Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,

The Role of the Teacher Changes in a Problem-Solving Classroom

  • Share article

what is the primary role of the teacher in problem solving method

How can teachers help students develop problem-solving skills when they themselves, even though confronted with an array of problems every day, may need to become better problem solvers? Our experience leads us to conclude that there is an expertise in a certain kind of problem-solving that teachers possess but that broader problem-solving skills are sometimes wanting.There are a few reasons why this happens. One reason may be that teacher preparation programs remain focused on how to teach subjects and behavior management techniques. Another reason may be that professional development opportunities offered in schools are focused elsewhere. And, another reason could be that leaders still often fail to engage their faculties in solving substantive problems within the school community.

A recent issue of Education Leadership was dedicated to the topic, “Unleashing Problem Solvers”. One theme that ran through several of the articles was the changing role of the teacher. In a positive but traditional classroom, information is shared by the teacher and the students are asked to demonstrate application of that information. A problem-solving classroom is different. A problem-solving classroom requires extraordinary planning on the part of the teacher. For problems to have relevance, students are engaged in the identification of the problem. Teachers have to become experts at creating questions that require students to reach back to information and skills already attained, while figuring out what they need to learn next in order to solve the problem. Some of us are really good at asking these kinds of questions. Others are not.

Students have to become experts at reflecting on these questions as guides resulting in a gathering of new information and skills, and answers. Teachers have to be prepared to offer lessons that bridge the gaps between the skills and information already attained and those the performance of the students demonstrate remain needed. Often it involves teams of students and they are simultaneously learning collaboration and communication skills.

Problem-Based Classrooms Require Letting Go

Opportunities for teachers to work with each other, to learn from experts, to receive feedback from observers of their work, all allow for skill development. But at the same time, there is a more challenging effort required of the teacher. Problem-based classrooms require teachers to dare to let go of control of the learning and to take hold of the role of questioner, coach, supporter, and diagnostician. In addition to the lack of training teachers have in these skills, the leaders in charge of evaluating their work also have to know what problem-solving classrooms look like and how to capture that environment in an observation, how to give feedback on the teachers’ efforts. Of course, if problem- solving is a collaborative school community process, how does that change the leader’s role? Are leaders, themselves, ready to become facilitators of the process rather than the sole problem solver? Many talk about wanting that but most get rewarded for being the problem solver.

Questions are Essential

There is a place to begin and that place is the shared understanding of what problem-based learning actually is. Because teachers traditionally plan for a time for Q and A within classes, they and their leaders may think of questions as having a correct answer. In moving into a problem-based learning design, the questions also have to be more overarching, create cognitive dissonance, and provoke the learner to search for answers. Here is why it is important to come to an understanding about the types of questions to be asked and shifting the teaching and learning practices to be one of expecting more from the learner.

Students Need Problem-Solving Skills

Problem-based learning skills are skills that prepare for a changing environment in all fields. Current educators cannot imagine some of the careers our students will have over their lifetimes. We do know that change will be part of everyone’s work. Flexibility and problem-solving are key skills. Problem- solving involves collaboration, communication, critical thinking, empathy, and integrity. If we listen to the business world, we will hear that design thinking is the way of the future.

Tim Brown, CEO of IDEO says,

Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success.

The only way for educators to develop these skills in students is to build lessons and units that are interdisciplinary and demand these skills. If we begin from the earliest of grades and expect more as they ascend through the grades, students will have mastered not only their subjects, but the skills that will prepare them for the world of work. How do we best prepare our students? We think problem solving is key.

A nn Myers and Jill Berkowicz are the authors of The STEM Shift (2015, Corwin) a book about leading the shift into 21st century schools. Ann and Jill welcome connecting through Twitter & Email .

Photo courtesy of Pixabay

The opinions expressed in Leadership 360 are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

what is the primary role of the teacher in problem solving method

Teaching Guides

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

what is the primary role of the teacher in problem solving method

Problem based learning: a teacher's guide

December 10, 2021

Find out how teachers use problem-based learning models to improve engagement and drive attainment.

Main, P (2021, December 10). Problem based learning: a teacher's guide. Retrieved from https://www.structural-learning.com/post/problem-based-learning-a-teachers-guide

What is problem-based learning?

Problem-based learning (PBL) is a style of teaching that encourages students to become the drivers of their learning process . Problem-based learning involves complex learning issues from real-world problems and makes them the classroom's topic of discussion ; encouraging students to understand concepts through problem-solving skills rather than simply learning facts. When schools find time in the curriculum for this style of teaching it offers students an authentic vehicle for the integration of knowledge .

Embracing this pedagogical approach enables schools to balance subject knowledge acquisition with a skills agenda . Often used in medical education, this approach has equal significance in mainstream education where pupils can apply their knowledge to real-life problems. 

PBL is not only helpful in learning course content , but it can also promote the development of problem-solving abilities , critical thinking skills , and communication skills while providing opportunities to work in groups , find and analyse research materials , and take part in life-long learning .

PBL is a student-centred teaching method in which students understand a topic by working in groups. They work out an open-ended problem , which drives the motivation to learn. These sorts of theories of teaching do require schools to invest time and resources into supporting self-directed learning. Not all curriculum knowledge is best acquired through this process, rote learning still has its place in certain situations. In this article, we will look at how we can equip our students to take more ownership of the learning process and utilise more sophisticated ways for the integration of knowledge .

Philosophical Underpinnings of PBL

Problem-Based Learning (PBL), with its roots in the philosophies of John Dewey, Maria Montessori, and Jerome Bruner, aligns closely with the social constructionist view of learning. This approach positions learners as active participants in the construction of knowledge, contrasting with traditional models of instruction where learners are seen as passive recipients of information.

Dewey, a seminal figure in progressive education, advocated for active learning and real-world problem-solving, asserting that learning is grounded in experience and interaction. In PBL, learners tackle complex, real-world problems, which mirrors Dewey's belief in the interconnectedness of education and practical life.

Montessori also endorsed learner-centric, self-directed learning, emphasizing the child's potential to construct their own learning experiences. This parallels with PBL’s emphasis on self-directed learning, where students take ownership of their learning process.

Jerome Bruner’s theories underscored the idea of learning as an active, social process. His concept of a 'spiral curriculum' – where learning is revisited in increasing complexity – can be seen reflected in the iterative problem-solving process in PBL.

Webb’s Depth of Knowledge (DOK) framework aligns with PBL as it encourages higher-order cognitive skills. The complex tasks in PBL often demand analytical and evaluative skills (Webb's DOK levels 3 and 4) as students engage with the problem, devise a solution, and reflect on their work.

The effectiveness of PBL is supported by psychological theories like the information processing theory, which highlights the role of active engagement in enhancing memory and recall. A study by Strobel and Van Barneveld (2009) found that PBL students show improved retention of knowledge, possibly due to the deep cognitive processing involved.

As cognitive scientist Daniel Willingham aptly puts it, "Memory is the residue of thought." PBL encourages learners to think critically and deeply, enhancing both learning and retention.

Here's a quick overview:

  • John Dewey : Emphasized learning through experience and the importance of problem-solving.
  • Maria Montessori : Advocated for child-centered, self-directed learning.
  • Jerome Bruner : Underlined learning as a social process and proposed the spiral curriculum.
  • Webb’s DOK : Supports PBL's encouragement of higher-order thinking skills.
  • Information Processing Theory : Reinforces the notion that active engagement in PBL enhances memory and recall.

This deep-rooted philosophical and psychological framework strengthens the validity of the problem-based learning approach, confirming its beneficial role in promoting valuable cognitive skills and fostering positive student learning outcomes.

Problem based learning cycle

What are the characteristics of problem-based learning?

Adding a little creativity can change a topic into a problem-based learning activity. The following are some of the characteristics of a good PBL model:

  • The problem encourages students to search for a deeper understanding of content knowledge;
  • Students are responsible for their learning. PBL has a student-centred learning approach . Students' motivation increases when responsibility for the process and solution to the problem rests with the learner;
  • The problem motivates pupils to gain desirable learning skills and to defend well-informed decisions ;
  • The problem connects the content learning goals with the previous knowledge. PBL allows students to access, integrate and study information from multiple disciplines that might relate to understanding and resolving a specific problem—just as persons in the real world recollect and use the application of knowledge that they have gained from diverse sources in their life.
  • In a multistage project, the first stage of the problem must be engaging and open-ended to make students interested in the problem. In the real world, problems are poorly-structured. Research suggests that well-structured problems make students less invested and less motivated in the development of the solution. The problem simulations used in problem-based contextual learning are less structured to enable students to make a free inquiry.

Frameworks for problem-based learning

  • In a group project, the problem must have some level of complexity that motivates students towards knowledge acquisition and to work together for finding the solution. PBL involves collaboration between learners. In professional life, most people will find themselves in employment where they would work productively and share information with others. PBL leads to the development of such essential skills . In a PBL session, the teacher would ask questions to make sure that knowledge has been shared between pupils;
  • At the end of each problem or PBL, self and peer assessments are performed. The main purpose of assessments is to sharpen a variety of metacognitive processing skills and to reinforce self-reflective learning.
  • Student assessments would evaluate student progress towards the objectives of problem-based learning. The learning goals of PBL are both process-based and knowledge-based. Students must be assessed on both these dimensions to ensure that they are prospering as intended from the PBL approach. Students must be able to identify and articulate what they understood and what they learned.

Problem based learning tools

Why is Problem-based learning a significant skill?

Using Problem-Based Learning across a school promotes critical competence, inquiry , and knowledge application in social, behavioural and biological sciences. Practice-based learning holds a strong track record of successful learning outcomes in higher education settings such as graduates of Medical Schools.

Educational models using PBL can improve learning outcomes by teaching students how to implement theory into practice and build problem-solving skills. For example, within the field of health sciences education, PBL makes the learning process for nurses and medical students self-centred and promotes their teamwork and leadership skills. Within primary and secondary education settings, this model of teaching, with the right sort of collaborative tools , can advance the wider skills development valued in society.

At Structural Learning, we have been developing a self-assessment tool designed to monitor the progress of children. Utilising these types of teaching theories curriculum wide can help a school develop the learning behaviours our students will need in the workplace.

Curriculum wide collaborative tools include Writers Block and the Universal Thinking Framework . Along with graphic organisers, these tools enable children to collaborate and entertain different perspectives that they might not otherwise see. Putting learning in action by using the block building methodology enables children to reach their learning goals by experimenting and iterating. 

Scaffolding problem based learning with classroom tools

How is problem-based learning different from inquiry-based learning?

The major difference between inquiry-based learning and PBL relates to the role of the teacher . In the case of inquiry-based learning, the teacher is both a provider of classroom knowledge and a facilitator of student learning (expecting/encouraging higher-order thinking). On the other hand, PBL is a deep learning approach, in which the teacher is the supporter of the learning process and expects students to have clear thinking, but the teacher is not the provider of classroom knowledge about the problem—the responsibility of providing information belongs to the learners themselves.

As well as being used systematically in medical education, this approach has significant implications for integrating learning skills into mainstream classrooms .

Using a critical thinking disposition inventory, schools can monitor the wider progress of their students as they apply their learning skills across the traditional curriculum. Authentic problems call students to apply their critical thinking abilities in new and purposeful ways. As students explain their ideas to one another, they develop communication skills that might not otherwise be nurtured.

Depending on the curriculum being delivered by a school, there may well be an emphasis on building critical thinking abilities in the classroom. Within the International Baccalaureate programs, these life-long skills are often cited in the IB learner profile . Critical thinking dispositions are highly valued in the workplace and this pedagogical approach can be used to harness these essential 21st-century skills.

Traditional vs problem based learning

What are the Benefits of Problem-Based Learning?

Student-led Problem-Based Learning is one of the most useful ways to make students drivers of their learning experience. It makes students creative, innovative, logical and open-minded. The educational practice of Problem-Based Learning also provides opportunities for self-directed and collaborative learning with others in an active learning and hands-on process. Below are the most significant benefits of problem-based learning processes:

  • Self-learning: As a self-directed learning method, problem-based learning encourages children to take responsibility and initiative for their learning processes . As children use creativity and research, they develop skills that will help them in their adulthood.
  • Engaging : Students don't just listen to the teacher, sit back and take notes. Problem-based learning processes encourages students to take part in learning activities, use learning resources , stay active , think outside the box and apply critical thinking skills to solve problems.
  • Teamwork : Most of the problem-based learning issues involve students collaborative learning to find a solution. The educational practice of PBL builds interpersonal skills, listening and communication skills and improves the skills of collaboration and compromise.
  • Intrinsic Rewards: In most problem-based learning projects, the reward is much bigger than good grades. Students gain the pride and satisfaction of finding an innovative solution, solving a riddle, or creating a tangible product.
  • Transferable Skills: The acquisition of knowledge through problem-based learning strategies don't just help learners in one class or a single subject area. Students can apply these skills to a plethora of subject matter as well as in real life.
  • Multiple Learning Opportunities : A PBL model offers an open-ended problem-based acquisition of knowledge, which presents a real-world problem and asks learners to come up with well-constructed responses. Students can use multiple sources such as they can access online resources, using their prior knowledge, and asking momentous questions to brainstorm and come up with solid learning outcomes. Unlike traditional approaches , there might be more than a single right way to do something, but this process motivates learners to explore potential solutions whilst staying active.

Solving authentic problems using problem based learning

Embracing problem-based learning

Problem-based learning can be seen as a deep learning approach and when implemented effectively as part of a broad and balanced curriculum , a successful teaching strategy in education. PBL has a solid epistemological and philosophical foundation and a strong track record of success in multiple areas of study. Learners must experience problem-based learning methods and engage in positive solution-finding activities. PBL models allow learners to gain knowledge through real-world problems, which offers more strength to their understanding and helps them find the connection between classroom learning and the real world at large.

As they solve problems, students can evolve as individuals and team-mates. One word of caution, not all classroom tasks will lend themselves to this learning theory. Take spellings , for example, this is usually delivered with low-stakes quizzing through a practice-based learning model. PBL allows students to apply their knowledge creatively but they need to have a certain level of background knowledge to do this, rote learning might still have its place after all.

Key Concepts and considerations for school leaders

1. Problem Based Learning (PBL)

Problem-based learning (PBL) is an educational method that involves active student participation in solving authentic problems. Students are given a task or question that they must answer using their prior knowledge and resources. They then collaborate with each other to come up with solutions to the problem. This collaborative effort leads to deeper learning than traditional lectures or classroom instruction .

Key question: Inside a traditional curriculum , what opportunities across subject areas do you immediately see?

2. Deep Learning

Deep learning is a term used to describe the ability to learn concepts deeply. For example, if you were asked to memorize a list of numbers, you would probably remember the first five numbers easily, but the last number would be difficult to recall. However, if you were taught to understand the concept behind the numbers, you would be able to remember the last number too.

Key question: How will you make sure that students use a full range of learning styles and learning skills ?

3. Epistemology

Epistemology is the branch of philosophy that deals with the nature of knowledge . It examines the conditions under which something counts as knowledge.

Key question:  As well as focusing on critical thinking dispositions, what subject knowledge should the students understand?

4. Philosophy

Philosophy is the study of general truths about human life. Philosophers examine questions such as “What makes us happy?”, “How should we live our lives?”, and “Why does anything exist?”

Key question: Are there any opportunities for embracing philosophical enquiry into the project to develop critical thinking abilities ?

5. Curriculum

A curriculum is a set of courses designed to teach specific subjects. These courses may include mathematics , science, social studies, language arts, etc.

Key question: How will subject leaders ensure that the integrity of the curriculum is maintained?

6. Broad and Balanced Curriculum

Broad and balanced curricula are those that cover a wide range of topics. Some examples of these types of curriculums include AP Biology, AP Chemistry, AP English Language, AP Physics 1, AP Psychology , AP Spanish Literature, AP Statistics, AP US History, AP World History, IB Diploma Programme, IB Primary Years Program, IB Middle Years Program, IB Diploma Programme .

Key question: Are the teachers who have identified opportunities for a problem-based curriculum?

7. Successful Teaching Strategy

Successful teaching strategies involve effective communication techniques, clear objectives, and appropriate assessments. Teachers must ensure that their lessons are well-planned and organized. They must also provide opportunities for students to interact with one another and share information.

Key question: What pedagogical approaches and teaching strategies will you use?

8. Positive Solution Finding

Positive solution finding is a type of problem-solving where students actively seek out answers rather than passively accept what others tell them.

Key question: How will you ensure your problem-based curriculum is met with a positive mindset from students and teachers?

9. Real World Application

Real-world application refers to applying what students have learned in class to situations that occur in everyday life.

Key question: Within your local school community , are there any opportunities to apply knowledge and skills to real-life problems?

10. Creativity

Creativity is the ability to think of ideas that no one else has thought of yet. Creative thinking requires divergent thinking, which means thinking in different directions.

Key question: What teaching techniques will you use to enable children to generate their own ideas ?

11. Teamwork

Teamwork is the act of working together towards a common goal. Teams often consist of two or more people who work together to achieve a shared objective.

Key question: What opportunities are there to engage students in dialogic teaching methods where they talk their way through the problem?

12. Knowledge Transfer

Knowledge transfer occurs when teachers use their expertise to help students develop skills and abilities .

Key question: Can teachers be able to track the success of the project using improvement scores?

13. Active Learning

Active learning is any form of instruction that engages students in the learning process. Examples of active learning include group discussions, role-playing, debates, presentations, and simulations .

Key question: Will there be an emphasis on learning to learn and developing independent learning skills ?

14. Student Engagement

Student engagement is the degree to which students feel motivated to participate in academic activities.

Key question: Are there any tools available to monitor student engagement during the problem-based curriculum ?

what is the primary role of the teacher in problem solving method

Enhance Learner Outcomes Across Your School

Download an Overview of our Support and Resources

We'll send it over now.

Please fill in the details so we can send over the resources.

What type of school are you?

We'll get you the right resource

Is your school involved in any staff development projects?

Are your colleagues running any research projects or courses?

Do you have any immediate school priorities?

Please check the ones that apply.

what is the primary role of the teacher in problem solving method

Download your resource

Thanks for taking the time to complete this form, submit the form to get the tool.

Classroom Practice

University of Cambridge logo white

Become a Problem-solving School

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

The Problem-Solving Classroom: The Teacher's Role

This sequence of tasks, part of our feature  The Problem-solving Classroom , offers an approach to teaching mathematics that exemplifies a model of 'exporation, codification, consolidation' (Ruthven, 1989).  For more information, please see the article included in the above feature.

Domino sets

Domino sets

Amy's Dominoes

Amy's Dominoes

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Site's logo

Problem-Based Learning (PBL)

What is Problem-Based Learning (PBL)? PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and research skills, but they also sharpen their critical thinking and problem-solving abilities essential for life-long learning.

See also: Just-in-Time Teaching

Problem-Based Learning (PBL)

In implementing PBL, the teaching role shifts from that of the more traditional model that follows a linear, sequential pattern where the teacher presents relevant material, informs the class what needs to be done, and provides details and information for students to apply their knowledge to a given problem. With PBL, the teacher acts as a facilitator; the learning is student-driven with the aim of solving the given problem (note: the problem is established at the onset of learning opposed to being presented last in the traditional model). Also, the assignments vary in length from relatively short to an entire semester with daily instructional time structured for group work.

Pbl

By working with PBL, students will:

  • Become engaged with open-ended situations that assimilate the world of work
  • Participate in groups to pinpoint what is known/ not known and the methods of finding information to help solve the given problem.
  • Investigate a problem; through critical thinking and problem solving, brainstorm a list of unique solutions.
  • Analyze the situation to see if the real problem is framed or if there are other problems that need to be solved.

How to Begin PBL

  • Establish the learning outcomes (i.e., what is it that you want your students to really learn and to be able to do after completing the learning project).
  • Find a real-world problem that is relevant to the students; often the problems are ones that students may encounter in their own life or future career.
  • Discuss pertinent rules for working in groups to maximize learning success.
  • Practice group processes: listening, involving others, assessing their work/peers.
  • Explore different roles for students to accomplish the work that needs to be done and/or to see the problem from various perspectives depending on the problem (e.g., for a problem about pollution, different roles may be a mayor, business owner, parent, child, neighboring city government officials, etc.).
  • Determine how the project will be evaluated and assessed. Most likely, both self-assessment and peer-assessment will factor into the assignment grade.

Designing Classroom Instruction

See also: Inclusive Teaching Strategies

  • Take the curriculum and divide it into various units. Decide on the types of problems that your students will solve. These will be your objectives.
  • Determine the specific problems that most likely have several answers; consider student interest.
  • Arrange appropriate resources available to students; utilize other teaching personnel to support students where needed (e.g., media specialists to orientate students to electronic references).
  • Decide on presentation formats to communicate learning (e.g., individual paper, group PowerPoint, an online blog, etc.) and appropriate grading mechanisms (e.g., rubric).
  • Decide how to incorporate group participation (e.g., what percent, possible peer evaluation, etc.).

How to Orchestrate a PBL Activity

  • Explain Problem-Based Learning to students: its rationale, daily instruction, class expectations, grading.
  • Serve as a model and resource to the PBL process; work in-tandem through the first problem
  • Help students secure various resources when needed.
  • Supply ample class time for collaborative group work.
  • Give feedback to each group after they share via the established format; critique the solution in quality and thoroughness. Reinforce to the students that the prior thinking and reasoning process in addition to the solution are important as well.

Teacher’s Role in PBL

See also: Flipped teaching

As previously mentioned, the teacher determines a problem that is interesting, relevant, and novel for the students. It also must be multi-faceted enough to engage students in doing research and finding several solutions. The problems stem from the unit curriculum and reflect possible use in future work situations.

  • Determine a problem aligned with the course and your students. The problem needs to be demanding enough that the students most likely cannot solve it on their own. It also needs to teach them new skills. When sharing the problem with students, state it in a narrative complete with pertinent background information without excessive information. Allow the students to find out more details as they work on the problem.
  • Place students in groups, well-mixed in diversity and skill levels, to strengthen the groups. Help students work successfully. One way is to have the students take on various roles in the group process after they self-assess their strengths and weaknesses.
  • Support the students with understanding the content on a deeper level and in ways to best orchestrate the various stages of the problem-solving process.

The Role of the Students

See also: ADDIE model

The students work collaboratively on all facets of the problem to determine the best possible solution.

  • Analyze the problem and the issues it presents. Break the problem down into various parts. Continue to read, discuss, and think about the problem.
  • Construct a list of what is known about the problem. What do your fellow students know about the problem? Do they have any experiences related to the problem? Discuss the contributions expected from the team members. What are their strengths and weaknesses? Follow the rules of brainstorming (i.e., accept all answers without passing judgment) to generate possible solutions for the problem.
  • Get agreement from the team members regarding the problem statement.
  • Put the problem statement in written form.
  • Solicit feedback from the teacher.
  • Be open to changing the written statement based on any new learning that is found or feedback provided.
  • Generate a list of possible solutions. Include relevant thoughts, ideas, and educated guesses as well as causes and possible ways to solve it. Then rank the solutions and select the solution that your group is most likely to perceive as the best in terms of meeting success.
  • Include what needs to be known and done to solve the identified problems.
  • Prioritize the various action steps.
  • Consider how the steps impact the possible solutions.
  • See if the group is in agreement with the timeline; if not, decide how to reach agreement.
  • What resources are available to help (e.g., textbooks, primary/secondary sources, Internet).
  • Determine research assignments per team members.
  • Establish due dates.
  • Determine how your group will present the problem solution and also identify the audience. Usually, in PBL, each group presents their solutions via a team presentation either to the class of other students or to those who are related to the problem.
  • Both the process and the results of the learning activity need to be covered. Include the following: problem statement, questions, data gathered, data analysis, reasons for the solution(s) and/or any recommendations reflective of the data analysis.
  • A well-stated problem and conclusion.
  • The process undertaken by the group in solving the problem, the various options discussed, and the resources used.
  • Your solution’s supporting documents, guests, interviews and their purpose to be convincing to your audience.
  • In addition, be prepared for any audience comments and questions. Determine who will respond and if your team doesn’t know the answer, admit this and be open to looking into the question at a later date.
  • Reflective thinking and transfer of knowledge are important components of PBL. This helps the students be more cognizant of their own learning and teaches them how to ask appropriate questions to address problems that need to be solved. It is important to look at both the individual student and the group effort/delivery throughout the entire process. From here, you can better determine what was learned and how to improve. The students should be asked how they can apply what was learned to a different situation, to their own lives, and to other course projects.

See also: Kirkpatrick Model: Four Levels of Learning Evaluation

' src=

I am a professor of Educational Technology. I have worked at several elite universities. I hold a PhD degree from the University of Illinois and a master's degree from Purdue University.

Similar Posts

Teaching with blogs.

What are blogs? Blogs are social media platforms that let users share thoughts and opinions with a genuine, organic audience, allowing the blog writer to easily communicate with that audience. Blogs typically read…

Instructional Design

What is Instructional Design The Association for Educational Communications and Technology (AECT) defines instructional design as “the theory and practice of design, development, utilization, management, and evaluation of processes and resources for learning”…

Adaptive Learning: What is It, What are its Benefits and How Does it Work?

People learn in many different ways. Adaptive learning has sought to address differences in ability by targeting teaching practices. The use of adaptive models, ranging from technological programs to intelligent systems, can be…

Definitions of Instructional Design

What is instructional design? Instructional design can be defined as the creation of instructional materials, modules or lessons. The instructional design process consists of  determining the needs of the learners, defining the end…

Inclusive Teaching Strategies

What is inclusive teaching and education? Inclusivity in the classroom is a key issue, as students come from a diverse range of backgrounds and bring a variety of learning styles, abilities, and experience…

Cognitive Apprenticeship

Apprenticeship is an ancient idea; skills have been taught by others for centuries. In the past, elders worked alongside their children to teach them how to grow food, wash their clothes, build homes…

teaching_learning_banner

  • Accessible Document Design Fundamentals
  • Word Accessibility Guide
  • PowerPoint Accessibility Guide
  • PDF Accessibility Guide
  • Excel Accessibility Guide
  • Basic HTML Accessibility Guide
  • Accessible Course Design Guide
  • Multimedia Accessibility Guides
  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • 2024 Celebration of College Teaching
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning
  • Teaching During an Election Year
  • Creating an Engaging Classroom Experience
  • Building Effective Classroom Discussions
  • Navigating Disruptive Behavior
  • Supporting the Needs of Neurodivergent Students
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Quality Matters at U. of I.

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

Mathematical Problem-Solving in Action: Teachers' Strategies and Approaches in the Classroom

  • December 2023
  • Conference: EJER 2023

Dilara Yılmaz Can at Kocaeli University

  • Kocaeli University

B. Damla Baber Elbistan at Georg-August-Universität Göttingen

  • Georg-August-Universität Göttingen

Seyma Pekgoz at Teachers College

  • Teachers College
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Ali Kürşat Erümit

  • Hasan Karal

Güven Şahin

  • Judit Orgoványi-Gajdos

Yeliz Yazgan

  • Hardi Tambunan

Nurdan Ozrecberoglu

  • Çağda Kıvanç Çağanağa

Ali Yildirim

  • R.A. Krueger

Arthur J. Baroody

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

What is the most effective way to teach problem solving? A commentary on productive failure as a method of teaching

  • Published: 04 May 2012
  • Volume 40 , pages 731–735, ( 2012 )

Cite this article

what is the primary role of the teacher in problem solving method

  • Allan Collins 1 , 2  

1689 Accesses

8 Citations

1 Altmetric

Explore all metrics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Jacobson, M. J., Thompson, K., Kennedy-Clark, S. & Hu, C. (2011) Failure and success in sequencing of model - based learning activities. Paper presented at the American Educational Research Association Annual Meeting, New Orleans.

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26 (3), 379–424.

Article   Google Scholar  

Kapur, M. (2009). Productive failure in mathematical problem solving. Instructional Science, 38 (6), 523–550.

Kapur, M. (2010). A further study of productive failure in mathematical problem solving: Unpacking the design components. Instructional Science, 39 (4), 561–579.

Kapur, M. (2012). Productive failure in learning the concept of variance. Instructional Science . doi: 10.1007/s11251-012-9209-6 .

Google Scholar  

Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21 (1), 45–83.

Koedinger, K. R., Aleven, V., Roll, I., & Baker, R. S. J. D. (2009). In vivo experiments on whether supporting metacognition in intelligent tutoring systems yields robust learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 383–412). New York: Routledge.

Roll, I., Holmes, N. G., Day, J., & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention activities. Instructional Science . doi: 10.1007/s11251-012-9208-7 .

Salden, R. J. C. M., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010). Accounting for beneficial effects of worked examples in tutored problem solving. Educational Psychology Review, 22 (4), 379–392.

Schoenfeld, A. J. (1985). Mathematical problem solving . New York: Academic Press.

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16 (4), 475–522.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22 (2), 129–184.

Stigler, J. & Hiebert, J. (2009) The teaching gap: Best ideas from the world’s teachers for improving education in the classroom (paperback edition) . New York: Free Press.

Vygotsky, L. S. (1978). Mind in society. In M. Cole, V. John-Steiner, S. Scribner & E. Souberman (Eds.), The development of higher psychological processes. Cambridge: Harvard University Press.

Westermann, K., & Rummel, N. (2012). Delaying instruction: evidence from a study in a university relearning setting. Instructional Science . doi: 10.1007/s11251-012-9207-8 .

White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16 (1), 3–118.

Wiedmann, M., Leach, R. C., Rummel, N., & Wiley, J. (2012). Does group composition affect learning by invention? Instructional Science . doi: 10.1007/s11251-012-9204-y .

Download references

Author information

Authors and affiliations.

School of Education and Social Policy, Northwestern University, Evanston, IL, 60208, USA

Allan Collins

135 Cedar St., Lexington, MA, 02421, USA

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Allan Collins .

Rights and permissions

Reprints and permissions

About this article

Collins, A. What is the most effective way to teach problem solving? A commentary on productive failure as a method of teaching. Instr Sci 40 , 731–735 (2012). https://doi.org/10.1007/s11251-012-9234-5

Download citation

Received : 05 April 2012

Accepted : 10 April 2012

Published : 04 May 2012

Issue Date : July 2012

DOI : https://doi.org/10.1007/s11251-012-9234-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Generation Phase
  • Direct Instruction
  • Productive Failure
  • Invention Phase
  • Canonical Solution
  • Find a journal
  • Publish with us
  • Track your research

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

what is the primary role of the teacher in problem solving method

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

what is the primary role of the teacher in problem solving method

  • Our Approach
  • Research and Testimonials
  • ORIGO Mathematics
  • Stepping Stones
  • Animated Big Books
  • Big Books for Early Learning
  • Book & Box of Facts Strategies
  • Fundamentals
  • The Think Tanks
  • Algebra for All
  • Measurement & GEO Thinking
  • Early Learning Range Teacher Notes
  • Early Learning Package
  • Problem Solving
  • Tools, Tunes & Games
  • Classroom Resources
  • Digital Resource Guide
  • Book a Demo
  • Featured Webinar Series
  • Support Webinars
  • Careers | Work with us!
  • About Our Community
  • ORIGO At Home
  • Free F-6 Maths Resources
  • Support and Guides
  • Slate Administrator Support
  • Shop Online

au

Book A Demo

ORIGO Education has launched a brand new program, ORIGO Mathematics FIND OUT MORE

Exploring the Teacher’s Role in Problem-Solving

Developing problem-solving strategies this article is the second in a four-part series on problem-solving..

Problem-solving is what we do when we look at a task and don’t know what to do. This makes strategies very important – they are how we begin. When a child looks at a problem and says, “I don’t know,” our role as a teacher is to help them persevere – to stick with it and find a solution.

Strategies are the tools we use to get started when there is no obvious solution path. Look at these two problems below. Which one has the more straightforward solution path? Which is easier to start solving?

problem-solving

For many learners, the problem on the left, while not always easy to solve, is easier to start. There are some numbers given, along with clues about the fact that this involves addition and/or subtraction. The problem on the right has no numbers at all!

Here is a list of problem-solving strategies adapted from the book   What’s Your Math Problem? by Linda Gojak. Which of these could you use to start working on the heartbeat problem?

  • Look for a pattern
  • Make a model
  • Solve a simpler problem
  • Work backward
  • Identify a sub-goal
  • Create a table
  • Create an organised list
  • Draw a picture or diagram
  • Account for all possibilities
  • Create a graph

problem-solving

Some of these strategies are intuitive for many students. How many of your students would act it out or draw a picture to help solve the bus problem? Other strategies require more teacher guidance and coaching to use effectively. When you create an organised list, how do you organise it? What items should be included in your list or table? When you solve a simpler problem, how do you decide how to simplify it?

Historically, problem-solving strategies have been developed chapter-by-chapter in traditional textbooks. Each chapter ends with a section on problem-solving that features a particular strategy. The given strategy is used to solve every problem in that section. This does not develop student thinking; it develops mimicry skills.

To develop these strategies thoughtfully, try this. Pose a problem like the heartbeat problem to your students. Give them time to think individually and to work with a partner or in a small group on the problem. Notice what strategies your students are using. Has one team thought about how many beats in a minute? Has one team drawn a calendar as an organiser for their information? Has one team recorded useful information like the number of days in a year and the number of hours in a day?

Take time to talk about the strategies students are using. For more fun, name the strategies for the students (Aaron’s strategy or Chloe’s strategy). Allow students to share their work and build on it. If you’re going to list important facts like days in the year and hours in a day, how can you sequence those to be most helpful? That is organising your list. If students are acting a problem out but spending a great deal of energy on costumes and scripts, encourage them to focus on the elements essential for maths class.

Students benefit from seeing a variety of strategies used by their classmates. Some will be more effective or efficient than others. That’s okay. By making problem-solving a regular part of maths class, students have opportunities to practice strategies and learn from seeing them used by others. Strategies are discussed as they are used, keeping the focus on how this strategy supports this problem.

problem-solving

In the next post for this series, we will focus on facilitating student discourse and questioning strategies. What are effective teacher moves that encourage students to talk about their thinking? The final post will address fostering perseverance with problem-solving.

If you would like to explore these ideas further, please watch this edWeb webinar  about this topic. You’ll see example approaches to the problems included here as well as additional research and information about this topic.

Click HERE to download the resources for this article!

About ORIGO Education

ORIGO Education is dedicated to making learning meaningful, enjoyable and accessible for all students with Early Education and Primary print and digital instructional materials, as well as professional learning for mathematics.

what is the primary role of the teacher in problem solving method

Select your desired option below to share a direct link to this page

Learn process – pop up, students who develop – popup, content taught – popup, test popup wistia.

Sub heading here

Log in to Witsby: ASCD’s Next-Generation Professional Learning and Credentialing Platform

The Problem-Solving Power of Teachers

author avatar

A Harmless Policy in Theory …

But a messy policy in practice, inconsistent and confusing, teachers devise a solution, principal support, real-time results, two lessons about teacher-driven reform, a broader domain for problem solving, don't shut out teacher thinking.

premium resources logo

Premium Resource

Center for Teaching Quality. (2007). Performance-pay for teachers . Hillsborough, NC: Author. Retrieved from www.policyarchive.org/handle/10207/bitstreams/96445.pdf

Center for Teaching Quality. (2013). Teaching 2030: Leveraging teacher preparation 2.0 . Hillsborough, NC: Author. Retrieved from www.teachingquality.org/sites/default/files/TEACHING_2030_Leveraging_Teacher_Preparation.pdf

Hacker, A., & Dreifus, C. (2013, June 9). Who's minding the schools? New York Times . Retrieved from www.nytimes.com/2013/06/09/opinion/sunday/the-common-core-whos-minding-the-schools.html

Sacks, A. (2012, October 17). Beyond tokenism: Toward the next stage in teacher leadership. Education Week . Retrieved from www.edweek.org/tm/articles/2012/10/17/tl_sacks.html

• 1 Correction: The statement that the Common Core State Standards were designed by "a team of 50 writers that included just one teacher" is no longer accurate. It was based on a 2009 press release from the National Governors Association (NGA). According to a more recent document from the NGA , by 2010, the "work teams" had 101 members, 5 or 6 of whom were practicing teachers, and the "feedback groups" had 34 members, 2 of whom were practicing teachers.
• 2 For more ideas on how teachers can be integral to the change process, see the book I coauthored with 12 other teachers, Teaching 2030: What We Must Do for Our Public Schools—Now and In the Future (Teachers College Press, 2011).

what is the primary role of the teacher in problem solving method

Ariel Sacks has taught English language arts in New York City for 15 years. She is a presenter and author of  Whole Novels for the Whole Class: A Student-Centered Approach  (Wiley, 2014).

ASCD is a community dedicated to educators' professional growth and well-being.

Let us help you put your vision into action., from our issue.

Product cover image 114019.jpg

COMMENTS

  1. Teaching Problem-Solving Skills

    Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards. Choose the best strategy. Help students to choose the best strategy by reminding them again what they are required to find or calculate. Be patient.

  2. The Role of the Teacher Changes in a Problem-Solving Classroom

    A problem-solving classroom requires extraordinary planning on the part of the teacher. For problems to have relevance, students are engaged in the identification of the problem. Teachers have to ...

  3. Exploring the Teacher's Role in Problem-Solving

    Problem-solving is what we do when we look at a task and don't know what to do. This makes strategies very important - they are how we begin. When a child looks at a problem and says, "I don't know," our role as a teacher is to help them persevere - to stick with it and find a solution. Strategies are the tools we use to get started ...

  4. PDF ROLE OF TEACHER IN TEACHING PROBLEM-SOLVING SKILLS Mamta Mandal

    rld.Role of teacher in development ofproblem solving skills: Model a useful problem-solvin. method:Problem solving can be difficult and sometimes tedious. Teacher can show students by their own example how to. patient and persistent and how to follow a structured method.Teach within a specific context: Teach p.

  5. Teaching Problem Solving

    Make students articulate their problem solving process. In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  6. Ch. 5 Problem Based Learning

    Ownership also suggests that students will ask further questions, reveal further information, and synthesize critical factors throughout the problem-solving process. Teacher role: Teachers act primarily as cognitive coaches by facilitating learning and modeling higher order thinking and meta cognitive skills. As facilitators, teachers give ...

  7. Teaching problem solving

    Working on solutions. In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to: identify the general model or procedure they have in mind for solving the problem. set sub-goals for solving the problem. identify necessary operations and steps.

  8. Teachers'professional development on problem solving: Theory and

    Teachers' role within the multifaceted process of developing problem-solving skills cannot be ignored. Especially, primary school teachers hold a significant role in shaping the learning ...

  9. Problem based learning: a teacher's guide

    Problem-based learning (PBL) is an educational method that involves active student participation in solving authentic problems. Students are given a task or question that they must answer using their prior knowledge and resources. They then collaborate with each other to come up with solutions to the problem.

  10. The Problem-Solving Classroom: The Teacher's Role

    The Problem-Solving Classroom: The Teacher's Role. This sequence of tasks, part of our feature The Problem-solving Classroom, offers an approach to teaching mathematics that exemplifies a model of 'exporation, codification, consolidation' (Ruthven, 1989). For more information, please see the article included in the above feature.

  11. Problem Solving in Mathematics Instruction and Teacher ...

    This book seeks to stay on top of that trend by approaching diverse aspects of current problem solving research, covering three broad themes. Firstly, it explores the role of teachers in problem-solving classrooms and their professional development, moving onto—secondly—the role of students when solving problems, with particular ...

  12. Problem-Solving Method in Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  13. PDF Problem Based Learning: A Student-Centered Approach

    Problem based learning is a student-centered educational method which aims to develop problem - solving skills through a self- directed learning as a life time habit and team work skills. Untidy, messy, ill structured situations are given to the students in which they take the role of owner of the situation. Students observe the problem and

  14. PDF Mathematical Problem-Solving in Action: Teachers' Strategies

    ement in solving problems is to have knowledge of the problem-solving process (Sahin, 2004). Within the process of mathematical proble. -solving, Polya's (1957) stages of problem-solving are commonly used as a general framework. These stages encompass four steps: (1) und. rstanding the problem, (2) devising a plan, (3) carrying out the plan ...

  15. Problem-Based Learning (PBL)

    PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and ...

  16. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  17. Mathematical Problem-Solving in Action: Teachers' Strategies and

    Abstract. The development of students' mathematical problem-solving skills is contingent upon the approaches and methods employed by primary school teachers. This research endeavors to scrutinize ...

  18. The process of implementing problem-based learning in a teacher

    The teacher acts as a facilitator to guide the students in developing the cognitive skills required for problem solving and collaboration (Hmelo-Silver, Citation 2004). Many studies have confirmed that PBL improves the performance of students, not only in medical education but also in science, engineering, social sciences, business studies, and ...

  19. What is the most effective way to teach problem solving? A ...

    "Although teachers in high-achieving countries employed a variety of strategies and routines, in every case these strategies were used to achieve a common learning experience for students. ... They find that as the students internalize the roles over time, they become more effective problem solvers than those taught with direct instruction ...

  20. Art and Science of Teaching / Problem Solving in Seven Steps

    Credit: 2021. Abstract. Step 1: Determine whether you have a problem and whether it's worth solving. Step 2: Affirm positive beliefs regarding your ability to solve the problem. Step 3: Clarify the obstacle and identify possible solutions. Step 4: Determine each solution's likelihood of success and consider the resources required.

  21. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  22. Exploring the Teacher's Role in Problem-Solving

    Problem-solving is what we do when we look at a task and don't know what to do. This makes strategies very important - they are how we begin. When a child looks at a problem and says, "I don't know," our role as a teacher is to help them persevere - to stick with it and find a solution. Strategies are the tools we use to get started ...

  23. PDF Using Teaching Through Problem Solving to Transform In-Service Teachers

    The problem is challenging, can be solved with multiple methods, and therefore, should promote communication and reflection. The problem promotes the development of problem solving skills and promotes a connection between a process and the problem. Medium (1) The problem is either intriguing or rigorous, but not both.

  24. The Problem-Solving Power of Teachers

    The whole-novel method is based on a single, radical idea: Students must read an entire literary work before analyzing it formally. ... The role of a leader in education—whether that person is a teacher at heart, a teacherpreneur, or never was a teacher—must be to inspire and give space to teachers' problem-solving ability. This is a risk ...