Quantum Computing: Circuits, Algorithms, and Applications
Ieee account.
- Change Username/Password
- Update Address
Purchase Details
- Payment Options
- Order History
- View Purchased Documents
Profile Information
- Communications Preferences
- Profession and Education
- Technical Interests
- US & Canada: +1 800 678 4333
- Worldwide: +1 732 981 0060
- Contact & Support
- About IEEE Xplore
- Accessibility
- Terms of Use
- Nondiscrimination Policy
- Privacy & Opting Out of Cookies
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
- View all journals
- Explore content
- About the journal
- Publish with us
- Sign up for alerts
- Review Article
- Published: 04 March 2010
Quantum computers
- T. D. Ladd 1 nAff11 ,
- F. Jelezko 2 ,
- R. Laflamme 3 , 4 , 5 ,
- Y. Nakamura 6 , 7 ,
- C. Monroe 8 , 9 &
- J. L. O’Brien 10
Nature volume 464 , pages 45–53 ( 2010 ) Cite this article
83k Accesses
70 Altmetric
Metrics details
- Computer science
- Quantum information
- Quantum mechanics
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
185,98 € per year
only 3,65 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
QDataSet, quantum datasets for machine learning
Quantum advantage for computations with limited space
The randomized measurement toolbox
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000)
MATH Google Scholar
Knill, E. Quantum computing with realistically noisy devices. Nature 434 , 39–44 (2005)
ADS CAS PubMed Google Scholar
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48 , 771–783 (2000)
Mizel, A., Lidar, D. A. & Mitchell, M. Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99 , 070502 (2007)
ADS PubMed Google Scholar
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86 , 5188–5191 (2001)
Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR-spectroscopy. Proc. Natl Acad. Sci. USA 94 , 1634–1639 (1997)
ADS CAS PubMed PubMed Central Google Scholar
Gershenfeld, N. A. & Chuang, I. L. Bulk spin resonance quantum computation. Science 275 , 350–356 (1997)
MathSciNet CAS PubMed MATH Google Scholar
Ryan, C. A., Moussa, O., Baugh, J. & Laflamme, R. Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100 , 140501 (2008)
Shor, P. W. & Jordan, S. P. Estimating Jones polynomials is a complete problem for one clean qubit. Quant. Inform. Comput. 8 , 681–714 (2008)
MathSciNet MATH Google Scholar
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77 , 513–577 (2005)
ADS MathSciNet MATH Google Scholar
Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21 , 1936–1938 (1996)
Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92 , 127902 (2004)
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409 , 46–52 (2001)
Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325 , 1221 (2009)
ADS MathSciNet CAS PubMed MATH Google Scholar
O’Brien, J. L. Optical quantum computing. Science 318 , 1567–1570 (2007)
Migdal, A. & Dowling, J. eds. Single-photon detectors, applications, and measurement. J. Mod. Opt. 51 , (2004)
Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photon. 3 , 696–705 (2009)
ADS CAS Google Scholar
Grangier, P., Sanders, B. & Vuckovic, J. eds. Focus on single photons on demand. New J. Phys. 6 , (2004)
Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1 , 215–223 (2007)
Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3 , 346–350 (2009)
Kistner, C. et al. Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt. Express 16 , 15006–15012 (2008)
Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320 , 769–772 (2008)
Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276 , 2012–2014 (1997)
CAS Google Scholar
Devitt, S. J. et al. Photonic module: an on-demand resource for photonic entanglement. Phys. Rev. A 76 , 052312 (2007)
ADS Google Scholar
Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103 , 259–328 (1998)
CAS PubMed PubMed Central Google Scholar
Wineland, D. & Blatt, R. Entangled states of trapped atomic ions. Nature 453 , 1008–1014 (2008)
Ospelkaus, C. et al. Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101 , 090502 (2008)
Garcia-Ripoll, J. J., Zoller, P. & Cirac, J. I. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91 , 157901 (2003)
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75 , 281–324 (2003)
Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325 , 1227–1230 (2009)
Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323 , 486–489 (2009)
Dür, W., Briegel, H. J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59 , 169–181 (1999)
Duan, L.-M. & Raussendorf, R. Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95 , 080503 (2005)
ADS MathSciNet PubMed Google Scholar
Morsch, O. & Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78 , 179–215 (2006)
Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448 , 452–456 (2007)
Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5 , 110–114 (2009)
Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5 , 115–118 (2009)
Negrevergne, C. et al. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96 , 170501 (2006)
Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414 , 883–887 (2001)
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbruggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172 , 296–305 (2005)
Braunstein, S. L. et al. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83 , 1054–1057 (1999)
Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90 , 153001 (2003)
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79 , 1217–1265 (2007)
Uhrig, S. G. Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98 , 100504 (2007)
Liu, H. W. et al. A gate-defined silicon quantum dot molecule. Appl. Phys. Lett. 92 , 222104 (2008)
Simmons, C. B. et al. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot. Nano Lett. 9 , 3234–3238 (2009)
Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393 , 133–137 (1998)
Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62 , 012306 (2000)
Tyryshkin, A. M. & Lyon, S. A. Data presented at the Silicon Qubit Workshop, 24–25 August (University of California, Berkeley; sponsored by Lawrence Berkeley National Laboratory and Sandia National Laboratory, 2009)
Ladd, T. D., Maryenko, D., Yamamoto, Y., Abe, E. & Itoh, K. M. Coherence time of decoupled nuclear spins in silicon. Phys. Rev. B 71 , 14401 (2005)
Yang, A. et al. Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102 , 257401 (2009)
Batra, A., Weis, C. D., Reijonen, J., Persaud, A. & Schenkel, T. Detection of low energy single ion impacts in micron scale transistors at room temperature. Appl. Phys. Lett. 91 , 193502 (2007)
O’Brien, J. L. et al. Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64 , 161401 (2001)
Schneider, C. et al. Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92 , 183101 (2008)
Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312 , 551–553 (2006)
Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451 , 441–444 (2008)
Press, D., Ladd, T. D., Zhang, B. Y. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456 , 218–221 (2008)
Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314 , 1916–1920 (2006)
Harrison, J., Sellars, M. J. & Manson, N. B. Measurement of the optically induced spin polarisation of N-V centres in diamond. Diamond Related Mater. 15 , 586–588 (2006)
Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316 , 1312–1316 (2007)
PubMed Google Scholar
Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320 , 1326–1329 (2008)
Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326 , 267–272 (2009)
Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320 , 352–355 (2008)
Takahashi, S., Hanson, R., van Tol, J., Sherwin, M. S. & Awschalom, D. D. Quenching spin decoherence in diamond through spin bath polarization. Phys. Rev. Lett. 101 , 047601 (2008)
Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8 , 383–387 (2009)
Neumann, P. et al. Scalable quantum register based on coupled electron spins in a room temperature solid. Nature Phys. 10.1038/nphys1536 (in the press)
Wang, C. F. et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91 , 201112 (2007)
Wu, E. et al. Room temperature triggered single-photon source in the near infrared. New J. Phys. 9 , 434 (2007)
Wang, C., Kurtsiefer, C., Weinfurter, H. & Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. At. Mol. Opt. Phys. 39 , 37–41 (2006)
Sanaka, K., Pawlis, A., Ladd, T. D., Lischka, K. & Yamamoto, Y. Indistinguishable photons from independent semiconductor nanostructures. Phys. Rev. Lett. 103 , 053601 (2009)
Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398 , 786–788 (1999)
Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296 , 886–889 (2002)
Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77 , 180502 (2008)
Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299 , 1869–1871 (2003)
Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89 , 117901 (2002)
Niskanen, A. O. et al. Quantum coherent tunable coupling of superconducting qubits. Science 316 , 723–726 (2007)
Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Preprint at 〈 http://arxiv.org/abs/0909.4321 〉 (2009)
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431 , 162–167 (2004)
DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 260 , 240–244 (2009)
Ansmann, M. et al. Violation of Bell’s inequality in Josephson phase qubits. Nature 461 , 504–506 (2009)
Chow, J. M. et al. Entanglement metrology using a joint readout of superconducting qubits. Preprint at 〈 http://arxiv.org/abs/0908.1955 〉 (2009)
Lupascu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3 , 119–123 (2007)
Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2 , 341–347 (2006)
Rippe, L., Julsgaard, B., Walther, A., Ying, Y. & Kroll, S. Experimental quantum-state tomography of a solid-state qubit. Phys. Rev. A 77 , 022307 (2008)
de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light-matter interface at the single-photon level. Nature 456 , 773–777 (2008)
Morton, J. J. L. et al. Bang-bang control of fullerene qubits using ultrafast phase gates. Nature Phys. 2 , 40–43 (2006)
Mason, N., Biercuk, M. J. & Marcus, C. M. Local gate control of a carbon nanotube double quantum dot. Science 303 , 655–658 (2004)
Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3 , 192–196 (2007)
Platzman, P. M. & Dykman, M. I. Quantum computing with electrons floating on liquid helium. Science 284 , 1967–1969 (1999)
CAS PubMed Google Scholar
Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410 , 789–793 (2001)
Tian, L., Rabl, P., Blatt, R. & Zoller, P. Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92 , 247902 (2004)
Andre, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Phys. 2 , 636–642 (2006)
Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63 , 165314 (2001)
Privman, V., Vagner, I. D. & Kventsel, G. Quantum computation in quantum-Hall systems. Phys. Lett. A 239 , 141–146 (1998)
ADS MathSciNet CAS MATH Google Scholar
Smelyanskiy, V. N., Petukhov, A. G. & Osipov, V. V. Quantum computing on long-lived donor states of Li in Si. Phys. Rev. B 72 , 081304 (2005)
Tian, L. & Zoller, P. Coupled ion-nanomechanical systems. Phys. Rev. Lett. 93 , 266403 (2004)
Piermarocchi, C., Chen, P., Sham, L. J. & Steel, D. G. Optical RKKY interaction between charged semiconductor quantum dots. Phys. Rev. Lett. 89 , 167402 (2002)
Quinteiro, G. F., Fernandez-Rossier, J. & Piermarocchi, C. Long-range spin-qubit interaction mediated by microcavity polaritons. Phys. Rev. Lett. 97 , 097401 (2006)
Khitun, A., Ostroumov, R. & Wang, K. L. Spin-wave utilization in a quantum computer. Phys. Rev. A 64 , 062304 (2001)
Barnes, C. H. W., Shilton, J. M. & Robinson, A. M. Quantum computation using electrons trapped by surface acoustic waves. Phys. Rev. B 62 , 8410–8419 (2000)
Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97 , 053002 (2006)
Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98 , 190504 (2007)
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80 , 1083–1159 (2008)
Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95 , 060502 (2005)
Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77 , 012307 (2008)
Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4 , 463–466 (2008)
Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Phys. Rev. Lett. 92 , 203005 (2004)
Ryan, C. A., Laforest, M. & Laflamme, R. Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys. 11 , 013034 (2009)
Bertet, P. et al. Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95 , 257002 (2005)
Emerson, J. et al. Symmetrized characterization of noisy quantum processes. Science 317 , 1893–1896 (2007)
Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453 , 1043–1049 (2008)
Download references
Acknowledgements
We thank R. Hanson, M. D. Lukin, and W. D. Oliver for comments. We acknowledge support from NSF, EPSRC, QIP IRC, IARPA, ERC, the Leverhulme Trust, CREST-JST, DFG, BMBF and Landesstiftung BW. J.L.O’B. acknowledges a Royal Society Wolfson Merit Award.
Author Contributions All authors contributed to all aspects of this work.
Author information
Present address: Present address: HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, California 90265, USA.,
Authors and Affiliations
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA ,
3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550, Germany ,
Institute for Quantum Computing,,
R. Laflamme
Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada,
Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada ,
Nano Electronics Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan ,
Y. Nakamura
The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan ,
University of Maryland Department of Physics,, Joint Quantum Institute,
National Institute of Standards and Technology, College Park, Maryland 20742, USA ,
H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, Centre for Quantum Photonics, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK,
J. L. O’Brien
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to J. L. O’Brien .
Ethics declarations
Competing interests.
The authors declare no competing financial interests.
PowerPoint slides
Powerpoint slide for fig. 1, powerpoint slide for fig. 2, powerpoint slide for fig. 3, powerpoint slide for fig. 4, powerpoint slide for fig. 5, rights and permissions.
Reprints and permissions
About this article
Cite this article.
Ladd, T., Jelezko, F., Laflamme, R. et al. Quantum computers. Nature 464 , 45–53 (2010). https://doi.org/10.1038/nature08812
Download citation
Issue Date : 04 March 2010
DOI : https://doi.org/10.1038/nature08812
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Quick links
- Explore articles by subject
- Guide to authors
- Editorial policies
Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.
IMAGES
VIDEO
COMMENTS
Quantum computing (QC) has the potential to be the next abstruse technology, with a wide range of possible applications and ramifications for organizations and markets. QC provides an exponential speedup by employing quantum mechanics principles, including superposition and entanglement. The potential advantages offered by the revolutionary paradigm have propelled scientific productions ...
Quantum computing, a transformative field that emerged from quantum mechanics and computer science, has gained immense attention for its potential to revolutionize computation. This paper aims to address the fundamentals of quantum computing and provide a comprehensive guide for both novices and experts in the field of quantum computing. Beginning with the foundational principles of quantum ...
Quantum Computing Research Paper . Abstract: Quantum computing is a new and exciting field that intersects mathematics, computer . science and physics. Computer systems built on the principles of ...
From 1982 to today quantum computing has been on a journey with many ups and downs and unexpected encounters. It saw great excitement after Shor's quantum algorithm for factorization in 1994 ...
To better understand quantum computing, this paper examines the foundations and vision based on current research in this area. We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers. Many potential challenges and ...
ACM Transactions on Quantum Computing publishes high-impact, original research papers and selected surveys on topics in quantum computing and quantum information science. The journal targets the quantum computer science community with a focus on the theory and practice of quantum computing including but not limited to: models of quantum computing, quantum algorithms and complexity, quantum ...
2.2.4 Simulation of quantum system by classical computer. 2.3 Quantum Computing: A whole new concept in Parallelism 2.4 Quantum Superposition and Quantum Interference: Conceptual visualization of Quantum Computer. 2.5 Quantum Entanglement 2.5.1 Bertleman's Socks 2.5.2 EPR situation, Hidden Variables and Bell Theorem 2.5.2.1 An EPR situation
The use of quantum computing for machine learning is among the most exciting prospective applications of quantum technologies. ... All other data that support the plots within this paper and other ...
Perhaps the most critical, universal aspect of quantum computers is the 'closed box' requirement: a quantum computer's internal operation, while under the programmer's control, must ...
Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. ... First release papers; Archive; ... Also supported by the Institute for Quantum Matter under DOE EFRC grant DE-SC0019331, QNEXT DOE National Quantum ...