (per data from the voter file and past elections), and then the states weighted proportionally together according to electoral college representation. Education was weighted.

Is the margin of error adjusted for design effect?

While part of our sample comes from non-probability panels, we provide what the margin of error would be for a probability-based sample with the same base size for context (because it is widely expected that some number be provided).

If you have one, what is the minimum unweighted sample size that the poll requires to report subgroup findings?

Our general rule is not to report anything below n=100 unweighted, though in this case the smallest demographic group included in the article is much larger than that: Statewide data for Nevada and North Carolina are the smallest, at n=403.

For weighting to past elections, does this mean weighting to the exit poll? Was that just for education? Which past elections were included?

Regarding weighting, we look at a combination of voter file counts from past elections (2016, 2018, 2020, 2022), counts from the voter file on our ‘likely voter’ universe (voters who voted in 1 of those 4 elections, along with voters registered after the Nov. 2020 election), as well as exit polls.  The variables weighted varied by state, depending on how the results came in (certainly every variable was not weighted in every state), but include: age, ethnicity, education levels, gender breakdowns within party identification, urban/suburban/rural classified zip codes, gender within ethnicity, age within ethnicity, DMA,  zip code by median income, and whether and how voters report voting in the 2020 election.

Describe the sampling frame for the SMS-to-Web (i.e., the list used to select the sample, for example, RDD, voter list, recruited panel)

Our SMS-to-web sample was drawn from the registered voter file. Describe the sampling design SMS-to-Web (i.e., how was the sample selected?)

The voter file list contained voters who have voted in at least 1 of the last 4 federal general elections, or are newly registered to vote since the 2020 November election.

Describe the sampling frame for the online surveys (i.e., the list used to select the sample, for example, RDD, voter list, recruited panel)

The online panels are opt-in panels, (the PureSpectrum online platform which aggregates across multiple online panels).

Describe the sampling design for the online surveys (i.e., how was the sample selected?)

The online panel is randomly selected, not targeted, and individuals are screened to be voters. For the online, was it based on an opt-in sample?

What proportion of the cell phone numbers called were not working?

6.96% of the numbers were rejected for being invalid or disconnected or misclassified landlines. What do you do to ensure your respondents are real people and are paying attention to the survey?

We have several ways of ensuring that our surveys are completed by real people (and not bots). We have several “clicker traps” throughout the instrument, where respondents must respond to a question “right” to continue. We have a “straight line” flag, if a respondent is answering all questions in a series with the same response. We also have a time flag, if someone has taken the survey faster than is possible (or likely). Additionally, we have open-ended questions, whose answers we review for anything that is out of the ordinary.

How were the SMS-to-web and online surveys combined?

The data is combined to be representative of voters in each of these states.

Was any weighting done, and if so, what variables were used and what is the source of the population parameters?

The data was weighted after fielding to be representative of voters in each of the states individually (per data from the voter file and past elections), and then the states weighted proportionally together according to electoral college representation.

The variables weighted varied by state, depending on how the results came in (not every variable was weighted in every state), but include: age, ethnicity, education levels, party identification or registration, gender, urban/suburban/rural classified zip codes, gender within ethnicity, age within ethnicity, DMA, zip code by median income, how many of the past four general elections they have voted in, and whether and how voters report voting in the 2020 election. If a list of registered voters was used for the SMS-to-Web sampling, for each state’s sample: what proportion of names in the registered voter database have cell phone numbers?

36,451,804 reg voters with a cell phone / 43,886,605 reg voters

Were any quotas used? If so, at what stage were they applied, what variables were used, and what is the source of your target quotas?

Who paid for the poll?

BSG and GS Strategy Group both paid for the survey fielding, and analysis was conducted by Cook Political, BSG, and GS Strategies, for purposes of public release.   

Subscribe Today

Our subscribers have first access to individual race pages for each House, Senate and Governors race, which will include race ratings (each race is rated on a seven-point scale) and a narrative analysis pertaining to that race. 

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 10 August 2024

Mapping biomimicry research to sustainable development goals

  • Raghu Raman 1 ,
  • Aswathy Sreenivasan 2 ,
  • M. Suresh 2 &
  • Prema Nedungadi 3  

Scientific Reports volume  14 , Article number:  18613 ( 2024 ) Cite this article

453 Accesses

Metrics details

  • Environmental sciences
  • Environmental social sciences

This study systematically evaluates biomimicry research within the context of sustainable development goals (SDGs) to discern the interdisciplinary interplay between biomimicry and SDGs. The alignment of biomimicry with key SDGs showcases its interdisciplinary nature and potential to offer solutions across the health, sustainability, and energy sectors. This study identified two primary thematic clusters. The first thematic cluster focused on health, partnership, and life on land (SDGs 3, 17, and 15), highlighting biomimicry's role in healthcare innovations, sustainable collaboration, and land management. This cluster demonstrates the potential of biomimicry to contribute to medical technologies, emphasizing the need for cross-sectoral partnerships and ecosystem preservation. The second thematic cluster revolves around clean water, energy, infrastructure, and marine life (SDGs 6, 7, 9, and 14), showcasing nature-inspired solutions for sustainable development challenges, including energy generation and water purification. The prominence of SDG 7 within this cluster indicates that biomimicry significantly contributes to sustainable energy practices. The analysis of thematic clusters further revealed the broad applicability of biomimicry and its role in enhancing sustainable energy access and promoting ecosystem conservation. Emerging research topics, such as metaheuristics, nanogenerators, exosomes, and bioprinting, indicate a dynamic field poised for significant advancements. By mapping the connections between biomimicry and SDGs, this study provides a comprehensive overview of the field's trajectory, emphasizing its importance in advancing global sustainability efforts.

Similar content being viewed by others

methodology in research report

Assessing the sustainability of the European Green Deal and its interlin kages with the SDGs

methodology in research report

Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging

methodology in research report

Six Transformations to achieve the Sustainable Development Goals

Introduction.

Biomimicry, which combines 'bio' (life) and 'mimicry' (imitation), uses nature's patterns to solve human problems, aligning with the SDGs by fostering innovations 1 . This discipline studies natural processes to inspire sustainable designs and promote responsible consumption and production 2 . Biomimicry emphasizes sustainability, ideation, and education in reconnecting with nature to achieve the SDGs 3 . Collaboration among designers, technologists, and business experts is vital for translating natural mechanisms into commercial solutions 4 . Biomimetics, which aims for radical innovations by replicating living systems, strives for breakthroughs in economic growth 5 . By promoting systemic change through the emulation of nature's regenerative processes, biomimicry's alignment with the SDGs could enhance sustainability efforts. Merging biomimicry insights with SDGs could exceed sustainability benchmarks.

Integrating biomimicry with sustainable development goals (SDGs) is crucial for addressing global challenges. The SDGs offer a blueprint for global well-being and environmental stewardship by 2030 6 . They aim to protect the environment and foster social and economic development. Biomimicry provides innovative approaches to these objectives, drawing from natural strategies. While SDGs offer clear targets, biomimicry complements these by providing a unique lens for solutions 7 . The investigation of biomimicry in conjunction with the SDGs is based on the understanding that the development of biologically inspired materials, structures, and systems offers a novel and sustainable solution to design problems, particularly in the built environment 8 . By mimicking nature's answers to complicated challenges, biomimicry produces creative, clever, long-lasting, and environmentally responsible ideas.

The SDGs outline a comprehensive sustainability agenda targeting social equity, environmental conservation, and poverty alleviation 9 . The use of biomimicry in research can lead to the development of solutions that mimic natural efficiency 10 , revolutionizing industries with resource-efficient technologies and enhancing sustainability. This synergy could lead to environmentally friendly products, improved energy solutions, and effective waste management systems. Integrating biomimicry into industry and education promotes environmental stewardship and ecological appreciation 11 . Marrying biomimicry research with SDGs has accelerated progress toward sustainable development.

Biomimicry can provide insightful and useful solutions consistent with sustainability ideals by imitating the adaptability and efficiency observed in biological systems 12 . The built environment's use of biomimicry has a greater sustainable impact when circular design features are included 13 . Reusing materials, cutting waste, and designing systems that work with natural cycles are all stressed in a circular design. Combining biomimicry and circular design promotes social inclusion, environmental resilience, resourcefulness, and compassionate governance, all of which lead to peaceful coexistence with the environment. This all-encompassing strategy demonstrates a dedication to tackling the larger social and environmental concerns that the SDGs represent and design challenges 14 . Complementing these studies, Wamane 7 examined the intersection of biomimicry, the environmental, social, and governance (ESG) framework, and circular economy principles, advocating for an economic paradigm shift toward sustainability.

A key aspect of realizing the impact of biomimicry on SDGs is the successful translation and commercialization of biomimicry discoveries. This involves overcoming barriers such as skill gaps, the engineering mindset, commercial acumen, and funding. Insights from the "The State of Nature-Inspired-Innovation in the UK" report provide a comprehensive analysis of these challenges and potential strategies to address them, underscoring the importance of integrating commercial perspectives into biomimicry research.

This research employs bibliometric techniques to assess the integration and coherence within circular economy policy-making, emphasizing the potential for a synergistic relationship between environmental stewardship, economic growth, and social equity to foster a sustainable future.

In addressing the notable gap in comprehensive research concerning the contribution of biomimicry solutions to specific SDGs, this study offers significant insights into the interdisciplinary applications of biomimicry and its potential to advance global sustainability efforts. Our investigation aims to bridge this research gap through a systematic analysis, resulting in the formulation of the following research questions:

RQ1: How does an interdisciplinary analysis of biomimicry research align with and contribute to advancing specific SDGs?

RQ2: What emerging topics within biomimicry research are gaining prominence, and how do they relate to the SDGs?

RQ3 : What are the barriers to the translation and commercialization of biomimicry innovations, and how can these barriers be overcome to enhance their impact on SDGs?

RQ4: Based on the identified gaps in research and the potential for interdisciplinary collaboration, what innovative areas within biomimicry can be further explored to address underrepresented SDGs?

The remainder of this paper is arranged as follows. Section " Literature review " focuses on the literature background of biomimicry, followed by methods (section " Methods ") and results and discussion, including emerging research topics (section " Results and discussion "). Section " Conclusion " concludes with recommendations and limitations.

Literature review

The potential of biomimicry solutions for sustainability has long been recognized, yet there is a notable lack of comprehensive studies that explore how biomimicry can address specific sustainable development goals (SDGs) (Table 1 ). This research aims to fill this gap by investigating relevant themes and building upon the literature in this field.

Biomimicry, with its roots tracing back to approximately 500 BC, began with Greek philosophers who developed classical concepts of beauty and drew inspiration from natural organisms for balanced design 15 . This foundational idea of looking to nature for design principles continued through history, as exemplified by Leonardo Da Vinci's creation of a flying machine inspired by birds in 1482. This early instance of biomimicry influenced subsequent advancements, including the Wright brothers' development of the airplane in 1948 12 , 15 . The term "bionics," coined in 1958 to describe "the science of natural systems or their analogs," evolved into "biomimicry" by 1982. Janine Benyus's 1997 book, “Biomimicry: Innovation Inspired by Nature,” and the founding of the Biomimicry Institute (Biomimicry 16 ) were pivotal, positioning nature as a guide and model for sustainable design. Benyus’s work underscores the potential of biomimicry in tackling contemporary environmental challenges such as climate change and ecosystem degradation 12 , 17 .

In recent years, the call for more targeted research in biomimicry has grown, particularly in terms of architecture and energy use. Meena et al. 18 and Varshabi et al. 19 highlighted the need for biomimicry to address energy efficiency in building design, stressing the potential of nature-inspired solutions to reduce energy consumption and enhance sustainability. This perspective aligns with that of Perricone et al. 20 , who explored the differences between artificial and natural systems, noting that biomimetic designs, which mimic the principles of organism construction, can significantly improve resource utilization and ecosystem restoration. Aggarwal and Verma 21 contributed to this discourse by mapping the evolution and applications of biomimicry through scientometric analysis, revealing the growing significance of nature-inspired optimization methodologies, especially in clustering techniques. Their work suggested that these methodologies not only provide innovative solutions but also reflect a deeper integration of biomimetic principles in technological advancements. Building on this, Pinzón and Austin 22 emphasized the infancy of biomimicry in the context of renewable energy, advocating for more research to explore how nature can inspire new energy solutions. Their work connects with that of Carniel et al. 23 , who introduced a natural language processing (NLP) technique to identify research themes in biomimicry across disciplines, facilitating a holistic understanding of current trends and future directions.

To further illustrate the practical applications of biomimicry, Nasser et al. 24 presented the Harmony Search Algorithm (HSA), a nature-inspired optimization technique. Their bibliometric analysis demonstrated the algorithm's effectiveness in reducing energy and resource consumption, highlighting the practical benefits of biomimicry in technological innovation. Rusu et al. 25 expanded on these themes by documenting significant advancements in soft robotics, showing how biomimicry influences design principles and applications in this rapidly evolving field. Their findings underscore the diverse applications of biomimetic principles, from robotics to building design. Shashwat et al. 26 emphasized the role of bioinspired solutions in enhancing energy efficiency within the built environment, promoting the use of high solar reflectance surfaces that mimic natural materials. This perspective is in line with that of Pires et al. 27 , who evaluated the application of biomimicry in dental restorative materials and identified a need for more clinical studies to realize the full potential of biomimetic innovations in healthcare. Liu et al. 28 explored the application of nature-inspired design principles in software-defined networks, demonstrating how biomimetic algorithms can optimize resource and energy utilization in complex systems. This study builds on the broader narrative of biomimicry's potential to transform various sectors by offering efficient, sustainable solutions. Finally, Hinkelman et al. 29 synthesized these insights by discussing the transdisciplinary applications of ecosystem biomimicry, which supports sustainable development goals by integrating biomimetic principles across engineering and environmental disciplines. This comprehensive approach underscores the transformative potential of biomimicry, suggesting that continued interdisciplinary research and innovation are crucial for addressing global sustainability challenges effectively.

PRISMA framework

This study utilizes the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework to structure its analysis, following the established five-step protocol: formulating research questions, defining a search strategy, executing a literature search, screening identified literature, and analyzing the findings (Page et al., 2021). The application of the PRISMA guidelines across various research domains, including the SDGs, is well documented 30 .

To ensure a comprehensive search, we searched the Scopus database, a widely utilized resource for bibliometric studies 31 (Donthu et al. 82 ), which led to the discovery of 46,141 publications from 2013 to 2023. This period marked significant research activity following the introduction of the SDGs at the Rio + 20 summit in 2012. Publications were identified using the following terms in the title and abstract: “ (biomimic* OR biomimetic* OR bioinspired OR bioinsp* OR bionic* OR nature-inspired OR "biologically inspired" OR bioinspiration OR biomimesis OR biognosis).”

During the screening phase, publications lacking complete author details were reviewed, narrowing the field to 46,083 publications for further analysis. The eligibility phase utilized proprietary algorithms to map publications to the 17 SDGs, informed by initiatives such as the University of Auckland (Auckland’s SDG mapping 32 ) and Elsevier's SDG Mapping Initiatives (Elsevier's SDG Mapping 33 ). The selection of the Elsevier SDG Mapping Initiative for this study was based on its seamless integration with Scopus, facilitating the use of predefined search queries for each SDG and employing a machine learning model that has been refined through expert review. This approach has been utilized in various studies to analyze research trends within emerging fields. For example, the exploration of green hydrogen was detailed by Raman et al. 34 , while investigations into Fake News and the Dark Web were conducted by Raman et al. 35 , 36 , 37 and Rama et al. 38 , respectively. These examples demonstrate the efficacy of SDG mapping in elucidating how research outputs align with and contribute to sustainable development goals in these emerging domains. This phase identified 13,287 publications as mapped to SDGs. In the inclusion phase, stringent criteria further filtered the publications to English-language journals and review articles, culminating in 13,271 publications deemed suitable for in-depth analysis. This process ensures a comprehensive and high-quality dataset for the study, reflecting the robust and systematic approach afforded by the PRISMA framework in evaluating literature relevant to SDGs.

Our keyword search strategy, while comprehensive, may capture papers that do not genuinely contribute to the field. To mitigate this, we employed manual verification. After the automated search, the authors conducted a manual review of a subset of the final set of identified papers to assess their relevance and authenticity in the context of biomimicry. The subset was based on 20 highly cited papers from each year. We believe that papers that are frequently cited within the community are more likely to be accurately classified. The authors mainly reviewed the introduction, methodology, and results sections to confirm the relevance and authenticity of the papers. However, we acknowledge that these steps may not fully eliminate the inclusion of irrelevant papers, which could skew the results of our meta-analysis.

SDG framework

The examination of sustainable development goals (SDGs) reveals their interconnected nature, where the achievement of one goal often supports progress in others. Studies by Le Blanc (2015) and Allison et al. (2016) have mapped out the complex web of relationships among the SDGs, identifying both strong and subtle linkages across different objectives. To visualize these connections, we employed a cocitation mapping approach using VOSviewer 39 , which allows us to depict the semantic relationships between SDGs through their cocitation rates in scholarly works. This approach generates a visual map where each SDG is represented as a node, with the node size reflecting the goal's research prominence and the thickness of the lines between nodes indicating the frequency of cocitations among the goals. This visual representation reveals the SDGs as an intricate but unified framework, emphasizing the collaborative nature of global sustainability initiatives.

Topic prominence percentile

The Scopus prominence percentile is a crucial metric indicating the visibility and impact of emerging research topics within the scientific community. High-ranking topics in this percentile are rapidly gaining attention, highlighting emerging trends and areas poised for significant advancements. This tool enables researchers and policymakers to identify and focus on innovative topics, ensuring that their efforts align with the forefront of scientific development 35 , 36 , 37 . Topics above the 99.9th percentile were used in this study.

Results and discussion

Rq1: sdg framework and interdisciplinary research (rq4).

This study evaluates biomimicry research through the framework of SDGs. A cocitation SDG map shows two clusters and provides insights into the interplay between biomimicry themes and SDGs, highlighting the cross-disciplinary nature of this research (Fig.  1 ). The blue box hidden behind the “3 – Good Health and Well-being” and “7 – Affordable and Clean Energy” is “11 – Sustainable cities and Communities”. The blue box hidden behind “15 – Life on Land” is “16 – Peace, Justice and Strong institutions”.

figure 1

Interdisciplinary SDG network of biomimicry research.

Cluster 1 (Red): Biomimetic innovations for health, partnership, and life on land

This cluster comprises a diverse array of research articles that explore the application of biomimicry across various SDGs 3 (health), 17 (partnership), and 15 (land). The papers in this cluster delve into innovative biomimetic ideas, each contributing uniquely to the intersection of sustainable development and biological inspiration. SDG 3, emphasizing good health and well-being for all, is significantly represented, indicating a global effort to leverage biomimicry for advancements in healthcare, such as new medication delivery systems and medical technologies. Similarly, the frequent citations of SDG 17 underscore the vital role of partnerships in achieving sustainable growth, especially where bioinspired solutions require interdisciplinary collaboration to address complex challenges. Finally, the prominence of 15 SDG citations reflects a commitment to preserving terrestrial ecosystems, where biomimicry is increasingly applied in land management, demonstrating nature's adaptability and resilience as a model for sustainable practices. Table 2 lists the top 5 relevant papers from Cluster 1, further illustrating the multifaceted application of biomimicry in addressing these SDGs.

A unique binary variant of the gray wolf optimization (GWO) technique, designed especially for feature selection in classification tasks, was presented by Emary et al. 40 . GWO is a method inspired by the social hierarchy and hunting behavior of gray wolves to find the best solutions to complex problems. This bioinspired optimization technique was used to optimize SDG15, which also highlights its ecological benefits. The results of the study highlight the effectiveness of binary gray wolf optimization in identifying the feature space for ideal pairings and promoting environmental sustainability and biodiversity. Lin et al. 41 focused on SDG 3 by examining catalytically active nanomaterials as potential candidates for artificial enzymes. While acknowledging the limits of naturally occurring enzymes, this study explores how nanobiotechnology can address problems in the food, pharmaceutical, and agrochemical sectors.

The investigation of enzymatic nanomaterials aligns with health-related objectives, highlighting the potential for major improvements in human health. Parodi et al. 42 used biomimetic leukocyte membranes to functionalize synthetic nanoparticles, extending biomimicry into the biomedical domain. To meet SDG 3, this research presents "leukolike vectors," which are nanoporous silicon particles that can communicate with cells, evade the immune system, and deliver specific payloads. In line with the SDGs about health, this study emphasizes the possible uses of biomimetic structures in cancer detection and treatments. A novel strategy for biological photothermal nanodot-based anticancer therapy utilizing peptide‒porphyrin conjugate self-assembly was presented by Zou et al. 43 . For therapeutic reasons, efficient light-to-heat conversion can be achieved by imitating the structure of biological structures. By providing a unique biomimetic approach to cancer treatment and demonstrating the potential of self-assembling biomaterials in biomedical applications, this research advances SDG 3. Finally, Wang et al. 44 presented Monarch butterfly optimization (MBO), which is a bioinspired algorithm that mimics the migration patterns of monarch butterflies to solve optimization problems effectively. This method presents a novel approach to optimization, mimicking the migration of monarch butterflies, aligning with SDG 9. Comparative analyses highlight MBO's exceptional performance and demonstrate its capacity to address intricate issues about business and innovation, supporting objectives for long-term collaboration and sector expansion.

The publications in Cluster 1 show a wide range of biomimetic developments, from ecological optimization to new optimization techniques and biomedical applications. These varied contributions highlight how biomimicry can advance sustainable development in health, symbiosis, and terrestrial life.

Cluster 2 (green): Nature-inspired solutions for clean water, energy, and infrastructure

Cluster 2, which focuses on the innovative application of biomimicry in sustainable development, represents a range of research that aligns with SDGs 6 (sanitation), 7 (energy), 9 (infrastructure), and 14 (water). This cluster is characterized by studies that draw inspiration from natural processes and structures to offer creative solutions to sustainability-related challenges. The papers in this cluster, detailed in Table 3 , demonstrate how biomimicry can address key global concerns in a varied and compelling manner.

Within this cluster, the high citation counts for SDG 7 underscore the significance of accessible clean energy, a domain where biomimicry contributes innovative energy generation and storage solutions inspired by natural processes. This aligns with the growing emphasis on sustainable energy practices. The prominence of SDG 9 citations further highlights the global focus on innovation and sustainable industry, where biomimicry's role in developing nature-inspired designs is crucial for building robust systems and resilient infrastructure. Furthermore, the substantial citations for SDG 6 reflect a dedicated effort toward ensuring access to clean water and sanitation for all. In this regard, biomimicry principles are being applied in water purification technologies, illustrating how sustainable solutions modeled after natural processes can effectively meet clean water objectives.

The study by Sydney Gladman et al. (2016), which presented the idea of shape-morphing systems inspired by nastic plant motions, is one notable addition to this cluster. This discovery creates new opportunities for tissue engineering, autonomous robotics, and smart textile applications by encoding composite hydrogel designs that exhibit anisotropic swelling behavior. The emphasis of SDG 9 on promoting industry, innovation, and infrastructure aligns with this biomimetic strategy. SDGs 7 and 13 are addressed in the study of Li et al. 45 , which is about engineering heterogeneous semiconductors for solar water splitting. This work contributes to the goals of inexpensive, clean energy and climate action by investigating methods such as band structure engineering and bionic engineering to increase the efficiency of solar water splitting. Li et al. 46 conducted a thorough study highlighting the importance of catalysts for the selective photoreduction of CO2 into solar fuels. This review offers valuable insights into the use of semiconductor catalysts for selective photocatalytic CO2 reduction. Our work advances sustainable energy solutions by investigating biomimetic, metal-based, and metal-free cocatalysts and contributes to SDGs 7 and 13. Wang et al. 47 address the critical problem of water pollution. Creating materials with superlyophilic and superlyophobic qualities offers a creative method for effectively separating water and oil. This contributes to the goals of clean water, industry, innovation, and life below the water. It also correlates with SDGs 6, 9, and 14. Singh et al. 48 also explored the 'green' synthesis of metals and their oxide nanoparticles for environmental remediation, which furthers SDG 9. This review demonstrates the environmentally benign and sustainable features of green synthesis and its potential to lessen the environmental impact of conventional synthesis methods.

Cluster 2 provides nature-inspired solutions for clean water, renewable energy, and sustainable infrastructure, demonstrating the scope and importance of biomimicry. The varied applications discussed in these papers help overcome difficult problems and advance sustainable development in line with several SDGs.

RQ2: Emerging research topics

Temporal evolution of emerging topics.

Figure  2 displays the publication counts for various emerging topics from 2013 to 2022, indicating growth trends over the years. For 'Metaheuristics', there is a notable increase in publications peaking in approximately 2020, suggesting a surge in interest. 'Strain sensor' research steadily increased, reaching its highest publication frequency toward the end of the period, which is indicative of growing relevance in the field. 'Bioprinting' sharply increased over the next decade, subsequently maintaining high interest, which highlights its sustained innovation. In contrast, 'Actuators' showed fluctuating publication counts, with a recent upward trend. 'Cancer' research, while historically a major topic, displayed a spike in publications in approximately 2018, possibly reflecting a breakthrough or increased research funding. 'Myeloperoxidase' has a smaller presence in the literature, with a modest peak in 2019. The number of 'Water '-related publications remains relatively low but shows a slight increase, suggesting a gradual but increasing recognition of its importance. Research on exosomes has significantly advanced, particularly since 2018, signifying a greater area of focus. 'Mechanical' topic publications have moderate fluctuations without a clear trend, indicating steady research interest. 'Micromotors' experienced an initial publication surge, followed by a decline and then a recent resurgence, possibly due to new technological applications. 'Nanogenerators' have shown a dramatic increase in interest, particularly in recent years, while 'Hydrogel' publications have varied, with a recent decline, which may point toward a shift in research focus or maturity of the topic.

figure 2

Evolution of emerging topics according to publications (y-axis denotes the number of publications; x-axis denotes the year of publication).

Figure  3 presents the distribution of various research topics based on their prominence percentile and total number of publications. Topics above the 99.9th percentile and to the right of the vertical threshold line represent the most emergent and prolific topics of study. Next, we examine the topics within each of the four quadrants, focusing on how each topic has developed over the years in relation to SDGs and the key phrases associated with each topic.

figure 3

Distribution of research topics based on prominence percentile and total number of publications.

Next, we examine each research topic in four quadrants, assessing their evolution concerning SDGs. We also analyze the keyphrase cloud to identify which keyphrases are most relevant (indicated by their font size) and whether they are growing or not. In the key phrase cloud, green indicates an increasing relevance of the key phrase, grey signifies that its relevance remains constant, and blue represents a declining relevance of the key phrase.

Niche biomimetic applications

These are topics with a lower number of publications and prominence percentiles, indicating specialized or emerging areas of research that are not yet widely recognized or pursued (Quadrant 1—bottom left).

Myeloperoxidase; colorimetric; chromogenic compounds

The inclusion of myeloperoxidase indicates that inflammation and the immune system are the main research topics. The focus on chromogenic and colorimetric molecules suggests a relationship to analytical techniques for identifying biological materials. The evolution of the research is depicted in Fig.  4 a shows an evolving emphasis on various sustainable development goals (SDGs) over time. The research trajectory, initially rooted in SDG 3 (Good Health and Well-being), has progressively branched out to encompass SDG 7 (Affordable and Clean Energy) and SDG 6 (Clean Water and Sanitation), reflecting an expanding scope of inquiry within the forestry sciences. More recently, the focus has transitioned toward SDG 15 (Life on Land), indicating an increased recognition of the interconnectedness between forest ecosystems and broader environmental and sustainability goals. This trend underscores the growing complexity and multidisciplinary nature of forestry research, highlighting the need to address comprehensive ecological concerns along with human well-being and sustainable development.

figure 4

Evolution of research ( a ) and key phrases ( b ).

The word cloud in Fig.  4 b highlights key phrases such as 'Biocompatible', 'Actuator', and 'Self-healing Hydrogel', reflecting a focus on advanced materials, while terms such as 'Elastic Modulus' and 'Polymeric Networks' suggest an emphasis on the structural properties essential for creating innovative diagnostic and environmental sensing tools. Such developments are pertinent to health monitoring and water purification, resonating with SDG 3 (Good Health and Well-being) and SDG 6 (Clean Water and Sanitation). The prominence of 'Self-healing' and 'Bioinspired' indicates a shift toward materials that emulate natural processes for durability and longevity, supporting sustainable industry practices aligned with SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible Consumption and Production), contributing to the overarching aim of sustainable development.

Next, we analyzed the top 3 cited publications. Catalytically active nanomaterials, or nanozymes, are exciting candidates for artificial enzymes, according to Lin et al. 41 . The authors explore the structural features and biomimetics applications of these enzymes, classifying them as metal-, carbon-, and metal oxide-based nanomaterials. This study emphasizes the benefits of enzymes over natural enzymes, including their high stability, variable catalytic activity, and controlled production. Wang et al. 49 developed biomimetic nanoflowers made from nanozymes to cause intracellular oxidative damage in hypoxic malignancies. Under both normoxic and hypoxic conditions, the nanoflowers demonstrated catalytic efficiency. By overcoming the constraints of existing systems that depend on oxygen availability or external stimuli, this novel technique represents a viable treatment option for malignant neoplasms. Gao et al. 50 investigated the use of a dual inorganic nanozyme-catalyzed cascade reaction as a biomimetic approach for nanocatalytic tumor therapy. This approach produces a high level of therapeutic efficacy by cascading catalytic events inside the tumor microenvironment. This study highlights the potential of inorganic nanozymes for achieving high therapeutic efficacy and outstanding biosafety, which adds to the growing interest in nanocatalytic tumor therapy.

Water; hydrophobicity; aerogels

With an emphasis on hydrophobicity, aerogel use, and water-related features, this topic relates to materials science and indicates interest in cutting-edge materials with unique qualities. From Fig.  5 a, we can see that, initially, the focus was directed toward SDG 6 (Clean Water and Sanitation), which is intrinsically related to the research theme, as biomimetic approaches are leveraged to develop innovative water purification and management solutions. As the research progressed, the scope expanded to intersect with SDG 14 (Life Below Water) and SDG 7 (Affordable and Clean Energy), signifying a broadened impact of biomimetic innovations in marine ecosystem conservation and energy-efficient materials. The gradual involvement with SDG 9 (industry, innovation, and infrastructure) and SDG 13 (climate action) indicates the interdisciplinary reach of this research, which aims to influence industrial practices and climate change mitigation strategies.

figure 5

The word cloud in Fig.  5 b reinforces this narrative by showcasing key phrases such as 'Hydrophobic', 'Bioinspired', 'Emulsion', and 'Oil Pollution', which reflect the emphasis on developing materials and technologies that mimic natural water repellency and separation processes. 'Aerogel' and 'polydopamine', along with 'Underwater' and 'Biomimetic Cleaning', suggest a strong focus on creating lightweight, efficient materials capable of self-cleaning and oil spill remediation. These keywords encapsulate the essence of the research theme, demonstrating a clear alignment with the targeted SDGs and the overall aim of sustainable development through biomimicry.

Three highly referenced works that have made substantial contributions to the field of biomimetic materials for oil/water separation are included in the table. The development of superlyophilic and superlyophobic materials for effective oil/water separation was examined by Wang et al. 47 . This review highlights the applications of these materials in separating different oil-and-water combinations by classifying them according to their surface wettability qualities. The excellent efficiency, selectivity, and recyclability of the materials—which present a viable treatment option for industrial oily wastewater and oil spills—are highlighted in the paper. Su et al. 51 explored the evolution of super wettability systems. The studies included superhydrophobicity, superoleophobicity, and undersea counterparts, among other extreme wettabilities. The kinetics, material structures, and wetting conditions related to obtaining superwettability are covered in the article. This demonstrates the wide range of uses for these materials in chemistry and materials science, including self-cleaning fabrics and systems for separating oil and water. Zhang et al. 52 presented a bioinspired multifunctional foam with self-cleaning and oil/water separation capabilities. To construct a polyurethane foam with superhydrophobicity and superoleophobicity, this study used porous biomaterials and superhydrophobic self-cleaning lotus leaves. Foam works well for separating oil from water because of its slight weight and ability to float on water. It also shows exceptional resistance to corrosive liquids. According to the article, multifunctional foams for large-scale oil spill cleaning might be designed using a low-cost fabrication technology that could be widely adopted.

Growing interest in bioinspired healthcare

These topics have a higher prominence percentile but a lower number of publications, suggesting growing interest and importance in the field despite a smaller body of research (Quadrant 2—top left).

Exosomes; extracellular vesicles; MicroRNAs

Exosomes and extracellular vesicles are essential for intercellular communication, and reference to microRNAs implies a focus on genetic regulation. The evolution of this topic reflects an increasing alignment with specific sustainable development goals (SDGs) over the years. The initial research focused on SDG 3 (good health and well-being) has expanded to encompass SDG 9 (industry, innovation, and infrastructure) and SDG 6 (clean water and sanitation), showcasing the multifaceted impact of biomimetic research in healthcare (Fig.  6 a). The research trajectory into SDG 9 and SDG 6 suggests broader application of bioinspired technologies beyond healthcare, potentially influencing sustainable industrial processes and water treatment technologies, respectively.

figure 6

The word cloud (Fig.  6 b) underscores the central role of 'Extracellular Vesicles' and 'Exosomes' as platforms for 'Targeted Drug Delivery' and 'Nanocarrier' systems, which are key innovations in medical biotechnology. The prominence of terms such as 'Bioinspired', 'Biomimetic', 'Liposome', and 'Gold Nanoparticle' illustrates the inspiration drawn from biological systems for developing advanced materials and delivery mechanisms. These key phrases indicate significant advancements in 'Controlled Drug Delivery Systems', 'Cancer Chemotherapy', and 'Molecular Imaging', which have contributed to improved diagnostics and treatment options, consistent with the objectives of SDG 3.

The work by Jang et al. 53 , which introduced bioinspired exosome-mimetic nanovesicles for improved drug delivery to tumor tissues, is one of the most cited articles. These nanovesicles, which resemble exosomes but have higher creation yields, target cells and slow the growth of tumors in a promising way. Yong et al.'s 54 work presented an effective drug carrier for targeted cancer chemotherapy, focusing on biocompatible tumor cell-exocytosed exosome-biomimetic porous silicon nanoparticles. A paper by Cheng et al. 55 discussed the difficulties in delivering proteins intracellularly. This study suggested a biomimetic nanoparticle platform that uses extracellular vesicle membranes and metal–organic frameworks. These highly cited studies highlight the importance of biomimetic techniques in improving drug delivery systems for improved therapeutic interventions.

Nanogenerators; piezoelectric; energy harvesting

This topic advises concentrating on technology for energy harvesting, especially for those that use piezoelectric materials and nanogenerators. We see a rising focus on medical applications of biomimetics, from diagnostics to energy harvesting mimicking biological systems.

The evolution of this research topic reflects a broader contribution to the SDGs by not only addressing healthcare needs but also by promoting sustainable energy practices and supporting resilient infrastructure through biomimetic innovation (Fig.  7 a). Initially, the emphasis on SDG 3 (Good Health and Well-being) suggested the early application of biomimetic principles in healthcare, particularly in medical devices and diagnostics leveraging piezoelectric effects. Over time, the transition toward SDG 7 (Affordable and Clean Energy) and SDG 9 (Industry, Innovation, and Infrastructure) indicates an expansion of bioinspired technologies into sustainable energy solutions and industrial applications. Nanogenerators and energy harvesting techniques draw inspiration from biological processes and structures, aiming to optimize energy efficiency and contribute to clean energy initiatives.

figure 7

The word cloud in Fig.  7 b emphasizes key phrases such as 'Piezoelectric', 'Energy Harvesting', 'Tactile Sensor', 'Triboelectricity', and 'Nanogenerators', highlighting the core technologies that are being developed. These terms, along with 'Bioinspired', 'Wearable Electronic Devices', and 'Energy Conversion Efficiency', illustrate the convergence of natural principles with advanced material science to create innovative solutions for energy generation and sensor technology.

Yang et al.'s 56 study in Advanced Materials presented the first triboelectrification-based bionic membrane sensor. Wearable medical monitoring and biometric authentication systems will find new uses for this sensor since it allows self-powered physiological and behavioral measurements, such as noninvasive human health evaluation, anti-interference throat voice recording, and multimodal biometric authentication. A thorough analysis of the state-of-the-art in piezoelectric energy harvesting was presented by Sezer and Koç 57 . This article addresses the fundamentals, components, and uses of piezoelectric generators, highlighting their development, drawbacks, and prospects. It also predicts a time when piezoelectric technology will power many electronics. The 2021 paper by Zhao et al. 58 examines the use of cellulose-based materials in flexible electronics. This section describes the benefits of these materials and the latest developments in intelligent electronic device creation, including biomimetic electronic skins, optoelectronics, sensors, and optoelectronic devices. This review sheds light on the possible drawbacks and opportunities for wearable technology and bioelectronic systems based on cellulose.

Leading edge of biomimetic sensing and electronics

This quadrant represents topics with both a high number of publications and a prominence percentile, indicating well-established and influential research areas (Quadrant 3—top right).

Strain sensor; flexible electronics; sensor

Figure  8 a highlights the progress of research on bioinspired innovations, particularly in the development of strain sensors and flexible electronics for adaptive sensing technologies. Initially, concentrated on health applications aligned with SDG 3 (Good Health and Well-being), the focus has expanded. The integration of SDG 9 (Industry, Innovation, and Infrastructure) indicates a shift toward industrial applications, while the incorporation of SDG 7 (Affordable and Clean Energy) suggests a commitment to energy-efficient solutions. Additionally, the mention of SDG 11 (Sustainable Cities and Communities) and SDG 12 (Responsible Consumption and Production) reflects the broadening scope to include urban sustainability and eco-friendly manufacturing practices.

figure 8

Figure  8 b provides insight into the key phrases associated with this research topic, highlighting terms such as 'Bioinspired', 'Self-healing', 'Wearable Electronic Devices', 'Flexible Electronics', and 'Pressure Sensor'. These key phrases speak to the innovative approaches for creating sensors and electronics that are not only inspired by biological systems but also capable of seamlessly integrating human activity and environmental needs. The mention of 'Wearable Sensors' and 'Tactile Sensor' indicates a focus on user interaction and sensitivity, which is crucial for medical applications and smart infrastructure.

The top three articles with the most citations represent the cutting edge of this topic’s study. Chortos et al. 59 investigated how skin characteristics can be replicated for medicinal and prosthetic uses. Kim et al. 60 focused on creating ultrathin silicon nanoribbon sensors for smart prosthetic skin, opening up new possibilities for bionic systems with many sensors. A bioinspired microhairy sensor for ultraconformability on nonflat surfaces was introduced in Pang et al.'s 61 article, which significantly improved signal-to-noise ratios for accurate physiological measurements.

Cancer; photoacoustics; theranostic nanomedicine

Modern technologies such as photoacoustics, theranostic nanomedicine, and cancer research suggest that novel cancer diagnosis and therapy methods are highly needed. Figure  9 a traces the research focus that has evolved across various SDGs over time, commencing with SDG 3 (Good Health and Well-being), which is indicative of the central role of health in biomimetic research. It then extends into SDG 9 (Industry, Innovation, and Infrastructure) and SDG 7 (Affordable and Clean Energy), illustrating the cross-disciplinary applications of biomimetic technologies from healthcare to the energy and industrial sectors.

figure 9

Figure  9 b provides a snapshot of the prominent keywords within this research theme, featuring terms such as “photodynamic therapy”, “photothermal chemotherapy”, “nanocarrier”, and “controlled drug delivery”. These terms underscore the innovative therapeutic strategies that mimic biological mechanisms for targeted cancer treatment. 'Bioinspired' and 'Biomimetic Synthesis' reflect the approach of deriving design principles from natural systems for the development of advanced materials and medical devices. 'Theranostic nanomedicine' integrates diagnosis and therapy, demonstrating a trend toward personalized and precision medicine.

A study conducted by Yu et al. 62 presented a novel approach for synergistic chemiexcited photodynamic-starvation therapy against metastatic tumors: a biomimetic nanoreactor, or bio-NR. Bio-NRs use hollow mesoporous silica nanoparticles to catalyze the conversion of glucose to hydrogen peroxide for starvation therapy while also producing singlet oxygen for photodynamic therapy. Bio-NR is promising for treating cancer metastasis because its coating on cancer cells improves its biological qualities. Yang et al.'s 63 study focused on a biocompatible Gd-integrated CuS nanotheranostic agent created via a biomimetic approach. This drug has low systemic side effects and good photothermal conversion efficiency, making it suitable for skin cancer therapy. It also performs well in imaging. The ultrasmall copper sulfide nanoparticles generated within ferritin nanocages are described in Wang et al.’s 64 publication. This work highlights the possibility of photoacoustic imaging-guided photothermal therapy with improved therapeutic efficiency and biocompatibility. These highly referenced articles highlight the significance of biomimetic techniques in furthering nanotheranostics and cancer therapy.

Established biomimetic foundations

Here, there are topics with a greater number of publications but a lower prominence percentile, which may imply areas where there has been significant research but that may be waning in influence or undergoing a shift in focus (Quadrant 4—bottom right).

Metaheuristics; Fireflies; Chiroptera

This topic is a fascinating mix of subjects. Using Firefly and Chiroptera in metaheuristic optimization algorithms provides a bioinspired method for resolving challenging issues. The thematic progression of research papers suggests the maturation of biomimetic disciplines that resonate with several SDGs (Fig.  10 a). The shift from initially aligning with SDG 3 (Good Health and Well-being) extends to intersecting with goals such as SDG 9 (Industry, Innovation, and Infrastructure), SDG 7 (Affordable and Clean Energy), SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), and SDG 15 (Life on Land). This diversification reflects the expansive utility of biomimetic approaches, from health applications to broader environmental and societal challenges.

figure 10

The top keyphrases, such as 'Swarm Intelligence', 'Global Optimization', 'Cuckoo Search Algorithm', and 'Particle Swarm Optimization', are shown in Fig.  10 b highlights the utilization of nature-inspired algorithms for solving complex optimization problems. These terms, along with the 'Firefly Algorithm' and 'Bat Algorithm', underscore the transition of natural phenomena into computational algorithms that mimic the behavioral patterns of biological organisms, offering robust solutions in various fields, including resource management, logistics, and engineering design.

The three highly referenced metaheuristic publications centered around the “Moth Flame Optimization (MFO),” Salp Swarm Algorithm (SSA),” and Whale Optimization Algorithm (WOA).” The WOA, authored by Mirjalili and Lewis 65 , is a competitive solution for mathematical optimization and structural design issues because it emulates the social behavior of humpback whales. Inspired by the swarming behavior of salps, Mirjalili et al. 66 introduced the SSA and multiobjective SSA. This shows how well they function in optimizing a variety of engineering design difficulties. Finally, Mirjalili 67 suggested the MFO algorithm, which is modeled after the navigational strategy of moths and exhibits competitive performance in resolving benchmark and real-world engineering issues.

Bioprinting; three-dimensional printing; tissue engineering

The emphasis on sophisticated manufacturing methods for biological applications in this field suggests a keen interest in the nexus of biology and technology, especially in tissue engineering. As shown in Fig.  11 a, the topic's evolution encompasses Sustainable Development Goals (SDGs) that have transitioned over the years, including SDG 3 (Good Health and Well-being), which is inherently connected to the advancement of medical technologies and tissue engineering for health applications. This research also touches upon SDG 6 (Clean Water and Sanitation) and SDG 7 (Affordable and Clean Energy), suggesting applications of bioprinting technologies in the environmental sustainability and energy sectors. The progression toward SDG 9 (Industry, Innovation, and Infrastructure) and SDG 15 (Life on Land) reflects a broader impact, where biomimetic principles are applied to foster innovation in industrial processes and contribute to the preservation of terrestrial ecosystems.

figure 11

Key phrases emerging from the word cloud in Fig.  11 b, such as “Hydrogel”, “Biofabrication”, “Tissue Scaffold”, and “Regenerative Medicine”, highlight the specialized methodologies and materials that are inspired by natural processes and structures. Terms such as 'Three-Dimensional Printing' and 'Bioprinting' underscore the technological advancements in creating complex biological structures, aiming to revolutionize the field of tissue engineering and regenerative medicine.

Three widely referenced papers about advances in 3D printing—particularly in bioprinting, soft matter, and the incorporation of biological tissue with functional electronics—are described next. Truby and Lewis’s 68 review of light- and ink-based 3D printing techniques is ground-breaking. This highlights the technology's capacity to create soft matter with tunable properties and its potential applications in robotics, shape-morphing systems, biologically inspired composites, and soft sensors. Ozbolat, and Hospodiuk 69 provide a thorough analysis of “extrusion-based bioprinting (EBB).” The adaptability of EBB in printing different biologics is discussed in the paper, with a focus on its uses in pharmaceutics, primary research, and clinical contexts. Future directions and challenges in EBB technology are also discussed. Using 3D printing, Mannoor et al. 70 presented a novel method for fusing organic tissue with functioning electronics. In the proof-of-concept, a hydrogel matrix seeded with cells and an interwoven conductive polymer containing silver nanoparticles are 3D printed to create a bionic ear. The improved auditory sensing capabilities of the printed ear show how this novel technology allows biological and nanoelectronic features to work together harmoniously.

RQ3: Translation and commercialization

Biomimicry offers promising solutions for sustainability in commercial industries with environmentally sustainable product innovation and energy savings with reduced resource commitment 71 . However, translating biomimicry innovations from research to commercialization presents challenges, including product validation, regulatory hurdles, and the need for strategic investment, innovative financial models, and interdisciplinary collaboration 71 , 72 , 73 , 74 . Ethical considerations highlight the need for universally applicable ethical guidelines regarding the moral debates surrounding biomimicry, such as motivations for pursuing such approaches and the valuation of nature 75 .

Addressing these barriers requires interdisciplinary collaboration, targeted education, and training programs. Strategic investment in biomimicry research and development is also crucial. Encouraging an engineering mindset that integrates biomimicry principles into conventional practices and developing commercial acumen among researchers is essential for navigating the market landscape 76 . Securing sufficient funding is essential for the development, testing, and scaling of these innovations 76 .

Successful case studies illustrate that the strategic integration of biomimicry enhances corporate sustainability and innovation (Larson & Meier 2017). In biomedical research, biomimetic approaches such as novel scaffolds and artificial skins have made significant strides (Zhang 2012). Architecture benefits through energy-efficient building facades modeled after natural cooling systems (Webb et al. 2017). The textile industry uses biomimicry to create sustainable, high-performance fabrics 77 .

RQ4: Interdisciplinary collaboration

Agricultural innovations (sdgs 1—no poverty and 2—zero hunger).

Environmental degradation, biodiversity loss, poverty, and hunger highlight the need for sustainable agricultural methods to mimic natural ecosystems. This includes computational models for ecological interactions, field experiments for biomimetic techniques, and novel materials inspired by natural soil processes. Research can develop solutions such as artificial photosynthesis for energy capture, polyculture systems mimicking ecosystem diversity, and bioinspired materials for soil regeneration and water retention 28 . These innovations can improve sustainability and energy efficiency in agriculture, addressing poverty and hunger through sustainable farming practices.

Educational models (SDG 4—Quality education)

Integrating sustainability principles and biomimicry into educational curricula at all levels presents opportunities for innovation. Collaborations between educators, environmental scientists, and designers can create immersive learning experiences that promote sustainability. This includes interdisciplinary curricula with biomimicry case studies, digital tools, and simulations for exploring biomimetic designs, and participatory learning approaches for engaging students with natural environments. Designing biomimicry-based educational tools and programs can help students engage in hands-on, project-based learning 10 , fostering a deeper understanding of sustainable living and problem-solving.

Gender-inclusive design (SDG 5—Gender inequality)

Gender biases in design and innovation call for research into biomimetic designs and technologies that facilitate gender equality. This includes participatory design processes involving women as cocreators, studying natural systems for inclusive strategies, and applying biomimetic principles to develop technologies supporting gender equality. Bioinspired technologies can address women's specific needs, enhancing access to education, healthcare, and economic opportunities. Interdisciplinary approaches involving gender studies, engineering, and environmental science can uncover new pathways for inclusive innovation.

Inclusive urban solutions (SDG 11—Sustainable cities and communities)

Rapid urbanization challenges such as housing shortages, environmental degradation, and unsustainable transportation systems require innovative solutions. Methodologies include systems thinking in urban planning, simulation tools for modeling biomimetic solutions, and pilot projects testing bioinspired urban innovations. Research on biomimetic architecture for affordable housing, green infrastructure for climate resilience, and bioinspired transportation systems can offer solutions. Collaborative efforts among architects, urban planners, ecologists, and sociologists are essential 78 .

Peace and justice (SDG 16—Peace, justice and institutions)

Social conflicts and weak institutions necessitate innovative approaches that integrate political science, sociology, and biology. Methods involve case studies, theoretical modeling, and participatory action research to develop strategies for peacebuilding and institutional development.

This research provides a comprehensive exploration of the multifaceted dimensions of biomimicry, SDG alignment, and interdisciplinary topics, demonstrating a clear trajectory of growth and relevance. Interdisciplinary collaboration has emerged as a pivotal strategy for unlocking the full potential of biomimicry in addressing underexplored SDGs.

While answering RQ1, the interdisciplinary analysis underscores the significant alignment of biomimicry research with several SDGs. This reflects the interdisciplinary nature of biomimicry and its ability to generate solutions for societal challenges. The analysis of two thematic clusters revealed the broad applicability of biomimicry across various sustainable development goals (SDGs). The first cluster includes health, partnership, and life on land (SDGs 3, 17, and 15), highlighting biomimicry's potential in medical technologies, sustainability collaborations, and land management. The second cluster encompasses clean water, energy, infrastructure, and marine life (SDGs 6, 7, 9, and 14), demonstrating innovative approaches to clean energy generation, sustainable infrastructure, and water purification.

In response to RQ2, this study highlights emerging topics within biomimicry research, such as metaheuristics and nanogenerators, which reflect a dynamic and evolving field that is swiftly gaining attention. These topics, alongside sensors, flexible electronics, and strain sensors, denote evolving research objectives and societal demands, pointing to new areas of study and innovation. This focus on interdisciplinary topics within biomimicry underscores the field’s adaptability and responsiveness to the shifting landscapes of technological and societal challenges.

In addressing RQ3, biomimicry holds potential for sustainable innovation but faces challenges in commercialization. Biomimicry inspires diverse technological and product innovations, driving sustainable advancements (Lurie-Luke 84 ). Overcoming these barriers through strategic investment, training, interdisciplinary collaboration, and ethical guidelines is essential for unlocking their full potential.

For RQ4 , the recommendations are formulated based on underexplored SDGs like 1, 4, 5, and 10 where biomimicry could play a pivotal role.

Future research could apply generative AI models to this dataset to validate the findings and explore additional insights. While our current study did not explore this topic, we see significant potential for this approach. Generative AI models can process extensive datasets and reveal patterns, potentially offering insights into biomimetic research correlations. The interpretation required for context-specific analysis remains challenging for generative AI 36 , 37

Our study provides valuable insights, but some limitations are worth considering. The chosen database might limit the comprehensiveness of the research captured, potentially excluding relevant work from other sources. Additionally, while the combination of cocitation mapping and BERTopic modeling provides a powerful analysis, both methods have inherent limitations. They may oversimplify the complexities of the field or introduce bias during theme interpretation, even with advanced techniques. Furthermore, our use of citations to thematically clustered publications as a proxy for impact inherits the limitations of citation analysis, such as biases toward established ideas and potential misinterpretations 79 , 80 . Another limitation of our study is the potential for missing accurate SDG mappings, as multiple SDG mapping initiatives are available, and our reliance on a single, Scopus-integrated method may not capture all relevant associations. Consequently, this could have resulted in the exclusion of papers that were appropriately aligned with certain SDGs but were not identified by our chosen mapping approach. Given these limitations, this study provides a valuable snapshot for understanding biomimicry research.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

El-Zeiny, R. M. A. Biomimicry as a problem solving methodology in interior architecture. Procedia. Soc. 50 , 502–512 (2012).

Article   Google Scholar  

Othmani, N. I., Sahak, N. M. & Yunos, M. Y. M. Biomimicry in agrotechnology: Future solution of water problem for the agriculture industry?. IOP Conf. Ser.: Earth Environ. Sci. 756 (1), 012051. https://doi.org/10.1088/1755-1315/756/1/012051 (2021).

Bensaude-Vincent, B. Bioinformed emerging technologies and their relation to the sustainability aims of biomimicry. Environ. Values 28 (5), 551–571 (2019).

Chirazi, J. E. Commercialization journeys: Bringing biomimetic innovation to the market. In Biomim. Mat., Des. and Habit. (pp. 393–436). Elsevier (2022).

Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A. K. Biomimetics: Its practice and theory. J. R. Soc. Interface 3 (9), 471–482 (2006).

Article   PubMed   PubMed Central   Google Scholar  

Pogge, T. & Sengupta, M. The sustainable development goals: A plan for building a better world?. J. Glob. Ethics 11 (1), 56–64 (2015).

Wamane, G. V. A “new deal” for a sustainable future: Enhancing circular economy by employing ESG principles and biomimicry for efficiency. Manag. Environ. Qual. https://doi.org/10.1108/MEQ-07-2022-0189 (2023).

Butt, A. N. & Dimitrijević, B. Multidisciplinary and transdisciplinary collaboration in nature-based design of sustainable architecture and urbanism. Sustainability 14 (16), 10339 (2022).

Gupta, J. & Vegelin, C. Sustainable development goals and inclusive development. INEA 16 , 433–448 (2016).

Google Scholar  

Hayes, S., Desha, C. & Baumeister, D. Learning from nature—Biomimicry innovation to support infrastructure sustainability and resilience. TFSC 161 , 120287 (2020).

Toner, J., Desha, C., Reis, K., Hes, D. & Hayes, S. Integrating ecological knowledge into regenerative design: A rapid practice review. Sustainability 15 (17), 13271 (2023).

Jamei, E. & Vrcelj, Z. Biomimicry and the built environment, learning from nature’s solutions. Appl. Sci. 11 (16), 7514 (2021).

Article   CAS   Google Scholar  

Blanco, E., Pedersen Zari, M., Raskin, K. & Clergeau, P. Urban ecosystem-level biomimicry and regenerative design: Linking ecosystem functioning and urban built environments. Sustainability 13 (1), 404 (2021).

Rebecca, C. Climate Action Through Biomimcry: Innovation for the SDGs. Sustainable Brands. https://sustainablebrands.com/read/product-service-design-innovation/climate-action-through-biomimicry-innovation-for-the-sdgs . (Accessed on January 9, 2024) (2020).

Vierra, S. Biomimicry: Designing to model nature. Whole Build. Des. Guide 1–10 (2011).

Biomimicry Institute. Case Studies of Commercialisation of Biomimicry Innovations (2023).

Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N. & Aoussat, A. Biomimetics: Process, tools and practice. Bioinsp. Biomim. 12 (1), 011002. https://doi.org/10.1088/1748-3190/12/1/011002 (2017).

Article   PubMed   CAS   Google Scholar  

Meena, A. K., D’Costa, D., Bhavsar, S., Kshirsagar, M. & Kulkarni, S. Applications of biomimicry in construction and architecture: A bibliometric analysis. Lib. Phil. Prac. Lincoln, NE, USA , 1–17 (2021).

Varshabi, N., Arslan Selçuk, S. & Mutlu Avinç, G. Biomimicry for energy-efficient building design: A bibliometric analysis. Biomimetics 7 (1), 21 (2022).

Perricone, V., Langella, C. & Santulli, C. Sustainable Biomimetics: A Discussion on Differences in Scale, Complexity, and Organization Between the Natural and Artificial World. In Bion. Sustain. Design 171–193 (Springer Nature Singapore, 2022).

Aggarwal, S., & Verma, A. Scientometric analysis of research trends in clustering and nature inspired techniques. In AIP Conf. Proc. (Vol. 2576, No. 1). AIP Publishing (2022, December).

Pinzón, O. A. & Austin, M. C. Nature as an Inspiration to Exploit Renewable Energy Sources: A Review on Trends and Biological Strategies. In 2022 8th International Engineering, Sciences and Technology Conference (IESTEC) 463–468 (IEEE, 2022).

Carniel, T., Cazenille, L., Dalle, J. M. & Halloy, J. Using natural language processing to find research topics in Living Machines conferences and their intersections with Bioinspiration & Biomimetics publications. Bioinsp. & Biomim 17 (6), 065008 (2022).

Nasser, H. K. et al. Harmony search algorithm for solving combinatorial optimization problems: Bibliometric analysis. Math. Model. Eng. Prob. 10 (3), 906 (2023).

Rusu, D. M. et al. Soft robotics: A systematic review and bibliometric analysis. Micromachines 14 (2), 359. https://doi.org/10.3390/mi14020359 (2023).

Shashwat, S. et al. A review on bioinspired strategies for an energy-efficient built environment. Energy Build. 296 , 113382 (2023).

Pires, P. M. et al. Bioactive restorative materials applied over coronal dentine—A bibliometric and critical review. Bioengineering 10 (6), 731. https://doi.org/10.3390/bioengineering10060731 (2023).

Article   PubMed   PubMed Central   CAS   Google Scholar  

Liu, H., Liao, X. & Du, B. The applications of nature-inspired meta-heuristic algorithms for decreasing the energy consumption of software-defined networks: A comprehensive and systematic literature review. Sustain. Comput.: Inform. Syst. 39 , 100895. https://doi.org/10.1016/j.suscom.2023.100895 (2023).

Hinkelman, K., Yang, Y. & Zuo, W. Design methodologies and engineering applications for ecosystem biomimicry: An interdisciplinary review spanning cyber, physical, and cyber-physical systems. Bioinsp. Biomim. 18 (2), 021001 (2023).

Raman, R., Lathabhai, H., Mandal, S., Kumar, C. & Nedungadi, P. Contribution of business research to sustainable development goals: bibliometrics and science mapping analysis. Sustainability 15 (17), 12982 (2023).

Nedungadi, P. et al. Mapping autism’s research landscape: Trends in autism screening and its alignment with sustainable development goals. Front. Psychiatry 14 , 1294254 (2024).

Auckland's SDG Mapping. University of Auckland's SDG Mapping initiative from https://www.sdgmapping.auckland.ac.nz , accessed on 4th February 2024

Elsevier's SDG Mapping - Elsevier's SDG Mapping Initiative from https://www.elsevier.com/about/partnerships/sdg-research-mapping-initiative , accessed on 4th February 2024

Raman, R., Nair, V. K., Prakash, V., Patwardhan, A. & Nedungadi, P. Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis. Energy Rep. 8 , 9242–9260 (2022).

Raman, R. et al. Fake news research trends, linkages to generative artificial intelligence and sustainable development goals. Heliyon 10 (3), e24727 (2024).

Raman, R. et al. ChatGPT: Literate or intelligent about UN sustainable development goals?. Plos one 19 (4), e0297521 (2024).

Raman, R., Calyam, P. & Achuthan, K. ChatGPT or bard: Who is a better certified ethical hacker?. Comput. Secur. 140 , 103804 (2024).

Rama, R., Nair, V. K., Nedungadi, P., Ray, I. & Achuthan, K. Darkweb research: Past, present, and future trends and mapping to sustainable development goals. Heliyon 9 (11), e22269 (2023).

Van Eck, N. J. & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84 , 523–538 (2010).

Article   PubMed   Google Scholar  

Emary, E., Zawbaa, H. M. & Hassanien, A. E. Binary gray wolf optimization approaches for feature selection. Neurocomputing 172 , 371–381 (2016).

Lin, Y., Ren, J. & Qu, X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 47 (4), 1097–1105 (2014).

Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8 (1), 61–68 (2013).

Article   ADS   PubMed   CAS   Google Scholar  

Zou, Q. et al. Biological photothermal nanodots based on self-assembly of peptide–porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 139 (5), 1921–1927 (2017).

Wang, G. G., Deb, S. & Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 31 , 1995–2014 (2019).

Li, X. et al. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. 3 (6), 2485–2534 (2015).

Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO 2 into solar fuels. Chem. Rev. 119 (6), 3962–4179 (2019).

Wang, B., Liang, W., Guo, Z. & Liu, W. Biomimetic superlyophobic and superlyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem. Soc. Rev. 44 (1), 336–361 (2015).

Singh, J. et al. ‘Green’synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 16 (1), 1–24 (2018).

Wang, Z. et al. Biomimetic nanoflowers by self-assembling nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9 (1), 3334 (2018).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Gao, S. et al. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6 (3), 1801733 (2019).

Su, B., Tian, Y. & Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 138 (6), 1727–1748 (2016).

Zhang, X., Li, Z., Liu, K. & Jiang, L. Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv. Funct. Mater. 23 (22), 2881–2886 (2013).

Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7 (9), 7698–7710 (2013).

Yong, T. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10 (1), 3838 (2019).

Cheng, G. et al. Self-assembly of extracellular vesicle-like metal–organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 140 (23), 7282–7291 (2018).

Yang, J. et al. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27 (8), 1316–1326 (2015).

Sezer, N. & Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80 , 105567 (2021).

Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33 (28), 2000619 (2021).

Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. mater. 15 (9), 937–950 (2016).

Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5 (1), 5747 (2014).

Pang, C. et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27 (4), 634–640 (2015).

Yu, Z., Zhou, P., Pan, W., Li, N. & Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic and starvation therapy against tumor metastasis. Nat. Commun. 9 (1), 5044 (2018).

Yang, W. et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 10 (11), 10245–10257 (2016).

Wang, Z. et al. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10 (3), 3453–3460 (2016).

Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 95 , 51–67 (2016).

Mirjalili, S. et al. Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems. Adv. Eng. Softw. 114 , 163–191 (2017).

Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89 , 228–249 (2015).

Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540 (7633), 371–378 (2016).

Ozbolat, I. T. & Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomater. 76 , 321–343 (2016).

Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13 (6), 2634–2639 (2013).

Article   ADS   PubMed   PubMed Central   CAS   Google Scholar  

Kennedy, E. B. & Marting, T. A. Biomimicry: Streamlining the front end of innovation for environmentally sustainable products. Res. Technol. Manage. 59 (4), 40–48 (2016).

Chazhaev, M. Economic potential of biotechnologies: challenges and windows of opportunity. BIO Web Conf. 76 , 10002 (2023).

Kasatova, A. A., Vagizova, V. I. & Tufetulov, A. M. Stages of biotechnology commercialization in the system of interaction between financial and innovative industrial structures. Acad. Strateg. Manag. J. 15 , 191 (2016).

Rovalo, E., McCardle, J., Smith, E. & Hooker, G. Growing the practice of biomimicry: Opportunities for mission-based organisations based on a global survey of practitioners. Technol. Anal. Strateg. Manag. 32 (1), 71–87 (2020).

Broeckhoven, C. & Winters, S. Biomimethics: a critical perspective on the ethical implications of biomimetics in technological innovation. Bioinspir. Biomim. 18 (5), 053001 (2023).

Article   ADS   Google Scholar  

Biomimicry Innovation Lab. The State of Nature-Inspired Innovation in the UK. Retrieved from https://www.biomimicryinnovationlab.com/blog/the-state-of-nature-inspired-innovation-in-the-uk (2023).

Weerasinghe, D. U., Perera, S. & Dissanayake, D. Application of biomimicry for sustainable functionalization of textiles: Review of current status and prospectus. Textile Res. J. 89 (22), 4282–4294 (2019).

Madmar, S., Shah, M. Z., Matusin, A. M. R. A. & Ilhan, A. A. Applications of biomimicry to urban planning: interrogating the relevance of emerging approaches to design cities by inspiring from nature. IOP Conf. Ser.: Earth Environ. Sci. 1274 (1), 012015 (2023).

Letrud, K. & Hernes, S. Affirmative citation bias in scientific myth debunking: A three-in-one case study. PLoS One 14 (9), e0222213 (2019).

McCain, K. W. Obliteration by incorporation. Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. J. Scientometr. Res. 4 (1), 129–149 (2014).

Benyus, J. M. (1997). Biomimicry: Innovation inspired by nature.

Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. , 135 , 758–773.

Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature materials , 15 (4), 413–418.

Lurie-Luke, E. Product and technology innovation: What can biomimicry inspire?. Biotechnology advances , 32 (8), 1494–1505 (2014).

Download references

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and affiliations.

Amrita School of Business, Amritapuri, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India

Raghu Raman

Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Aswathy Sreenivasan & M. Suresh

Amrita School of Computing, Amritapuri, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India

Prema Nedungadi

You can also search for this author in PubMed   Google Scholar

Contributions

R.R.—Conceptualization; supervision; methodology; data curation; visualization; writing—original draft; and writing—review and editing. A.S.—Data curation; Writing—original draft; and Writing—review and editing. M.S.—writing—original draft; and writing—review and editing. P.N.—Data curation; writing—original draft; and writing—review and editing.

Corresponding author

Correspondence to Raghu Raman .

Ethics declarations

Competing interests.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Raman, R., Sreenivasan, A., Suresh, M. et al. Mapping biomimicry research to sustainable development goals. Sci Rep 14 , 18613 (2024). https://doi.org/10.1038/s41598-024-69230-9

Download citation

Received : 28 April 2024

Accepted : 01 August 2024

Published : 10 August 2024

DOI : https://doi.org/10.1038/s41598-024-69230-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable development goal
  • Network map
  • Thematic areas

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

methodology in research report

Create an account

Create a free IEA account to download our reports or subcribe to a paid service.

Oil Market Report - August 2024

08 August

About this report

The IEA Oil Market Report (OMR) is one of the world's most authoritative and timely sources of data, forecasts and analysis on the global oil market – including detailed statistics and commentary on oil supply, demand, inventories, prices and refining activity, as well as oil trade for IEA and selected non-IEA countries.

  • Global oil demand increased by 870 kb/d in 2Q24, with a contraction in China limiting gains. Demand is set to rise by less than 1 mb/d in both 2024 and 2025. This is largely unchanged from last month’s Report and far slower than last year’s 2.1 mb/d growth as comparatively lacklustre macroeconomic drivers come to the fore.
  • World supply rose 230 kb/d to 103.4 mb/d in July as a substantial OPEC+ increase more than offset losses from non-OPEC+. Annual gains accelerate from 730 kb/d in 2024 to 1.9 mb/d in 2025. Non-OPEC+ production increases by 1.5 mb/d this year and next, while OPEC+ may fall by 760 kb/d in 2024 but rise by 400 kb/d in 2025 if voluntary cuts stay in place.
  • Global refinery throughputs are forecast to increase by 840 kb/d to 83.3 mb/d in 2024, and by 600 kb/d to 83.9 mb/d next year. Margin weakness continues to weigh on processing rates, with Chinese runs now expected to decline y-o-y. Margins fell further in July in Europe, but rose in Singapore and on the US Gulf Coast, led by stronger naphtha and gasoline cracks.
  • Global observed oil inventories fell by 26.2 mb in June, following four months of builds totalling 157.5 mb. OECD onshore stocks declined by 19.5 mb but were mostly offset by a 17.5 mb increase in non-OECD countries. Oil on water declined for a third consecutive month, by 24.2 mb. OECD Industry inventories were down by 21 mb, largely in line with the seasonal norm.
  • Brent crude futures tumbled by $6/bbl during July, as a string of weak macro-economic data prompted a broad risk-off sentiment across financial markets, outweighing escalating hostilities in the Middle East. Front-month time spreads remained resilient in the face of falling flat prices, reflecting a tight Atlantic Basin market. At the time of writing, Brent was trading at around $80/bbl.

Market gymnastics

Oil markets exhibited Olympic levels of volatility over recent weeks. Benchmark crude oil prices tumbled sharply lower in July and early August as unexpected economic data threw the market off balance. Questions over the health of the global economy re-emerged as Japan increased interest rates sparking a reversal in yen carry trades, China’s outlook deteriorated and US hiring slowed in July. But persistent geopolitical tensions in the Middle East and some relatively positive macroeconomic data backstopped weakness in oil futures, with prices rebounding higher in the second week of August. Moreover, OPEC+ cuts are also tightening physical markets, lifting North Sea Dated to a $2/bbl premium against the front-month ICE contract. At the time of writing, ICE Brent futures traded at around $80/bbl, down by more than $6/bbl since the start of July.

Our outlook for global oil demand is largely unchanged from last month’s Report, with growth projected at slightly less than 1 mb/d in both 2024 and 2025. However, a meaningful shift in drivers is becoming apparent. In June, Chinese oil demand contracted for a third consecutive month, driven by a slump in industrial inputs, including for the petrochemical sector. Preliminary trade data point to further weakness in July, as crude oil imports sank to their lowest level since the stringent lockdowns of September 2022. By contrast, demand in advanced economies, especially for US gasoline, has shown signs of strength in recent months. The US economy, where one-third of global gasoline is consumed, has outperformed peers, with a resilient service sector buttressing miles driven. As a result, OECD oil consumption flipped from a 300 kb/d annual contraction in 1Q24 to growth of 190 kb/d in the second quarter.

Despite the marked slowdown in Chinese oil demand growth, OPEC+ has yet to call time on its plan to gradually unwind voluntary production cuts starting in the fourth quarter. Its Joint Ministerial Monitoring Committee (JMMC) reiterated on 1 August, however, that the group could pause or reverse its decision depending on prevailing market conditions. Our current balances suggest that even if those cuts remain in place, global inventories could build by an average 860 kb/d next year as non-OPEC+ supply increases of around 1.5 mb/d in 2024 and again in 2025 more than cover expected demand growth. The Americas quartet of the United States, Guyana, Canada and Brazil account for three-quarters, or roughly 1.1 mb/d, of non-OPEC+ supply gains in each of the two years.

For now, supply is struggling to keep pace with peak summer demand, tipping the market into a deficit. As a result, global inventories have taken a hit. After four months of gains, June saw oil inventories fall by 26.2 mb. Crude oil stocks dropped by 40.9 mb, even as China built substantially. Meanwhile, oil products rose by 14.8 mb, supported by large builds in US LPG. Preliminary July data suggest this trend continued, with total stocks declining once again as crude inventories lost further ground while oil products made gains. This dynamic is squeezing refinery margins, potentially setting the stage for an upset and shift in refinery activity in the coming months. Competition in the oil markets will continue even after the Olympic and Paralympic

OPEC+ crude oil production 1 million barrels per day

Algeria 0.91 0.92 0.01 0.91 0.99 0.07
Congo 0.26 0.26 -0.02 0.28 0.27 0.01
Equatorial Guinea 0.06 0.06 -0.01 0.07 0.06 0.0
Gabon 0.22 0.22 0.05 0.17 0.22 0.0
Iraq 4.28 4.36 0.43 3.93 4.87 0.51
Kuwait 2.48 2.52 0.11 2.41 2.88 0.36
Nigeria 1.29 1.26 -0.24 1.5 1.42 0.16
Saudi Arabia 8.87 9.01 0.03 8.98 12.11 3.1
UAE 3.28 3.3 0.39 2.91 4.28 0.98
Iran 3.35 3.35 3.8
Libya 1.19 1.16 1.23 0.07
Venezuela 0.9 0.92 0.87 -0.05
Azerbaijan 0.48 0.48 -0.07 0.55 0.49 0.01
Kazakhstan 1.59 1.59 0.14 1.45 1.62 0.03
Mexico 1.57 1.58 1.6 0.02
Oman 0.76 0.76 0.0 0.76 0.85 0.09
Russia 9.24 9.23 0.25 8.98 9.76
Others 0.72 0.72 -0.15 0.87 0.86 0.13

1. Includes extra voluntary curbs where announced. 2. Capacity levels can be reached within 90 days and sustained for an extended period. 3. Excludes shut in Iranian, Russian crude. 4. Angola left OPEC effective 1 Jan 2024. 5. Iran, Libya, Venezuela exempt from cuts. 6. Mexico excluded from OPEC+ compliance. 7. Bahrain, Brunei, Malaysia, Sudan and South Sudan.

Oil Market Report Documentation

Definitions of key terms used in the OMR.

For more info on the methodology, download the PDF below.

  • Explore the glossary circle-arrow
  • Download the methodology PDF circle-arrow

Previous editions

Purchase licence

  • 24 months (-10%)
  • Unlimited users
  • Multiple locations

Need help with your purchase ? Visit our help centre

See if you qualify for a discount. Learn more

Request price

Cite report

IEA (2024), Oil Market Report - August 2024 , IEA, Paris https://www.iea.org/reports/oil-market-report-august-2024

Share this report

  • Share on Twitter Twitter
  • Share on Facebook Facebook
  • Share on LinkedIn LinkedIn
  • Share on Email Email
  • Share on Print Print

Subscription successful

Thank you for subscribing. You can unsubscribe at any time by clicking the link at the bottom of any IEA newsletter.

COMMENTS

  1. What Is a Research Methodology?

    Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research and your dissertation topic.

  2. Research Methodology

    The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

  3. 6. The Methodology

    The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study's overall validity and reliability.

  4. Research Methodology Guide: Writing Tips, Types, & Examples

    1. Qualitative research methodology. Qualitative research methodology is aimed at understanding concepts, thoughts, or experiences. This approach is descriptive and is often utilized to gather in-depth insights into people's attitudes, behaviors, or cultures. Qualitative research methodology involves methods like interviews, focus groups, and ...

  5. How to Write an APA Methods Section

    Report all of the procedures applied for administering the study, processing the data, and for planned data analyses. Data collection methods and research design. Data collection methods refers to the general mode of the instruments: surveys, interviews, observations, focus groups, neuroimaging, cognitive tests, and so on. Summarize exactly how ...

  6. The Ultimate Guide To Research Methodology

    Research methodology is the systematic process of planning, executing, and evaluating scientific investigation. It encompasses the techniques, tools, and procedures used to collect, analyze, and interpret data, ensuring the reliability and validity of research findings.

  7. Your Step-by-Step Guide to Writing a Good Research Methodology

    Research methodology is the process or the way you intend to execute your study. The methodology section of a research paper outlines how you plan to conduct your study. It covers various steps such as collecting data, statistical analysis, observing participants, and other procedures involved in the research process

  8. What Is a Research Methodology?

    What Is a Research Methodology? | Steps & Tips. Published on 25 February 2019 by Shona McCombes.Revised on 10 October 2022. Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate ...

  9. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  10. What is research methodology? [Update 2024]

    A research methodology encompasses the way in which you intend to carry out your research. This includes how you plan to tackle things like collection methods, statistical analysis, participant observations, and more. You can think of your research methodology as being a formula. One part will be how you plan on putting your research into ...

  11. How to Write Your Methods

    Your Methods Section contextualizes the results of your study, giving editors, reviewers and readers alike the information they need to understand and interpret your work. Your methods are key to establishing the credibility of your study, along with your data and the results themselves. A complete methods section should provide enough detail ...

  12. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  13. How To Write The Methodology Chapter

    Do yourself a favour and start with the end in mind. Section 1 - Introduction. As with all chapters in your dissertation or thesis, the methodology chapter should have a brief introduction. In this section, you should remind your readers what the focus of your study is, especially the research aims. As we've discussed many times on the blog ...

  14. How to Write a Research Methodology in 4 Steps

    Learn how to write a strong methodology chapter that allows readers to evaluate the reliability and validity of the research. A good methodology chapter incl...

  15. PDF Methodology Section for Research Papers

    The methodology section of your paper describes how your research was conducted. This information allows readers to check whether your approach is accurate and dependable. A good methodology can help increase the reader's trust in your findings. First, we will define and differentiate quantitative and qualitative research.

  16. What is Research Methodology? Definition, Types, and Examples

    Definition, Types, and Examples. Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of ...

  17. How to Write the Methods Section of a Research Paper

    The methods section is a fundamental section of any paper since it typically discusses the 'what', 'how', 'which', and 'why' of the study, which is necessary to arrive at the final conclusions. In a research article, the introduction, which serves to set the foundation for comprehending the background and results is usually ...

  18. Research Report

    Thesis. Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master's or Doctoral degree, although it ...

  19. How to Write Research Methodology: 13 Steps (with Pictures)

    The research methodology section of any academic research paper gives you the opportunity to convince your readers that your research is useful and will contribute to your field of study. An effective research methodology is grounded in your overall approach - whether qualitative or quantitative - and adequately describes the methods you used.

  20. How to Write Research Methodology in 2024: Overview, Tips, and

    Methodology in research is defined as the systematic method to resolve a research problem through data gathering using various techniques, providing an interpretation of data gathered and drawing conclusions about the research data. Essentially, a research methodology is the blueprint of a research or study (Murthy & Bhojanna, 2009, p. 32).

  21. How to write the Methods section of a research paper

    3. Follow the order of the results: To improve the readability and flow of your manuscript, match the order of specific methods to the order of the results that were achieved using those methods. 4. Use subheadings: Dividing the Methods section in terms of the experiments helps the reader to follow the section better.

  22. A tutorial on methodological studies: the what, when, how and why

    Many methodological studies use a research report (e.g. full manuscript of study, abstract portion of the study) as the unit of analysis, and inferences can be made at the study-level. However, both published and unpublished research-related reports can be studied. These may include articles, conference abstracts, registry entries etc.

  23. (PDF) Research Methodology WRITING A RESEARCH REPORT

    Nature of Research Qualitative Research Report This is the type of report is written for qualitative research. It outlines the methods, processes, and findings of a qualitative method of ...

  24. How to Write a Research Proposal: (with Examples & Templates)

    Before conducting a study, a research proposal should be created that outlines researchers' plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed ...

  25. 9 Best Marketing Research Methods to Know Your Buyer Better

    From brand design and product development to buyer personas and competitive analysis, I've researched a number of initiatives in my decade-long marketing career.. And let me tell you: having the right marketing research methods in your toolbox is a must. Market research is the secret to crafting a strategy that will truly help you accomplish your goals.

  26. Methodology

    The American Trends Panel survey methodology Overview. Data in this report comes from Wave 151 of the American Trends Panel (ATP), Pew Research Center's nationally representative panel of randomly selected U.S. adults. The survey was conducted from Aug. 5 to Aug. 11, 2024.

  27. July 2024 Rental Report: Renting a Starter Home Continues To Be a More

    July 2024 marks the 12th year-over-year rent decline in a row for 0-2 bedroom properties observed since trend data began in 2020. Asking rents dipped by $12, or -0.7%, year over year.

  28. Methodology: August 2024

    In collaboration with Cook Political Report and GS Strategy Group, BSG conducted polling in Arizona, Georgia, Michigan, Nevada, North Carolina, Pennsylvania, and Wisconsin among likely 2024 voters from July 26 - August 2, 2024. Surveys were conducted in English using SMS-to-Web and online panel methodologies.In the aggregate, 2,867 likely voters across the 7 states completed the survey, for ...

  29. Mapping biomimicry research to sustainable development goals

    This study systematically evaluates biomimicry research within the context of sustainable development goals (SDGs) to discern the interdisciplinary interplay between biomimicry and SDGs. The ...

  30. Oil Market Report

    The IEA Oil Market Report (OMR) is one of the world's most authoritative and timely sources of data, forecasts and analysis on the global oil market - including detailed statistics and commentary on oil supply, demand, inventories, prices and refining activity, as well as oil trade for IEA and selected non-IEA countries.